research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 September 2020; accepted 29 September 2020; online 6 October 2020)

The structures of the four isomeric compounds of 6-methyl­quinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O⋯N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), ππ inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule are observed. In addition, a ππ inter­action between the benzene rings of adjacent acid mol­ecules and a C—H⋯O hydrogen bond are observed in the crystal of (I), and C—H⋯O hydrogen bonds and O⋯Cl contacts occur in the crystals of (III) and (IV). These inter­molecular inter­actions connect the acid and base mol­ecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over dnorm and shape index were generated to visualize the weak inter­molecular inter­actions.

1. Chemical context

Properties of hydrogen bonds formed between organic acids and organic bases depend on the pKa values of the acids and bases as well as inter­molecular inter­actions in the crystals. In our ongoing study on crystal structures of the system of quinoline derivatives–chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid, the ΔpKa [pKa(base) − pKa(acid)] values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well O—H⋯N/O⋯H—N hydrogen bond between the carb­oxy O atom and the aromatic N atom (Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]). On the other hand, in 2-chloro-5-nitro­benzoic acid–quinoline (1/1) (ΔpKa = 2.68; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), 2-chloro-4-nitro­benzoic acid–quinoline (1/1) (ΔpKa = 2.86; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.]), 3-chloro-2-nitro­benzoic acid–6-nitro­quinolune (1/1) (ΔpKa = 1.42), 8-hy­droxy­quinolinium 3-chloro-2-nitro­benzoate (ΔpKa = 3.02) and 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpKa = 0.98) (Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpKa = 0.76), 5-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (ΔpKa = 0.94) (Gotoh & Ishida, 2019b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.]), such a short disordered hydrogen bond was not observed. We report here crystal structures of title four isomeric compounds, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I)[link], 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II)[link], 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III)[link], and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV)[link], in order to extend our studies of short hydrogen bonding and weak inter­molecular inter­actions in the system of quinoline derivatives–chloro- and nitro-substituted benzoic acids. The ΔpKa values are 3.16, 2.98, 3.38 and 3.23, respectively, for (I)–(IV).

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)–(IV) are shown in Fig. 1[link]. In each compound, the acid and base mol­ecules are linked by a hydrogen bond between the carb­oxy group and the N atom of the base. In (I)[link], (III)[link] and (IV)[link], short hydrogen bonds are observed with N⋯O distances of 2.5452 (12), 2.5640 (17) and 2.515 (2) Å, respectively. (Tables 1[link], 3[link] and 4[link]). In these hydrogen bonds, the H atoms are each disordered over two sites; the occupancies of the O site and the N site refined to 0.65 (3) and 0.35 (3), 0.59 (4) and 0.41 (4), and 0.48 (5) and 0.52 (5), respectively, for (I)[link], (III)[link] and (IV)[link]. In (II)[link], the H atom in the hydrogen bond is located at the O site with an N⋯O distance of 2.6569 (13) Å (Table 2[link]), being longer than those in (I)[link], (III)[link] and (IV)[link]. Weak C—H⋯O hydrogen bonds are each observed in the acid–base unit of (II)[link] (C15—H15⋯O2; Table 2[link]) and the unit of (III)[link] (C8—H8⋯O2; Table 3[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 (2) 1.70 (2) 2.5452 (12) 174 (3)
N2—H2⋯O1 0.88 (3) 1.66 (3) 2.5452 (12) 176 (3)
C8—H8⋯O4i 0.95 2.59 3.2307 (13) 125
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.85 (3) 1.72 (3) 2.5640 (17) 174 (3)
N2—H2⋯O1 0.88 (4) 1.69 (4) 2.5640 (17) 170 (4)
C5—H5⋯.O2i 0.95 2.44 3.3245 (19) 155
C8—H8⋯.O2 0.95 2.46 3.1438 (19) 129
Symmetry code: (i) x, y+1, z.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 (7) 1.70 (6) 2.514 (2) 163 (7)
N2—H2⋯O1 0.87 (4) 1.67 (5) 2.514 (2) 162 (4)
C10—H10⋯O2i 0.95 2.54 3.364 (3) 145
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.89 (2) 1.78 (2) 2.6569 (13) 169 (2)
C15—H15⋯O2 0.95 2.46 3.3211 (14) 151
[Figure 1]
Figure 1
Mol­ecular structures of the title compounds (I)–(IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In the hydrogen bonds between the carb­oxy group and the N atom of the base of compounds (I)[link], (III)[link] and (IV)[link], the H atoms are each disordered over two positions. Dashed lines in (II)[link] and (III)[link] indicate the O—H⋯N and C—H⋯O hydrogen bonds.

In the hydrogen-bonded acid–base unit of compound (I)[link], the quinoline ring system (N2/C8–C16) and the benzene ring (C1–C6) are almost coplanar with a dihedral angle of 1.11 (4)°, while the quinoline ring system and the carb­oxy group (O1/C7/O2) of the acid are twisted to each other with a dihedral angle of 28.59 (12)°. In the acid mol­ecule, the benzene ring makes dihedral angles of 29.36 (12) and 8.24 (11)°, respectively, with the carb­oxy group and the nitro group (O3/N1/O4).

Similar to (I)[link], the quinoline ring system (N2/C8–C16) in the hydrogen-bonded acid–base unit of (II)[link] makes dihedral angles of 2.15 (4) and 24.51 (15)°, respectively, with the benzene ring and the carb­oxy group. The benzene ring makes dihedral angles of 22.63 (15) and 0.77 (14)°, respectively, with the carb­oxy group and the nitro group.

Compound (III)[link] crystallizes in the non-centrosymmetric space group P212121. In the acid–base unit, the quinoline ring system and the benzene ring of the acid are slightly twisted to each other with a dihedral angle of 14.50 (5)°. The quinoline ring system and the carb­oxy group are also slightly twisted with a dihedral angle of 12.55 (18)°. The benzene ring makes dihedral angles of 3.14 (18) and 85.04 (11)°, respectively, with the carb­oxy group and the nitro group.

Compound (IV)[link] crystallizes in the non-centrosymmetric space group Cc. In the acid–base unit, the quinoline ring system and the benzene ring of the acid are twisted to each other with a dihedral angle of 30.39 (9)°. The quinoline ring system and the carb­oxy group are also twisted with a dihedral angle of 21.7 (3)°. The benzene ring makes dihedral angles of 16.4 (3) and 74.4 (3)°, respectively, with the carb­oxy group and the nitro group.

3. Supra­molecular features

In the crystal of (I)[link], the hydrogen–bonded acid-base units are linked by a C—H⋯O hydrogen bond (C8—H8⋯O4i; symmetry code as given in Table 1[link]), forming a zigzag chain propagating along the c-axis direction (Fig. 2[link]). The acid–base units, which are related to each other by an inversion center, are linked together via ππ inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule, forming a centrosymmetric dimeric unit (Fig. 3[link]); the centroid–centroid distances are 3.7217 (6) and 3.7216 (6) Å, respectively, for Cg1⋯Cg2iii and Cg1⋯Cg3iii, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry code: (iii) −x + 1, −y + 1, −z + 1]. The dimeric units are further linked into a column structure stacked along the b-axis direction through a weak ππ inter­action between the benzene rings with Cg1⋯Cg1iv = 3.9401 (6) Å [symmetry code: (iv) −x + 1, −y + 2, −z + 1]. The mol­ecular chains are thus stacked into a layer parallel to the bc plane via these ππ inter­actions.

[Figure 2]
Figure 2
A packing diagram of (I)[link], showing the hydrogen-bonded chain structure formed via the O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) x, −y + [{2\over 3}], z − [{1\over 2}]; (ii) x, −y + [{3\over 2}], −z + [{1\over 2}].
[Figure 3]
Figure 3
A packing diagram of (I)[link], showing the column structure formed via the ππ inter­actions (magenta dashed lines). H atoms except for in the O—H⋯N/O⋯·H—N hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1.

In the crystal of (II)[link], the acid and base mol­ecules are alternately stacked in a column via ππ inter­actions between the acid benzene ring and the quinoline ring system, so that the hydrogen-bonded acid–base units related by an inversion center are linked into a column structure along the a-axis direction (Fig. 4[link]). The centroid–centroid distances are 3.6438 (6), 3.5745 (6), 3.6560 (6) and 3.7375 (6) Å, respectively, for Cg1⋯Cg2i, Cg1⋯Cg2ii, Cg1⋯Cg3i and Cg1⋯Cg3ii, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1]. There are no significant inter­actions between the columns.

[Figure 4]
Figure 4
A packing diagram of (II)[link], showing the column structure formed via the ππ inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯N and C—H⋯O hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.

In the crystal of (III)[link], the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond (C5—H5⋯O2i; symmetry code as in Table 3[link]), forming a tape structure propagating along the b-axis direction (Fig. 5[link]). The acid and base mol­ecules are alternately stacked in a column along the a axis direction via ππ inter­actions between the acid ring and the quinoline ring system (Fig. 6[link]), and thus the hydrogen-bonded acid–base units form a layer lying parallel to the ab plane. The centroid–centroid distances are 3.6415 (8), 3.6126 (8) and 3.6393 (8) Å, respectively, for Cg1⋯Cg2iii, Cg1⋯Cg3iii and Cg1⋯Cg3iv, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x, y + [{1\over 2}], −z + [{1\over 2}]]. A short O⋯Cl contact [O3⋯Cl1v = 3.0934 (14) Å; symmetry code: (v) x − [{1\over 2}], −y + [{3\over 2}], −z] is observed between the layers.

[Figure 5]
Figure 5
A packing diagram of (III)[link], showing two tape structures (top and bottom) related by an inversion symmetry to each other, formed by O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) x, y + 1, z; (ii) x, y − 1, z.
[Figure 6]
Figure 6
A packing diagram of (III)[link], showing the column structure formed via the ππ inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯·N/O⋯H—N and C—H⋯O hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x, y + [{1\over 2}], −z + [{1\over 2}].

In the crystal of (IV)[link], the hydrogen-bonded acid–base units are linked into a zigzag chain structure propagating along the c-axis direction (Fig. 7[link]) via C—H⋯O hydrogen bonds (C10—H10⋯O2i; symmetry code as in Table 4[link]). The chains are further linked into a sheet parallel to the bc plane via an O⋯Cl short contact [O4⋯Cl1ii = 3.017 (3) Å; (ii) x, −y, z + [{1\over 2}]]. Similar to (III)[link], the acid and base mol­ecules are alternately stacked in a column along the a-axis direction via ππ inter­actions between the acid ring and the quinoline ring system (Fig. 8[link]), and thus the above sheets form a three-dimensional network. The centroid–centroid distances are 3.5813 (13), 3.7987 (14) and 3.7382 (14) Å, respectively, for Cg1⋯Cg2iii, Cg1⋯Cg3iii and Cg1⋯Cg3iv, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively [symmetry codes: (iii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]].

[Figure 7]
Figure 7
A packing diagram of (IV)[link], showing the zigzag chain structure along the c axis via O—H⋯N/O⋯·H—N and C—H⋯O hydrogen bonds. H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry code: (i) x, −y + 1, z + [{1\over 2}].
[Figure 8]
Figure 8
A packing diagram of (IV)[link], showing the column structure formed via the ππ inter­actions (magenta dashed lines). H atoms not involved in the O—H⋯·N/O⋯H—N hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (iii) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iv) x + [{1\over 2}], −y + [{1\over 2}], z − 1/2: (v) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (vi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].

Hirshfeld surfaces for compounds (I)–(IV) mapped over dnorm and shape index (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 9[link]. The C—H⋯O inter­actions in (I)[link], (III)[link] and (IV)[link] are viewed as faint-red spots on the dnorm surfaces (black arrows in Fig. 9[link]). In addition to these inter­actions, the O⋯Cl contacts in (III)[link] and (IV)[link] are shown as faint-red spots (magenta arrows). The ππ inter­actions between the acid ring and the quinoline ring system in (I)–(IV) are indicated by blue and red triangles on the shape index surfaces (white circles in Fig. 9[link]).

[Figure 9]
Figure 9
Hirshfeld surfaces [front (top) and back (bottom) views] for the compounds of (I)–(IV) mapped over dnorm and shape index, indicating the C—H⋯O inter­actions (black arrows), O⋯Cl contacts (magenta arrows) and ππ inter­actions (white circles).

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals/salts of 6-methyl­quinoline with carb­oxy­lic acid derivatives showed two structures, namely, 6-methyl­quinoline hemikis(trans-but-2-enedioic acid) (Cambridge Structural Database refcode LASGUJ; Bekö et al., 2012[Bekö, S. L., Schmidt, M. U. & Bond, A. D. (2012). CrystEngComm, 14, 1967-1971.]), sesquikis(6-methyl­quinoline) hemikis(quinoline) trans-but-2-enedioic acid (LASHAQ; Beko et al., 2012[Bekö, S. L., Schmidt, M. U. & Bond, A. D. (2012). CrystEngComm, 14, 1967-1971.]). A search for organic co-crystals/salts of 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid gave 61, 12, 9 and 9 structures, respectively. Limiting the search for quinoline derivatives of these compounds gave 3, 2, 4 and 2 compounds, namely, for 2-chloro-4-nitro­benzoic acid: 2-chloro-4-nitro­benzoic acid–5-nitro­quinoline (NUBHEA; Gotoh & Ishida, 2019b[Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.]), 8-hy­droxy­quinolinium 2-chloro-4-nitro­benzoate (WOPDEM; Babu & Chandrasekaran, 2014[Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.]), 2-chloro-4-nitro­benzoic acid–quinoline (1/1) (YAGFAP; Gotoh & Ishida, 2011[Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.]), for 2-chloro-5-nitro­benzoic acid: 2-chloro-5-nitro­benzoic acid–quinoline (1/1) (AJIWIA; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), 8-hy­droxy-2-methyl­quinolinium 2-chloro-5-nitro­benzoate dihydrate (HIHPIY; Tan, 2007[Tan, T. (2007). J. Mol. Struct. 840, 6-13.]), for 3-chloro-2-nitro­benzoic acid: 3-chloro-2-nitro­benzoic acid–quinoline (1/1) (AJIWOG, Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), 3-chloro-2-nitro­benzoic acid–5-nitro­quinoline (1/1) (XOWVUD; Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 3-chloro-2-nitro­benzoic acid–6-nitro­quinoline (1/1) (XOWWAK, Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), 8-hy­droxy­quinolin-1-ium 3-chloro-2-nitro­benzoate (XOWWEO; Gotoh & Ishida, 2019a[Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.]), and for 4-chloro-2-nitro­benzoic acid: 4-chloro-2-nitro­benzoic acid–quinoline (AJIWUM; Gotoh & Ishida, 2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]), 4-hy­droxy­quinolin-1-ium 4-chloro-2-nitro­benzoate (WOVZOZ; Gotoh & Ishida, 2019c[Gotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853-1856.]). Of these compounds, AJIWOG and AJIWUM show disordered O—H⋯N/O⋯H—N hydrogen bonds, while WOVZOZ shows a disorder structure in the O—H⋯O hydrogen bond accompanied by a keto–enol tautomerization in the base mol­ecule.

5. Synthesis and crystallization

Single crystals of the title compounds (I)–(IV) were obtained by slow evaporation from aceto­nitrile solutions of 6-methyl­quinoline with chloro-nitro­benzoic acids in a 1:1 molar ratio at room temperature [80 ml aceto­nitrile solution of 6-methyl­quinoline (0.20 g) and chloro-nitro­benzoic acid (0.28 g for each acid)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms in compounds (I)–(IV) were found in difference-Fourier maps. The O-bound H atom in (II)[link] was refined freely; the refined distance is given in Table 2[link]. For (I)[link], (III)[link] and (IV)[link], H atoms in the N⋯H⋯O hydrogen bonds were found to be disordered over two positions in difference-Fourier maps. Since the site-occupancy factors and isotropic displacement parameters are strongly collated, the positional parameters and occupancy factors were refined, with bond length restraints of N—H = 0.88 (1) Å and O—H = 0.84 (1) Å, and with Uiso(H) = 1.5Ueq(N or O); the refined distances are given in Tables 1[link], 3[link] and 4[link]. Other H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula C7H3.65ClNO4·C10H9.35N C7H4ClNO4·C10H9N C7H3.59ClNO4·C10H9.41N C7H3.48ClNO4·C10H9.52N
Mr 344.74 344.74 344.75 344.75
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Orthorhombic, P212121 Monoclinic, Cc
Temperature (K) 185 186 190 185
a, b, c (Å) 9.5055 (2), 8.3019 (4), 19.5865 (4) 6.8693 (3), 7.6482 (4), 15.1195 (4) 7.1156 (4), 7.5854 (4), 28.8599 (14) 7.4271 (6), 14.4348 (6), 16.2208 (7)
α, β, γ (°) 90, 95.7214 (7), 90 78.218 (3), 81.1923 (18), 77.754 (3) 90, 90, 90 90, 113.203 (3), 90
V3) 1537.94 (8) 754.89 (6) 1557.70 (14) 1598.35 (16)
Z 4 2 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.27 0.28 0.27 0.26
Crystal size (mm) 0.40 × 0.35 × 0.35 0.45 × 0.35 × 0.30 0.30 × 0.30 × 0.17 0.28 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.887, 0.909 0.891, 0.920 0.938, 0.955 0.931, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 30539, 4487, 4065 15404, 4381, 3868 30061, 4532, 4365 16695, 4645, 4158
Rint 0.025 0.023 0.017 0.015
(sin θ/λ)max−1) 0.704 0.703 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.06 0.036, 0.108, 1.05 0.028, 0.079, 1.06 0.030, 0.081, 1.09
No. of reflections 4487 4381 4532 4645
No. of parameters 225 222 225 225
No. of restraints 2 0 2 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.22 0.48, −0.26 0.31, −0.26 0.35, −0.16
Absolute structure Flack x determined using 1821 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1899 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.014 (8) −0.023 (9)
Computer programs: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), CrystalStructure (Rigaku, 2018[Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: PROCESS-AUTO (Rigaku, 2006). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I), (II); SHELXS97 (Sheldrick, 2008) for (III), (IV). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (I); SHELXL-2018/3 (Sheldrick, 2015b) for (II); SHELXL2016/6 (Sheldrick, 2015b) for (III); SHELXL2016/6 (Sheldrick, 2015b) for (IV). For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2020).

2-Chloro-4-nitrobenzoic acid–6-methylquinoline (1/1) (I) top
Crystal data top
C7H3.65ClNO4·C10H9.35NF(000) = 712.00
Mr = 344.74Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 9.5055 (2) ÅCell parameters from 26323 reflections
b = 8.3019 (4) Åθ = 3.1–30.2°
c = 19.5865 (4) ŵ = 0.27 mm1
β = 95.7214 (7)°T = 185 K
V = 1537.94 (8) Å3Block, colorless
Z = 40.40 × 0.35 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4065 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1312
Tmin = 0.887, Tmax = 0.909k = 1111
30539 measured reflectionsl = 2726
4487 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.329P]
where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.22 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.87370 (3)0.79426 (3)0.44087 (2)0.03134 (8)
O10.42961 (8)0.64577 (11)0.42646 (5)0.03635 (19)
H10.401 (3)0.576 (3)0.3967 (11)0.055*0.65 (3)
O20.64551 (9)0.55323 (11)0.41332 (5)0.0415 (2)
O30.85703 (9)1.17879 (11)0.64471 (4)0.03715 (19)
O40.67137 (9)1.12532 (11)0.69548 (4)0.03875 (19)
N10.74667 (9)1.10600 (10)0.64913 (4)0.02564 (17)
N20.32928 (9)0.44919 (10)0.33444 (4)0.02445 (16)
H20.364 (4)0.521 (4)0.3649 (17)0.037*0.35 (3)
C10.61850 (9)0.76377 (11)0.49454 (4)0.02042 (16)
C20.75219 (9)0.83696 (11)0.49820 (4)0.02126 (17)
C30.79336 (9)0.95089 (11)0.54813 (5)0.02240 (17)
H30.8830751.0019060.5496410.027*
C40.70028 (10)0.98778 (11)0.59541 (4)0.02162 (17)
C50.56791 (10)0.91744 (12)0.59456 (5)0.02394 (18)
H50.5063680.9442800.6281840.029*
C60.52786 (10)0.80690 (11)0.54331 (5)0.02350 (18)
H60.4366190.7593870.5413130.028*
C70.56641 (10)0.64206 (11)0.44026 (5)0.02361 (17)
C80.40800 (11)0.39905 (13)0.28726 (5)0.0284 (2)
H80.5008270.4413080.2870100.034*
C90.36003 (12)0.28509 (13)0.23709 (5)0.0314 (2)
H90.4189850.2527190.2031490.038*
C100.22700 (12)0.22130 (12)0.23779 (5)0.0291 (2)
H100.1933320.1439230.2043400.035*
C110.14049 (10)0.27092 (11)0.28827 (5)0.02387 (18)
C120.00279 (11)0.20841 (12)0.29329 (5)0.0285 (2)
H120.0340750.1287870.2615620.034*
C130.07753 (11)0.26074 (13)0.34293 (6)0.0294 (2)
C140.02173 (11)0.38120 (13)0.38945 (6)0.0299 (2)
H140.0782790.4198130.4233090.036*
C150.11154 (11)0.44368 (12)0.38702 (5)0.02705 (19)
H150.1468300.5231180.4191920.032*
C160.19535 (10)0.38878 (11)0.33634 (5)0.02220 (17)
C170.22358 (12)0.19441 (16)0.34909 (8)0.0408 (3)
H17A0.2906380.2836560.3507720.061*
H17B0.2225990.1304210.3911840.061*
H17C0.2523350.1261060.3093320.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02668 (13)0.03764 (15)0.03157 (13)0.00822 (9)0.01214 (9)0.01037 (9)
O10.0247 (4)0.0378 (4)0.0445 (4)0.0002 (3)0.0067 (3)0.0172 (3)
O20.0293 (4)0.0412 (5)0.0547 (5)0.0052 (3)0.0083 (3)0.0239 (4)
O30.0343 (4)0.0387 (4)0.0387 (4)0.0130 (3)0.0050 (3)0.0133 (3)
O40.0452 (5)0.0433 (5)0.0297 (4)0.0057 (4)0.0133 (3)0.0115 (3)
N10.0282 (4)0.0247 (4)0.0239 (4)0.0008 (3)0.0022 (3)0.0028 (3)
N20.0244 (4)0.0227 (4)0.0254 (4)0.0023 (3)0.0015 (3)0.0010 (3)
C10.0196 (4)0.0194 (4)0.0219 (4)0.0016 (3)0.0006 (3)0.0011 (3)
C20.0195 (4)0.0228 (4)0.0219 (4)0.0016 (3)0.0043 (3)0.0005 (3)
C30.0197 (4)0.0235 (4)0.0241 (4)0.0042 (3)0.0024 (3)0.0010 (3)
C40.0235 (4)0.0200 (4)0.0211 (4)0.0012 (3)0.0011 (3)0.0012 (3)
C50.0219 (4)0.0258 (4)0.0247 (4)0.0006 (3)0.0055 (3)0.0004 (3)
C60.0193 (4)0.0246 (4)0.0268 (4)0.0033 (3)0.0034 (3)0.0000 (3)
C70.0247 (4)0.0213 (4)0.0247 (4)0.0042 (3)0.0019 (3)0.0004 (3)
C80.0274 (4)0.0280 (5)0.0297 (5)0.0020 (4)0.0029 (4)0.0016 (4)
C90.0375 (5)0.0320 (5)0.0256 (4)0.0002 (4)0.0072 (4)0.0014 (4)
C100.0389 (5)0.0267 (5)0.0212 (4)0.0027 (4)0.0000 (4)0.0031 (3)
C110.0276 (4)0.0214 (4)0.0214 (4)0.0014 (3)0.0038 (3)0.0008 (3)
C120.0286 (5)0.0257 (4)0.0295 (5)0.0047 (3)0.0060 (4)0.0000 (3)
C130.0238 (4)0.0268 (4)0.0366 (5)0.0010 (4)0.0017 (4)0.0065 (4)
C140.0280 (5)0.0274 (5)0.0346 (5)0.0035 (4)0.0052 (4)0.0015 (4)
C150.0292 (5)0.0234 (4)0.0282 (4)0.0006 (3)0.0011 (3)0.0032 (3)
C160.0237 (4)0.0197 (4)0.0223 (4)0.0004 (3)0.0023 (3)0.0003 (3)
C170.0269 (5)0.0399 (6)0.0553 (7)0.0065 (4)0.0026 (5)0.0073 (5)
Geometric parameters (Å, º) top
Cl1—C21.7262 (9)C8—C91.4069 (14)
O1—C71.3019 (12)C8—H80.9500
O1—H10.847 (10)C9—C101.3722 (16)
O2—C71.2111 (13)C9—H90.9500
O3—N11.2211 (12)C10—C111.4091 (14)
O4—N11.2215 (11)C10—H100.9500
N1—C41.4739 (12)C11—C121.4206 (14)
N2—C81.3134 (13)C11—C161.4205 (12)
N2—C161.3722 (12)C12—C131.3656 (16)
N2—H20.883 (10)C12—H120.9500
C1—C61.3954 (13)C13—C141.4196 (15)
C1—C21.4039 (12)C13—C171.5096 (15)
C1—C71.5137 (12)C14—C151.3741 (15)
C2—C31.3884 (12)C14—H140.9500
C3—C41.3774 (13)C15—C161.4090 (14)
C3—H30.9500C15—H150.9500
C4—C51.3857 (13)C17—H17A0.9800
C5—C61.3851 (13)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—H60.9500
C7—O1—H1112.0 (19)C10—C9—C8119.17 (10)
O3—N1—O4123.98 (9)C10—C9—H9120.4
O3—N1—C4118.49 (8)C8—C9—H9120.4
O4—N1—C4117.53 (8)C9—C10—C11119.80 (9)
C8—N2—C16119.89 (8)C9—C10—H10120.1
C8—N2—H2119 (3)C11—C10—H10120.1
C16—N2—H2121 (3)C10—C11—C12123.23 (9)
C6—C1—C2118.13 (8)C10—C11—C16117.72 (9)
C6—C1—C7118.10 (8)C12—C11—C16119.05 (9)
C2—C1—C7123.77 (8)C13—C12—C11121.16 (9)
C3—C2—C1121.40 (8)C13—C12—H12119.4
C3—C2—Cl1115.99 (7)C11—C12—H12119.4
C1—C2—Cl1122.60 (7)C12—C13—C14118.79 (9)
C4—C3—C2118.04 (8)C12—C13—C17121.65 (10)
C4—C3—H3121.0C14—C13—C17119.56 (10)
C2—C3—H3121.0C15—C14—C13122.03 (10)
C3—C4—C5122.79 (8)C15—C14—H14119.0
C3—C4—N1117.48 (8)C13—C14—H14119.0
C5—C4—N1119.73 (8)C14—C15—C16119.36 (9)
C6—C5—C4118.14 (8)C14—C15—H15120.3
C6—C5—H5120.9C16—C15—H15120.3
C4—C5—H5120.9N2—C16—C15119.48 (8)
C5—C6—C1121.48 (8)N2—C16—C11120.93 (9)
C5—C6—H6119.3C15—C16—C11119.59 (9)
C1—C6—H6119.3C13—C17—H17A109.5
O2—C7—O1125.07 (9)C13—C17—H17B109.5
O2—C7—C1122.59 (9)H17A—C17—H17B109.5
O1—C7—C1112.34 (8)C13—C17—H17C109.5
N2—C8—C9122.47 (9)H17A—C17—H17C109.5
N2—C8—H8118.8H17B—C17—H17C109.5
C9—C8—H8118.8
C6—C1—C2—C30.91 (13)C16—N2—C8—C90.66 (15)
C7—C1—C2—C3178.41 (8)N2—C8—C9—C101.13 (16)
C6—C1—C2—Cl1179.86 (7)C8—C9—C10—C110.25 (16)
C7—C1—C2—Cl10.55 (13)C9—C10—C11—C12178.73 (9)
C1—C2—C3—C41.56 (14)C9—C10—C11—C160.97 (14)
Cl1—C2—C3—C4179.42 (7)C10—C11—C12—C13179.69 (9)
C2—C3—C4—C50.70 (14)C16—C11—C12—C130.62 (14)
C2—C3—C4—N1178.55 (8)C11—C12—C13—C140.77 (15)
O3—N1—C4—C38.31 (13)C11—C12—C13—C17179.57 (9)
O4—N1—C4—C3171.89 (9)C12—C13—C14—C151.57 (16)
O3—N1—C4—C5172.41 (9)C17—C13—C14—C15178.76 (10)
O4—N1—C4—C57.39 (13)C13—C14—C15—C160.91 (15)
C3—C4—C5—C60.78 (14)C8—N2—C16—C15179.81 (9)
N1—C4—C5—C6179.98 (8)C8—N2—C16—C110.65 (14)
C4—C5—C6—C11.46 (14)C14—C15—C16—N2179.02 (9)
C2—C1—C6—C50.64 (14)C14—C15—C16—C110.53 (14)
C7—C1—C6—C5180.00 (8)C10—C11—C16—N21.45 (13)
C6—C1—C7—O2151.53 (10)C12—C11—C16—N2178.26 (9)
C2—C1—C7—O229.15 (15)C10—C11—C16—C15179.01 (9)
C6—C1—C7—O128.79 (12)C12—C11—C16—C151.28 (13)
C2—C1—C7—O1150.52 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (2)1.70 (2)2.5452 (12)174 (3)
N2—H2···O10.88 (3)1.66 (3)2.5452 (12)176 (3)
C8—H8···O4i0.952.593.2307 (13)125
Symmetry code: (i) x, y+3/2, z1/2.
2-Chloro-5-nitrobenzoic acid–6-methylquinoline (1/1) (II) top
Crystal data top
C7H4ClNO4·C10H9NZ = 2
Mr = 344.74F(000) = 356.00
Triclinic, P1Dx = 1.517 Mg m3
a = 6.8693 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.6482 (4) ÅCell parameters from 13517 reflections
c = 15.1195 (4) Åθ = 3.1–30.1°
α = 78.218 (3)°µ = 0.28 mm1
β = 81.1923 (18)°T = 186 K
γ = 77.754 (3)°Block, colorless
V = 754.89 (6) Å30.45 × 0.35 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3868 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.023
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 99
Tmin = 0.891, Tmax = 0.920k = 1010
15404 measured reflectionsl = 2021
4381 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1585P]
where P = (Fo2 + 2Fc2)/3
4381 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11678 (4)0.98086 (4)0.61864 (2)0.03561 (10)
O10.21038 (15)0.43541 (12)0.54709 (6)0.0366 (2)
O20.28610 (18)0.71213 (14)0.49895 (6)0.0478 (3)
O30.18489 (15)0.29378 (13)0.96192 (6)0.0392 (2)
O40.25163 (16)0.14131 (12)0.85221 (6)0.0405 (2)
N10.20962 (14)0.28451 (13)0.88057 (6)0.02681 (18)
N20.29763 (14)0.34416 (12)0.38322 (6)0.02569 (18)
C10.19890 (14)0.60827 (13)0.65842 (7)0.02253 (19)
C20.15118 (15)0.77299 (14)0.69035 (7)0.02393 (19)
C30.12289 (16)0.77660 (14)0.78333 (7)0.0264 (2)
H30.0914260.8901150.8035510.032*
C40.14004 (15)0.61713 (14)0.84642 (7)0.0254 (2)
H40.1193120.6190660.9098220.030*
C50.18819 (14)0.45521 (13)0.81441 (6)0.02191 (18)
C60.21638 (15)0.44738 (13)0.72259 (7)0.02259 (19)
H60.2475150.3330380.7032160.027*
C70.23535 (16)0.59389 (15)0.55899 (7)0.0274 (2)
C80.34550 (16)0.16678 (15)0.38795 (7)0.0279 (2)
H80.3468490.0918170.4463770.033*
C90.39475 (17)0.08253 (14)0.31103 (8)0.0284 (2)
H90.4293970.0461220.3176640.034*
C100.39200 (16)0.18891 (14)0.22624 (7)0.0267 (2)
H100.4241340.1343010.1734860.032*
C110.34115 (14)0.38015 (13)0.21768 (7)0.02121 (18)
C120.33604 (15)0.50006 (14)0.13253 (7)0.02423 (19)
H120.3646520.4510510.0780620.029*
C130.29069 (15)0.68496 (14)0.12730 (7)0.02410 (19)
C140.24533 (16)0.75428 (14)0.20953 (8)0.0271 (2)
H140.2129310.8822370.2066930.032*
C150.24652 (16)0.64331 (14)0.29307 (7)0.0264 (2)
H150.2145050.6944200.3469140.032*
C160.29544 (14)0.45298 (13)0.29885 (6)0.02121 (18)
C170.28690 (19)0.81553 (17)0.03801 (8)0.0341 (2)
H17A0.3233700.7471330.0121730.051*
H17B0.3829790.8956870.0342110.051*
H17C0.1518900.8886990.0339130.051*
H10.243 (3)0.420 (3)0.4899 (15)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03973 (16)0.02267 (14)0.03659 (16)0.00175 (10)0.00100 (11)0.00595 (10)
O10.0568 (6)0.0320 (4)0.0209 (4)0.0110 (4)0.0014 (3)0.0059 (3)
O20.0815 (8)0.0429 (5)0.0220 (4)0.0271 (5)0.0024 (4)0.0010 (4)
O30.0584 (6)0.0364 (5)0.0194 (4)0.0069 (4)0.0037 (3)0.0005 (3)
O40.0648 (6)0.0216 (4)0.0315 (4)0.0031 (4)0.0064 (4)0.0010 (3)
N10.0315 (4)0.0243 (4)0.0227 (4)0.0046 (3)0.0038 (3)0.0002 (3)
N20.0299 (4)0.0250 (4)0.0208 (4)0.0049 (3)0.0029 (3)0.0012 (3)
C10.0227 (4)0.0234 (5)0.0203 (4)0.0042 (3)0.0029 (3)0.0012 (3)
C20.0222 (4)0.0215 (4)0.0262 (5)0.0043 (3)0.0032 (3)0.0007 (3)
C30.0291 (5)0.0209 (4)0.0292 (5)0.0040 (4)0.0023 (4)0.0061 (4)
C40.0278 (5)0.0265 (5)0.0221 (4)0.0054 (4)0.0022 (3)0.0050 (4)
C50.0233 (4)0.0213 (4)0.0202 (4)0.0048 (3)0.0034 (3)0.0001 (3)
C60.0250 (4)0.0213 (4)0.0208 (4)0.0038 (3)0.0027 (3)0.0028 (3)
C70.0303 (5)0.0297 (5)0.0212 (5)0.0052 (4)0.0042 (4)0.0016 (4)
C80.0298 (5)0.0249 (5)0.0269 (5)0.0066 (4)0.0042 (4)0.0027 (4)
C90.0310 (5)0.0183 (4)0.0347 (5)0.0046 (4)0.0040 (4)0.0015 (4)
C100.0308 (5)0.0201 (4)0.0293 (5)0.0050 (4)0.0006 (4)0.0065 (4)
C110.0217 (4)0.0193 (4)0.0226 (4)0.0049 (3)0.0014 (3)0.0035 (3)
C120.0274 (5)0.0250 (5)0.0203 (4)0.0060 (4)0.0013 (3)0.0039 (3)
C130.0252 (4)0.0234 (5)0.0230 (5)0.0067 (4)0.0047 (3)0.0010 (3)
C140.0326 (5)0.0188 (4)0.0298 (5)0.0035 (4)0.0067 (4)0.0033 (4)
C150.0335 (5)0.0209 (5)0.0249 (5)0.0023 (4)0.0043 (4)0.0064 (4)
C160.0223 (4)0.0204 (4)0.0206 (4)0.0042 (3)0.0024 (3)0.0028 (3)
C170.0424 (6)0.0308 (5)0.0268 (5)0.0099 (5)0.0071 (4)0.0059 (4)
Geometric parameters (Å, º) top
Cl1—C21.7245 (10)C8—C91.4055 (16)
O1—C71.3106 (14)C8—H80.9500
O1—H10.89 (2)C9—C101.3713 (15)
O2—C71.2104 (14)C9—H90.9500
O3—N11.2302 (12)C10—C111.4134 (13)
O4—N11.2192 (13)C10—H100.9500
N1—C51.4686 (13)C11—C161.4149 (13)
N2—C81.3161 (14)C11—C121.4205 (13)
N2—C161.3737 (12)C12—C131.3705 (14)
C1—C21.3972 (14)C12—H120.9500
C1—C61.3984 (13)C13—C141.4157 (15)
C1—C71.5084 (14)C13—C171.5066 (14)
C2—C31.3946 (15)C14—C151.3706 (15)
C3—C41.3819 (15)C14—H140.9500
C3—H30.9500C15—C161.4103 (14)
C4—C51.3781 (14)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C61.3838 (14)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C7—O1—H1112.6 (13)C10—C9—H9120.5
O4—N1—O3123.42 (10)C8—C9—H9120.5
O4—N1—C5118.51 (9)C9—C10—C11119.73 (10)
O3—N1—C5118.07 (9)C9—C10—H10120.1
C8—N2—C16118.47 (9)C11—C10—H10120.1
C2—C1—C6117.92 (9)C10—C11—C16117.36 (9)
C2—C1—C7123.90 (9)C10—C11—C12123.30 (9)
C6—C1—C7118.17 (9)C16—C11—C12119.33 (9)
C3—C2—C1120.97 (9)C13—C12—C11121.38 (9)
C3—C2—Cl1116.41 (8)C13—C12—H12119.3
C1—C2—Cl1122.59 (8)C11—C12—H12119.3
C4—C3—C2120.83 (10)C12—C13—C14118.14 (9)
C4—C3—H3119.6C12—C13—C17122.58 (10)
C2—C3—H3119.6C14—C13—C17119.27 (10)
C5—C4—C3117.86 (9)C15—C14—C13122.32 (9)
C5—C4—H4121.1C15—C14—H14118.8
C3—C4—H4121.1C13—C14—H14118.8
C4—C5—C6122.59 (9)C14—C15—C16119.78 (9)
C4—C5—N1118.54 (9)C14—C15—H15120.1
C6—C5—N1118.86 (9)C16—C15—H15120.1
C5—C6—C1119.81 (9)N2—C16—C15118.88 (9)
C5—C6—H6120.1N2—C16—C11122.08 (9)
C1—C6—H6120.1C15—C16—C11119.03 (9)
O2—C7—O1124.98 (10)C13—C17—H17A109.5
O2—C7—C1123.97 (10)C13—C17—H17B109.5
O1—C7—C1111.02 (9)H17A—C17—H17B109.5
N2—C8—C9123.38 (10)C13—C17—H17C109.5
N2—C8—H8118.3H17A—C17—H17C109.5
C9—C8—H8118.3H17B—C17—H17C109.5
C10—C9—C8118.97 (10)
C6—C1—C2—C30.31 (15)C16—N2—C8—C90.03 (16)
C7—C1—C2—C3178.82 (10)N2—C8—C9—C100.48 (17)
C6—C1—C2—Cl1177.73 (7)C8—C9—C10—C110.35 (16)
C7—C1—C2—Cl13.14 (14)C9—C10—C11—C160.19 (15)
C1—C2—C3—C40.43 (16)C9—C10—C11—C12179.57 (10)
Cl1—C2—C3—C4177.73 (8)C10—C11—C12—C13178.37 (10)
C2—C3—C4—C50.75 (16)C16—C11—C12—C130.99 (15)
C3—C4—C5—C61.02 (16)C11—C12—C13—C141.05 (15)
C3—C4—C5—N1179.20 (9)C11—C12—C13—C17179.13 (9)
O4—N1—C5—C4179.79 (10)C12—C13—C14—C150.36 (16)
O3—N1—C5—C40.50 (15)C17—C13—C14—C15179.82 (10)
O4—N1—C5—C60.01 (15)C13—C14—C15—C160.40 (16)
O3—N1—C5—C6179.71 (10)C8—N2—C16—C15179.29 (10)
C4—C5—C6—C10.93 (16)C8—N2—C16—C110.55 (15)
N1—C5—C6—C1179.29 (8)C14—C15—C16—N2179.39 (9)
C2—C1—C6—C50.54 (15)C14—C15—C16—C110.45 (15)
C7—C1—C6—C5178.64 (9)C10—C11—C16—N20.65 (14)
C2—C1—C7—O223.08 (17)C12—C11—C16—N2179.94 (9)
C6—C1—C7—O2156.05 (12)C10—C11—C16—C15179.19 (9)
C2—C1—C7—O1158.73 (10)C12—C11—C16—C150.22 (14)
C6—C1—C7—O122.14 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.89 (2)1.78 (2)2.6569 (13)169 (2)
C15—H15···O20.952.463.3211 (14)151
3-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (III) top
Crystal data top
C7H3.59ClNO4·C10H9.41NDx = 1.470 Mg m3
Mr = 344.75Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, P212121Cell parameters from 28109 reflections
a = 7.1156 (4) Åθ = 3.0–30.0°
b = 7.5854 (4) ŵ = 0.27 mm1
c = 28.8599 (14) ÅT = 190 K
V = 1557.70 (14) Å3Block, colorless
Z = 40.30 × 0.30 × 0.17 mm
F(000) = 712.00
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4365 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.017
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 109
Tmin = 0.938, Tmax = 0.955k = 1010
30061 measured reflectionsl = 3940
4532 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.1455P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4532 reflectionsΔρmax = 0.31 e Å3
225 parametersΔρmin = 0.26 e Å3
2 restraintsAbsolute structure: Flack x determined using 1821 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.53139 (7)0.88067 (5)0.01741 (2)0.03788 (11)
O10.27295 (18)0.75649 (15)0.22566 (4)0.0324 (2)
H10.236 (6)0.671 (4)0.2421 (12)0.049*0.59 (4)
O20.3168 (2)0.54391 (16)0.17307 (4)0.0419 (3)
O30.2617 (2)0.56590 (17)0.07241 (4)0.0410 (3)
O40.55968 (19)0.53587 (15)0.08592 (5)0.0385 (3)
N10.41299 (18)0.61877 (16)0.08702 (4)0.0263 (2)
N20.18381 (18)0.49896 (17)0.27884 (4)0.0260 (2)
H20.203 (8)0.585 (5)0.2590 (16)0.039*0.41 (4)
C10.37616 (18)0.84027 (16)0.15112 (4)0.0210 (2)
C20.42073 (19)0.80125 (17)0.10505 (4)0.0216 (2)
C30.4747 (2)0.93226 (17)0.07416 (4)0.0240 (2)
C40.4842 (2)1.10660 (18)0.08878 (5)0.0265 (3)
H40.5202811.1968570.0677660.032*
C50.4404 (2)1.14758 (18)0.13447 (5)0.0272 (3)
H50.4469361.2663840.1447600.033*
C60.38715 (19)1.01549 (18)0.16517 (5)0.0246 (2)
H60.3577031.0453620.1963020.030*
C70.3188 (2)0.69810 (18)0.18471 (5)0.0245 (3)
C80.2211 (2)0.3372 (2)0.26449 (5)0.0297 (3)
H80.2613200.3206600.2334040.036*
C90.2039 (2)0.18918 (19)0.29319 (5)0.0307 (3)
H90.2295000.0745320.2815460.037*
C100.1493 (2)0.21234 (19)0.33840 (5)0.0282 (3)
H100.1384090.1135300.3584440.034*
C110.10940 (18)0.38383 (19)0.35510 (4)0.0234 (2)
C120.0566 (2)0.4191 (2)0.40170 (5)0.0269 (3)
H120.0465760.3242250.4230280.032*
C130.0200 (2)0.5876 (2)0.41648 (5)0.0283 (3)
C140.0319 (2)0.7280 (2)0.38397 (5)0.0311 (3)
H140.0031830.8444650.3937740.037*
C150.0841 (2)0.69943 (19)0.33867 (5)0.0292 (3)
H150.0917620.7954720.3176240.035*
C160.12609 (19)0.52672 (18)0.32360 (5)0.0233 (2)
C170.0287 (3)0.6272 (3)0.46621 (5)0.0399 (4)
H17A0.1283600.7162240.4672720.060*
H17B0.0829120.6718010.4822790.060*
H17C0.0722830.5191380.4814280.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0610 (2)0.03165 (18)0.02096 (15)0.00237 (17)0.01009 (15)0.00035 (13)
O10.0498 (7)0.0250 (5)0.0223 (5)0.0041 (5)0.0099 (5)0.0005 (4)
O20.0751 (9)0.0223 (5)0.0282 (5)0.0037 (5)0.0160 (6)0.0008 (4)
O30.0507 (7)0.0332 (6)0.0390 (6)0.0137 (5)0.0115 (5)0.0032 (5)
O40.0478 (6)0.0249 (5)0.0427 (6)0.0058 (5)0.0072 (5)0.0060 (5)
N10.0391 (6)0.0201 (5)0.0197 (5)0.0037 (5)0.0015 (4)0.0007 (4)
N20.0325 (6)0.0245 (5)0.0209 (5)0.0020 (5)0.0034 (4)0.0025 (4)
C10.0240 (5)0.0193 (5)0.0199 (5)0.0003 (4)0.0020 (4)0.0011 (4)
C20.0258 (5)0.0173 (5)0.0215 (5)0.0005 (4)0.0004 (4)0.0006 (4)
C30.0298 (6)0.0222 (5)0.0198 (5)0.0002 (5)0.0032 (5)0.0012 (4)
C40.0324 (6)0.0197 (5)0.0274 (6)0.0006 (5)0.0027 (5)0.0033 (5)
C50.0341 (7)0.0187 (5)0.0289 (6)0.0012 (5)0.0029 (5)0.0017 (5)
C60.0300 (6)0.0210 (5)0.0228 (6)0.0017 (5)0.0037 (5)0.0021 (5)
C70.0302 (6)0.0226 (6)0.0209 (6)0.0012 (5)0.0038 (5)0.0029 (5)
C80.0375 (7)0.0289 (7)0.0227 (6)0.0030 (6)0.0033 (5)0.0012 (5)
C90.0409 (8)0.0219 (6)0.0292 (7)0.0017 (6)0.0016 (6)0.0021 (5)
C100.0349 (7)0.0229 (6)0.0268 (6)0.0034 (5)0.0005 (5)0.0030 (5)
C110.0247 (5)0.0238 (5)0.0218 (5)0.0027 (5)0.0009 (4)0.0023 (5)
C120.0293 (6)0.0307 (7)0.0207 (6)0.0033 (5)0.0006 (5)0.0043 (5)
C130.0275 (6)0.0346 (7)0.0228 (6)0.0013 (5)0.0025 (5)0.0005 (5)
C140.0346 (7)0.0273 (6)0.0313 (7)0.0020 (6)0.0062 (6)0.0014 (5)
C150.0356 (7)0.0229 (6)0.0291 (6)0.0008 (5)0.0051 (6)0.0034 (5)
C160.0246 (5)0.0234 (6)0.0220 (6)0.0013 (4)0.0012 (5)0.0022 (5)
C170.0464 (9)0.0483 (9)0.0251 (7)0.0006 (8)0.0071 (6)0.0055 (7)
Geometric parameters (Å, º) top
Cl1—C31.7316 (13)C8—C91.401 (2)
O1—C71.3035 (17)C8—H80.9500
O1—H10.847 (13)C9—C101.372 (2)
O2—C71.2170 (18)C9—H90.9500
O3—N11.2238 (18)C10—C111.416 (2)
O4—N11.2189 (18)C10—H100.9500
N1—C21.4797 (17)C11—C161.4197 (18)
N2—C81.322 (2)C11—C121.4217 (18)
N2—C161.3717 (17)C12—C131.372 (2)
N2—H20.879 (14)C12—H120.9500
C1—C61.3918 (18)C13—C141.421 (2)
C1—C21.3986 (17)C13—C171.507 (2)
C1—C71.5065 (18)C14—C151.376 (2)
C2—C31.3890 (17)C14—H140.9500
C3—C41.3899 (19)C15—C161.4124 (19)
C4—C51.3900 (19)C15—H150.9500
C4—H40.9500C17—H17A0.9800
C5—C61.3902 (19)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—H60.9500
C7—O1—H1109 (3)C10—C9—C8118.97 (14)
O4—N1—O3125.11 (13)C10—C9—H9120.5
O4—N1—C2117.38 (12)C8—C9—H9120.5
O3—N1—C2117.42 (13)C9—C10—C11119.86 (13)
C8—N2—C16119.84 (12)C9—C10—H10120.1
C8—N2—H2117 (4)C11—C10—H10120.1
C16—N2—H2123 (4)C10—C11—C16117.81 (12)
C6—C1—C2117.80 (11)C10—C11—C12123.23 (13)
C6—C1—C7120.75 (11)C16—C11—C12118.95 (13)
C2—C1—C7121.45 (11)C13—C12—C11121.31 (13)
C3—C2—C1121.42 (12)C13—C12—H12119.3
C3—C2—N1117.00 (11)C11—C12—H12119.3
C1—C2—N1121.58 (11)C12—C13—C14118.75 (13)
C2—C3—C4119.96 (12)C12—C13—C17121.67 (14)
C2—C3—Cl1120.65 (10)C14—C13—C17119.56 (15)
C4—C3—Cl1119.39 (10)C15—C14—C13121.68 (14)
C3—C4—C5119.33 (12)C15—C14—H14119.2
C3—C4—H4120.3C13—C14—H14119.2
C5—C4—H4120.3C14—C15—C16119.71 (13)
C4—C5—C6120.30 (12)C14—C15—H15120.1
C4—C5—H5119.9C16—C15—H15120.1
C6—C5—H5119.9N2—C16—C15119.72 (12)
C5—C6—C1121.19 (12)N2—C16—C11120.72 (12)
C5—C6—H6119.4C15—C16—C11119.55 (12)
C1—C6—H6119.4C13—C17—H17A109.5
O2—C7—O1125.02 (13)C13—C17—H17B109.5
O2—C7—C1120.90 (12)H17A—C17—H17B109.5
O1—C7—C1114.08 (12)C13—C17—H17C109.5
N2—C8—C9122.77 (13)H17A—C17—H17C109.5
N2—C8—H8118.6H17B—C17—H17C109.5
C9—C8—H8118.6
C6—C1—C2—C30.1 (2)C2—C1—C7—O1176.81 (13)
C7—C1—C2—C3179.62 (13)C16—N2—C8—C90.2 (2)
C6—C1—C2—N1180.00 (13)N2—C8—C9—C101.2 (3)
C7—C1—C2—N10.25 (19)C8—C9—C10—C110.8 (2)
O4—N1—C2—C383.25 (16)C9—C10—C11—C160.6 (2)
O3—N1—C2—C393.42 (16)C9—C10—C11—C12178.41 (14)
O4—N1—C2—C196.63 (16)C10—C11—C12—C13179.70 (14)
O3—N1—C2—C186.70 (17)C16—C11—C12—C130.7 (2)
C1—C2—C3—C40.4 (2)C11—C12—C13—C141.2 (2)
N1—C2—C3—C4179.77 (13)C11—C12—C13—C17177.59 (14)
C1—C2—C3—Cl1179.38 (10)C12—C13—C14—C151.8 (2)
N1—C2—C3—Cl10.49 (18)C17—C13—C14—C15177.06 (15)
C2—C3—C4—C50.4 (2)C13—C14—C15—C160.4 (2)
Cl1—C3—C4—C5179.37 (11)C8—N2—C16—C15179.21 (15)
C3—C4—C5—C60.2 (2)C8—N2—C16—C111.3 (2)
C4—C5—C6—C10.0 (2)C14—C15—C16—N2177.94 (14)
C2—C1—C6—C50.1 (2)C14—C15—C16—C111.6 (2)
C7—C1—C6—C5179.82 (13)C10—C11—C16—N21.7 (2)
C6—C1—C7—O2176.84 (16)C12—C11—C16—N2177.42 (13)
C2—C1—C7—O22.9 (2)C10—C11—C16—C15178.81 (14)
C6—C1—C7—O13.4 (2)C12—C11—C16—C152.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.85 (3)1.72 (3)2.5640 (17)174 (3)
N2—H2···O10.88 (4)1.69 (4)2.5640 (17)170 (4)
C5—H5···.O2i0.952.443.3245 (19)155
C8—H8···.O20.952.463.1438 (19)129
Symmetry code: (i) x, y+1, z.
4-Chloro-2-nitrobenzoic acid–6-methylquinoline (1/1) (IV) top
Crystal data top
C7H3.48ClNO4·C10H9.52NF(000) = 712.00
Mr = 344.75Dx = 1.433 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
a = 7.4271 (6) ÅCell parameters from 14736 reflections
b = 14.4348 (6) Åθ = 3.1–30.2°
c = 16.2208 (7) ŵ = 0.26 mm1
β = 113.203 (3)°T = 185 K
V = 1598.35 (16) Å3Block, colorless
Z = 40.28 × 0.25 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4158 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.015
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.931, Tmax = 0.949k = 1920
16695 measured reflectionsl = 2222
4645 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1089P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4645 reflectionsΔρmax = 0.35 e Å3
225 parametersΔρmin = 0.16 e Å3
4 restraintsAbsolute structure: Flack x determined using 1899 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.60068 (7)0.04982 (4)0.11442 (3)0.04410 (14)
O10.5629 (2)0.26210 (10)0.47141 (9)0.0398 (3)
H10.543 (10)0.290 (4)0.512 (3)0.060*0.48 (5)
O20.5224 (3)0.38723 (10)0.38416 (11)0.0448 (4)
O30.8822 (3)0.13730 (13)0.49214 (11)0.0557 (5)
O40.6225 (5)0.05352 (14)0.45694 (15)0.0794 (8)
N10.7212 (3)0.11139 (11)0.44056 (12)0.0423 (4)
N20.5616 (2)0.36395 (11)0.59693 (10)0.0297 (3)
H20.543 (8)0.336 (3)0.546 (2)0.044*0.52 (5)
C10.5733 (3)0.23966 (12)0.33064 (11)0.0274 (3)
C20.6451 (3)0.14958 (13)0.34899 (12)0.0292 (3)
C30.6568 (3)0.09002 (13)0.28407 (13)0.0325 (4)
H30.7082200.0291740.2989100.039*
C40.5909 (3)0.12266 (15)0.19705 (12)0.0322 (4)
C50.5203 (3)0.21248 (15)0.17566 (12)0.0339 (4)
H50.4786900.2342890.1157400.041*
C60.5111 (3)0.26997 (13)0.24225 (12)0.0311 (4)
H60.4614280.3310900.2273610.037*
C70.5518 (3)0.30391 (14)0.39964 (12)0.0306 (4)
C80.5951 (3)0.45366 (13)0.59630 (12)0.0317 (4)
H80.5935250.4812010.5428280.038*
C90.6328 (3)0.50947 (13)0.67162 (14)0.0353 (4)
H90.6537920.5741260.6690070.042*
C100.6390 (3)0.46968 (13)0.74905 (13)0.0337 (4)
H100.6666290.5064540.8011990.040*
C110.6041 (3)0.37319 (12)0.75145 (12)0.0282 (3)
C120.6091 (3)0.32621 (16)0.82941 (12)0.0350 (4)
H120.6378540.3600180.8833690.042*
C130.5730 (3)0.23282 (16)0.82796 (15)0.0391 (4)
C140.5312 (3)0.18307 (15)0.74760 (17)0.0401 (4)
H140.5063950.1184290.7466530.048*
C150.5253 (3)0.22500 (13)0.67141 (14)0.0354 (4)
H150.4964950.1899930.6181270.042*
C160.5625 (2)0.32146 (13)0.67232 (12)0.0277 (3)
C170.5805 (4)0.1813 (2)0.9099 (2)0.0549 (6)
H17A0.4563800.1486510.8962530.082*
H17B0.6018730.2253620.9588940.082*
H17C0.6881730.1364380.9280670.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0500 (3)0.0567 (3)0.0311 (2)0.0080 (2)0.02182 (19)0.0170 (2)
O10.0611 (9)0.0370 (7)0.0260 (6)0.0069 (7)0.0223 (6)0.0011 (5)
O20.0707 (11)0.0298 (7)0.0430 (8)0.0030 (7)0.0322 (8)0.0026 (6)
O30.0667 (11)0.0593 (10)0.0284 (7)0.0180 (9)0.0052 (7)0.0040 (7)
O40.149 (2)0.0547 (11)0.0454 (10)0.0336 (13)0.0493 (13)0.0042 (9)
N10.0760 (13)0.0273 (8)0.0260 (7)0.0026 (8)0.0226 (8)0.0006 (6)
N20.0320 (8)0.0326 (7)0.0246 (7)0.0054 (6)0.0113 (6)0.0020 (6)
C10.0325 (8)0.0297 (8)0.0230 (7)0.0069 (7)0.0140 (6)0.0037 (6)
C20.0370 (9)0.0307 (9)0.0214 (7)0.0053 (7)0.0133 (6)0.0006 (6)
C30.0390 (9)0.0319 (9)0.0300 (8)0.0065 (7)0.0172 (7)0.0048 (7)
C40.0333 (9)0.0428 (10)0.0243 (8)0.0098 (7)0.0154 (7)0.0110 (7)
C50.0347 (9)0.0468 (10)0.0216 (7)0.0056 (8)0.0124 (7)0.0003 (7)
C60.0314 (9)0.0365 (9)0.0261 (8)0.0038 (7)0.0122 (7)0.0016 (7)
C70.0332 (9)0.0344 (9)0.0268 (8)0.0046 (7)0.0145 (7)0.0047 (7)
C80.0341 (8)0.0350 (9)0.0271 (9)0.0064 (7)0.0133 (8)0.0056 (7)
C90.0411 (10)0.0260 (8)0.0386 (9)0.0021 (7)0.0153 (8)0.0004 (8)
C100.0389 (9)0.0304 (8)0.0304 (9)0.0030 (7)0.0120 (7)0.0064 (7)
C110.0293 (8)0.0309 (8)0.0249 (7)0.0040 (6)0.0113 (6)0.0001 (6)
C120.0363 (10)0.0443 (10)0.0258 (8)0.0066 (8)0.0137 (7)0.0039 (8)
C130.0313 (9)0.0474 (11)0.0418 (10)0.0093 (8)0.0177 (8)0.0178 (9)
C140.0342 (10)0.0320 (9)0.0546 (12)0.0012 (8)0.0180 (9)0.0083 (9)
C150.0365 (10)0.0286 (8)0.0395 (10)0.0007 (7)0.0133 (8)0.0044 (7)
C160.0269 (8)0.0289 (8)0.0273 (8)0.0037 (6)0.0108 (6)0.0006 (7)
C170.0506 (13)0.0653 (15)0.0552 (14)0.0110 (11)0.0276 (11)0.0320 (12)
Geometric parameters (Å, º) top
Cl1—C41.7273 (18)C8—C91.397 (3)
O1—C71.285 (2)C8—H80.9500
O1—H10.836 (15)C9—C101.365 (3)
O2—C71.230 (3)C9—H90.9500
O3—N11.217 (3)C10—C111.420 (3)
O4—N11.208 (3)C10—H100.9500
N1—C21.472 (2)C11—C161.410 (2)
N2—C81.319 (2)C11—C121.423 (3)
N2—C161.365 (2)C12—C131.373 (3)
N2—H20.873 (14)C12—H120.9500
C1—C61.392 (2)C13—C141.411 (3)
C1—C21.392 (3)C13—C171.505 (3)
C1—C71.510 (2)C14—C151.361 (3)
C2—C31.389 (3)C14—H140.9500
C3—C41.382 (3)C15—C161.418 (3)
C3—H30.9500C15—H150.9500
C4—C51.390 (3)C17—H17A0.9800
C5—C61.385 (3)C17—H17B0.9800
C5—H50.9500C17—H17C0.9800
C6—H60.9500
C7—O1—H1122 (5)C10—C9—C8118.99 (17)
O4—N1—O3125.3 (2)C10—C9—H9120.5
O4—N1—C2117.1 (2)C8—C9—H9120.5
O3—N1—C2117.46 (18)C9—C10—C11119.82 (17)
C8—N2—C16120.89 (15)C9—C10—H10120.1
C8—N2—H2113 (4)C11—C10—H10120.1
C16—N2—H2126 (4)C16—C11—C10118.13 (16)
C6—C1—C2117.21 (16)C16—C11—C12118.45 (17)
C6—C1—C7118.77 (16)C10—C11—C12123.42 (17)
C2—C1—C7123.97 (16)C13—C12—C11121.08 (18)
C3—C2—C1123.32 (17)C13—C12—H12119.5
C3—C2—N1114.79 (16)C11—C12—H12119.5
C1—C2—N1121.85 (16)C12—C13—C14119.07 (18)
C4—C3—C2117.43 (18)C12—C13—C17122.1 (2)
C4—C3—H3121.3C14—C13—C17118.9 (2)
C2—C3—H3121.3C15—C14—C13121.93 (19)
C3—C4—C5121.32 (17)C15—C14—H14119.0
C3—C4—Cl1118.61 (16)C13—C14—H14119.0
C5—C4—Cl1120.06 (14)C14—C15—C16119.38 (19)
C6—C5—C4119.59 (16)C14—C15—H15120.3
C6—C5—H5120.2C16—C15—H15120.3
C4—C5—H5120.2N2—C16—C11119.95 (16)
C5—C6—C1121.10 (18)N2—C16—C15119.96 (16)
C5—C6—H6119.4C11—C16—C15120.08 (17)
C1—C6—H6119.4C13—C17—H17A109.5
O2—C7—O1125.94 (17)C13—C17—H17B109.5
O2—C7—C1120.75 (16)H17A—C17—H17B109.5
O1—C7—C1113.29 (16)C13—C17—H17C109.5
N2—C8—C9122.19 (16)H17A—C17—H17C109.5
N2—C8—H8118.9H17B—C17—H17C109.5
C9—C8—H8118.9
C6—C1—C2—C30.0 (3)C16—N2—C8—C90.0 (3)
C7—C1—C2—C3177.39 (18)N2—C8—C9—C101.3 (3)
C6—C1—C2—N1177.83 (18)C8—C9—C10—C111.0 (3)
C7—C1—C2—N14.8 (3)C9—C10—C11—C160.4 (3)
O4—N1—C2—C373.6 (3)C9—C10—C11—C12179.57 (18)
O3—N1—C2—C3102.9 (2)C16—C11—C12—C130.5 (3)
O4—N1—C2—C1108.3 (2)C10—C11—C12—C13179.59 (19)
O3—N1—C2—C175.1 (3)C11—C12—C13—C140.3 (3)
C1—C2—C3—C40.9 (3)C11—C12—C13—C17179.03 (19)
N1—C2—C3—C4178.83 (17)C12—C13—C14—C150.1 (3)
C2—C3—C4—C51.6 (3)C17—C13—C14—C15178.90 (19)
C2—C3—C4—Cl1179.20 (14)C13—C14—C15—C160.1 (3)
C3—C4—C5—C61.6 (3)C8—N2—C16—C111.4 (3)
Cl1—C4—C5—C6179.26 (14)C8—N2—C16—C15179.73 (18)
C4—C5—C6—C10.7 (3)C10—C11—C16—N21.6 (3)
C2—C1—C6—C50.1 (3)C12—C11—C16—N2178.32 (16)
C7—C1—C6—C5177.44 (17)C10—C11—C16—C15179.54 (18)
C6—C1—C7—O216.2 (3)C12—C11—C16—C150.5 (3)
C2—C1—C7—O2166.48 (19)C14—C15—C16—N2178.48 (17)
C6—C1—C7—O1162.34 (17)C14—C15—C16—C110.4 (3)
C2—C1—C7—O115.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.84 (7)1.70 (6)2.514 (2)163 (7)
N2—H2···O10.87 (4)1.67 (5)2.514 (2)162 (4)
C10—H10···O2i0.952.543.364 (3)145
Symmetry code: (i) x, y+1, z+1/2.
 

References

First citationBabu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.  Google Scholar
First citationBekö, S. L., Schmidt, M. U. & Bond, A. D. (2012). CrystEngComm, 14, 1967–1971.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552–1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694–1699.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853–1856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, T. (2007). J. Mol. Struct. 840, 6–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds