research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of bis­­{2-[(pyridin-2-yl)amino]­pyridinium} tetra­cyano­nickelate(II)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia, dDepartment of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia, and eChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: hhferjani@imamu.edu.sa, fat_setifi@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 October 2020; accepted 23 October 2020; online 30 October 2020)

In the title mol­ecular salt, (C10H10N3)2[Ni(CN)4], the dihedral angle between the pyridine rings in the cation is 1.92 (13)° and the complete anion is generated by a crystallographic centre of symmetry. An intra­molecular N—H⋯N hydrogen bond occurs in the cation, which closes an S(6) ring. In the crystal, the components are linked by N—H⋯N and weak C—H⋯N hydrogen bonds, which generate chains propagating in the [101] direction. Weak aromatic ππ stacking inter­actions are also observed. A Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contact types in the crystal packing are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with contributions of 37.2, 28.3 and 21.9%, respectively.

1. Chemical context

Transition-metal coordination compounds, where CN ligands play the main structure-forming role, so-called cyano­carbanion or cyano­metallate complexes, have been the subject of inter­est for many years, in particular due to their magnetic properties (Ferlay et al., 1995[Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A. (1995). Nature, 378, 701-703.]; Bretosh et al., 2020[Bretosh, K., Béreau, V., Duhayon, C., Pichon, C. & Sutter, J.-P. (2020). Inorg. Chem. Front. 7, 1503-1511.]; Benmansour et al., 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]), including spin-crossover behavior (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Polyhedron, 254, 1468-1478.]; Yoon et al., 2011[Yoon, J. H., Ryu, D. W., Choi, S. Y., Kim, H. C., Koh, E. K., Tao, J. & Hong, C. S. (2011). Chem. Commun. 47, 10416-10418.]). The square-planar tetra­cyano­nickelate(II) anion [Ni(CN)4]2– has proved to be very versatile and diverse in both coordination chemistry and magnetism.

[Scheme 1]

We have been inter­ested in using the tetra­cyano­nickelate(II) anion in combination with other chelating or bridging neutral co-ligands to explore their structural features and properties relevant to the field of mol­ecular materials exhibiting the spin-crossover phenomenon (Setifi et al., 2013[Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242-247.], 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Kucheriv et al., 2016[Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906-4914.]). During the course of attempts to prepare such complexes with 2,2′-di­pyridyl­amine (dpa), we isolated the title mol­ecular salt, (I)[link], whose mol­ecular and supra­molecular structure is described herein.

2. Structural commentary

The asymmetric unit of (I)[link] contains one (C10H10N3)+ cation and one half of a [Ni(CN)4]2− anion (Fig. 1[link]). The C—N and C—C bonds lengths in the cation vary from 1.340 (3) to 1.383 (3) Å and from 1.346 (4) to 1.402 (3) Å, respectively. The C—N—C bond angles range from 117.8 (2) to 129.7 (2)° and the N—C—C angles range from 119.0 (2) to 123.4 (2)°. The dihedral angle between the C3–C7/N4 and C8–C12/N5 rings is 1.92 (13)°. These data are comparable to those found for other compounds containing dpa as an organic template (Bowes et al., 2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]; Willett, 1995[Willett, R. D. (1995). Acta Cryst. C51, 1517-1519.]). In the cation, the pyridyl nitro­gen atoms are arranged on both sides of the central N3 atom and assume a cis conformation (Fig. 1[link]). The (C10H10N3)+ cation is monoprotonated at the pyridyl-N4 atom, which leads to the the formation of a short and presumably strong intra­molecular N4—H4A⋯N5 hydrogen bond (Table 1[link]), which generates an S(6) ring (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2 0.86 2.00 2.853 (3) 172
N4—H4A⋯N5 0.86 1.97 2.629 (3) 132
N4—H4A⋯N1ii 0.86 2.41 3.055 (3) 132
C5—H5⋯N1ii 0.93 2.68 3.206 (4) 117
Symmetry code: (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y, −z
[Figure 2]
Figure 2
Offset and parallel ππ-stacking inter­actions (broken lines) in the cation–cation chains.

The Ni2+ ion of the anion is located on a crystallographic inversion center and coordinates four terminal (non-bridging) cyanide ligands, exhibiting a square-planar geometry. The bond lengths and angles in the anion are in good agreement with those found in other [Ni(CN)4]2− salts (Paharová et al., 2003[Paharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25-31.]; Karaağaç et al., 2013[Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73-80.]).

3. Supra­molecular features

Fig. 3[link] shows the packing of (I)[link] in a view along the b-axis direction, in which the organic and inorganic ions form chains propagating in the [101] direction linked by N—H⋯N and C—H⋯N hydrogen bonds. The pyridinium N4 atom in the cation, as well as forming the intra­molecular hydrogen bond described above, acts as donor to the cyanate N atom in the anion, in an N4—H4A⋯N1ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1) link (Table 1[link]). The secondary amino group (N3H) forms a strong N3—H3A⋯N2 hydrogen bond with a cyano group acceptor and the H3A⋯N2 distance is 2.0 Å. Fig. 3[link] shows the parallel offset π-stacking contacts between pyridyl groups [centroid–centroid distance of 4.3421 (16) Å] and parallel face-centred π-stacking inter­actions between the S(6) centroids and pyridyl groups [centroid–centroid distance of 3.487 (2) Å].

[Figure 3]
Figure 3
View parallel to the ac plane of the packing in (I)[link] with hydrogen bonds shown as green dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surface calculations (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for (I)[link] were performed in order to further characterize the supra­molecular association. The Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) calculated using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) are shown in Figs. 4[link] and 5[link], respectively. The red spots on the Hirshfeld surface represent strong inter­action through N—H⋯N and C—H⋯N hydrogen bonding, whereas the blue color represents a lack of inter­action. The presence of ππ stacking inter­actions is indicated by adjacent red and blue triangles on the shape-index surface (Fig. S1a in the supporting information). Areas on the Hirshfeld surface with high curvedness (Fig. S1b) can be related to the planar packing arrangement of the cations. The most abundant inter­molecular inter­actions in the crystal packing (Fig. 5[link]) are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with percentage contributions 37.2, 28.3 and 21.9%, respectively. The presence of weak ππ stacking inter­actions between the cationic rings are reflected in the 4.6 and 3.8% contributions from C⋯C and C⋯N/N⋯C contacts to the Hirshfeld surfaces of the cations. The analysis reveals the lowest contribution of Ni⋯N (1.7%), Ni⋯C (1.3%) and N⋯N (1.2%) contacts.

[Figure 4]
Figure 4
Hirshfeld surface of (I)[link] mapped over dnorm.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots and relative contributions for (I)[link] resolved into all, N⋯H, C⋯H and H⋯H contacts.

5. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update November, 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), for the tetra­cyano­nickelate moiety revealed 532 hits. Most of them are complexes of [Ni(CN)4]2– anions with different metal–ligand coordination cations. Salts containing tetra­cyano­nickelate anions and organic cations corresponded to 38 hits.

A compound closely related to the title compound is (C10H11N3)·[CuCl4] (Willett, 1995[Willett, R. D. (1995). Acta Cryst. C51, 1517-1519.]; CSD refcode ZAMCEV), which crystallizes in the same space group of P[\overline{1}]. In this compound the cation is diprotonated and the pyridyl nitro­gen atoms are in a cis conformation and the pyridine rings are significantly twisted away from coplanarity. The tetra­chloro­cuprate anion takes on a squashed tetra­hedral geometry.

6. Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure using a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.10 mmol), 2,2′-di­pyridyl­amine (17 mg, 0.10 mmol) and potassium tetra­cyano­nickelate(II) (24 mg, 0.10 mmol) in mixed solvents of water/ethanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 d, and then cooled to room temperature at a rate of 10 K per hour (yield 27%). Pale-yellow plates of (I)[link] suitable for single-crystal X-ray diffraction analysis were selected.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 or N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula (C10H10N3)2[Ni(CN)4]
Mr 507.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 273
a, b, c (Å) 7.1046 (4), 9.1467 (4), 9.3833 (4)
α, β, γ (°) 100.182 (2), 98.729 (2), 97.444 (2)
V3) 585.49 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.35 × 0.23 × 0.19
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.914, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 16272, 3572, 2659
Rint 0.052
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.07
No. of reflections 3572
No. of parameters 161
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.34
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
(C10H10N3)2[Ni(CN)4]Z = 1
Mr = 507.21F(000) = 262
Triclinic, P1Dx = 1.439 Mg m3
a = 7.1046 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1467 (4) ÅCell parameters from 7173 reflections
c = 9.3833 (4) Åθ = 2.8–27.9°
α = 100.182 (2)°µ = 0.86 mm1
β = 98.729 (2)°T = 273 K
γ = 97.444 (2)°Plate, pale yellow
V = 585.49 (5) Å30.35 × 0.23 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD detector
diffractometer
2659 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.052
ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.914, Tmax = 0.962k = 1313
16272 measured reflectionsl = 1313
3572 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3025P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 1.07Δρmax = 1.01 e Å3
3572 reflectionsΔρmin = 0.34 e Å3
161 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.091 (17)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.04195 (19)
C10.6743 (4)0.0656 (3)0.1772 (3)0.0508 (6)
N10.7800 (5)0.1080 (3)0.2861 (3)0.0745 (8)
C20.3639 (4)0.1552 (3)0.0568 (2)0.0455 (5)
N20.2831 (4)0.2503 (3)0.0942 (3)0.0624 (6)
N40.1820 (3)0.7199 (2)0.3981 (2)0.0445 (4)
H4A0.19490.71100.48860.053*
N50.2473 (3)0.5418 (2)0.5852 (2)0.0484 (5)
N30.2311 (3)0.4715 (2)0.3342 (2)0.0492 (5)
H3A0.23540.39970.26250.059*
C30.1977 (3)0.6028 (3)0.2949 (3)0.0422 (5)
C80.2592 (3)0.4356 (3)0.4722 (3)0.0443 (5)
C50.1462 (4)0.8522 (3)0.3626 (3)0.0508 (6)
H50.13510.93130.43650.061*
C40.1807 (4)0.6192 (3)0.1479 (3)0.0503 (6)
H40.19420.53970.07530.060*
C120.3276 (4)0.2629 (3)0.6262 (4)0.0595 (7)
H120.35380.16900.64070.071*
C70.1442 (4)0.7522 (3)0.1118 (3)0.0557 (6)
H70.13140.76350.01440.067*
C100.2763 (4)0.5097 (3)0.7197 (3)0.0553 (6)
H100.26950.58360.79980.066*
C60.1264 (4)0.8713 (3)0.2224 (3)0.0564 (7)
H60.10130.96250.19940.068*
C90.3006 (4)0.2930 (3)0.4869 (3)0.0524 (6)
H90.30960.22140.40550.063*
C110.3157 (4)0.3727 (4)0.7447 (3)0.0591 (7)
H110.33410.35400.83970.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0617 (3)0.0339 (2)0.0330 (2)0.01697 (18)0.01155 (18)0.00464 (15)
C10.0751 (18)0.0380 (12)0.0419 (12)0.0238 (11)0.0105 (12)0.0040 (9)
N10.100 (2)0.0626 (15)0.0527 (14)0.0317 (15)0.0091 (14)0.0053 (12)
C20.0628 (15)0.0412 (12)0.0328 (10)0.0168 (11)0.0073 (10)0.0028 (9)
N20.0820 (17)0.0554 (13)0.0494 (12)0.0333 (12)0.0076 (12)0.0032 (10)
N40.0475 (11)0.0447 (10)0.0424 (10)0.0101 (8)0.0080 (8)0.0096 (8)
N50.0520 (12)0.0482 (11)0.0468 (11)0.0092 (9)0.0106 (9)0.0115 (9)
N30.0664 (14)0.0403 (10)0.0421 (10)0.0166 (9)0.0133 (10)0.0022 (8)
C30.0382 (12)0.0411 (11)0.0485 (12)0.0077 (9)0.0070 (9)0.0123 (9)
C80.0402 (12)0.0451 (12)0.0495 (13)0.0045 (9)0.0081 (10)0.0160 (10)
C50.0544 (15)0.0406 (12)0.0582 (15)0.0106 (10)0.0111 (12)0.0090 (11)
C40.0538 (15)0.0525 (14)0.0450 (13)0.0137 (11)0.0095 (11)0.0069 (10)
C120.0574 (16)0.0509 (15)0.0743 (19)0.0069 (12)0.0059 (14)0.0294 (14)
C70.0589 (16)0.0636 (16)0.0505 (14)0.0141 (13)0.0117 (12)0.0228 (12)
C100.0572 (16)0.0640 (16)0.0456 (13)0.0076 (13)0.0120 (12)0.0126 (12)
C60.0593 (16)0.0494 (14)0.0670 (17)0.0147 (12)0.0115 (13)0.0242 (13)
C90.0585 (16)0.0417 (12)0.0576 (15)0.0091 (11)0.0097 (12)0.0109 (11)
C110.0514 (15)0.0747 (19)0.0545 (15)0.0034 (13)0.0068 (12)0.0291 (14)
Geometric parameters (Å, º) top
Ni1—C21.865 (2)C8—C91.399 (3)
Ni1—C2i1.865 (2)C5—C61.346 (4)
Ni1—C11.867 (3)C5—H50.9300
Ni1—C1i1.867 (3)C4—C71.365 (4)
C1—N11.145 (4)C4—H40.9300
C2—N21.136 (3)C12—C91.373 (4)
N4—C31.340 (3)C12—C111.381 (4)
N4—C51.355 (3)C12—H120.9300
N4—H4A0.8600C7—C61.399 (4)
N5—C81.326 (3)C7—H70.9300
N5—C101.337 (3)C10—C111.371 (4)
N3—C31.355 (3)C10—H100.9300
N3—C81.383 (3)C6—H60.9300
N3—H3A0.8600C9—H90.9300
C3—C41.402 (3)C11—H110.9300
C2—Ni1—C2i180.0N4—C5—H5119.4
C2—Ni1—C189.06 (10)C7—C4—C3119.8 (2)
C2i—Ni1—C190.94 (10)C7—C4—H4120.1
C2—Ni1—C1i90.94 (10)C3—C4—H4120.1
C2i—Ni1—C1i89.06 (10)C9—C12—C11119.7 (3)
C1—Ni1—C1i180.0C9—C12—H12120.2
N1—C1—Ni1178.8 (2)C11—C12—H12120.2
N2—C2—Ni1178.6 (2)C4—C7—C6119.5 (2)
C3—N4—C5121.3 (2)C4—C7—H7120.3
C3—N4—H4A119.4C6—C7—H7120.3
C5—N4—H4A119.4N5—C10—C11122.9 (3)
C8—N5—C10117.8 (2)N5—C10—H10118.5
C3—N3—C8129.7 (2)C11—C10—H10118.5
C3—N3—H3A115.1C5—C6—C7119.1 (2)
C8—N3—H3A115.1C5—C6—H6120.4
N4—C3—N3119.7 (2)C7—C6—H6120.4
N4—C3—C4119.0 (2)C12—C9—C8117.4 (3)
N3—C3—C4121.3 (2)C12—C9—H9121.3
N5—C8—N3117.0 (2)C8—C9—H9121.3
N5—C8—C9123.4 (2)C10—C11—C12118.8 (3)
N3—C8—C9119.6 (2)C10—C11—H11120.6
C6—C5—N4121.3 (2)C12—C11—H11120.6
C6—C5—H5119.4
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N20.862.002.853 (3)172
N4—H4A···N50.861.972.629 (3)132
N4—H4A···N1ii0.862.413.055 (3)132
C5—H5···N1ii0.932.683.206 (4)117
Symmetry code: (ii) x+1, y+1, z+1.
 

Funding information

FS gratefully acknowledges the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS), the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) as well as the Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Polyhedron, 254, 1468–1478.  CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBretosh, K., Béreau, V., Duhayon, C., Pichon, C. & Sutter, J.-P. (2020). Inorg. Chem. Front. 7, 1503–1511.  CrossRef CAS Google Scholar
First citationFerlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A. (1995). Nature, 378, 701–703.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaraağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80.  Google Scholar
First citationKucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPaharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25–31.  Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D. (1995). Acta Cryst. C51, 1517–1519.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYoon, J. H., Ryu, D. W., Choi, S. Y., Kim, H. C., Koh, E. K., Tao, J. & Hong, C. S. (2011). Chem. Commun. 47, 10416–10418.  CrossRef CAS Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds