research communications
Synthesis,
and Hirshfeld surface analysis of bis{2-[(pyridin-2-yl)amino]pyridinium} tetracyanonickelate(II)aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cChemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh 11623, Kingdom of Saudi Arabia, dDepartment of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia, and eChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: hhferjani@imamu.edu.sa, fat_setifi@yahoo.fr
In the title molecular salt, (C10H10N3)2[Ni(CN)4], the dihedral angle between the pyridine rings in the cation is 1.92 (13)° and the complete anion is generated by a crystallographic centre of symmetry. An intramolecular N—H⋯N hydrogen bond occurs in the cation, which closes an S(6) ring. In the crystal, the components are linked by N—H⋯N and weak C—H⋯N hydrogen bonds, which generate chains propagating in the [101] direction. Weak aromatic π–π stacking interactions are also observed. A Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contact types in the crystal packing are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with contributions of 37.2, 28.3 and 21.9%, respectively.
Keywords: crystal structure; tetracyanonickelate; N-(pyridin-2-yl)pyridinium-2-amine; hydrogen bonding; Hirshfeld surface analysis; crystal structure.
CCDC reference: 2040378
1. Chemical context
Transition-metal coordination compounds, where CN− ligands play the main structure-forming role, so-called cyanocarbanion or cyanometallate complexes, have been the subject of interest for many years, in particular due to their magnetic properties (Ferlay et al., 1995; Bretosh et al., 2020; Benmansour et al., 2012; Setifi et al., 2009; Yuste et al., 2009; Addala et al., 2015), including spin-crossover behavior (Benmansour et al., 2010; Yoon et al., 2011). The square-planar tetracyanonickelate(II) anion [Ni(CN)4]2– has proved to be very versatile and diverse in both coordination chemistry and magnetism.
We have been interested in using the tetracyanonickelate(II) anion in combination with other chelating or bridging neutral co-ligands to explore their structural features and properties relevant to the field of molecular materials exhibiting the spin-crossover phenomenon (Setifi et al., 2013, 2014; Kucheriv et al., 2016). During the course of attempts to prepare such complexes with 2,2′-dipyridylamine (dpa), we isolated the title molecular salt, (I), whose molecular and supramolecular structure is described herein.
2. Structural commentary
The contains one (C10H10N3)+ cation and one half of a [Ni(CN)4]2− anion (Fig. 1). The C—N and C—C bonds lengths in the cation vary from 1.340 (3) to 1.383 (3) Å and from 1.346 (4) to 1.402 (3) Å, respectively. The C—N—C bond angles range from 117.8 (2) to 129.7 (2)° and the N—C—C angles range from 119.0 (2) to 123.4 (2)°. The dihedral angle between the C3–C7/N4 and C8–C12/N5 rings is 1.92 (13)°. These data are comparable to those found for other compounds containing dpa as an organic template (Bowes et al., 2003; Willett, 1995). In the cation, the pyridyl nitrogen atoms are arranged on both sides of the central N3 atom and assume a cis conformation (Fig. 1). The (C10H10N3)+ cation is monoprotonated at the pyridyl-N4 atom, which leads to the the formation of a short and presumably strong intramolecular N4—H4A⋯N5 hydrogen bond (Table 1), which generates an S(6) ring (Fig. 2).
of (I)The Ni2+ ion of the anion is located on a crystallographic inversion center and coordinates four terminal (non-bridging) cyanide ligands, exhibiting a square-planar geometry. The bond lengths and angles in the anion are in good agreement with those found in other [Ni(CN)4]2− salts (Paharová et al., 2003; Karaağaç et al., 2013).
3. Supramolecular features
Fig. 3 shows the packing of (I) in a view along the b-axis direction, in which the organic and inorganic ions form chains propagating in the [101] direction linked by N—H⋯N and C—H⋯N hydrogen bonds. The pyridinium N4 atom in the cation, as well as forming the intramolecular hydrogen bond described above, acts as donor to the cyanate N atom in the anion, in an N4—H4A⋯N1ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1) link (Table 1). The secondary amino group (N3H) forms a strong N3—H3A⋯N2 hydrogen bond with a cyano group acceptor and the H3A⋯N2 distance is 2.0 Å. Fig. 3 shows the parallel offset π-stacking contacts between pyridyl groups [centroid–centroid distance of 4.3421 (16) Å] and parallel face-centred π-stacking interactions between the S(6) centroids and pyridyl groups [centroid–centroid distance of 3.487 (2) Å].
4. Hirshfeld surface analysis
Hirshfeld surface calculations (Spackman & Jayatilaka, 2009) for (I) were performed in order to further characterize the supramolecular association. The Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007) calculated using CrystalExplorer 17.5 (Turner et al., 2017) are shown in Figs. 4 and 5, respectively. The red spots on the Hirshfeld surface represent strong interaction through N—H⋯N and C—H⋯N hydrogen bonding, whereas the blue color represents a lack of interaction. The presence of π–π stacking interactions is indicated by adjacent red and blue triangles on the shape-index surface (Fig. S1a in the supporting information). Areas on the Hirshfeld surface with high curvedness (Fig. S1b) can be related to the planar packing arrangement of the cations. The most abundant intermolecular interactions in the crystal packing (Fig. 5) are N⋯H/H⋯N, C⋯H/H⋯C and H⋯H with percentage contributions 37.2, 28.3 and 21.9%, respectively. The presence of weak π–π stacking interactions between the cationic rings are reflected in the 4.6 and 3.8% contributions from C⋯C and C⋯N/N⋯C contacts to the Hirshfeld surfaces of the cations. The analysis reveals the lowest contribution of Ni⋯N (1.7%), Ni⋯C (1.3%) and N⋯N (1.2%) contacts.
5. Database survey
A search of the Cambridge Structural Database (Version 5.41, last update November, 2019; Groom et al., 2016), for the tetracyanonickelate moiety revealed 532 hits. Most of them are complexes of [Ni(CN)4]2– anions with different metal–ligand coordination cations. Salts containing tetracyanonickelate anions and organic cations corresponded to 38 hits.
A compound closely related to the title compound is (C10H11N3)·[CuCl4] (Willett, 1995; CSD refcode ZAMCEV), which crystallizes in the same of P. In this compound the cation is diprotonated and the pyridyl nitrogen atoms are in a cis conformation and the pyridine rings are significantly twisted away from coplanarity. The tetrachlorocuprate anion takes on a squashed tetrahedral geometry.
6. Synthesis and crystallization
The title compound was synthesized solvothermally under autogenous pressure using a mixture of iron(II) sulfate heptahydrate (28 mg, 0.10 mmol), 2,2′-dipyridylamine (17 mg, 0.10 mmol) and potassium tetracyanonickelate(II) (24 mg, 0.10 mmol) in mixed solvents of water/ethanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 d, and then cooled to room temperature at a rate of 10 K per hour (yield 27%). Pale-yellow plates of (I) suitable for single-crystal X-ray were selected.
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 or N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2040378
https://doi.org/10.1107/S205698902001419X/hb7948sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902001419X/hb7948Isup2.hkl
Figure S1 Hirshfeld surface of (C10H10N3)2[Ni(CN)4] mapped with shape index (a) and curvedness (b). DOI: https://doi.org/10.1107/S205698902001419X/hb7948sup3.tif
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C10H10N3)2[Ni(CN)4] | Z = 1 |
Mr = 507.21 | F(000) = 262 |
Triclinic, P1 | Dx = 1.439 Mg m−3 |
a = 7.1046 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1467 (4) Å | Cell parameters from 7173 reflections |
c = 9.3833 (4) Å | θ = 2.8–27.9° |
α = 100.182 (2)° | µ = 0.86 mm−1 |
β = 98.729 (2)° | T = 273 K |
γ = 97.444 (2)° | Plate, pale yellow |
V = 585.49 (5) Å3 | 0.35 × 0.23 × 0.19 mm |
Oxford Diffraction Xcalibur Sapphire CCD detector diffractometer | 2659 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.052 |
ω scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −10→10 |
Tmin = 0.914, Tmax = 0.962 | k = −13→13 |
16272 measured reflections | l = −13→13 |
3572 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3025P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.134 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 1.01 e Å−3 |
3572 reflections | Δρmin = −0.34 e Å−3 |
161 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.091 (17) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.0000 | 0.04195 (19) | |
C1 | 0.6743 (4) | 0.0656 (3) | 0.1772 (3) | 0.0508 (6) | |
N1 | 0.7800 (5) | 0.1080 (3) | 0.2861 (3) | 0.0745 (8) | |
C2 | 0.3639 (4) | 0.1552 (3) | 0.0568 (2) | 0.0455 (5) | |
N2 | 0.2831 (4) | 0.2503 (3) | 0.0942 (3) | 0.0624 (6) | |
N4 | 0.1820 (3) | 0.7199 (2) | 0.3981 (2) | 0.0445 (4) | |
H4A | 0.1949 | 0.7110 | 0.4886 | 0.053* | |
N5 | 0.2473 (3) | 0.5418 (2) | 0.5852 (2) | 0.0484 (5) | |
N3 | 0.2311 (3) | 0.4715 (2) | 0.3342 (2) | 0.0492 (5) | |
H3A | 0.2354 | 0.3997 | 0.2625 | 0.059* | |
C3 | 0.1977 (3) | 0.6028 (3) | 0.2949 (3) | 0.0422 (5) | |
C8 | 0.2592 (3) | 0.4356 (3) | 0.4722 (3) | 0.0443 (5) | |
C5 | 0.1462 (4) | 0.8522 (3) | 0.3626 (3) | 0.0508 (6) | |
H5 | 0.1351 | 0.9313 | 0.4365 | 0.061* | |
C4 | 0.1807 (4) | 0.6192 (3) | 0.1479 (3) | 0.0503 (6) | |
H4 | 0.1942 | 0.5397 | 0.0753 | 0.060* | |
C12 | 0.3276 (4) | 0.2629 (3) | 0.6262 (4) | 0.0595 (7) | |
H12 | 0.3538 | 0.1690 | 0.6407 | 0.071* | |
C7 | 0.1442 (4) | 0.7522 (3) | 0.1118 (3) | 0.0557 (6) | |
H7 | 0.1314 | 0.7635 | 0.0144 | 0.067* | |
C10 | 0.2763 (4) | 0.5097 (3) | 0.7197 (3) | 0.0553 (6) | |
H10 | 0.2695 | 0.5836 | 0.7998 | 0.066* | |
C6 | 0.1264 (4) | 0.8713 (3) | 0.2224 (3) | 0.0564 (7) | |
H6 | 0.1013 | 0.9625 | 0.1994 | 0.068* | |
C9 | 0.3006 (4) | 0.2930 (3) | 0.4869 (3) | 0.0524 (6) | |
H9 | 0.3096 | 0.2214 | 0.4055 | 0.063* | |
C11 | 0.3157 (4) | 0.3727 (4) | 0.7447 (3) | 0.0591 (7) | |
H11 | 0.3341 | 0.3540 | 0.8397 | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0617 (3) | 0.0339 (2) | 0.0330 (2) | 0.01697 (18) | 0.01155 (18) | 0.00464 (15) |
C1 | 0.0751 (18) | 0.0380 (12) | 0.0419 (12) | 0.0238 (11) | 0.0105 (12) | 0.0040 (9) |
N1 | 0.100 (2) | 0.0626 (15) | 0.0527 (14) | 0.0317 (15) | −0.0091 (14) | −0.0053 (12) |
C2 | 0.0628 (15) | 0.0412 (12) | 0.0328 (10) | 0.0168 (11) | 0.0073 (10) | 0.0028 (9) |
N2 | 0.0820 (17) | 0.0554 (13) | 0.0494 (12) | 0.0333 (12) | 0.0076 (12) | −0.0032 (10) |
N4 | 0.0475 (11) | 0.0447 (10) | 0.0424 (10) | 0.0101 (8) | 0.0080 (8) | 0.0096 (8) |
N5 | 0.0520 (12) | 0.0482 (11) | 0.0468 (11) | 0.0092 (9) | 0.0106 (9) | 0.0115 (9) |
N3 | 0.0664 (14) | 0.0403 (10) | 0.0421 (10) | 0.0166 (9) | 0.0133 (10) | 0.0022 (8) |
C3 | 0.0382 (12) | 0.0411 (11) | 0.0485 (12) | 0.0077 (9) | 0.0070 (9) | 0.0123 (9) |
C8 | 0.0402 (12) | 0.0451 (12) | 0.0495 (13) | 0.0045 (9) | 0.0081 (10) | 0.0160 (10) |
C5 | 0.0544 (15) | 0.0406 (12) | 0.0582 (15) | 0.0106 (10) | 0.0111 (12) | 0.0090 (11) |
C4 | 0.0538 (15) | 0.0525 (14) | 0.0450 (13) | 0.0137 (11) | 0.0095 (11) | 0.0069 (10) |
C12 | 0.0574 (16) | 0.0509 (15) | 0.0743 (19) | 0.0069 (12) | 0.0059 (14) | 0.0294 (14) |
C7 | 0.0589 (16) | 0.0636 (16) | 0.0505 (14) | 0.0141 (13) | 0.0117 (12) | 0.0228 (12) |
C10 | 0.0572 (16) | 0.0640 (16) | 0.0456 (13) | 0.0076 (13) | 0.0120 (12) | 0.0126 (12) |
C6 | 0.0593 (16) | 0.0494 (14) | 0.0670 (17) | 0.0147 (12) | 0.0115 (13) | 0.0242 (13) |
C9 | 0.0585 (16) | 0.0417 (12) | 0.0576 (15) | 0.0091 (11) | 0.0097 (12) | 0.0109 (11) |
C11 | 0.0514 (15) | 0.0747 (19) | 0.0545 (15) | 0.0034 (13) | 0.0068 (12) | 0.0291 (14) |
Ni1—C2 | 1.865 (2) | C8—C9 | 1.399 (3) |
Ni1—C2i | 1.865 (2) | C5—C6 | 1.346 (4) |
Ni1—C1 | 1.867 (3) | C5—H5 | 0.9300 |
Ni1—C1i | 1.867 (3) | C4—C7 | 1.365 (4) |
C1—N1 | 1.145 (4) | C4—H4 | 0.9300 |
C2—N2 | 1.136 (3) | C12—C9 | 1.373 (4) |
N4—C3 | 1.340 (3) | C12—C11 | 1.381 (4) |
N4—C5 | 1.355 (3) | C12—H12 | 0.9300 |
N4—H4A | 0.8600 | C7—C6 | 1.399 (4) |
N5—C8 | 1.326 (3) | C7—H7 | 0.9300 |
N5—C10 | 1.337 (3) | C10—C11 | 1.371 (4) |
N3—C3 | 1.355 (3) | C10—H10 | 0.9300 |
N3—C8 | 1.383 (3) | C6—H6 | 0.9300 |
N3—H3A | 0.8600 | C9—H9 | 0.9300 |
C3—C4 | 1.402 (3) | C11—H11 | 0.9300 |
C2—Ni1—C2i | 180.0 | N4—C5—H5 | 119.4 |
C2—Ni1—C1 | 89.06 (10) | C7—C4—C3 | 119.8 (2) |
C2i—Ni1—C1 | 90.94 (10) | C7—C4—H4 | 120.1 |
C2—Ni1—C1i | 90.94 (10) | C3—C4—H4 | 120.1 |
C2i—Ni1—C1i | 89.06 (10) | C9—C12—C11 | 119.7 (3) |
C1—Ni1—C1i | 180.0 | C9—C12—H12 | 120.2 |
N1—C1—Ni1 | 178.8 (2) | C11—C12—H12 | 120.2 |
N2—C2—Ni1 | 178.6 (2) | C4—C7—C6 | 119.5 (2) |
C3—N4—C5 | 121.3 (2) | C4—C7—H7 | 120.3 |
C3—N4—H4A | 119.4 | C6—C7—H7 | 120.3 |
C5—N4—H4A | 119.4 | N5—C10—C11 | 122.9 (3) |
C8—N5—C10 | 117.8 (2) | N5—C10—H10 | 118.5 |
C3—N3—C8 | 129.7 (2) | C11—C10—H10 | 118.5 |
C3—N3—H3A | 115.1 | C5—C6—C7 | 119.1 (2) |
C8—N3—H3A | 115.1 | C5—C6—H6 | 120.4 |
N4—C3—N3 | 119.7 (2) | C7—C6—H6 | 120.4 |
N4—C3—C4 | 119.0 (2) | C12—C9—C8 | 117.4 (3) |
N3—C3—C4 | 121.3 (2) | C12—C9—H9 | 121.3 |
N5—C8—N3 | 117.0 (2) | C8—C9—H9 | 121.3 |
N5—C8—C9 | 123.4 (2) | C10—C11—C12 | 118.8 (3) |
N3—C8—C9 | 119.6 (2) | C10—C11—H11 | 120.6 |
C6—C5—N4 | 121.3 (2) | C12—C11—H11 | 120.6 |
C6—C5—H5 | 119.4 |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2 | 0.86 | 2.00 | 2.853 (3) | 172 |
N4—H4A···N5 | 0.86 | 1.97 | 2.629 (3) | 132 |
N4—H4A···N1ii | 0.86 | 2.41 | 3.055 (3) | 132 |
C5—H5···N1ii | 0.93 | 2.68 | 3.206 (4) | 117 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Funding information
FS gratefully acknowledges the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (MESRS), the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) as well as the Université Ferhat Abbas Sétif 1 for financial support.
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Polyhedron, 254, 1468–1478. CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bretosh, K., Béreau, V., Duhayon, C., Pichon, C. & Sutter, J.-P. (2020). Inorg. Chem. Front. 7, 1503–1511. CrossRef CAS Google Scholar
Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A. (1995). Nature, 378, 701–703. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Karaağaç, D., Kürkçüoğlu, G. S., Yeşilel, O. Z., Hökelek, T. & Süzen, Y. (2013). Inorg. Chim. Acta, 406, 73–80. Google Scholar
Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914. Web of Science CSD CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Paharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25–31. Google Scholar
Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Willett, R. D. (1995). Acta Cryst. C51, 1517–1519. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Yoon, J. H., Ryu, D. W., Choi, S. Y., Kim, H. C., Koh, E. K., Tao, J. & Hong, C. S. (2011). Chem. Commun. 47, 10416–10418. CrossRef CAS Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.