research communications
Synthesis and
of a heterobimetallic nickel–manganese 12-metallacrown-4 methanol disolvate monohydrate compoundaDepartment of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu
The synthesis and μ-acetato-tetrakis(μ4-N,2-dioxidobenzene-1-carboximidato)hexamethanoltetramanganese(III)nickel(II) methanol disolvate monohydrate], [Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2O or Ni(OAc)2[12-MCMn(III)N(shi)-4](CH3OH)6·2CH3OH·H2O, where MC is metallacrown, −OAc is acetate, and shi3− is salicylhydroximate, are reported. The macrocyclic metallacrown is positioned on an inversion center located on the NiII ion that resides in the central MC cavity. The macrocycle consists of an MnIII–N–O repeat unit that recurs four times to generate an overall square-shaped molecule. Both the NiII and MnIII ions are six-coordinate with an octahedral geometry. In addition, the MnIII ions possess an elongated Jahn–Teller distortion along the z-axis of the coordination environment. The interstitial water molecule is slightly offset from and disordered about an inversion center.
of the title compound [systematic name: di-Keywords: nickel; manganese; heterobimetallic; metallacrown; crystal structure.
CCDC reference: 2034558
1. Chemical context
Since their recognition in 1989 by Pecoraro, metallacrowns (MC) have proven to be a versatile class of metallamacrocycles with applications such as single-molecule magnets, magnetorefrigerants and optical imaging agents (Mezei et al., 2007; Nguyen & Pecoraro, 2017; Lutter et al., 2018). The archetypal metallacrown consists of a cyclic metal–nitrogen–oxygen repeat unit that generates a central cavity that is capable of binding a metal ion. Initially, homometallic compounds were produced; however, heterobimetallic systems were soon generated that typically contained transition-metal ions in the ring metal position and either alkali or lanthanide ions captured in the central cavity of the MC (Pecoraro et al., 1997; Mezei et al., 2007). In addition, heterotrimetallic systems that bind both alkali and lanthanide ions have been reported since 2014 (Azar et al., 2014). One area lacking is the use of two different transition-metal ions in an archetypal MC. While several examples of heterobimetallic 3d `collapsed' metallacrowns, species without a central MC cavity and thus no central metal ion (Psomas et al., 2001; Gole et al., 2010), and inverse metallacrowns, species that bind a non-metal atom in the central MC cavity to the ring metal ions (Szyrwiel et al., 2013; Shiga et al., 2014; Zhang et al., 2014; Nesterova et al., 2015), have been reported, only two heterobimetallic 3d archetypal 12-MC-4 compounds have been described to date. In 2014, Happ and Rentschler reported a CuII(DMF)2Cl2[12-MCFe(III)N(shi)-4](DMF)4·2DMF compound that contains FeIII ions in the ring positions and a CuII ion captured in the central MC cavity (Happ & Rentschler, 2014). Recently we described the structure of (TMA)2{Mn(OAc)2[12-MCMn(III)Cu(II)N(shi)-4](CH3OH)}·2.90CH3OH that consists of alternating CuII and MnIII ions about the MC ring and an MnII ion bound to the central MC cavity (Lewis et al., 2020). Herein we report a third heterobimetallic 3d archetypal 12-MC-4 compound: NiII(OAc)2[12-MCMn(III)N(shi)-4](CH3OH)6·2CH3OH·H2O, 1, that contains ring MnIII ions and a NiII ion captured in the central MC cavity. Future work will focus on the magnetic properties of the compound as the similar Mn(OAc)2[12-MCMn(III)N(shi)-4] (Zaleski et al., 2011) and {Mn(OAc)2[12-MCMn(III)Cu(II)N(shi)-4]}2− (Lewis et al., 2020) systems behave as single-molecule magnets.
2. Structural commentary
The title metallacrown compound is positioned about an inversion center located on the NiII ion that resides in the central MC cavity (Fig. 1). The metallacrown macrocycle possesses an MnIII–N–O repeat unit that generates an approximately square molecule due to the fused five- and six-membered chelate rings of the shi3− ligand that place the MnIII ions 90o relative to each other. The oxime oxygen atoms of the shi3− ligands generate the MC cavity and also bind the central NiII ion. Two acetate anions, which bind on opposite faces of the MC, tether the NiII ion to the MC by forming three atom bridges to two of the ring MnIII ions. In addition to average bond lengths and bond-valence-sum (BVS) values (Table 1; Liu & Thorp, 1993), the assignments of the NiII and MnIII ions are supported by overall molecular charges, where one NiII and four MnIII ions are counterbalanced by four shi3− and two acetate anions.
|
The central NiII ion is six-coordinate with an octahedral geometry as verified by a SHAPE analysis (SHAPE 2.1; Llunell et al., 2013; Pinsky & Avnir, 1998). Continuous shape measure (CShM) values of less than 1.0 indicate only minor distortions from the ideal geometry (Cirera et al., 2005); thus, the CShM value of 0.164 for the octahedral geometry clearly defines the shape about the NiII ion (Table 2). The coordination environment is comprised of four oxime oxygen from four shi3− ligands in the equatorial plane and two axial carboxylate oxygen atoms of two acetate anions. As mentioned above, the acetate anions bind on opposite faces of the MC and connect the NiII ion to two MnIII ions (Mn2). The acetate binding motif is different than the analogous homometallic MnII(OAc)2[12-MCMn(III)N(shi)-4](DMF)6·2DMF, where the acetate anions bind on the same face of the MC and the central MnII ion exhibits a geometry that is best described as a trigonal prism (Lah & Pecoraro, 1989).
|
The ring MnIII ions (Mn1 and Mn2) are six-coordinate with a tetragonally distorted octahedral geometry (Table 2). The Jahn–Teller elongation, typical of a high-spin 3d4 ion, is located along the z-axis of each MnIII ion. For both Mn1 and Mn2, the equatorial coordination environment is composed of trans chelate rings from two shi3− ligands. A five-membered chelate ring is generated from an oxime oxygen atom and a carbonyl oxygen atom of one shi3− ligand, and a six-membered chelate ring is produced by an oxime nitrogen atom and a phenolate oxygen atom of the second shi3− ligand. For Mn1 the axial atoms are oxygen atoms from two methanol molecules, while for Mn2 the axial atoms are an oxygen atom from a methanol molecule and a carboxylate oxygen atom from an acetate anion.
In addition, solvent methanol and water molecules are located in the structure, and the methanol molecules form hydrogen bonds to the metallacrown. The water molecule associated with O13 is slightly offset from and disordered about an inversion center.
3. Supramolecular features
The coordinated and interstitial methanol molecules of 1 participate in several hydrogen bonds (Figs. 2 and 3, Table 3). The hydroxyl group of the methanol molecule associated with O9 and coordinated to Mn1 forms a hydrogen bond to an oxygen atom (O12) of an interstitial methanol molecule. In addition, the hydroxy group of another methanol molecule associated with O10 and coordinated to Mn1 forms an intramolecular hydrogen bond to a carboxylate oxygen atom (O7) of an acetate anion. Also the hydroxyl group of the interstitial methanol molecule associated with O12 forms a hydrogen bond to the other carboxylate oxygen atom (O8) of the acetate anion. Lastly, a one-dimensional chain of metallacrowns is mediated by the hydroxyl group of a methanol molecule associated with O11 and coordinated to Mn2 that forms a hydrogen bond to a carboxylate oxygen atom (O5) of a shi3− ligand of a neighboring metallacrown. As a symmetry-equivalent hydrogen bond also occurs on the opposite side of the MC, a one-dimensional chain is established (Fig. 3). The connection between the neighboring MCs, the hydrogen bonds between the MC and the interstitial methanol molecules, and pure contribute to the overall packing of 1.
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update May 2020, Groom et al., 2016) reveals that there are three other heterobimetallic manganese-nickel MC compounds. The first reported manganese-nickel MC is a `collapsed' metallacrown as it does not contain a central cavity. The structure has an M–N–O repeat unit but two of the oxime oxygen atoms bind to ring metal ions across the potential central cavity, thus collapsing the cavity and preventing the binding of a central metal ion. The compound [12-MCNi(II)Mn(III)N(shi)2(pko)2-4](OAc)2 (QOCXAH; Psomas et al., 2001), where pko− is 2,2′-dipyridylketonoximate, contains both MnIII and NiII ions in the MC ring positions with the metals arranged in an alternating pattern. The two other compounds can both be considered dimers of inverse 9-MC-3 systems, where each MC binds a μ3-O in the central cavity instead of a metal ion. In both compounds, two inverse 9-MC-3 units, each based on an MnIII2NiII core, are linked together to form a dimer. The main difference between the structures is the MC framework ligand: salicylaldoxime (XIFGUQ; Szyrwiel et al., 2013) or 5-chlorosalicylaldehyde oxime (LOKHIE; Zhang et al., 2014). Thus, 1 represents the only manganese–nickel archetypal MC structure type as 1 contains a central metal ion.
5. Synthesis and crystallization
Manganese(II) acetate tetrahydrate (99+%), tetraethylammonium acetate tetrahydrate (99%), salicylhydroxamic acid (99%), nickel(II) acetate tetrahydrate (99.995%), N,N-dimethylformamide (DMF, Certified ACS grade) and methanol (ACS grade) were purchased from Acros Organics, Acros Organics, Alfa Aesar, Sigma–Aldrich, BDH Chemicals and Pharmco-AAPER, respectively. All reagents were used as received without further purification.
Tetraethylammonium acetate tetrahydrate (4 mmol, 1.0462 g) and salicylhydroxamic acid (2 mmol, 0.3063 g) were dissolved in 4 mL of DMF and 4 mL of methanol, resulting in a clear orange solution. In two separate vessels, nickel(II) acetate tetrahydrate (0.125 mmol, 0.0312 g) was dissolved in 4 mL of DMF and 4 mL of methanol resulting in a green–blue solution and manganese(II) acetate tetrahydrate (2 mmol, 0.4909 g) was dissolved in 4 mL of DMF and 4 mL of methanol resulting in an clear orange solution. The manganese(II) acetate solution was then added to the tetraethylammonium acetate/salicylhydroxamic acid solution resulting in a brown solution. The nickel(II) acetate was then immediately added and no color change was detected; however, the formation of a precipitate was observed. The mixture was then left to stir overnight and subsequently gravity filtered the next day. The filtrate was a dark orange–brown solution and no precipitate was recovered. Slow evaporation of the filtrate at room temperature afforded X-ray quality dark-brown block-shaped crystals after 16 weeks. A small fraction of crystals and mother liquor were separated for analysis by single crystal X-ray diffraction. The remaining crystals were washed with cold DMF and dried. The percent yield was 22% based on nickel(II) acetate tetrahydrate.
6. Refinement
Crystal data, data collection and structure . An electron density region disordered around an inversion center was refined as a water molecule located slightly offset of the inversion center. The water hydrogen-atom positions were initially refined and O—H and H⋯H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively, and further restrained based on hydrogen-bonding considerations while a damping factor was applied. In the final cycles the hydrogen atoms were constrained to ride on the oxygen The displacement parameters of the water O atom were restrained to be close to isotropic. For the methanol molecules, the O—H bond distance was also restrained to 0.84 (2) Å. The Uiso values for the O—H hydrogen atoms (water and methanol) were set to a multiple of the value of the carrying oxygen atom (1.5 times). All other hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms and 0.98 Å for methyl carbon atoms. The Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms).
details are summarized in Table 4Supporting information
CCDC reference: 2034558
https://doi.org/10.1107/S205698902001316X/is5558sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902001316X/is5558Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Mn4Ni(C7H4NO3)4(C2H3O2)2(CH4O)6]·2CH4O·H2O | Z = 1 |
Mr = 1271.35 | F(000) = 652 |
Triclinic, P1 | Dx = 1.643 Mg m−3 |
a = 10.3647 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7781 (8) Å | Cell parameters from 9780 reflections |
c = 11.8303 (8) Å | θ = 2.6–30.6° |
α = 85.318 (3)° | µ = 1.40 mm−1 |
β = 86.231 (3)° | T = 150 K |
γ = 77.583 (3)° | Block, brown |
V = 1284.78 (16) Å3 | 0.24 × 0.22 × 0.13 mm |
Bruker AXS D8 Quest CMOS diffractometer | 7767 independent reflections |
Radiation source: fine focus sealed tube X-ray source | 6204 reflections with I > 2σ(I) |
Triumph curved graphite crystal monochromator | Rint = 0.026 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 30.6°, θmin = 2.5° |
ω and phi scans | h = −14→14 |
Absorption correction: multi-scan (SADABS2016/2; Krause et al., 2015) | k = −15→15 |
Tmin = 0.616, Tmax = 0.746 | l = −16→16 |
13573 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.072P)2 + 1.2905P] where P = (Fo2 + 2Fc2)/3 |
7767 reflections | (Δ/σ)max = 0.030 |
355 parameters | Δρmax = 1.79 e Å−3 |
9 restraints | Δρmin = −1.02 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A single electron density disordered around an inversion center was refined as a water molecule located slightly offset of the inversion center. The water H atom positions were initially refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively and further restrained based on hydrogen bonding considerations while a damping factor was applied. In the final refinement cycles the H atoms were constrained to ride on the oxygen carrier atom. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.01808 (10) | |
Mn1 | 0.72582 (4) | 0.43090 (3) | 0.28526 (3) | 0.01909 (10) | |
Mn2 | 0.59489 (3) | 0.76188 (3) | 0.52263 (3) | 0.01796 (9) | |
O1 | 0.65814 (17) | 0.52833 (15) | 0.40892 (14) | 0.0203 (3) | |
O2 | 0.81297 (18) | 0.57917 (17) | 0.25092 (15) | 0.0256 (4) | |
O3 | 0.72951 (19) | 0.85163 (17) | 0.49693 (15) | 0.0272 (4) | |
O4 | 0.44721 (17) | 0.67981 (15) | 0.54628 (13) | 0.0191 (3) | |
O5 | 0.50532 (17) | 0.84616 (15) | 0.65760 (14) | 0.0209 (3) | |
O6 | 0.21353 (19) | 0.66578 (18) | 0.83693 (15) | 0.0278 (4) | |
O7 | 0.61523 (18) | 0.44755 (16) | 0.64128 (14) | 0.0239 (3) | |
O8 | 0.70764 (18) | 0.61703 (17) | 0.64174 (15) | 0.0259 (4) | |
O9 | 0.8980 (2) | 0.3245 (2) | 0.37362 (19) | 0.0349 (4) | |
H9O | 0.964 (3) | 0.307 (4) | 0.331 (3) | 0.052* | |
O10 | 0.5606 (2) | 0.5444 (2) | 0.17778 (16) | 0.0344 (4) | |
H10O | 0.498 (3) | 0.576 (4) | 0.222 (3) | 0.052* | |
O11 | 0.4808 (2) | 0.90151 (17) | 0.39868 (17) | 0.0300 (4) | |
H11O | 0.486 (4) | 0.977 (2) | 0.384 (3) | 0.045* | |
O12 | 0.8752 (3) | 0.7344 (5) | 0.7432 (3) | 0.0847 (13) | |
H12A | 0.8150 | 0.7177 | 0.7066 | 0.127* | |
O13 | 1.015 (3) | 0.4661 (18) | −0.003 (2) | 0.156 (6) | 0.5 |
H13A | 0.9779 | 0.5158 | 0.0521 | 0.233* | 0.5 |
H13B | 0.9842 | 0.3968 | 0.0223 | 0.233* | 0.5 |
N1 | 0.3884 (2) | 0.69063 (18) | 0.65720 (15) | 0.0182 (4) | |
N2 | 0.6789 (2) | 0.65323 (18) | 0.39992 (16) | 0.0199 (4) | |
C1 | 0.7675 (2) | 0.6685 (2) | 0.31880 (19) | 0.0213 (4) | |
C2 | 0.8140 (2) | 0.7887 (2) | 0.3086 (2) | 0.0220 (4) | |
C3 | 0.8848 (3) | 0.8180 (2) | 0.2086 (2) | 0.0273 (5) | |
H3 | 0.8979 | 0.7621 | 0.1488 | 0.033* | |
C4 | 0.9360 (3) | 0.9269 (3) | 0.1955 (3) | 0.0338 (6) | |
H4 | 0.9836 | 0.9460 | 0.1272 | 0.041* | |
C5 | 0.9169 (3) | 1.0079 (3) | 0.2831 (3) | 0.0342 (6) | |
H5 | 0.9525 | 1.0825 | 0.2747 | 0.041* | |
C6 | 0.8469 (3) | 0.9817 (2) | 0.3826 (2) | 0.0301 (5) | |
H6 | 0.8353 | 1.0383 | 0.4417 | 0.036* | |
C7 | 0.7929 (2) | 0.8724 (2) | 0.3972 (2) | 0.0232 (5) | |
C8 | 0.4211 (2) | 0.7826 (2) | 0.70775 (18) | 0.0183 (4) | |
C9 | 0.3615 (2) | 0.8147 (2) | 0.82130 (18) | 0.0203 (4) | |
C10 | 0.4022 (3) | 0.9118 (3) | 0.8729 (2) | 0.0268 (5) | |
H10 | 0.4670 | 0.9525 | 0.8345 | 0.032* | |
C11 | 0.3501 (3) | 0.9492 (3) | 0.9781 (2) | 0.0327 (6) | |
H11 | 0.3787 | 1.0151 | 1.0116 | 0.039* | |
C12 | 0.2558 (3) | 0.8900 (3) | 1.0346 (2) | 0.0316 (6) | |
H12 | 0.2203 | 0.9151 | 1.1073 | 0.038* | |
C13 | 0.2134 (3) | 0.7951 (3) | 0.9856 (2) | 0.0259 (5) | |
H13 | 0.1483 | 0.7557 | 1.0252 | 0.031* | |
C14 | 0.2643 (2) | 0.7553 (2) | 0.87871 (19) | 0.0216 (4) | |
C15 | 0.6980 (3) | 0.5059 (2) | 0.6754 (2) | 0.0258 (5) | |
C16 | 0.7891 (4) | 0.4355 (3) | 0.7642 (3) | 0.0443 (8) | |
H16A | 0.8066 | 0.3439 | 0.7540 | 0.066* | |
H16B | 0.7475 | 0.4518 | 0.8399 | 0.066* | |
H16C | 0.8726 | 0.4649 | 0.7565 | 0.066* | |
C17 | 0.9312 (5) | 0.3374 (7) | 0.4821 (4) | 0.107 (3) | |
H17A | 1.0278 | 0.3194 | 0.4855 | 0.129* | |
H17B | 0.8951 | 0.2773 | 0.5352 | 0.129* | |
H17C | 0.8945 | 0.4245 | 0.5030 | 0.129* | |
C18 | 0.5752 (4) | 0.6311 (4) | 0.0836 (3) | 0.0627 (12) | |
H18A | 0.6480 | 0.5919 | 0.0324 | 0.094* | |
H18B | 0.5944 | 0.7086 | 0.1103 | 0.094* | |
H18C | 0.4930 | 0.6529 | 0.0430 | 0.094* | |
C19 | 0.3701 (4) | 0.8873 (3) | 0.3386 (3) | 0.0447 (8) | |
H19A | 0.3931 | 0.8898 | 0.2569 | 0.067* | |
H19B | 0.2946 | 0.9568 | 0.3545 | 0.067* | |
H19C | 0.3468 | 0.8055 | 0.3633 | 0.067* | |
C20 | 0.8243 (6) | 0.7872 (6) | 0.8340 (5) | 0.0872 (18) | |
H20A | 0.7712 | 0.8719 | 0.8138 | 0.105* | |
H20B | 0.8951 | 0.7951 | 0.8822 | 0.105* | |
H20C | 0.7679 | 0.7347 | 0.8754 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0219 (2) | 0.01533 (19) | 0.01792 (18) | −0.00658 (15) | 0.00285 (14) | −0.00226 (14) |
Mn1 | 0.02230 (19) | 0.01651 (17) | 0.01929 (16) | −0.00688 (13) | 0.00547 (12) | −0.00386 (12) |
Mn2 | 0.02245 (18) | 0.01363 (16) | 0.01896 (16) | −0.00712 (13) | 0.00365 (12) | −0.00290 (12) |
O1 | 0.0270 (8) | 0.0128 (7) | 0.0225 (7) | −0.0092 (6) | 0.0070 (6) | −0.0038 (6) |
O2 | 0.0284 (9) | 0.0234 (8) | 0.0260 (8) | −0.0104 (7) | 0.0107 (7) | −0.0053 (7) |
O3 | 0.0324 (10) | 0.0250 (8) | 0.0282 (8) | −0.0149 (7) | 0.0028 (7) | −0.0055 (7) |
O4 | 0.0251 (8) | 0.0171 (7) | 0.0159 (7) | −0.0070 (6) | 0.0043 (6) | −0.0030 (6) |
O5 | 0.0260 (9) | 0.0164 (7) | 0.0218 (7) | −0.0078 (6) | 0.0024 (6) | −0.0045 (6) |
O6 | 0.0324 (10) | 0.0275 (9) | 0.0264 (8) | −0.0139 (8) | 0.0112 (7) | −0.0094 (7) |
O7 | 0.0271 (9) | 0.0227 (8) | 0.0223 (8) | −0.0066 (7) | 0.0000 (7) | −0.0004 (6) |
O8 | 0.0261 (9) | 0.0262 (9) | 0.0265 (8) | −0.0084 (7) | −0.0030 (7) | 0.0003 (7) |
O9 | 0.0228 (10) | 0.0386 (11) | 0.0400 (11) | 0.0006 (8) | 0.0007 (8) | −0.0037 (9) |
O10 | 0.0312 (11) | 0.0416 (11) | 0.0267 (9) | −0.0048 (9) | 0.0037 (8) | 0.0075 (8) |
O11 | 0.0385 (11) | 0.0183 (8) | 0.0342 (9) | −0.0087 (7) | −0.0071 (8) | 0.0038 (7) |
O12 | 0.0352 (14) | 0.156 (4) | 0.076 (2) | −0.0347 (19) | 0.0118 (14) | −0.064 (2) |
O13 | 0.170 (9) | 0.188 (12) | 0.099 (5) | −0.036 (9) | 0.009 (6) | 0.026 (9) |
N1 | 0.0229 (9) | 0.0162 (8) | 0.0158 (8) | −0.0051 (7) | 0.0033 (7) | −0.0037 (6) |
N2 | 0.0247 (10) | 0.0144 (8) | 0.0224 (8) | −0.0090 (7) | 0.0039 (7) | −0.0026 (7) |
C1 | 0.0225 (11) | 0.0198 (10) | 0.0216 (10) | −0.0061 (8) | 0.0018 (8) | 0.0010 (8) |
C2 | 0.0194 (11) | 0.0181 (10) | 0.0292 (11) | −0.0081 (8) | 0.0040 (9) | 0.0018 (9) |
C3 | 0.0238 (12) | 0.0255 (11) | 0.0316 (12) | −0.0070 (9) | 0.0073 (9) | 0.0009 (10) |
C4 | 0.0276 (13) | 0.0286 (13) | 0.0435 (15) | −0.0095 (11) | 0.0084 (11) | 0.0089 (11) |
C5 | 0.0299 (14) | 0.0229 (12) | 0.0506 (16) | −0.0116 (10) | 0.0051 (12) | 0.0034 (11) |
C6 | 0.0309 (14) | 0.0200 (11) | 0.0418 (14) | −0.0117 (10) | 0.0027 (11) | −0.0021 (10) |
C7 | 0.0179 (11) | 0.0193 (10) | 0.0326 (12) | −0.0053 (8) | 0.0003 (9) | 0.0001 (9) |
C8 | 0.0186 (10) | 0.0170 (9) | 0.0188 (9) | −0.0031 (8) | 0.0005 (8) | −0.0019 (8) |
C9 | 0.0216 (11) | 0.0224 (10) | 0.0164 (9) | −0.0032 (8) | 0.0014 (8) | −0.0043 (8) |
C10 | 0.0273 (12) | 0.0303 (12) | 0.0251 (11) | −0.0091 (10) | 0.0031 (9) | −0.0110 (10) |
C11 | 0.0294 (13) | 0.0437 (15) | 0.0297 (12) | −0.0135 (12) | 0.0040 (10) | −0.0200 (11) |
C12 | 0.0279 (13) | 0.0466 (16) | 0.0219 (11) | −0.0090 (12) | 0.0045 (9) | −0.0132 (11) |
C13 | 0.0253 (12) | 0.0313 (12) | 0.0197 (10) | −0.0039 (10) | 0.0035 (9) | −0.0031 (9) |
C14 | 0.0217 (11) | 0.0211 (10) | 0.0212 (10) | −0.0033 (8) | 0.0010 (8) | −0.0018 (8) |
C15 | 0.0257 (12) | 0.0288 (12) | 0.0213 (10) | −0.0024 (10) | −0.0002 (9) | −0.0020 (9) |
C16 | 0.0485 (19) | 0.0448 (17) | 0.0405 (16) | −0.0108 (14) | −0.0223 (14) | 0.0105 (14) |
C17 | 0.070 (3) | 0.176 (6) | 0.044 (2) | 0.061 (4) | −0.022 (2) | −0.035 (3) |
C18 | 0.051 (2) | 0.073 (3) | 0.051 (2) | −0.0006 (19) | 0.0063 (17) | 0.033 (2) |
C19 | 0.058 (2) | 0.0368 (16) | 0.0437 (17) | −0.0176 (15) | −0.0181 (15) | 0.0064 (13) |
C20 | 0.092 (4) | 0.097 (4) | 0.088 (4) | −0.048 (3) | 0.031 (3) | −0.047 (3) |
Ni1—O1 | 1.9673 (16) | N2—C1 | 1.309 (3) |
Ni1—O1i | 1.9673 (16) | C1—C2 | 1.470 (3) |
Ni1—O4i | 2.0082 (15) | C2—C3 | 1.401 (3) |
Ni1—O4 | 2.0082 (15) | C2—C7 | 1.414 (4) |
Ni1—O7 | 2.0874 (17) | C3—C4 | 1.382 (4) |
Ni1—O7i | 2.0874 (17) | C3—H3 | 0.9500 |
Mn1—O6i | 1.8480 (17) | C4—C5 | 1.387 (4) |
Mn1—O1 | 1.8799 (16) | C4—H4 | 0.9500 |
Mn1—N1i | 1.9990 (19) | C5—C6 | 1.383 (4) |
Mn1—O2 | 2.0003 (18) | C5—H5 | 0.9500 |
Mn1—O9 | 2.182 (2) | C6—C7 | 1.404 (3) |
Mn1—O10 | 2.275 (2) | C6—H6 | 0.9500 |
Mn2—O3 | 1.8578 (18) | C8—C9 | 1.477 (3) |
Mn2—O4 | 1.9208 (17) | C9—C10 | 1.405 (3) |
Mn2—N2 | 1.9772 (19) | C9—C14 | 1.415 (3) |
Mn2—O5 | 1.9789 (17) | C10—C11 | 1.380 (3) |
Mn2—O8 | 2.2048 (18) | C10—H10 | 0.9500 |
Mn2—O11 | 2.2170 (18) | C11—C12 | 1.386 (4) |
O1—N2 | 1.403 (2) | C11—H11 | 0.9500 |
O2—C1 | 1.294 (3) | C12—C13 | 1.378 (4) |
O3—C7 | 1.339 (3) | C12—H12 | 0.9500 |
O4—N1 | 1.413 (2) | C13—C14 | 1.402 (3) |
O5—C8 | 1.306 (3) | C13—H13 | 0.9500 |
O6—C14 | 1.335 (3) | C15—C16 | 1.504 (4) |
O6—Mn1i | 1.8480 (17) | C16—H16A | 0.9800 |
O7—C15 | 1.270 (3) | C16—H16B | 0.9800 |
O8—C15 | 1.254 (3) | C16—H16C | 0.9800 |
O9—C17 | 1.377 (5) | C17—H17A | 0.9800 |
O9—H9O | 0.820 (19) | C17—H17B | 0.9800 |
O10—C18 | 1.416 (4) | C17—H17C | 0.9800 |
O10—H10O | 0.838 (18) | C18—H18A | 0.9800 |
O11—C19 | 1.431 (4) | C18—H18B | 0.9800 |
O11—H11O | 0.834 (18) | C18—H18C | 0.9800 |
O12—C20 | 1.285 (5) | C19—H19A | 0.9800 |
O12—H12A | 0.8400 | C19—H19B | 0.9800 |
O13—H13A | 0.8912 | C19—H19C | 0.9800 |
O13—H13B | 0.8940 | C20—H20A | 0.9800 |
N1—C8 | 1.313 (3) | C20—H20B | 0.9800 |
N1—Mn1i | 1.9991 (19) | C20—H20C | 0.9800 |
O1—Ni1—O1i | 180.0 | O2—C1—C2 | 121.6 (2) |
O1—Ni1—O4i | 85.54 (6) | N2—C1—C2 | 118.0 (2) |
O1i—Ni1—O4i | 94.46 (6) | C3—C2—C7 | 119.7 (2) |
O1—Ni1—O4 | 94.46 (6) | C3—C2—C1 | 118.1 (2) |
O1i—Ni1—O4 | 85.54 (6) | C7—C2—C1 | 122.2 (2) |
O4i—Ni1—O4 | 180.0 | C4—C3—C2 | 121.0 (3) |
O1—Ni1—O7 | 89.30 (7) | C4—C3—H3 | 119.5 |
O1i—Ni1—O7 | 90.70 (7) | C2—C3—H3 | 119.5 |
O4i—Ni1—O7 | 89.35 (7) | C3—C4—C5 | 119.2 (3) |
O4—Ni1—O7 | 90.65 (7) | C3—C4—H4 | 120.4 |
O1—Ni1—O7i | 90.70 (7) | C5—C4—H4 | 120.4 |
O1i—Ni1—O7i | 89.30 (7) | C6—C5—C4 | 121.0 (2) |
O4i—Ni1—O7i | 90.65 (7) | C6—C5—H5 | 119.5 |
O4—Ni1—O7i | 89.35 (7) | C4—C5—H5 | 119.5 |
O7—Ni1—O7i | 180.0 | C5—C6—C7 | 120.7 (3) |
O6i—Mn1—O1 | 177.99 (8) | C5—C6—H6 | 119.7 |
O6i—Mn1—N1i | 90.59 (8) | C7—C6—H6 | 119.7 |
O1—Mn1—N1i | 87.90 (7) | O3—C7—C6 | 117.3 (2) |
O6i—Mn1—O2 | 101.75 (7) | O3—C7—C2 | 124.3 (2) |
O1—Mn1—O2 | 79.66 (7) | C6—C7—C2 | 118.4 (2) |
N1i—Mn1—O2 | 166.99 (7) | O5—C8—N1 | 120.2 (2) |
O6i—Mn1—O9 | 87.57 (8) | O5—C8—C9 | 120.09 (19) |
O1—Mn1—O9 | 93.84 (8) | N1—C8—C9 | 119.7 (2) |
N1i—Mn1—O9 | 93.75 (8) | C10—C9—C14 | 118.9 (2) |
O2—Mn1—O9 | 90.88 (8) | C10—C9—C8 | 117.4 (2) |
O6i—Mn1—O10 | 88.50 (8) | C14—C9—C8 | 123.6 (2) |
O1—Mn1—O10 | 90.20 (8) | C11—C10—C9 | 121.3 (2) |
N1i—Mn1—O10 | 90.55 (8) | C11—C10—H10 | 119.4 |
O2—Mn1—O10 | 85.74 (8) | C9—C10—H10 | 119.4 |
O9—Mn1—O10 | 174.20 (8) | C10—C11—C12 | 119.7 (2) |
O3—Mn2—O4 | 176.03 (8) | C10—C11—H11 | 120.2 |
O3—Mn2—N2 | 88.18 (8) | C12—C11—H11 | 120.2 |
O4—Mn2—N2 | 93.66 (7) | C13—C12—C11 | 120.3 (2) |
O3—Mn2—O5 | 98.67 (7) | C13—C12—H12 | 119.9 |
O4—Mn2—O5 | 79.85 (7) | C11—C12—H12 | 119.9 |
N2—Mn2—O5 | 171.17 (7) | C12—C13—C14 | 121.4 (2) |
O3—Mn2—O8 | 93.89 (8) | C12—C13—H13 | 119.3 |
O4—Mn2—O8 | 89.72 (7) | C14—C13—H13 | 119.3 |
N2—Mn2—O8 | 86.94 (8) | O6—C14—C13 | 116.8 (2) |
O5—Mn2—O8 | 87.05 (7) | O6—C14—C9 | 124.7 (2) |
O3—Mn2—O11 | 87.30 (8) | C13—C14—C9 | 118.5 (2) |
O4—Mn2—O11 | 89.15 (7) | O8—C15—O7 | 124.9 (2) |
N2—Mn2—O11 | 91.20 (8) | O8—C15—C16 | 118.4 (2) |
O5—Mn2—O11 | 94.65 (7) | O7—C15—C16 | 116.7 (2) |
O8—Mn2—O11 | 177.77 (7) | C15—C16—H16A | 109.5 |
N2—O1—Mn1 | 115.37 (13) | C15—C16—H16B | 109.5 |
N2—O1—Ni1 | 116.20 (13) | H16A—C16—H16B | 109.5 |
Mn1—O1—Ni1 | 121.46 (8) | C15—C16—H16C | 109.5 |
C1—O2—Mn1 | 111.39 (15) | H16A—C16—H16C | 109.5 |
C7—O3—Mn2 | 126.39 (15) | H16B—C16—H16C | 109.5 |
N1—O4—Mn2 | 112.52 (12) | O9—C17—H17A | 109.5 |
N1—O4—Ni1 | 114.00 (12) | O9—C17—H17B | 109.5 |
Mn2—O4—Ni1 | 109.98 (8) | H17A—C17—H17B | 109.5 |
C8—O5—Mn2 | 111.06 (13) | O9—C17—H17C | 109.5 |
C14—O6—Mn1i | 129.29 (16) | H17A—C17—H17C | 109.5 |
C15—O7—Ni1 | 126.98 (16) | H17B—C17—H17C | 109.5 |
C15—O8—Mn2 | 132.85 (17) | O10—C18—H18A | 109.5 |
C17—O9—Mn1 | 127.6 (2) | O10—C18—H18B | 109.5 |
C17—O9—H9O | 111 (3) | H18A—C18—H18B | 109.5 |
Mn1—O9—H9O | 113 (3) | O10—C18—H18C | 109.5 |
C18—O10—Mn1 | 126.2 (2) | H18A—C18—H18C | 109.5 |
C18—O10—H10O | 111 (3) | H18B—C18—H18C | 109.5 |
Mn1—O10—H10O | 108 (3) | O11—C19—H19A | 109.5 |
C19—O11—Mn2 | 127.54 (17) | O11—C19—H19B | 109.5 |
C19—O11—H11O | 104 (3) | H19A—C19—H19B | 109.5 |
Mn2—O11—H11O | 128 (3) | O11—C19—H19C | 109.5 |
C20—O12—H12A | 109.5 | H19A—C19—H19C | 109.5 |
H13A—O13—H13B | 97.8 | H19B—C19—H19C | 109.5 |
C8—N1—O4 | 111.81 (18) | O12—C20—H20A | 109.5 |
C8—N1—Mn1i | 129.84 (16) | O12—C20—H20B | 109.5 |
O4—N1—Mn1i | 118.35 (13) | H20A—C20—H20B | 109.5 |
C1—N2—O1 | 111.30 (18) | O12—C20—H20C | 109.5 |
C1—N2—Mn2 | 131.90 (16) | H20A—C20—H20C | 109.5 |
O1—N2—Mn2 | 115.94 (14) | H20B—C20—H20C | 109.5 |
O2—C1—N2 | 120.4 (2) | ||
N1i—Mn1—O1—N2 | −163.95 (16) | Mn2—O3—C7—C6 | 153.19 (19) |
O2—Mn1—O1—N2 | 12.24 (15) | Mn2—O3—C7—C2 | −30.0 (3) |
O9—Mn1—O1—N2 | 102.43 (16) | C5—C6—C7—O3 | 178.2 (2) |
O10—Mn1—O1—N2 | −73.40 (15) | C5—C6—C7—C2 | 1.2 (4) |
N1i—Mn1—O1—Ni1 | −14.29 (10) | C3—C2—C7—O3 | −178.3 (2) |
O2—Mn1—O1—Ni1 | 161.89 (11) | C1—C2—C7—O3 | −0.3 (4) |
O9—Mn1—O1—Ni1 | −107.91 (11) | C3—C2—C7—C6 | −1.4 (4) |
O10—Mn1—O1—Ni1 | 76.26 (10) | C1—C2—C7—C6 | 176.6 (2) |
N2—Mn2—O3—C7 | 32.0 (2) | Mn2—O5—C8—N1 | −11.7 (3) |
O5—Mn2—O3—C7 | −153.54 (19) | Mn2—O5—C8—C9 | 168.76 (16) |
O8—Mn2—O3—C7 | 118.9 (2) | O4—N1—C8—O5 | −4.0 (3) |
O11—Mn2—O3—C7 | −59.2 (2) | Mn1i—N1—C8—O5 | 175.17 (16) |
Mn2—O4—N1—C8 | 18.3 (2) | O4—N1—C8—C9 | 175.55 (18) |
Ni1—O4—N1—C8 | 144.44 (16) | Mn1i—N1—C8—C9 | −5.3 (3) |
Mn2—O4—N1—Mn1i | −160.92 (9) | O5—C8—C9—C10 | −2.0 (3) |
Ni1—O4—N1—Mn1i | −34.81 (17) | N1—C8—C9—C10 | 178.5 (2) |
Mn1—O1—N2—C1 | −14.5 (2) | O5—C8—C9—C14 | 176.4 (2) |
Ni1—O1—N2—C1 | −165.81 (15) | N1—C8—C9—C14 | −3.1 (3) |
Mn1—O1—N2—Mn2 | 174.82 (9) | C14—C9—C10—C11 | 0.5 (4) |
Ni1—O1—N2—Mn2 | 23.53 (19) | C8—C9—C10—C11 | 179.0 (2) |
Mn1—O2—C1—N2 | 2.2 (3) | C9—C10—C11—C12 | 0.1 (4) |
Mn1—O2—C1—C2 | −178.51 (18) | C10—C11—C12—C13 | −0.5 (5) |
O1—N2—C1—O2 | 7.6 (3) | C11—C12—C13—C14 | 0.4 (4) |
Mn2—N2—C1—O2 | 176.28 (17) | Mn1i—O6—C14—C13 | −167.37 (18) |
O1—N2—C1—C2 | −171.72 (19) | Mn1i—O6—C14—C9 | 14.8 (4) |
Mn2—N2—C1—C2 | −3.0 (3) | C12—C13—C14—O6 | −177.8 (2) |
O2—C1—C2—C3 | 14.8 (4) | C12—C13—C14—C9 | 0.2 (4) |
N2—C1—C2—C3 | −165.9 (2) | C10—C9—C14—O6 | 177.2 (2) |
O2—C1—C2—C7 | −163.2 (2) | C8—C9—C14—O6 | −1.2 (4) |
N2—C1—C2—C7 | 16.1 (3) | C10—C9—C14—C13 | −0.6 (3) |
C7—C2—C3—C4 | 0.8 (4) | C8—C9—C14—C13 | −179.1 (2) |
C1—C2—C3—C4 | −177.3 (2) | Mn2—O8—C15—O7 | 2.6 (4) |
C2—C3—C4—C5 | 0.2 (4) | Mn2—O8—C15—C16 | −176.5 (2) |
C3—C4—C5—C6 | −0.5 (4) | Ni1—O7—C15—O8 | 13.4 (4) |
C4—C5—C6—C7 | −0.2 (4) | Ni1—O7—C15—C16 | −167.5 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9O···O12ii | 0.82 (2) | 1.82 (2) | 2.630 (4) | 172 (4) |
O10—H10O···O7i | 0.84 (2) | 1.97 (3) | 2.713 (3) | 148 (4) |
O11—H11O···O5iii | 0.83 (2) | 1.95 (2) | 2.778 (2) | 178 (4) |
O12—H12A···O8 | 0.84 | 1.94 | 2.743 (3) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+2, −z+1. |
Avg. bond length | BVS value | Assigned oxidation state | |
Ni1 | 2.021 | 2.34 | 2+ |
Mn1 | 2.031 | 3.06 | 3+ |
Mn2 | 2.026 | 3.06 | 3+ |
Shape | Hexagon (D6h) | Pentagonal pyramid (C5v) | Octahedron (Oh) | Trigonal prism (D3h) | Johnson pentagonal pyramid (J2; C5v) |
Ni1 | 31.656 | 29.242 | 0.164 | 16.201 | 32.416 |
Mn1 | 31.782 | 26.077 | 1.106 | 13.698 | 29.622 |
Mn2 | 31.099 | 26.575 | 0.821 | 15.377 | 29.523 |
Acknowledgements
CMZ would like to thank Vincent L. Pecoraro at the University of Michigan for useful discussions regarding the structure of the reported compound.
Funding information
Funding for this research was provided by: National Science Foundation (grant No. CHE 1625543 to M. Zeller); Shippensburg University Student/Faculty Research Engagement (SFRE) Program (award to C. M. Zaleski).
References
Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). Inorg. Chem. 53, 1729–1742. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556–1562. Web of Science CrossRef CAS Google Scholar
Gole, B., Chakrabarty, R., Mukherjee, S., Song, Y. & Mukherjee, P. S. (2010). Dalton Trans. 39, 9766–9778. Web of Science CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Happ, P. & Rentschler, E. (2014). Dalton Trans. 43, 15308–15312. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259. CSD CrossRef CAS Web of Science Google Scholar
Lewis, A. J., Garlatti, E., Cugini, F., Solzi, M., Zeller, M., Carretta, S. & Zaleski, C. M. (2020). Inorg. Chem. 59, 11894–11900. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105. CrossRef CAS Web of Science Google Scholar
Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE, version 2.1. Barcelona, Spain. Google Scholar
Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177–246. Amsterdam: Elsevier. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003. Web of Science CrossRef PubMed CAS Google Scholar
Nesterova, O. V., Chygorin, E. N., Kokozay, V. N., Omelchenko, I. V., Shishkin, O. V., Boča, R. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 14918–14924. Web of Science CSD CrossRef CAS PubMed Google Scholar
Nguyen, T. N. & Pecoraro, V. L. (2017). Comprehensive Supramolecular Chemistry II, edited by J. L. Atwood, pp. 195–212. Amsterdam: Elsevier. Google Scholar
Pecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83–177. New York: John Wiley & Sons. Google Scholar
Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575–5582. Web of Science CrossRef PubMed CAS Google Scholar
Psomas, G., Stemmler, A. J., Dendrinou-Samara, C., Bodwin, J. J., Schneider, M., Alexiou, M., Kampf, J. W., Kessissoglou, D. P. & Pecoraro, V. L. (2001). Inorg. Chem. 40, 1562–1570. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiga, T., Maruyama, K., Newton, G. N., Inglis, R., Brechin, E. K. & Oshio, H. (2014). Inorg. Chem. 53, 4272–4274. Web of Science CSD CrossRef CAS PubMed Google Scholar
Szyrwiel, Ł., Brasuń, J., Szewczuk, Z. & Hołyńska, M. (2013). Polyhedron, 51, 90–95. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaleski, C. M., Tricard, S., Depperman, E. C., Wernsdorfer, W., Mallah, T., Kirk, M. L. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 11348–11352. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Y., Wei, C.-Y. & Liu, T.-F. (2014). Chin. Chem. Lett. 25, 937–940. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.