research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of tetra­kis­(μ-deca­noato-κ2O:O′)bis­­[(4-methyl­pyridine-κN)copper(II)], a dimeric copper(II) complex

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Gauhati University, Guwahati, Assam, India, and bBhattadev University, Bajali, Pathsala, Assam, India
*Correspondence e-mail: monsumigogoi@gmail.com

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 14 September 2020; accepted 22 October 2020; online 30 October 2020)

The 4-methyl­pyridine (4-Mepy) based dimeric copper(II) carboxyl­ate complex [Cu2(C10H19O2)4(C6H7N)2] or [Cu2(μ-O2CC9H19)4(4-Mepy)2] crystallizes with triclinic (P[\overline{1}]) symmetry. The two CuII ions exhibit a distorted square-pyramidal environment and are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6472 (8) Å] via four bridging carboxyl­ate ligands arranged in the syn–syn coordination mode. The apical positions around the paddle-wheel copper centers are occupied by the N atoms of the 4-methyl­pyridine ligands. The structure exhibits disorder of the terminal alkyl carbon atoms in the deca­noate chains.

1. Chemical context

Research on metal carboxyl­ates has gained importance in view of their use in the formation of open and porous frameworks and also because of their biological activities and anti­bacterial properties (Smithenry et al., 2003[Smithenry, W., Wilson, S. R. & Suslick, K. S. (2003). Inorg. Chem. 42, 7719-7721.]; Lah et al., 2001[Lah, N., Giester, G., Lah, J., Šegedin, P. & Leban, I. (2001). New J. Chem. 25, 753-759.]). As the number of carboxyl­ate groups increases, so does the complexity of the coordination behaviour. Carboxyl­ate anions are versatile ligands capable of existing as counter-anions or as ligands coordinating to the metal ions in different modes (Deacon & Philips, 1980[Deacon, G. R. & Philips, R. (1980). Coord. Chem. Rev. 33, 227-250.]; Tao et al., 2000[Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.]; Smithenry et al., 2003[Smithenry, W., Wilson, S. R. & Suslick, K. S. (2003). Inorg. Chem. 42, 7719-7721.]). Copper complexes containing aliphatic/aromatic carb­oxy­lic acid anions as ligands with the general formula [Cu2(O2CR)4] have been known to adopt a paddle-wheel structure where four bidentate carboxyl­ato ligands bridge the CuII centres (Baruah et al., 2015[Baruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195-m196.]; Serrano & Sierra, 2000[Serrano, J. L. & Sierra, T. (2000). Chem. Eur. J. 6, 759-766.]). Complexes having R = a long-chain alkyl group can make the resultant dimeric carboxyl­ates more soluble in organic solvents and hence can be more effective as catalysts in certain reactions (Baruah et al., 2015[Baruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195-m196.]). These carboxyl­ates can be prepared either by reaction of basic copper(II) carbonate/acetate with the corresponding carb­oxy­lic acid or by reaction of a copper(II) salt with the sodium salt of the corresponding carb­oxy­lic acid (Hamza & Kickelbick, 2009[Hamza, F. & Kickelbick, G. (2009). Macromolecules, 42, 7762-7771.]; Moncol et al., 2010[Moncol, J., Vasková, Z., Stachová, P., Svorec, J., Sillanpää, R., Mazúr, M. & Valigura, D. (2010). J. Chem. Crystallogr. 40, 179-184.]; Das & Barman, 2001[Das, B. K. & Barman, R. K. (2001). Acta Cryst. C57, 1025-1026.]). Each CuII centre has four oxygen atoms forming the basal plane, while the axial position is either occupied by a solvent mol­ecule or by a monodentate nitro­gen base ligand or sometimes by an oxygen atom of another dimeric unit resulting in an oligomeric chain (Agterberg et al., 1998[Agterberg, F. P. W., ProvóKluit, H. A. J., Driessen, W. L., Reedijk, J., Oevering, H., Buijs, W., Veldman, N., Lakin, M. T. & Spek, A. L. (1998). Inorg. Chim. Acta, 267, 183-192.]; Wein et al., 2009[Wein, A. N., Cordeiro, R., Owens, N., Olivier, H., Hardcastle, K. I. & Eichler, J. F. (2009). J. Fluor. Chem. 130, 197-203.]). A few members of the family of dicopper(II) tetra­carboxyl­ates of the type [Cu2(μ-O2CR)4L2] have been demonstrated to be active homogeneous catalysts in the oxidation of various alcohols. A dinuclear complex, [Cu2(μ-O2CC5H11)4(C6N2H4)2] (Baruah et al., 2015[Baruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195-m196.]), was reported as having two crystallographically independent CuII atoms in a distorted square-pyramidal environment.

[Scheme 1]

2. Structural commentary

The title compound [Cu2(μ-O2CC9H19)4(4-Mepy)2] crystallizes in the triclinic system, space group P[\overline{1}]. The complex has a centrosymmetric structure and consists of a copper(II) dimer having a paddle-wheel structure. The asymmetric unit comprises a CuII ion coordinated by the N atom of 4-methyl­pyridine and by two deprotonated O-monodentate deca­noate ligands. The two CuII ions are bridged by four carboxyl­ate ligands in the syn–syn coordination mode, resulting in a distorted square-pyramidal environment with the four O atoms forming the square basal plane and the two pyridyl-N atoms of the 4-Mepy ligands occupying the apical positions. The mol­ecular structure of the complex is shown in Fig. 1[link].

[Figure 1]
Figure 1
ORTEP diagram of [Cu2(μ-O2CC9H19)4(4-Mepy)2] showing the atom-labelling scheme (ellipsoids drawn at the 50% probability level; unlabelled atoms generated by the symmetry operation 1 − x, 1 − y, 1 − z).

The Cu⋯Cu [2.6472 (8)], Cu—O (average) [1.9740 (12)], and Cu—N [2.1680 (14) Å] distances are comparable to those observed for structurally similar CuII dimers with a [Cu2(μ-O2CR)4L2]-type structure, [Cu2(μ-O2CCMe3)4(NC5H3(2-NH2)(6-CH3))2] (Fomina et al., 2010[Fomina, I., Dobrokhotova, Z., Aleksandrov, G., Bogomyakov, A., Fedin, M., Dolganov, A., Magdesieva, T., Novotortsev, V. & Eremenko, I. (2010). Polyhedron, 29, 1734-1746.]) and [Cu2(μ-O2CC6H5)4(py)2] (Iqbal et al., 2014[Iqbal, M., Ali, S., Rehman, Z., Muhammad, N., Sohail, M. & Pandarinathan, V. (2014). J. Coord. Chem., 67, 10, 1731-1745.]). The Cu⋯Cu distance in the title complex was found to be slightly longer than in the copper(II) carboxyl­ate complex [Cu2(μ-O2CC5H11)4(4-NCpy)2] [2.6055 (9) Å; Baruah et al., 2015[Baruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195-m196.]) and in [Cu2(μ-O2CC9H19)4(NC5H4CO2C12H25)2] [2.615 (1) Å; Rusjan et al., 2000[Rusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666-672.]). The Cu—-N bond in the title complex is slightly shorter than those reported by Rusjan et al. (2000[Rusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666-672.]) and Petric et al. (1993[Petric, M., Leban, I. & Segedin, P. (1993). Polyhedron. 12, 16, 1973-1976.]). The difference between the Cu⋯Cu and Cu—N distances and those for related complexes is probably due to the difference in the basicity of the pyridinic group in the apical position of the core. The hydrogen atoms at positions 2 and 6 of the aromatic ring establish intra­molecular C—H⋯O inter­actions with the closely placed carboxyl­ate oxygen atoms (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.96 2.73 3.577 148
C18—H18A⋯O3ii 0.97 2.90 3.841 163
C6—H6CCg1iii 0.96 2.94 3.665 (2) 134
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+2, -z+1.

In the title complex, the two oppositely placed deca­noate alkyl chains adopt a fully elongated zigzag conformation, whereas the other pair is distorted, aligning parallel to the first one after a gauche conformation at the C18—C19 bond (Rusjan et al., 2000[Rusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666-672.]). This arrangement probably occurs to facilitate efficient packing. The terminal ends of both pairs of alkyl chains are disordered and were modelled as described in the Refinement section.

3. Supra­molecular features

There is no strong inter­molecular hydrogen bonding in the title complex because of the absence of sufficiently polar hydrogen atoms. The supra­molecular structure of the complex shows two different sets of dimers. One involves a pair of symmetry-related C18—H18⋯O3 inter­actions (Table 1[link]) that form dimers and give rise to the formation of infinite chains along the a-axis direction. The second one involves dimers linked by a pair of C6—H6B⋯O2 inter­actions that form infinite chains along the b-axis direction. The inter­linking between them gives rise to the crystal packing in the complex, as shown in Fig. 2[link]. The crystal packing is also supported by C6—H6Cπ inter­actions between a pyridine ring-bound methyl group and the pyridine ring (–x, 2 – y, 1 – z) of a neighbouring 4-Mepy unit with an H⋯centroid distance of 2.94 Å and C—H⋯centroid angle of 134° (Fig. 3[link]). At the same time, the centroid⋯centroid distances of 4.4183 (14) Å and 4.6957 (15) Å with slippage of 2.909 and 2.913 Å, respectively, between neighbouring pyridine rings (Fig. 3[link]) are too long for meaningful ππ inter­actions (Tsuzuki et al., 2002[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104-112.]). More details on the mutual arrangement of the pyridine rings can be found in Table 2[link].

Table 2
Geometry (Å, °) of the stacking of the pyridine rings

Cg(I) = centroid of ring I; α = dihedral angle between planes I and J; β = angle between Cg(I)⋯Cg(J) vector and normal to plane I; γ = angle between Cg(I)⋯Cg(J) vector and normal to plane J; CgCg = distance between ring centroids; Cg(I)Perp = perpendicular distance of Cg(I) on ring J; Cg(J)Perp = perpendicular distance of Cg(J) on ring I; slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I.

Cg(I) Cg(J) CgCg α β γ Cg(I)Perp Cg(J)Perp Slippage
Cg1 Cg1i 4.4183 (14) 0 41.2 41.2 3.3258 (8) 3.326 2.909
Cg1 Cg1ii 4.6957 (15) 0 38.3 38.3 −3.6832 (8) −3.683 2.913
Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) −x, 2 − y, 1 − z.
[Figure 2]
Figure 2
Packing of [Cu2(μ-O2CC9H19)4(4-Mepy)2] viewed along the a axis (disorder not shown)
[Figure 3]
Figure 3
C6—H6Cπ inter­actions in [Cu2(μ-O2CC9H19)4(4-Mepy)2] (disorder not shown)

4. Database survey

A survey of the Cambridge Structural Database (CSD version 2020.2; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for dimeric copper complexes of alkyl carboxyl­ates revealed that most of the complexes adopt a paddle-wheel structure with a slightly distorted square-pyramidal environment around the CuII ions. The crystal structure of tetra­kis­(μ-hepta­noato-O,O′)bis­(nicotinamide)­dicopper(II) (CSD refcodes: CAYHIT and CAYHIT01; Kozlevcar et al., 1999[Kozlevcar, B., Lah, N., Leban, I., Turel, I., Segedin, P., Petric, M., Pohleven, F., White, A. J. P., Williams, D. J. & Giester, G. (1999). Croat. Chem. Acta., 72, 427-436.]) and tetra­kis­(μ-octa­noato-O,O′)bis­(N,N-di­ethyl­nicotinamide)­dicopper(II) (GUH­JIC; Kozlevcar et al., 2000[Kozlevcar, B., Lah, N., Leban, I., Pohleven, F. & Segedin, P. (2000). Croat. Chem. Acta. 73, 3, 733-741.]) were reported as having normal zigzag as well as distorted alkyl chains. Riesco and co-workers reported on the preparation of three polymorphs of CuII deca­noate, which differ in the cell parameters and the packing of chains following crystallization using different solvents (CUDECN01 and CUDECN02; Riesco et al., 2008[Riesco, M. R., Casado, F. J. M., Lopez-Andres, S., Garcia Perez, M. V., Yelamos, M. I. R., Torres, M. R., Garrido, L. & Cheda, J. A. R. (2008). Cryst. Growth Des. 8, 7, 2547-2554.], 2015[Riesco, M. R., Martínez-Casado, F. J., Cheda, J. A. R., Yélamos, M. I. R., Fernández-Martínez, A. & López-Andrés, S. (2015). Cryst. Growth Des. 15, 497-509.]). In the do­decyl­nicotinate bis-adduct of a centrosymmetric dinuclear copper deca­noate (XADREZ; Rusjan et al., 2000[Rusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666-672.]) with average Cu—O, Cu—N and Cu⋯Cu distances of 1.960 (6), 2.183 (3) and 2.615 (1) Å, respectively, the alkyl chains in the complex lead to the formation of two different layers along the crystal: one defined by the polar copper carboxyl­ate cores and the second, non-polar one containing the alkyl chains. The CuII octa­noate adduct with pyridine, viz. tetra­kis­(μ-octa­noato-O,O′)bis­(pyridine)­dicopper(II) (HEDNIN; Petric et al., 1993[Petric, M., Leban, I. & Segedin, P. (1993). Polyhedron. 12, 16, 1973-1976.]) has a Cu—N bond of 2.194 (4) Å. The dimeric structure of copper(II) hexa­noate with 2-amino­pyridine (QUCQIO; Lah et al., 2001[Lah, N., Giester, G., Lah, J., Šegedin, P. & Leban, I. (2001). New J. Chem. 25, 753-759.]) is of the typical dinuclear paddle-wheel type and features intra­molecular as well as inter­molecular hydrogen bonds as a result of the presence of the NH2 group. Here all the hydro­carbon chains of the octa­noate are found to be distorted and not in the typical zigzag conformation.

5. Synthesis and crystallization

All reagents were purchased from E. Merck and used as received without further purification. CuSO4·5H2O (0.4994 g, 2.0 mmol) and sodium deca­noate (0.7708 g, 4.0 mmol) were stirred in 25 mL of methanol. After 30 minutes, 4-methyl pyridine (0.1863 g, 2.0 mmol) was added to the reaction mixture, and stirring was continued for 3 h. The resulting green product was filtered off, washed repeatedly with small volumes of methanol and dried in a vacuum desiccator over fused CaCl2 (yield 0.8180 g, 82%). The product was dissolved in aceto­nitrile to give a greenish homogeneous solution, which was allowed to concentrate by evaporation at room temperature. Single crystals suitable for X-ray diffraction analysis were obtained from this solution after one day and were collected by filtration. The compound is insoluble in water but soluble in methanol and aceto­nitrile.

IR spectroscopic data (KBr disc, cm−1): νasym (COO) 1580, νsym (COO) 1381, νstretch (C—H) 2800–2950, νstretch (py) 1682, 1489, 1445.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C10H19O2)4(C6H7N)2]
Mr 998.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3146 (17), 10.210 (2), 17.151 (3)
α, β, γ (°) 83.27 (3), 83.78 (3), 86.69 (3)
V3) 1435.9 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.38 × 0.32 × 0.24
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 2016[Sheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.752, 0.825
No. of measured, independent and observed [I > 2σ(I)] reflections 28267, 6789, 5914
Rint 0.029
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.05
No. of reflections 6789
No. of parameters 341
No. of restraints 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett et al., 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF.

C-bound hydrogen atoms were placed in idealized positions with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The twofold disordered parts of the deca­noate chains (C15–C16, C24–C26 and C15A–C16A, C24A–C26A) have been completed through successive electron density difference-Fourier maps and were refined with a sum of their occupancies restrained to unity using geometry (SAME) and Uij restraints (SIMU and RIGU) implemented in SHELXL. The refinement converged with the relative occupancies of 0.817 (9) and 0.183 (9) for the C15–C16 section and 0.65 (5) and 0.35 (5) for the C24–C26 section.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-III (Burnett et al., 1996), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF.

Tetrakis(µ-decanoato-κ2O:O)bis[(4-methylpyridine-κN)copper(II)] top
Crystal data top
[Cu2(C10H19O2)4(C6H7N)2]Z = 1
Mr = 998.33F(000) = 538
Triclinic, P1Dx = 1.155 Mg m3
a = 8.3146 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.210 (2) ÅCell parameters from 11736 reflections
c = 17.151 (3) Åθ = 3.4–27.9°
α = 83.27 (3)°µ = 0.79 mm1
β = 83.78 (3)°T = 293 K
γ = 86.69 (3)°Prism, green
V = 1435.9 (5) Å30.38 × 0.32 × 0.24 mm
Data collection top
Bruker SMART APEXII
diffractometer
6789 independent reflections
Radiation source: X-ray tube5914 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.029
phi and ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2016)
h = 1010
Tmin = 0.752, Tmax = 0.825k = 1313
28267 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1938P]
where P = (Fo2 + 2Fc2)/3
6789 reflections(Δ/σ)max = 0.001
341 parametersΔρmax = 0.24 e Å3
136 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.45017 (2)0.62493 (2)0.48461 (2)0.04209 (7)
O10.39168 (16)0.56895 (12)0.38513 (7)0.0601 (3)
C10.3374 (2)0.90403 (17)0.52306 (11)0.0590 (4)
H10.3822590.8742900.5696530.071*
N10.35480 (15)0.82692 (13)0.46522 (8)0.0475 (3)
O20.47530 (16)0.35858 (12)0.41178 (7)0.0582 (3)
C20.2564 (2)1.02557 (17)0.51769 (12)0.0638 (4)
H20.2481041.0757460.5599550.077*
O30.24360 (13)0.56207 (12)0.54010 (8)0.0591 (3)
C30.1879 (2)1.07281 (15)0.45035 (11)0.0556 (4)
C40.2067 (3)0.9932 (2)0.39042 (12)0.0752 (6)
H40.1631421.0207980.3432000.090*
O40.32791 (13)0.35240 (11)0.56677 (7)0.0552 (3)
C50.2899 (3)0.87244 (19)0.40001 (11)0.0694 (5)
H50.3008010.8206570.3584420.083*
C70.41767 (19)0.45288 (16)0.36848 (9)0.0500 (3)
C60.0953 (2)1.20324 (17)0.44357 (14)0.0724 (5)
H6A0.0452781.2147390.3951870.109*
H6B0.1679351.2729210.4437790.109*
H6C0.0133111.2056300.4873950.109*
C90.3653 (3)0.5333 (2)0.22662 (11)0.0711 (5)
H9A0.4724480.5681070.2155100.085*
H9AB0.2925830.6027670.2459710.085*
C80.3706 (3)0.4222 (2)0.28978 (11)0.0717 (5)
H8A0.4464590.3544530.2707720.086*
H8AB0.2644900.3850650.2988010.086*
C100.3113 (3)0.4998 (2)0.15057 (11)0.0728 (5)
H10A0.3856330.4317970.1307040.087*
H10B0.2054170.4627540.1620610.087*
C110.3015 (4)0.6112 (3)0.08706 (13)0.0888 (7)
H11A0.4076850.6477790.0756780.107*
H11B0.2281430.6794760.1074490.107*
C120.2472 (3)0.5818 (2)0.01114 (12)0.0835 (6)
H12A0.3196530.5130730.0092270.100*
H12B0.1401810.5466040.0221530.100*
C130.2403 (4)0.6942 (3)0.05142 (14)0.1024 (8)
H13A0.1687020.7629370.0304660.123*
H13B0.3475710.7289210.0621230.123*
C140.1865 (4)0.6696 (3)0.12709 (14)0.1044 (9)
H14A0.0764440.6404360.1176520.125*0.817 (9)
H14B0.2543780.5984040.1476250.125*0.817 (9)
H14C0.1185060.5945350.1138120.125*0.183 (9)
H14D0.2836120.6369690.1567180.125*0.183 (9)
C150.1916 (8)0.7884 (5)0.1892 (3)0.1149 (17)0.817 (9)
H15A0.1270140.8609070.1682090.138*0.817 (9)
H15B0.3023980.8155560.2005200.138*0.817 (9)
C160.1308 (8)0.7626 (7)0.2638 (2)0.146 (2)0.817 (9)
H16A0.1969120.6933890.2862070.218*0.817 (9)
H16B0.1353060.8414370.3003550.218*0.817 (9)
H16C0.0208940.7362970.2532760.218*0.817 (9)
C15A0.100 (3)0.759 (3)0.1873 (12)0.136 (7)0.183 (9)
H15C0.0299820.7075240.2120920.163*0.183 (9)
H15D0.0337840.8252750.1612020.163*0.183 (9)
C16A0.217 (3)0.825 (3)0.2484 (17)0.154 (8)0.183 (9)
H16D0.2822190.8803210.2244390.230*0.183 (9)
H16E0.1598840.8769480.2875210.230*0.183 (9)
H16F0.2862160.7589600.2728980.230*0.183 (9)
C170.22391 (17)0.44660 (16)0.57074 (9)0.0470 (3)
C180.05989 (19)0.41770 (19)0.61499 (11)0.0601 (4)
H18A0.0133570.4010950.5772830.072*
H18B0.0176680.4957570.6389850.072*
C190.0595 (2)0.30114 (19)0.67900 (11)0.0640 (4)
H19A0.0517730.2817430.6978370.077*
H19B0.1095250.2243320.6561270.077*
C200.1474 (3)0.3242 (2)0.74828 (12)0.0728 (5)
H20A0.0987930.4021830.7703900.087*
H20B0.2591760.3418520.7295400.087*
C210.1445 (3)0.2098 (2)0.81293 (13)0.0855 (6)
H21A0.0327900.1874660.8281210.103*
H21B0.2007730.1339450.7915090.103*
C220.2192 (4)0.2331 (3)0.88595 (14)0.0931 (7)
H22A0.3320130.2522870.8711870.112*
H22B0.1653750.3105390.9065480.112*
C230.2106 (4)0.1204 (3)0.95045 (15)0.0981 (8)
H23A0.2696540.0442040.9308420.118*0.65 (5)
H23B0.0982980.0979340.9632970.118*0.65 (5)
H23C0.0969910.1047560.9659140.118*0.35 (5)
H23D0.2580040.0424420.9279300.118*0.35 (5)
C240.277 (3)0.1473 (18)1.0246 (8)0.099 (3)0.65 (5)
H24A0.3877510.1739911.0107880.119*0.65 (5)
H24B0.2151510.2216831.0447570.119*0.65 (5)
C250.278 (3)0.037 (2)1.0898 (9)0.121 (3)0.65 (5)
H25A0.1671580.0118331.1048390.146*0.65 (5)
H25B0.3372950.0386281.0692800.146*0.65 (5)
C260.348 (3)0.062 (2)1.1615 (8)0.147 (4)0.65 (5)
H26A0.4533040.0964161.1472580.221*0.65 (5)
H26B0.3567350.0189611.1956840.221*0.65 (5)
H26C0.2789990.1249641.1882270.221*0.65 (5)
C24A0.288 (7)0.130 (4)1.0238 (16)0.103 (5)0.35 (5)
H24C0.2422910.2074961.0476260.124*0.35 (5)
H24D0.4031030.1422931.0100660.124*0.35 (5)
C25A0.266 (6)0.010 (3)1.0832 (15)0.109 (4)0.35 (5)
H25C0.1512290.0045221.0930090.131*0.35 (5)
H25D0.3175310.0651791.0594270.131*0.35 (5)
C26A0.329 (5)0.013 (3)1.1592 (14)0.135 (6)0.35 (5)
H26D0.4172680.0507941.1642670.203*0.35 (5)
H26E0.2443590.0071451.2009830.203*0.35 (5)
H26F0.3657970.0995991.1624550.203*0.35 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04020 (10)0.04349 (11)0.04334 (11)0.00564 (7)0.00618 (7)0.00991 (7)
O10.0724 (8)0.0598 (7)0.0527 (7)0.0072 (6)0.0220 (6)0.0161 (5)
C10.0665 (10)0.0556 (9)0.0577 (10)0.0108 (7)0.0171 (8)0.0146 (7)
N10.0456 (6)0.0468 (6)0.0507 (7)0.0037 (5)0.0056 (5)0.0098 (5)
O20.0688 (7)0.0586 (7)0.0506 (6)0.0051 (5)0.0158 (5)0.0155 (5)
C20.0698 (11)0.0536 (9)0.0720 (12)0.0111 (8)0.0149 (9)0.0244 (8)
O30.0443 (6)0.0550 (6)0.0743 (8)0.0055 (5)0.0017 (5)0.0027 (6)
C30.0481 (8)0.0403 (7)0.0779 (11)0.0005 (6)0.0067 (7)0.0052 (7)
C40.0980 (15)0.0636 (11)0.0642 (12)0.0209 (10)0.0256 (11)0.0040 (9)
O40.0457 (6)0.0533 (6)0.0640 (7)0.0031 (4)0.0037 (5)0.0065 (5)
C50.0950 (14)0.0598 (10)0.0554 (10)0.0197 (9)0.0190 (9)0.0163 (8)
C70.0479 (8)0.0607 (9)0.0436 (8)0.0018 (6)0.0063 (6)0.0140 (7)
C60.0699 (12)0.0428 (8)0.1051 (16)0.0052 (8)0.0181 (11)0.0060 (9)
C90.0872 (14)0.0782 (12)0.0510 (10)0.0010 (10)0.0159 (9)0.0133 (9)
C80.0976 (15)0.0708 (12)0.0519 (10)0.0043 (10)0.0215 (9)0.0163 (9)
C100.0892 (14)0.0807 (13)0.0520 (10)0.0051 (10)0.0187 (9)0.0104 (9)
C110.123 (2)0.0867 (15)0.0599 (12)0.0003 (14)0.0259 (12)0.0095 (11)
C120.1070 (18)0.0885 (15)0.0580 (11)0.0055 (13)0.0245 (11)0.0055 (10)
C130.147 (3)0.0957 (17)0.0661 (14)0.0048 (17)0.0276 (15)0.0039 (12)
C140.137 (2)0.114 (2)0.0633 (14)0.0056 (17)0.0300 (14)0.0006 (13)
C150.152 (5)0.116 (3)0.077 (2)0.011 (3)0.033 (3)0.010 (2)
C160.185 (5)0.173 (5)0.080 (3)0.016 (4)0.051 (3)0.018 (3)
C15A0.156 (14)0.149 (13)0.099 (11)0.016 (12)0.039 (11)0.030 (10)
C16A0.183 (17)0.138 (16)0.132 (16)0.014 (13)0.011 (14)0.019 (13)
C170.0402 (7)0.0567 (8)0.0455 (8)0.0005 (6)0.0056 (6)0.0112 (6)
C180.0415 (8)0.0690 (10)0.0682 (11)0.0002 (7)0.0024 (7)0.0100 (8)
C190.0535 (9)0.0688 (11)0.0685 (11)0.0131 (8)0.0076 (8)0.0107 (9)
C200.0812 (13)0.0715 (12)0.0653 (12)0.0174 (10)0.0008 (10)0.0058 (9)
C210.1030 (17)0.0797 (14)0.0727 (14)0.0220 (12)0.0022 (12)0.0013 (11)
C220.1112 (19)0.0910 (16)0.0763 (15)0.0259 (14)0.0108 (13)0.0051 (12)
C230.120 (2)0.0962 (17)0.0764 (15)0.0229 (15)0.0088 (14)0.0046 (13)
C240.119 (5)0.102 (6)0.074 (4)0.015 (4)0.006 (4)0.002 (3)
C250.157 (6)0.112 (7)0.093 (5)0.024 (5)0.016 (4)0.006 (4)
C260.211 (9)0.139 (11)0.092 (4)0.031 (8)0.037 (5)0.015 (5)
C24A0.126 (9)0.097 (8)0.086 (8)0.021 (8)0.014 (7)0.003 (6)
C25A0.144 (8)0.105 (9)0.079 (6)0.023 (7)0.024 (6)0.009 (6)
C26A0.191 (14)0.123 (14)0.091 (7)0.015 (11)0.034 (7)0.010 (8)
Geometric parameters (Å, º) top
Cu1—O4i1.9708 (12)C15—H15B0.9700
Cu1—O2i1.9725 (12)C16—H16A0.9600
Cu1—O31.9742 (13)C16—H16B0.9600
Cu1—O11.9785 (12)C16—H16C0.9600
Cu1—N12.1680 (14)C15A—C16A1.477 (17)
Cu1—Cu1i2.6472 (8)C15A—H15C0.9700
O1—C71.253 (2)C15A—H15D0.9700
C1—N11.328 (2)C16A—H16D0.9600
C1—C21.375 (2)C16A—H16E0.9600
C1—H10.9300C16A—H16F0.9600
N1—C51.318 (2)C17—C181.514 (2)
O2—C71.251 (2)C18—C191.522 (3)
C2—C31.368 (3)C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
O3—C171.245 (2)C19—C201.508 (3)
C3—C41.374 (3)C19—H19A0.9700
C3—C61.498 (2)C19—H19B0.9700
C4—C51.380 (3)C20—C211.513 (3)
C4—H40.9300C20—H20A0.9700
O4—C171.2586 (19)C20—H20B0.9700
C5—H50.9300C21—C221.505 (3)
C7—C81.517 (2)C21—H21A0.9700
C6—H6A0.9600C21—H21B0.9700
C6—H6B0.9600C22—C231.499 (3)
C6—H6C0.9600C22—H22A0.9700
C9—C81.476 (3)C22—H22B0.9700
C9—C101.506 (3)C23—C24A1.491 (13)
C9—H9A0.9700C23—C241.501 (8)
C9—H9AB0.9700C23—H23A0.9700
C8—H8A0.9700C23—H23B0.9700
C8—H8AB0.9700C23—H23C0.9700
C10—C111.485 (3)C23—H23D0.9700
C10—H10A0.9700C24—C251.494 (8)
C10—H10B0.9700C24—H24A0.9700
C11—C121.491 (3)C24—H24B0.9700
C11—H11A0.9700C25—C261.469 (9)
C11—H11B0.9700C25—H25A0.9700
C12—C131.479 (3)C25—H25B0.9700
C12—H12A0.9700C26—H26A0.9600
C12—H12B0.9700C26—H26B0.9600
C13—C141.470 (3)C26—H26C0.9600
C13—H13A0.9700C24A—C25A1.505 (14)
C13—H13B0.9700C24A—H24C0.9700
C14—C15A1.509 (15)C24A—H24D0.9700
C14—C151.517 (5)C25A—C26A1.459 (13)
C14—H14A0.9700C25A—H25C0.9700
C14—H14B0.9700C25A—H25D0.9700
C14—H14C0.9700C26A—H26D0.9600
C14—H14D0.9700C26A—H26E0.9600
C15—C161.482 (6)C26A—H26F0.9600
C15—H15A0.9700
O4i—Cu1—O2i90.45 (6)C15—C16—H16A109.5
O4i—Cu1—O3167.70 (5)C15—C16—H16B109.5
O2i—Cu1—O388.57 (6)H16A—C16—H16B109.5
O4i—Cu1—O188.17 (6)C15—C16—H16C109.5
O2i—Cu1—O1167.87 (5)H16A—C16—H16C109.5
O3—Cu1—O190.22 (6)H16B—C16—H16C109.5
O4i—Cu1—N199.38 (6)C16A—C15A—C14111.0 (18)
O2i—Cu1—N195.65 (6)C16A—C15A—H15C109.4
O3—Cu1—N192.92 (6)C14—C15A—H15C109.4
O1—Cu1—N196.47 (6)C16A—C15A—H15D109.4
O4i—Cu1—Cu1i84.31 (4)C14—C15A—H15D109.4
O2i—Cu1—Cu1i83.26 (5)H15C—C15A—H15D108.0
O3—Cu1—Cu1i83.39 (4)C15A—C16A—H16D109.5
O1—Cu1—Cu1i84.61 (5)C15A—C16A—H16E109.5
N1—Cu1—Cu1i176.17 (4)H16D—C16A—H16E109.5
C7—O1—Cu1122.09 (11)C15A—C16A—H16F109.5
N1—C1—C2123.45 (17)H16D—C16A—H16F109.5
N1—C1—H1118.3H16E—C16A—H16F109.5
C2—C1—H1118.3O3—C17—O4125.37 (14)
C5—N1—C1116.58 (15)O3—C17—C18116.84 (14)
C5—N1—Cu1121.66 (12)O4—C17—C18117.78 (14)
C1—N1—Cu1121.03 (11)C17—C18—C19115.08 (14)
C7—O2—Cu1i124.04 (11)C17—C18—H18A108.5
C3—C2—C1120.18 (17)C19—C18—H18A108.5
C3—C2—H2119.9C17—C18—H18B108.5
C1—C2—H2119.9C19—C18—H18B108.5
C17—O3—Cu1124.01 (10)H18A—C18—H18B107.5
C2—C3—C4116.31 (16)C20—C19—C18113.70 (16)
C2—C3—C6121.37 (17)C20—C19—H19A108.8
C4—C3—C6122.31 (18)C18—C19—H19A108.8
C3—C4—C5120.28 (18)C20—C19—H19B108.8
C3—C4—H4119.9C18—C19—H19B108.8
C5—C4—H4119.9H19A—C19—H19B107.7
C17—O4—Cu1i122.79 (11)C19—C20—C21113.99 (17)
N1—C5—C4123.21 (18)C19—C20—H20A108.8
N1—C5—H5118.4C21—C20—H20A108.8
C4—C5—H5118.4C19—C20—H20B108.8
O2—C7—O1125.93 (14)C21—C20—H20B108.8
O2—C7—C8116.68 (15)H20A—C20—H20B107.6
O1—C7—C8117.36 (15)C22—C21—C20115.62 (19)
C3—C6—H6A109.5C22—C21—H21A108.4
C3—C6—H6B109.5C20—C21—H21A108.4
H6A—C6—H6B109.5C22—C21—H21B108.4
C3—C6—H6C109.5C20—C21—H21B108.4
H6A—C6—H6C109.5H21A—C21—H21B107.4
H6B—C6—H6C109.5C23—C22—C21115.0 (2)
C8—C9—C10115.20 (18)C23—C22—H22A108.5
C8—C9—H9A108.5C21—C22—H22A108.5
C10—C9—H9A108.5C23—C22—H22B108.5
C8—C9—H9AB108.5C21—C22—H22B108.5
C10—C9—H9AB108.5H22A—C22—H22B107.5
H9A—C9—H9AB107.5C24A—C23—C22119.4 (11)
C9—C8—C7116.89 (16)C22—C23—C24114.5 (6)
C9—C8—H8A108.1C22—C23—H23A108.6
C7—C8—H8A108.1C24—C23—H23A108.6
C9—C8—H8AB108.1C22—C23—H23B108.6
C7—C8—H8AB108.1C24—C23—H23B108.6
H8A—C8—H8AB107.3H23A—C23—H23B107.6
C11—C10—C9115.87 (19)C24A—C23—H23C107.5
C11—C10—H10A108.3C22—C23—H23C107.5
C9—C10—H10A108.3C24A—C23—H23D107.5
C11—C10—H10B108.3C22—C23—H23D107.5
C9—C10—H10B108.3H23C—C23—H23D107.0
H10A—C10—H10B107.4C25—C24—C23117.0 (10)
C10—C11—C12117.3 (2)C25—C24—H24A108.1
C10—C11—H11A108.0C23—C24—H24A108.1
C12—C11—H11A108.0C25—C24—H24B108.1
C10—C11—H11B108.0C23—C24—H24B108.1
C12—C11—H11B108.0H24A—C24—H24B107.3
H11A—C11—H11B107.2C26—C25—C24116.9 (9)
C13—C12—C11116.2 (2)C26—C25—H25A108.1
C13—C12—H12A108.2C24—C25—H25A108.1
C11—C12—H12A108.2C26—C25—H25B108.1
C13—C12—H12B108.2C24—C25—H25B108.1
C11—C12—H12B108.2H25A—C25—H25B107.3
H12A—C12—H12B107.4C25—C26—H26A109.5
C14—C13—C12117.9 (3)C25—C26—H26B109.5
C14—C13—H13A107.8H26A—C26—H26B109.5
C12—C13—H13A107.8C25—C26—H26C109.5
C14—C13—H13B107.8H26A—C26—H26C109.5
C12—C13—H13B107.8H26B—C26—H26C109.5
H13A—C13—H13B107.2C23—C24A—C25A112.8 (17)
C13—C14—C15A131.2 (13)C23—C24A—H24C109.0
C13—C14—C15114.4 (3)C25A—C24A—H24C109.0
C13—C14—H14A108.7C23—C24A—H24D109.0
C15—C14—H14A108.7C25A—C24A—H24D109.0
C13—C14—H14B108.7H24C—C24A—H24D107.8
C15—C14—H14B108.7C26A—C25A—C24A117.3 (17)
H14A—C14—H14B107.6C26A—C25A—H25C108.0
C13—C14—H14C104.4C24A—C25A—H25C108.0
C15A—C14—H14C104.4C26A—C25A—H25D108.0
C13—C14—H14D104.4C24A—C25A—H25D108.0
C15A—C14—H14D104.4H25C—C25A—H25D107.2
H14C—C14—H14D105.6C25A—C26A—H26D109.5
C16—C15—C14113.3 (5)C25A—C26A—H26E109.5
C16—C15—H15A108.9H26D—C26A—H26E109.5
C14—C15—H15A108.9C25A—C26A—H26F109.5
C16—C15—H15B108.9H26D—C26A—H26F109.5
C14—C15—H15B108.9H26E—C26A—H26F109.5
H15A—C15—H15B107.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6B···O2ii0.962.733.577148
C18—H18A···O3iii0.972.903.841163
C6—H6C···Cg1iv0.962.943.665 (2)134
Symmetry codes: (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x, y+2, z+1.
Geometry (Å, °) of the stacking of the pyridine rings top
Cg(I) = centroid of ring I; α = dihedral angle between planes I and J; β = angle between Cg(I)···Cg(J) vector and normal to plane I; γ = angle between Cg(I)···Cg(J) vector and normal to plane J; Cg···Cg = distance between ring centroids; Cg(I)Perp = perpendicular distance of Cg(I) on ring J; Cg(J)Perp = perpendicular distance of Cg(J) on ring I; slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I.
Cg(I)Cg(J)Cg···CgαβγCg(I)PerpCg(J)PerpSlippage
Cg1Cg1i4.4183 (14)041.241.23.3258 (8)3.3262.909
Cg1Cg1ii4.6957 (15)038.338.3-3.6832 (8)-3.6832.913
Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) -x, 2 - y, 1 - z.
 

Acknowledgements

The authors thank USIC, Gauhati University, Guwahati for recording the data collection.

References

First citationAgterberg, F. P. W., ProvóKluit, H. A. J., Driessen, W. L., Reedijk, J., Oevering, H., Buijs, W., Veldman, N., Lakin, M. T. & Spek, A. L. (1998). Inorg. Chim. Acta, 267, 183–192.  CrossRef CAS Google Scholar
First citationBaruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195–m196.  CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDas, B. K. & Barman, R. K. (2001). Acta Cryst. C57, 1025–1026.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDeacon, G. R. & Philips, R. (1980). Coord. Chem. Rev. 33, 227-250.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFomina, I., Dobrokhotova, Z., Aleksandrov, G., Bogomyakov, A., Fedin, M., Dolganov, A., Magdesieva, T., Novotortsev, V. & Eremenko, I. (2010). Polyhedron, 29, 1734–1746.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamza, F. & Kickelbick, G. (2009). Macromolecules, 42, 7762–7771.  CrossRef CAS Google Scholar
First citationIqbal, M., Ali, S., Rehman, Z., Muhammad, N., Sohail, M. & Pandarinathan, V. (2014). J. Coord. Chem., 67, 10, 1731-1745.  Google Scholar
First citationKozlevcar, B., Lah, N., Leban, I., Pohleven, F. & Segedin, P. (2000). Croat. Chem. Acta. 73, 3, 733-741.  Google Scholar
First citationKozlevcar, B., Lah, N., Leban, I., Turel, I., Segedin, P., Petric, M., Pohleven, F., White, A. J. P., Williams, D. J. & Giester, G. (1999). Croat. Chem. Acta., 72, 427-436.  CAS Google Scholar
First citationLah, N., Giester, G., Lah, J., Šegedin, P. & Leban, I. (2001). New J. Chem. 25, 753–759.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoncol, J., Vasková, Z., Stachová, P., Svorec, J., Sillanpää, R., Mazúr, M. & Valigura, D. (2010). J. Chem. Crystallogr. 40, 179–184.  CrossRef CAS Google Scholar
First citationPetric, M., Leban, I. & Segedin, P. (1993). Polyhedron. 12, 16, 1973-1976.  Google Scholar
First citationRiesco, M. R., Martínez-Casado, F. J., Cheda, J. A. R., Yélamos, M. I. R., Fernández-Martínez, A. & López-Andrés, S. (2015). Cryst. Growth Des. 15, 497–509.  Google Scholar
First citationRiesco, M. R., Casado, F. J. M., Lopez-Andres, S., Garcia Perez, M. V., Yelamos, M. I. R., Torres, M. R., Garrido, L. & Cheda, J. A. R. (2008). Cryst. Growth Des. 8, 7, 2547-2554.  Google Scholar
First citationRusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666–672.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSerrano, J. L. & Sierra, T. (2000). Chem. Eur. J. 6, 759–766.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSmithenry, W., Wilson, S. R. & Suslick, K. S. (2003). Inorg. Chem. 42, 7719–7721.  CrossRef PubMed CAS Google Scholar
First citationTao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.  Web of Science CSD CrossRef Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWein, A. N., Cordeiro, R., Owens, N., Olivier, H., Hardcastle, K. I. & Eichler, J. F. (2009). J. Fluor. Chem. 130, 197–203.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds