research communications
Structure of tetrakis(μ-decanoato-κ2O:O′)bis[(4-methylpyridine-κN)copper(II)], a dimeric copper(II) complex
aDepartment of Chemistry, Gauhati University, Guwahati, Assam, India, and bBhattadev University, Bajali, Pathsala, Assam, India
*Correspondence e-mail: monsumigogoi@gmail.com
The 4-methylpyridine (4-Mepy) based dimeric copper(II) carboxylate complex [Cu2(C10H19O2)4(C6H7N)2] or [Cu2(μ-O2CC9H19)4(4-Mepy)2] crystallizes with triclinic (P) symmetry. The two CuII ions exhibit a distorted square-pyramidal environment and are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6472 (8) Å] via four bridging carboxylate ligands arranged in the syn–syn coordination mode. The apical positions around the paddle-wheel copper centers are occupied by the N atoms of the 4-methylpyridine ligands. The structure exhibits disorder of the terminal alkyl carbon atoms in the decanoate chains.
Keywords: dimeric; paddle-wheel structure; copper(II); 4-methylpyridine; decanoate; crystal structure.
CCDC reference: 2039945
1. Chemical context
Research on metal carboxylates has gained importance in view of their use in the formation of open and porous frameworks and also because of their biological activities and antibacterial properties (Smithenry et al., 2003; Lah et al., 2001). As the number of carboxylate groups increases, so does the complexity of the coordination behaviour. Carboxylate anions are versatile ligands capable of existing as counter-anions or as ligands coordinating to the metal ions in different modes (Deacon & Philips, 1980; Tao et al., 2000; Smithenry et al., 2003). Copper complexes containing aliphatic/aromatic carboxylic acid anions as ligands with the general formula [Cu2(O2CR)4] have been known to adopt a paddle-wheel structure where four bidentate carboxylato ligands bridge the CuII centres (Baruah et al., 2015; Serrano & Sierra, 2000). Complexes having R = a long-chain alkyl group can make the resultant dimeric carboxylates more soluble in organic solvents and hence can be more effective as catalysts in certain reactions (Baruah et al., 2015). These carboxylates can be prepared either by reaction of basic copper(II) carbonate/acetate with the corresponding carboxylic acid or by reaction of a copper(II) salt with the sodium salt of the corresponding carboxylic acid (Hamza & Kickelbick, 2009; Moncol et al., 2010; Das & Barman, 2001). Each CuII centre has four oxygen atoms forming the basal plane, while the axial position is either occupied by a solvent molecule or by a monodentate nitrogen base ligand or sometimes by an oxygen atom of another dimeric unit resulting in an oligomeric chain (Agterberg et al., 1998; Wein et al., 2009). A few members of the family of dicopper(II) tetracarboxylates of the type [Cu2(μ-O2CR)4L2] have been demonstrated to be active homogeneous catalysts in the oxidation of various A dinuclear complex, [Cu2(μ-O2CC5H11)4(C6N2H4)2] (Baruah et al., 2015), was reported as having two crystallographically independent CuII atoms in a distorted square-pyramidal environment.
2. Structural commentary
The title compound [Cu2(μ-O2CC9H19)4(4-Mepy)2] crystallizes in the triclinic system, P. The complex has a centrosymmetric structure and consists of a copper(II) dimer having a paddle-wheel structure. The comprises a CuII ion coordinated by the N atom of 4-methylpyridine and by two deprotonated O-monodentate decanoate ligands. The two CuII ions are bridged by four carboxylate ligands in the syn–syn coordination mode, resulting in a distorted square-pyramidal environment with the four O atoms forming the square basal plane and the two pyridyl-N atoms of the 4-Mepy ligands occupying the apical positions. The molecular structure of the complex is shown in Fig. 1.
The Cu⋯Cu [2.6472 (8)], Cu—O (average) [1.9740 (12)], and Cu—N [2.1680 (14) Å] distances are comparable to those observed for structurally similar CuII dimers with a [Cu2(μ-O2CR)4L2]-type structure, [Cu2(μ-O2CCMe3)4(NC5H3(2-NH2)(6-CH3))2] (Fomina et al., 2010) and [Cu2(μ-O2CC6H5)4(py)2] (Iqbal et al., 2014). The Cu⋯Cu distance in the title complex was found to be slightly longer than in the copper(II) carboxylate complex [Cu2(μ-O2CC5H11)4(4-NCpy)2] [2.6055 (9) Å; Baruah et al., 2015) and in [Cu2(μ-O2CC9H19)4(NC5H4CO2C12H25)2] [2.615 (1) Å; Rusjan et al., 2000). The Cu—-N bond in the title complex is slightly shorter than those reported by Rusjan et al. (2000) and Petric et al. (1993). The difference between the Cu⋯Cu and Cu—N distances and those for related complexes is probably due to the difference in the basicity of the pyridinic group in the apical position of the core. The hydrogen atoms at positions 2 and 6 of the aromatic ring establish intramolecular C—H⋯O interactions with the closely placed carboxylate oxygen atoms (Table 1).
In the title complex, the two oppositely placed decanoate alkyl chains adopt a fully elongated zigzag conformation, whereas the other pair is distorted, aligning parallel to the first one after a gauche conformation at the C18—C19 bond (Rusjan et al., 2000). This arrangement probably occurs to facilitate efficient packing. The terminal ends of both pairs of alkyl chains are disordered and were modelled as described in the Refinement section.
3. Supramolecular features
There is no strong intermolecular hydrogen bonding in the title complex because of the absence of sufficiently polar hydrogen atoms. The supramolecular structure of the complex shows two different sets of dimers. One involves a pair of symmetry-related C18—H18⋯O3 interactions (Table 1) that form dimers and give rise to the formation of infinite chains along the a-axis direction. The second one involves dimers linked by a pair of C6—H6B⋯O2 interactions that form infinite chains along the b-axis direction. The interlinking between them gives rise to the crystal packing in the complex, as shown in Fig. 2. The crystal packing is also supported by C6—H6C⋯π interactions between a pyridine ring-bound methyl group and the pyridine ring (–x, 2 – y, 1 – z) of a neighbouring 4-Mepy unit with an H⋯centroid distance of 2.94 Å and C—H⋯centroid angle of 134° (Fig. 3). At the same time, the centroid⋯centroid distances of 4.4183 (14) Å and 4.6957 (15) Å with slippage of 2.909 and 2.913 Å, respectively, between neighbouring pyridine rings (Fig. 3) are too long for meaningful π–π interactions (Tsuzuki et al., 2002). More details on the mutual arrangement of the pyridine rings can be found in Table 2.
|
4. Database survey
A survey of the Cambridge Structural Database (CSD version 2020.2; Groom et al., 2016) for dimeric copper complexes of alkyl carboxylates revealed that most of the complexes adopt a paddle-wheel structure with a slightly distorted square-pyramidal environment around the CuII ions. The of tetrakis(μ-heptanoato-O,O′)bis(nicotinamide)dicopper(II) (CSD refcodes: CAYHIT and CAYHIT01; Kozlevcar et al., 1999) and tetrakis(μ-octanoato-O,O′)bis(N,N-diethylnicotinamide)dicopper(II) (GUHJIC; Kozlevcar et al., 2000) were reported as having normal zigzag as well as distorted alkyl chains. Riesco and co-workers reported on the preparation of three polymorphs of CuII decanoate, which differ in the cell parameters and the packing of chains following crystallization using different solvents (CUDECN01 and CUDECN02; Riesco et al., 2008, 2015). In the dodecylnicotinate bis-adduct of a centrosymmetric dinuclear copper decanoate (XADREZ; Rusjan et al., 2000) with average Cu—O, Cu—N and Cu⋯Cu distances of 1.960 (6), 2.183 (3) and 2.615 (1) Å, respectively, the alkyl chains in the complex lead to the formation of two different layers along the crystal: one defined by the polar copper carboxylate cores and the second, non-polar one containing the alkyl chains. The CuII octanoate adduct with pyridine, viz. tetrakis(μ-octanoato-O,O′)bis(pyridine)dicopper(II) (HEDNIN; Petric et al., 1993) has a Cu—N bond of 2.194 (4) Å. The dimeric structure of copper(II) hexanoate with 2-aminopyridine (QUCQIO; Lah et al., 2001) is of the typical dinuclear paddle-wheel type and features intramolecular as well as intermolecular hydrogen bonds as a result of the presence of the NH2 group. Here all the hydrocarbon chains of the octanoate are found to be distorted and not in the typical zigzag conformation.
5. Synthesis and crystallization
All reagents were purchased from E. Merck and used as received without further purification. CuSO4·5H2O (0.4994 g, 2.0 mmol) and sodium decanoate (0.7708 g, 4.0 mmol) were stirred in 25 mL of methanol. After 30 minutes, 4-methyl pyridine (0.1863 g, 2.0 mmol) was added to the reaction mixture, and stirring was continued for 3 h. The resulting green product was filtered off, washed repeatedly with small volumes of methanol and dried in a vacuum desiccator over fused CaCl2 (yield 0.8180 g, 82%). The product was dissolved in acetonitrile to give a greenish homogeneous solution, which was allowed to concentrate by evaporation at room temperature. Single crystals suitable for X-ray were obtained from this solution after one day and were collected by filtration. The compound is insoluble in water but soluble in methanol and acetonitrile.
IR spectroscopic data (KBr disc, cm−1): νasym (COO−) 1580, νsym (COO−) 1381, νstretch (C—H) 2800–2950, νstretch (py) 1682, 1489, 1445.
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
C-bound hydrogen atoms were placed in idealized positions with C—H = 0.95–0.99 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl). The twofold disordered parts of the decanoate chains (C15–C16, C24–C26 and C15A–C16A, C24A–C26A) have been completed through successive electron density difference-Fourier maps and were refined with a sum of their occupancies restrained to unity using geometry (SAME) and Uij restraints (SIMU and RIGU) implemented in SHELXL. The converged with the relative occupancies of 0.817 (9) and 0.183 (9) for the C15–C16 section and 0.65 (5) and 0.35 (5) for the C24–C26 section.
Supporting information
CCDC reference: 2039945
https://doi.org/10.1107/S2056989020014103/jq2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020014103/jq2001Isup2.hkl
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: ORTEP-III (Burnett et al., 1996), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF.[Cu2(C10H19O2)4(C6H7N)2] | Z = 1 |
Mr = 998.33 | F(000) = 538 |
Triclinic, P1 | Dx = 1.155 Mg m−3 |
a = 8.3146 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.210 (2) Å | Cell parameters from 11736 reflections |
c = 17.151 (3) Å | θ = 3.4–27.9° |
α = 83.27 (3)° | µ = 0.79 mm−1 |
β = 83.78 (3)° | T = 293 K |
γ = 86.69 (3)° | Prism, green |
V = 1435.9 (5) Å3 | 0.38 × 0.32 × 0.24 mm |
Bruker SMART APEXII diffractometer | 6789 independent reflections |
Radiation source: X-ray tube | 5914 reflections with I > 2σ(I) |
Detector resolution: 8.333 pixels mm-1 | Rint = 0.029 |
phi and ω scans | θmax = 27.9°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2016) | h = −10→10 |
Tmin = 0.752, Tmax = 0.825 | k = −13→13 |
28267 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1938P] where P = (Fo2 + 2Fc2)/3 |
6789 reflections | (Δ/σ)max = 0.001 |
341 parameters | Δρmax = 0.24 e Å−3 |
136 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.45017 (2) | 0.62493 (2) | 0.48461 (2) | 0.04209 (7) | |
O1 | 0.39168 (16) | 0.56895 (12) | 0.38513 (7) | 0.0601 (3) | |
C1 | 0.3374 (2) | 0.90403 (17) | 0.52306 (11) | 0.0590 (4) | |
H1 | 0.382259 | 0.874290 | 0.569653 | 0.071* | |
N1 | 0.35480 (15) | 0.82692 (13) | 0.46522 (8) | 0.0475 (3) | |
O2 | 0.47530 (16) | 0.35858 (12) | 0.41178 (7) | 0.0582 (3) | |
C2 | 0.2564 (2) | 1.02557 (17) | 0.51769 (12) | 0.0638 (4) | |
H2 | 0.248104 | 1.075746 | 0.559955 | 0.077* | |
O3 | 0.24360 (13) | 0.56207 (12) | 0.54010 (8) | 0.0591 (3) | |
C3 | 0.1879 (2) | 1.07281 (15) | 0.45035 (11) | 0.0556 (4) | |
C4 | 0.2067 (3) | 0.9932 (2) | 0.39042 (12) | 0.0752 (6) | |
H4 | 0.163142 | 1.020798 | 0.343200 | 0.090* | |
O4 | 0.32791 (13) | 0.35240 (11) | 0.56677 (7) | 0.0552 (3) | |
C5 | 0.2899 (3) | 0.87244 (19) | 0.40001 (11) | 0.0694 (5) | |
H5 | 0.300801 | 0.820657 | 0.358442 | 0.083* | |
C7 | 0.41767 (19) | 0.45288 (16) | 0.36848 (9) | 0.0500 (3) | |
C6 | 0.0953 (2) | 1.20324 (17) | 0.44357 (14) | 0.0724 (5) | |
H6A | 0.045278 | 1.214739 | 0.395187 | 0.109* | |
H6B | 0.167935 | 1.272921 | 0.443779 | 0.109* | |
H6C | 0.013311 | 1.205630 | 0.487395 | 0.109* | |
C9 | 0.3653 (3) | 0.5333 (2) | 0.22662 (11) | 0.0711 (5) | |
H9A | 0.472448 | 0.568107 | 0.215510 | 0.085* | |
H9AB | 0.292583 | 0.602767 | 0.245971 | 0.085* | |
C8 | 0.3706 (3) | 0.4222 (2) | 0.28978 (11) | 0.0717 (5) | |
H8A | 0.446459 | 0.354453 | 0.270772 | 0.086* | |
H8AB | 0.264490 | 0.385065 | 0.298801 | 0.086* | |
C10 | 0.3113 (3) | 0.4998 (2) | 0.15057 (11) | 0.0728 (5) | |
H10A | 0.385633 | 0.431797 | 0.130704 | 0.087* | |
H10B | 0.205417 | 0.462754 | 0.162061 | 0.087* | |
C11 | 0.3015 (4) | 0.6112 (3) | 0.08706 (13) | 0.0888 (7) | |
H11A | 0.407685 | 0.647779 | 0.075678 | 0.107* | |
H11B | 0.228143 | 0.679476 | 0.107449 | 0.107* | |
C12 | 0.2472 (3) | 0.5818 (2) | 0.01114 (12) | 0.0835 (6) | |
H12A | 0.319653 | 0.513073 | −0.009227 | 0.100* | |
H12B | 0.140181 | 0.546604 | 0.022153 | 0.100* | |
C13 | 0.2403 (4) | 0.6942 (3) | −0.05142 (14) | 0.1024 (8) | |
H13A | 0.168702 | 0.762937 | −0.030466 | 0.123* | |
H13B | 0.347571 | 0.728921 | −0.062123 | 0.123* | |
C14 | 0.1865 (4) | 0.6696 (3) | −0.12709 (14) | 0.1044 (9) | |
H14A | 0.076444 | 0.640436 | −0.117652 | 0.125* | 0.817 (9) |
H14B | 0.254378 | 0.598404 | −0.147625 | 0.125* | 0.817 (9) |
H14C | 0.118506 | 0.594535 | −0.113812 | 0.125* | 0.183 (9) |
H14D | 0.283612 | 0.636969 | −0.156718 | 0.125* | 0.183 (9) |
C15 | 0.1916 (8) | 0.7884 (5) | −0.1892 (3) | 0.1149 (17) | 0.817 (9) |
H15A | 0.127014 | 0.860907 | −0.168209 | 0.138* | 0.817 (9) |
H15B | 0.302398 | 0.815556 | −0.200520 | 0.138* | 0.817 (9) |
C16 | 0.1308 (8) | 0.7626 (7) | −0.2638 (2) | 0.146 (2) | 0.817 (9) |
H16A | 0.196912 | 0.693389 | −0.286207 | 0.218* | 0.817 (9) |
H16B | 0.135306 | 0.841437 | −0.300355 | 0.218* | 0.817 (9) |
H16C | 0.020894 | 0.736297 | −0.253276 | 0.218* | 0.817 (9) |
C15A | 0.100 (3) | 0.759 (3) | −0.1873 (12) | 0.136 (7) | 0.183 (9) |
H15C | 0.029982 | 0.707524 | −0.212092 | 0.163* | 0.183 (9) |
H15D | 0.033784 | 0.825275 | −0.161202 | 0.163* | 0.183 (9) |
C16A | 0.217 (3) | 0.825 (3) | −0.2484 (17) | 0.154 (8) | 0.183 (9) |
H16D | 0.282219 | 0.880321 | −0.224439 | 0.230* | 0.183 (9) |
H16E | 0.159884 | 0.876948 | −0.287521 | 0.230* | 0.183 (9) |
H16F | 0.286216 | 0.758960 | −0.272898 | 0.230* | 0.183 (9) |
C17 | 0.22391 (17) | 0.44660 (16) | 0.57074 (9) | 0.0470 (3) | |
C18 | 0.05989 (19) | 0.41770 (19) | 0.61499 (11) | 0.0601 (4) | |
H18A | −0.013357 | 0.401095 | 0.577283 | 0.072* | |
H18B | 0.017668 | 0.495757 | 0.638985 | 0.072* | |
C19 | 0.0595 (2) | 0.30114 (19) | 0.67900 (11) | 0.0640 (4) | |
H19A | −0.051773 | 0.281743 | 0.697837 | 0.077* | |
H19B | 0.109525 | 0.224332 | 0.656127 | 0.077* | |
C20 | 0.1474 (3) | 0.3242 (2) | 0.74828 (12) | 0.0728 (5) | |
H20A | 0.098793 | 0.402183 | 0.770390 | 0.087* | |
H20B | 0.259176 | 0.341852 | 0.729540 | 0.087* | |
C21 | 0.1445 (3) | 0.2098 (2) | 0.81293 (13) | 0.0855 (6) | |
H21A | 0.032790 | 0.187466 | 0.828121 | 0.103* | |
H21B | 0.200773 | 0.133945 | 0.791509 | 0.103* | |
C22 | 0.2192 (4) | 0.2331 (3) | 0.88595 (14) | 0.0931 (7) | |
H22A | 0.332013 | 0.252287 | 0.871187 | 0.112* | |
H22B | 0.165375 | 0.310539 | 0.906548 | 0.112* | |
C23 | 0.2106 (4) | 0.1204 (3) | 0.95045 (15) | 0.0981 (8) | |
H23A | 0.269654 | 0.044204 | 0.930842 | 0.118* | 0.65 (5) |
H23B | 0.098298 | 0.097934 | 0.963297 | 0.118* | 0.65 (5) |
H23C | 0.096991 | 0.104756 | 0.965914 | 0.118* | 0.35 (5) |
H23D | 0.258004 | 0.042442 | 0.927930 | 0.118* | 0.35 (5) |
C24 | 0.277 (3) | 0.1473 (18) | 1.0246 (8) | 0.099 (3) | 0.65 (5) |
H24A | 0.387751 | 0.173991 | 1.010788 | 0.119* | 0.65 (5) |
H24B | 0.215151 | 0.221683 | 1.044757 | 0.119* | 0.65 (5) |
C25 | 0.278 (3) | 0.037 (2) | 1.0898 (9) | 0.121 (3) | 0.65 (5) |
H25A | 0.167158 | 0.011833 | 1.104839 | 0.146* | 0.65 (5) |
H25B | 0.337295 | −0.038628 | 1.069280 | 0.146* | 0.65 (5) |
C26 | 0.348 (3) | 0.062 (2) | 1.1615 (8) | 0.147 (4) | 0.65 (5) |
H26A | 0.453304 | 0.096416 | 1.147258 | 0.221* | 0.65 (5) |
H26B | 0.356735 | −0.018961 | 1.195684 | 0.221* | 0.65 (5) |
H26C | 0.278999 | 0.124964 | 1.188227 | 0.221* | 0.65 (5) |
C24A | 0.288 (7) | 0.130 (4) | 1.0238 (16) | 0.103 (5) | 0.35 (5) |
H24C | 0.242291 | 0.207496 | 1.047626 | 0.124* | 0.35 (5) |
H24D | 0.403103 | 0.142293 | 1.010066 | 0.124* | 0.35 (5) |
C25A | 0.266 (6) | 0.010 (3) | 1.0832 (15) | 0.109 (4) | 0.35 (5) |
H25C | 0.151229 | −0.004522 | 1.093009 | 0.131* | 0.35 (5) |
H25D | 0.317531 | −0.065179 | 1.059427 | 0.131* | 0.35 (5) |
C26A | 0.329 (5) | 0.013 (3) | 1.1592 (14) | 0.135 (6) | 0.35 (5) |
H26D | 0.417268 | −0.050794 | 1.164267 | 0.203* | 0.35 (5) |
H26E | 0.244359 | −0.007145 | 1.200983 | 0.203* | 0.35 (5) |
H26F | 0.365797 | 0.099599 | 1.162455 | 0.203* | 0.35 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04020 (10) | 0.04349 (11) | 0.04334 (11) | 0.00564 (7) | −0.00618 (7) | −0.00991 (7) |
O1 | 0.0724 (8) | 0.0598 (7) | 0.0527 (7) | 0.0072 (6) | −0.0220 (6) | −0.0161 (5) |
C1 | 0.0665 (10) | 0.0556 (9) | 0.0577 (10) | 0.0108 (7) | −0.0171 (8) | −0.0146 (7) |
N1 | 0.0456 (6) | 0.0468 (6) | 0.0507 (7) | 0.0037 (5) | −0.0056 (5) | −0.0098 (5) |
O2 | 0.0688 (7) | 0.0586 (7) | 0.0506 (6) | 0.0051 (5) | −0.0158 (5) | −0.0155 (5) |
C2 | 0.0698 (11) | 0.0536 (9) | 0.0720 (12) | 0.0111 (8) | −0.0149 (9) | −0.0244 (8) |
O3 | 0.0443 (6) | 0.0550 (6) | 0.0743 (8) | 0.0055 (5) | 0.0017 (5) | −0.0027 (6) |
C3 | 0.0481 (8) | 0.0403 (7) | 0.0779 (11) | −0.0005 (6) | −0.0067 (7) | −0.0052 (7) |
C4 | 0.0980 (15) | 0.0636 (11) | 0.0642 (12) | 0.0209 (10) | −0.0256 (11) | −0.0040 (9) |
O4 | 0.0457 (6) | 0.0533 (6) | 0.0640 (7) | 0.0031 (4) | 0.0037 (5) | −0.0065 (5) |
C5 | 0.0950 (14) | 0.0598 (10) | 0.0554 (10) | 0.0197 (9) | −0.0190 (9) | −0.0163 (8) |
C7 | 0.0479 (8) | 0.0607 (9) | 0.0436 (8) | −0.0018 (6) | −0.0063 (6) | −0.0140 (7) |
C6 | 0.0699 (12) | 0.0428 (8) | 0.1051 (16) | 0.0052 (8) | −0.0181 (11) | −0.0060 (9) |
C9 | 0.0872 (14) | 0.0782 (12) | 0.0510 (10) | −0.0010 (10) | −0.0159 (9) | −0.0133 (9) |
C8 | 0.0976 (15) | 0.0708 (12) | 0.0519 (10) | −0.0043 (10) | −0.0215 (9) | −0.0163 (9) |
C10 | 0.0892 (14) | 0.0807 (13) | 0.0520 (10) | −0.0051 (10) | −0.0187 (9) | −0.0104 (9) |
C11 | 0.123 (2) | 0.0867 (15) | 0.0599 (12) | −0.0003 (14) | −0.0259 (12) | −0.0095 (11) |
C12 | 0.1070 (18) | 0.0885 (15) | 0.0580 (11) | −0.0055 (13) | −0.0245 (11) | −0.0055 (10) |
C13 | 0.147 (3) | 0.0957 (17) | 0.0661 (14) | 0.0048 (17) | −0.0276 (15) | −0.0039 (12) |
C14 | 0.137 (2) | 0.114 (2) | 0.0633 (14) | 0.0056 (17) | −0.0300 (14) | 0.0006 (13) |
C15 | 0.152 (5) | 0.116 (3) | 0.077 (2) | −0.011 (3) | −0.033 (3) | 0.010 (2) |
C16 | 0.185 (5) | 0.173 (5) | 0.080 (3) | −0.016 (4) | −0.051 (3) | 0.018 (3) |
C15A | 0.156 (14) | 0.149 (13) | 0.099 (11) | −0.016 (12) | −0.039 (11) | 0.030 (10) |
C16A | 0.183 (17) | 0.138 (16) | 0.132 (16) | −0.014 (13) | −0.011 (14) | 0.019 (13) |
C17 | 0.0402 (7) | 0.0567 (8) | 0.0455 (8) | 0.0005 (6) | −0.0056 (6) | −0.0112 (6) |
C18 | 0.0415 (8) | 0.0690 (10) | 0.0682 (11) | 0.0002 (7) | 0.0024 (7) | −0.0100 (8) |
C19 | 0.0535 (9) | 0.0688 (11) | 0.0685 (11) | −0.0131 (8) | 0.0076 (8) | −0.0107 (9) |
C20 | 0.0812 (13) | 0.0715 (12) | 0.0653 (12) | −0.0174 (10) | −0.0008 (10) | −0.0058 (9) |
C21 | 0.1030 (17) | 0.0797 (14) | 0.0727 (14) | −0.0220 (12) | −0.0022 (12) | −0.0013 (11) |
C22 | 0.1112 (19) | 0.0910 (16) | 0.0763 (15) | −0.0259 (14) | −0.0108 (13) | 0.0051 (12) |
C23 | 0.120 (2) | 0.0962 (17) | 0.0764 (15) | −0.0229 (15) | −0.0088 (14) | 0.0046 (13) |
C24 | 0.119 (5) | 0.102 (6) | 0.074 (4) | −0.015 (4) | −0.006 (4) | 0.002 (3) |
C25 | 0.157 (6) | 0.112 (7) | 0.093 (5) | −0.024 (5) | −0.016 (4) | 0.006 (4) |
C26 | 0.211 (9) | 0.139 (11) | 0.092 (4) | −0.031 (8) | −0.037 (5) | 0.015 (5) |
C24A | 0.126 (9) | 0.097 (8) | 0.086 (8) | −0.021 (8) | −0.014 (7) | 0.003 (6) |
C25A | 0.144 (8) | 0.105 (9) | 0.079 (6) | −0.023 (7) | −0.024 (6) | 0.009 (6) |
C26A | 0.191 (14) | 0.123 (14) | 0.091 (7) | −0.015 (11) | −0.034 (7) | 0.010 (8) |
Cu1—O4i | 1.9708 (12) | C15—H15B | 0.9700 |
Cu1—O2i | 1.9725 (12) | C16—H16A | 0.9600 |
Cu1—O3 | 1.9742 (13) | C16—H16B | 0.9600 |
Cu1—O1 | 1.9785 (12) | C16—H16C | 0.9600 |
Cu1—N1 | 2.1680 (14) | C15A—C16A | 1.477 (17) |
Cu1—Cu1i | 2.6472 (8) | C15A—H15C | 0.9700 |
O1—C7 | 1.253 (2) | C15A—H15D | 0.9700 |
C1—N1 | 1.328 (2) | C16A—H16D | 0.9600 |
C1—C2 | 1.375 (2) | C16A—H16E | 0.9600 |
C1—H1 | 0.9300 | C16A—H16F | 0.9600 |
N1—C5 | 1.318 (2) | C17—C18 | 1.514 (2) |
O2—C7 | 1.251 (2) | C18—C19 | 1.522 (3) |
C2—C3 | 1.368 (3) | C18—H18A | 0.9700 |
C2—H2 | 0.9300 | C18—H18B | 0.9700 |
O3—C17 | 1.245 (2) | C19—C20 | 1.508 (3) |
C3—C4 | 1.374 (3) | C19—H19A | 0.9700 |
C3—C6 | 1.498 (2) | C19—H19B | 0.9700 |
C4—C5 | 1.380 (3) | C20—C21 | 1.513 (3) |
C4—H4 | 0.9300 | C20—H20A | 0.9700 |
O4—C17 | 1.2586 (19) | C20—H20B | 0.9700 |
C5—H5 | 0.9300 | C21—C22 | 1.505 (3) |
C7—C8 | 1.517 (2) | C21—H21A | 0.9700 |
C6—H6A | 0.9600 | C21—H21B | 0.9700 |
C6—H6B | 0.9600 | C22—C23 | 1.499 (3) |
C6—H6C | 0.9600 | C22—H22A | 0.9700 |
C9—C8 | 1.476 (3) | C22—H22B | 0.9700 |
C9—C10 | 1.506 (3) | C23—C24A | 1.491 (13) |
C9—H9A | 0.9700 | C23—C24 | 1.501 (8) |
C9—H9AB | 0.9700 | C23—H23A | 0.9700 |
C8—H8A | 0.9700 | C23—H23B | 0.9700 |
C8—H8AB | 0.9700 | C23—H23C | 0.9700 |
C10—C11 | 1.485 (3) | C23—H23D | 0.9700 |
C10—H10A | 0.9700 | C24—C25 | 1.494 (8) |
C10—H10B | 0.9700 | C24—H24A | 0.9700 |
C11—C12 | 1.491 (3) | C24—H24B | 0.9700 |
C11—H11A | 0.9700 | C25—C26 | 1.469 (9) |
C11—H11B | 0.9700 | C25—H25A | 0.9700 |
C12—C13 | 1.479 (3) | C25—H25B | 0.9700 |
C12—H12A | 0.9700 | C26—H26A | 0.9600 |
C12—H12B | 0.9700 | C26—H26B | 0.9600 |
C13—C14 | 1.470 (3) | C26—H26C | 0.9600 |
C13—H13A | 0.9700 | C24A—C25A | 1.505 (14) |
C13—H13B | 0.9700 | C24A—H24C | 0.9700 |
C14—C15A | 1.509 (15) | C24A—H24D | 0.9700 |
C14—C15 | 1.517 (5) | C25A—C26A | 1.459 (13) |
C14—H14A | 0.9700 | C25A—H25C | 0.9700 |
C14—H14B | 0.9700 | C25A—H25D | 0.9700 |
C14—H14C | 0.9700 | C26A—H26D | 0.9600 |
C14—H14D | 0.9700 | C26A—H26E | 0.9600 |
C15—C16 | 1.482 (6) | C26A—H26F | 0.9600 |
C15—H15A | 0.9700 | ||
O4i—Cu1—O2i | 90.45 (6) | C15—C16—H16A | 109.5 |
O4i—Cu1—O3 | 167.70 (5) | C15—C16—H16B | 109.5 |
O2i—Cu1—O3 | 88.57 (6) | H16A—C16—H16B | 109.5 |
O4i—Cu1—O1 | 88.17 (6) | C15—C16—H16C | 109.5 |
O2i—Cu1—O1 | 167.87 (5) | H16A—C16—H16C | 109.5 |
O3—Cu1—O1 | 90.22 (6) | H16B—C16—H16C | 109.5 |
O4i—Cu1—N1 | 99.38 (6) | C16A—C15A—C14 | 111.0 (18) |
O2i—Cu1—N1 | 95.65 (6) | C16A—C15A—H15C | 109.4 |
O3—Cu1—N1 | 92.92 (6) | C14—C15A—H15C | 109.4 |
O1—Cu1—N1 | 96.47 (6) | C16A—C15A—H15D | 109.4 |
O4i—Cu1—Cu1i | 84.31 (4) | C14—C15A—H15D | 109.4 |
O2i—Cu1—Cu1i | 83.26 (5) | H15C—C15A—H15D | 108.0 |
O3—Cu1—Cu1i | 83.39 (4) | C15A—C16A—H16D | 109.5 |
O1—Cu1—Cu1i | 84.61 (5) | C15A—C16A—H16E | 109.5 |
N1—Cu1—Cu1i | 176.17 (4) | H16D—C16A—H16E | 109.5 |
C7—O1—Cu1 | 122.09 (11) | C15A—C16A—H16F | 109.5 |
N1—C1—C2 | 123.45 (17) | H16D—C16A—H16F | 109.5 |
N1—C1—H1 | 118.3 | H16E—C16A—H16F | 109.5 |
C2—C1—H1 | 118.3 | O3—C17—O4 | 125.37 (14) |
C5—N1—C1 | 116.58 (15) | O3—C17—C18 | 116.84 (14) |
C5—N1—Cu1 | 121.66 (12) | O4—C17—C18 | 117.78 (14) |
C1—N1—Cu1 | 121.03 (11) | C17—C18—C19 | 115.08 (14) |
C7—O2—Cu1i | 124.04 (11) | C17—C18—H18A | 108.5 |
C3—C2—C1 | 120.18 (17) | C19—C18—H18A | 108.5 |
C3—C2—H2 | 119.9 | C17—C18—H18B | 108.5 |
C1—C2—H2 | 119.9 | C19—C18—H18B | 108.5 |
C17—O3—Cu1 | 124.01 (10) | H18A—C18—H18B | 107.5 |
C2—C3—C4 | 116.31 (16) | C20—C19—C18 | 113.70 (16) |
C2—C3—C6 | 121.37 (17) | C20—C19—H19A | 108.8 |
C4—C3—C6 | 122.31 (18) | C18—C19—H19A | 108.8 |
C3—C4—C5 | 120.28 (18) | C20—C19—H19B | 108.8 |
C3—C4—H4 | 119.9 | C18—C19—H19B | 108.8 |
C5—C4—H4 | 119.9 | H19A—C19—H19B | 107.7 |
C17—O4—Cu1i | 122.79 (11) | C19—C20—C21 | 113.99 (17) |
N1—C5—C4 | 123.21 (18) | C19—C20—H20A | 108.8 |
N1—C5—H5 | 118.4 | C21—C20—H20A | 108.8 |
C4—C5—H5 | 118.4 | C19—C20—H20B | 108.8 |
O2—C7—O1 | 125.93 (14) | C21—C20—H20B | 108.8 |
O2—C7—C8 | 116.68 (15) | H20A—C20—H20B | 107.6 |
O1—C7—C8 | 117.36 (15) | C22—C21—C20 | 115.62 (19) |
C3—C6—H6A | 109.5 | C22—C21—H21A | 108.4 |
C3—C6—H6B | 109.5 | C20—C21—H21A | 108.4 |
H6A—C6—H6B | 109.5 | C22—C21—H21B | 108.4 |
C3—C6—H6C | 109.5 | C20—C21—H21B | 108.4 |
H6A—C6—H6C | 109.5 | H21A—C21—H21B | 107.4 |
H6B—C6—H6C | 109.5 | C23—C22—C21 | 115.0 (2) |
C8—C9—C10 | 115.20 (18) | C23—C22—H22A | 108.5 |
C8—C9—H9A | 108.5 | C21—C22—H22A | 108.5 |
C10—C9—H9A | 108.5 | C23—C22—H22B | 108.5 |
C8—C9—H9AB | 108.5 | C21—C22—H22B | 108.5 |
C10—C9—H9AB | 108.5 | H22A—C22—H22B | 107.5 |
H9A—C9—H9AB | 107.5 | C24A—C23—C22 | 119.4 (11) |
C9—C8—C7 | 116.89 (16) | C22—C23—C24 | 114.5 (6) |
C9—C8—H8A | 108.1 | C22—C23—H23A | 108.6 |
C7—C8—H8A | 108.1 | C24—C23—H23A | 108.6 |
C9—C8—H8AB | 108.1 | C22—C23—H23B | 108.6 |
C7—C8—H8AB | 108.1 | C24—C23—H23B | 108.6 |
H8A—C8—H8AB | 107.3 | H23A—C23—H23B | 107.6 |
C11—C10—C9 | 115.87 (19) | C24A—C23—H23C | 107.5 |
C11—C10—H10A | 108.3 | C22—C23—H23C | 107.5 |
C9—C10—H10A | 108.3 | C24A—C23—H23D | 107.5 |
C11—C10—H10B | 108.3 | C22—C23—H23D | 107.5 |
C9—C10—H10B | 108.3 | H23C—C23—H23D | 107.0 |
H10A—C10—H10B | 107.4 | C25—C24—C23 | 117.0 (10) |
C10—C11—C12 | 117.3 (2) | C25—C24—H24A | 108.1 |
C10—C11—H11A | 108.0 | C23—C24—H24A | 108.1 |
C12—C11—H11A | 108.0 | C25—C24—H24B | 108.1 |
C10—C11—H11B | 108.0 | C23—C24—H24B | 108.1 |
C12—C11—H11B | 108.0 | H24A—C24—H24B | 107.3 |
H11A—C11—H11B | 107.2 | C26—C25—C24 | 116.9 (9) |
C13—C12—C11 | 116.2 (2) | C26—C25—H25A | 108.1 |
C13—C12—H12A | 108.2 | C24—C25—H25A | 108.1 |
C11—C12—H12A | 108.2 | C26—C25—H25B | 108.1 |
C13—C12—H12B | 108.2 | C24—C25—H25B | 108.1 |
C11—C12—H12B | 108.2 | H25A—C25—H25B | 107.3 |
H12A—C12—H12B | 107.4 | C25—C26—H26A | 109.5 |
C14—C13—C12 | 117.9 (3) | C25—C26—H26B | 109.5 |
C14—C13—H13A | 107.8 | H26A—C26—H26B | 109.5 |
C12—C13—H13A | 107.8 | C25—C26—H26C | 109.5 |
C14—C13—H13B | 107.8 | H26A—C26—H26C | 109.5 |
C12—C13—H13B | 107.8 | H26B—C26—H26C | 109.5 |
H13A—C13—H13B | 107.2 | C23—C24A—C25A | 112.8 (17) |
C13—C14—C15A | 131.2 (13) | C23—C24A—H24C | 109.0 |
C13—C14—C15 | 114.4 (3) | C25A—C24A—H24C | 109.0 |
C13—C14—H14A | 108.7 | C23—C24A—H24D | 109.0 |
C15—C14—H14A | 108.7 | C25A—C24A—H24D | 109.0 |
C13—C14—H14B | 108.7 | H24C—C24A—H24D | 107.8 |
C15—C14—H14B | 108.7 | C26A—C25A—C24A | 117.3 (17) |
H14A—C14—H14B | 107.6 | C26A—C25A—H25C | 108.0 |
C13—C14—H14C | 104.4 | C24A—C25A—H25C | 108.0 |
C15A—C14—H14C | 104.4 | C26A—C25A—H25D | 108.0 |
C13—C14—H14D | 104.4 | C24A—C25A—H25D | 108.0 |
C15A—C14—H14D | 104.4 | H25C—C25A—H25D | 107.2 |
H14C—C14—H14D | 105.6 | C25A—C26A—H26D | 109.5 |
C16—C15—C14 | 113.3 (5) | C25A—C26A—H26E | 109.5 |
C16—C15—H15A | 108.9 | H26D—C26A—H26E | 109.5 |
C14—C15—H15A | 108.9 | C25A—C26A—H26F | 109.5 |
C16—C15—H15B | 108.9 | H26D—C26A—H26F | 109.5 |
C14—C15—H15B | 108.9 | H26E—C26A—H26F | 109.5 |
H15A—C15—H15B | 107.7 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg is the centroid of the N1/C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O2ii | 0.96 | 2.73 | 3.577 | 148 |
C18—H18A···O3iii | 0.97 | 2.90 | 3.841 | 163 |
C6—H6C···Cg1iv | 0.96 | 2.94 | 3.665 (2) | 134 |
Symmetry codes: (ii) x, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+1. |
Cg(I) = centroid of ring I; α = dihedral angle between planes I and J; β = angle between Cg(I)···Cg(J) vector and normal to plane I; γ = angle between Cg(I)···Cg(J) vector and normal to plane J; Cg···Cg = distance between ring centroids; Cg(I)Perp = perpendicular distance of Cg(I) on ring J; Cg(J)Perp = perpendicular distance of Cg(J) on ring I; slippage = distance between Cg(I) and perpendicular projection of Cg(J) on ring I. |
Cg(I) | Cg(J) | Cg···Cg | α | β | γ | Cg(I)Perp | Cg(J)Perp | Slippage |
Cg1 | Cg1i | 4.4183 (14) | 0 | 41.2 | 41.2 | 3.3258 (8) | 3.326 | 2.909 |
Cg1 | Cg1ii | 4.6957 (15) | 0 | 38.3 | 38.3 | -3.6832 (8) | -3.683 | 2.913 |
Symmetry codes: (i) 1 - x, 2 - y, 1 - z; (ii) -x, 2 - y, 1 - z. |
Acknowledgements
The authors thank USIC, Gauhati University, Guwahati for recording the data collection.
References
Agterberg, F. P. W., ProvóKluit, H. A. J., Driessen, W. L., Reedijk, J., Oevering, H., Buijs, W., Veldman, N., Lakin, M. T. & Spek, A. L. (1998). Inorg. Chim. Acta, 267, 183–192. CrossRef CAS Google Scholar
Baruah, S., Islam, Z., Karmakar, S. & Das, B. K. (2015). Acta Cryst. E71, m195–m196. CrossRef IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Das, B. K. & Barman, R. K. (2001). Acta Cryst. C57, 1025–1026. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Deacon, G. R. & Philips, R. (1980). Coord. Chem. Rev. 33, 227-250. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fomina, I., Dobrokhotova, Z., Aleksandrov, G., Bogomyakov, A., Fedin, M., Dolganov, A., Magdesieva, T., Novotortsev, V. & Eremenko, I. (2010). Polyhedron, 29, 1734–1746. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hamza, F. & Kickelbick, G. (2009). Macromolecules, 42, 7762–7771. CrossRef CAS Google Scholar
Iqbal, M., Ali, S., Rehman, Z., Muhammad, N., Sohail, M. & Pandarinathan, V. (2014). J. Coord. Chem., 67, 10, 1731-1745. Google Scholar
Kozlevcar, B., Lah, N., Leban, I., Pohleven, F. & Segedin, P. (2000). Croat. Chem. Acta. 73, 3, 733-741. Google Scholar
Kozlevcar, B., Lah, N., Leban, I., Turel, I., Segedin, P., Petric, M., Pohleven, F., White, A. J. P., Williams, D. J. & Giester, G. (1999). Croat. Chem. Acta., 72, 427-436. CAS Google Scholar
Lah, N., Giester, G., Lah, J., Šegedin, P. & Leban, I. (2001). New J. Chem. 25, 753–759. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moncol, J., Vasková, Z., Stachová, P., Svorec, J., Sillanpää, R., Mazúr, M. & Valigura, D. (2010). J. Chem. Crystallogr. 40, 179–184. CrossRef CAS Google Scholar
Petric, M., Leban, I. & Segedin, P. (1993). Polyhedron. 12, 16, 1973-1976. Google Scholar
Riesco, M. R., Martínez-Casado, F. J., Cheda, J. A. R., Yélamos, M. I. R., Fernández-Martínez, A. & López-Andrés, S. (2015). Cryst. Growth Des. 15, 497–509. Google Scholar
Riesco, M. R., Casado, F. J. M., Lopez-Andres, S., Garcia Perez, M. V., Yelamos, M. I. R., Torres, M. R., Garrido, L. & Cheda, J. A. R. (2008). Cryst. Growth Des. 8, 7, 2547-2554. Google Scholar
Rusjan, M., Chaia, Z., Piro, O. E., Guillon, D. & Cukiernik, F. D. (2000). Acta Cryst. B56, 666–672. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Serrano, J. L. & Sierra, T. (2000). Chem. Eur. J. 6, 759–766. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2016). SADABS. University of Göttingen, Germany. Google Scholar
Smithenry, W., Wilson, S. R. & Suslick, K. S. (2003). Inorg. Chem. 42, 7719–7721. CrossRef PubMed CAS Google Scholar
Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044. Web of Science CSD CrossRef Google Scholar
Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104–112. Web of Science CrossRef PubMed CAS Google Scholar
Wein, A. N., Cordeiro, R., Owens, N., Olivier, H., Hardcastle, K. I. & Eichler, J. F. (2009). J. Fluor. Chem. 130, 197–203. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.