research communications
Lu-atom-ordered oxonitridoaluminosilicate Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp
A single crystal of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 (barium cerium lutetium aluminosilicate nitride oxide) was obtained by heating a mixed powder of Ba3N2, Si3N4, Al, Lu2O3, and CeO2 at 2173 K for 1 h under N2 gas at 0.85 MPa. X-ray single-crystal structure analysis revealed that the title oxynitride is hexagonal (lattice constants: a = 6.0378 (5) Å, c = 9.8133 (9) Å; P63mc) and isostructural with BaYbSi4N7. (Ba,Ce) and Lu atoms occupy twelvefold and sixfold coordination sites, respectively.
Keywords: BaLuSi4N7, crystal structure; oxynitride.
CCDC reference: 2034534
1. Chemical context
Huppertz & Schnick (1997b) determined the hexagonal crystal structures of two isotypic nitrides, SrYbSi4N7 [a = 5.9880 (3) Å, c = 9.7499 (9) Å] and BaYbSi4N7 [a = 6.0307 (2) Å, c = 9.8198 (4) Å] with P63mc (Z = 2), by single-crystal X-ray diffraction (XRD). In the of BaYbSi4N7, the Ba, Yb, and Si atoms are coordinated by twelve, six, and four N atoms of an anticuboctahedron, octahedron, and a tetrahedron, respectively. A three-dimensional framework of SiN4 tetrahedra is formed by sharing vertex N atoms, and the interspaces of the framework are occupied by Ba and Yb atoms. N atoms at the N1 and N2 sites bond to two Si atoms, and N atoms at the N3 site are surrounded by four Si atoms. Such a high for the N3 site is characteristic of the crystal structures of SrYbSi4N7 and BaYbSi4N7 (Huppertz & Schnick, 1997b).
Other nitrides having the same structure type have been synthesized by substitution of Ca and/or other rare-earth (R) atoms for Sr, Ba, and Yb atoms. The of SrYSi4N7 (a = 6.0160 (1) Å, c = 9.7894 (1) Å) was clarified by powder X-ray diffraction (pXRD) (Li, Fang, et al., 2004). Some nitrides doped with Eu2+, such as Ba0.99Eu0.01YSi4N7 [a = 6.0275 (6) Å, c = 9.880 (1) Å], Sr0.99Eu0.01YSi4N7 [a = 6.0269 (7) Å, c = 9.878 (1)] , and Ca0.99Eu0.01YSi4N7 [a = 5.9866 (5) Å, c = 9.800 (1) Å] (Li, Fang, et al., 2004; Porob et al., 2012), have also been reported. Oxynitrides SrR(Si,Al)4(N,O)7 and BaR(Si,Al)4(N,O)7 (R = Ho, Er, Tm, Yb; Lieb et al., 2007), in which the Si and N atoms are partly replaced by Al and O atoms, have also been synthesized. The crystal structures of the aforementioned compounds were found to be isotypic with SrYbSi4N7 and BaYbSi4N7. The alkaline-earth (A) atoms of Ca, Sr, or Ba are ordered at the anticuboctahedral (a) site of twelvefold coordination of N or O atoms, and the R atoms are located at the octahedral (o) site of sixfold coordination of N or O atoms. However, the crystal structures of BaLuSi4N7 [a = 6.02185 (2) Å, c = 9.81219 (7) Å] and SrLuSi4N7 [a = 6.02113 (2) Å, c = 9.80105 (7) Å] were analyzed by the for pXRD patterns using a disordered model in which both Ba/Sr and Lu atoms were statistically located at the a and o sites with the same occupancy of 0.5 (Park et al., 2012).
During our materials survey of novel Ce-doped phosphors in the Ba–Lu–Si–N system, small numbers of needle-like single crystals of 10 μm in diameter and 60 μm in length (at maximum) were grown at the contact surface between the BN crucible and an aggregate of fine particles consisting of amorphous and crystalline materials. The powder XRD pattern of the crystalline materials were indexed by the similar lattice constants as that of the needle-like crystals. Electron-probe microanalysis (EPMA) performed at 12 points on one of the needle-like single crystals gave a composition of Ce:Ba:Lu:Si:Al:N:O = 0.8 (2):7.6 (5):7.6 (6):29.6 (20):1.6 (4):49 (3):4(1) in weight percent (total mass was normalized to 100 mass%). The lower precision of the N and O contents was due to the lower energy of the characteristic X-rays of these light elements. The molar ratio obtained from the composition was Ce:Ba:Lu:Si:Al:N:O = 0.1 (3):0.99 (7):0.99 (8):3.9 (3):0.21 (5):6.4 (4):0.5 (2) (total sum 13), and the composition of the single crystal was regarded to be Ce0.1Ba0.9Lu1.0Si3.8Al0.2N6.9O0.1 by assuming Ce atoms situated at the a site with Ba atoms. The XRD spots from the crystal were indexed with hexagonal lattice constants of a = 6.0378 (5) Å and c = 9.8133 (9) Å (Table 1), which were approximately the same as those reported for BaLuSi4N7 (Park et al., 2012) within differences of 0.1 and 0.2%, respectively. Initially, a structure of Ce0.1Ba0.9Lu1.0Si3.8Al0.2N6.9O0.1 was carried out with a disordered model of (Ce0.1Ba0.4Lu0.5)(Ba0.5Lu0.5)Al0.05Si0.95)4(N0.99O0.01)7, in which the Ce, Ba, and Lu atoms were at the a site with a ratio of 0.1:0.4:0.5 and Ba and Lu atoms were at the o site with a 0.5:0.5 ratio, in accordance with the structure model of BaLuSi4N7 (Park et al., 2012). The R value of was 4.2%, and residual electron densities of 5.52 and −3.46 e Å−3 were observed at 0.89 and 1.67 Å, respectively, from the a site and the N/O site (Table 2). using the ordered model of (Ce0.1Ba0.9)(Lu)(Al0.05Si0.95)4(N0.99O0.01)7, in which the Ba and Ce atoms are at the a site with a ratio of 0.9:0.1 and Lu atoms fully occupy the o site, yielded an R value of 2.2% with residual electron densities of 1.70 and −1.40 e Å−3 (Table1). As a consequence, the Ba and Lu atoms in Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 were clarified to be ordered at the a and o sites, respectively (Fig. 1).
|
2. Structural commentary
The interatomic distances of Ba/Ce—N/O for Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 are 2.975 (10) Å × 3, 3.0236 (5) Å × 4, 3.0236 (5) Å × 2, and 3.052 (10) Å × 3, which are comparable with the Ba/Lu—N distances for the a site of BaLuSi4N7 (2.975 Å × 3, 3.0372 Å × 3, 3.038 Å × 3, 3.0783 Å × 3) reported by Park et al. (2012). Lu—N/O distances in the title compound are 2.271 (10) Å × 3 and 2.312 (9) Å × 3, which are 0.139 Å shorter than the Ba/Lu—N distances (2.414 Å × 3, 2.451 Å × 3) for the o site of BaLuSi4N7.
The Al/Si1—N/O distances are 1.701 (9) Å × 3 and 1.85 (2) Å, and the Al/Si2—N/O distances are 1.738 (9) Å, 1.743 (6) Å × 2, and 1.954 (7) Å. These distances are consistent with those of Si—N (1.705 Å × 3, 1.887 Å and 1.724 Å, 1.721 Å × 2, 1.962 Å) for BaYbSi4N7 (Huppertz & Schnick, 1997b) but 0.07–0.2 Å longer than those of Si1–N (1.478 Å × 3, 1.776 Å) and Si2—N (1.671, 1.673, 1.889, 1.937 Å) reported for BaLuSi4N7 by Park et al. (2012), although the lattice constants of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 and BaLuSi4N7 are similar, as previously mentioned. The average distances of Al/Si2—N/O and Si2—O of 1.792 and 1.782 Å, respectively, are slightly longer than those of Al/Si1—N/O (1.741 Å) and Si1—N (1.750 Å). The IVSi4+—IVN3− and IVAl3+—IVN3− distances calculated with the effective ionic radius for nitrides (IVSi4+ = 0.29, IVAl3+ = 0.41 Å, IVN3− = 1.46 Å; Baur, 1987) are 1.75 and 1.87 Å, respectively, which are similar to the Si—N and Al/Si—N/O distances of BaYbSi4N7 and Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1. The bond-valence sum (BVS) (Brown & Altermatt, 1985) for the Lu site of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 was calculated to be 3.07 with a bond-valence parameter of Lu—N (r0 = 2.046, b = 0.37) reported by Brese & O'Keeffe (1991), in good agreement with the valence of Lu3+. The BVS with a parameter of Ba—N [r0 = 2.47; Brese and O'Keeffe (1991)] is 2.73, which is greater than the valence of Ba2+. The BVSs of Al/Si1 and Al/Si2 with the parameter of Si–N (r0 = 1.77, b = 0.37) are 4.39 and 3.87, respectively.
3. Database survey
The Inorganic 4N7-type nitrides and oxynitrides that include alkaline-earth and rare-earth elements: BaYbSi4N7 and SrYbSi4N7 by Huppertz & Schnick (1997b) and SrYSi4N7 by Li, Fang et al. (2004). EuYbSi4N7 and EuYSi4N7 (Huppertz & Schnick, 1997a; Li, Fang et al., 2004) are isostructural with BaYbSi4N7 but do not include an alkaline-earth metal element.
Database (ICSD) includes some records of BaYbSiOxynitrides in which Si and N atoms were partly replaced with Al and O atoms, respectively, have also been reported: BaYb(Si,Al)4(O,N)7 (Vinograd et al., 2007), BaEr(Si,Al)4(O,N)7, BaHo(Si,Al)4(O,N)7, BaTm(Si,Al)4(O,N)7, BaYb(Si,Al)4(O,N)7, SrEr(Si,Al)4(O,N)7, SrHo(Si,Al)4(O,N)7, SrTm(Si,Al)4(O,N)7, SrYb(Si,Al)4(O,N)7, EuEr(Si,Al)4(O,N)7, EuHo(Si,Al)4(O,N)7, EuTm(Si,Al)4(O,N)7, and EuYb(Si,Al)4(O,N)7 (Lieb et al., 2007).
First-principles calculations of the electronic structures of SrYSi4N7 and BaYSi4N7 have been reported (Fang et al., 2003). Moreover, numerous researchers have investigated the luminescence of oxynitrides and nitrides doped with Ce and Eu, including Ce3+-BaYSi4N7, Eu2+-BaYSi4N7 (Li, deWith et al., 2004), Ce3+-SrYSi4N7, Eu2+-SrYSi4N7 (Li, Fang et al., 2004), Eu2+-(Ca,Sr, or Ba)YSi4N7, Eu2+-(Ca,Sr, or Ba)Y(Si,Al)4(N,O)7 (Kurushima et al., 2010), Eu2+-(Ca, Sr, or Ba)(Sc, Y, or La)Si4N7 (Horikawa et al., 2012), Eu2+-(Ca,Sr, or Ba)Y(Y, La, or Lu)Si4N7 (Park et al., 2012), and Eu2+-SrScSi4(N,O)7 (Porob et al., 2012).
4. Synthesis and crystallization
Powdered Si3N4 (Ube Industries Ltd., UBE-SN-E10, 95+%), Ba3N2 (Materion Corp., ∼20 mesh 99.7%), Al (Rare Metallic, ∼200 mesh, 99.9%), Lu2O3 (Nippon Yttrium Co. Ltd., 99.999%), CeO2 (Shin-Etsu Chemical Co. Ltd., 99.99%) were weighed out in an Si:Ba:Lu:Al:Ce molar ratio of 3.25:1:1:0.25:0.04 in an Ar-filled (MBRAUN; [O2] and [H2O] < 1 ppm). The weighed powders were mixed in an agate mortar, and a disk-shaped pellet with a diameter of 10 mm was formed with a die in an Ar gas-filled The pellet was placed in a BN crucible (Showa Denko, K. K., 99.5%) with an 18 mm inner diameter and 20 mm height, and a BN lid was placed on it. The BN crucible was heated to 1200°C for 1 h under vacuum using a carbon furnace (VESTA, Shimadzu Industrial Systems Co., Ltd.), and the temperature was maintained at 1200 °C for 1 h. N2 gas (Taiyo Nippon Sanso Corp., 99.9995+%) was introduced into the furnace to a pressure of 0.85 MPa, and the furnace was then heated to 1900°C for 25 min. After the temperature and the N2 gas pressure were maintained for 1 h, the sample was cooled to 1200°C for 25 min. The heater power was then cut off. After the furnace reached room temperature, the crucible was removed from the furnace. The chemical composition of the single crystal was analyzed by EPMA (JEOL JXA-8200).
5. Refinement
Crystal data and the data collection details are summarized in Table 1, and the structural details are reported in Table 2. Ordered and disordered models were investigated, and the best result was obtained using an ordered model in which the Ce/Ba mixed site and Lu site are located at the a site and o site, respectively. Because the R and S values were not affected by with ordered models of Al and Si atoms and N and O atoms, the occupancies of the Al/Si and N/O sites were fixed at 0.05/0.95 and 0.99/0.01, respectively. Final was carried out with anisotropic displacement parameters.
Supporting information
CCDC reference: 2034534
https://doi.org/10.1107/S2056989020013158/ru2072sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020013158/ru2072Isup2.hkl
Data collection: Instrument Service (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: pubCIF (Westrip, 2010).Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 | Dx = 5.606 Mg m−3 |
Mr = 1045.99 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63mc | Cell parameters from 127 reflections |
a = 6.0378 (5) Å | θ = 4.2–30.8° |
c = 9.8133 (9) Å | µ = 22.95 mm−1 |
V = 309.82 (6) Å3 | T = 301 K |
Z = 1 | Block, colorless |
F(000) = 464 | 0.13 × 0.07 × 0.02 mm |
Bruker D8 QUEST diffractometer | 381 reflections with I > 2σ(I) |
Detector resolution: 7.3910 pixels mm-1 | Rint = 0.059 |
ω and σcans | θmax = 30.5°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | h = −7→8 |
Tmin = 0.37, Tmax = 0.68 | k = −8→8 |
2818 measured reflections | l = −14→14 |
395 independent reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0313P)2 + 0.7267P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.022 | Δρmax = 1.70 e Å−3 |
wR(F2) = 0.055 | Δρmin = −1.40 e Å−3 |
S = 1.04 | Extinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
395 reflections | Extinction coefficient: 0.0052 (16) |
33 parameters | Absolute structure: Refined as an inversion twin. |
1 restraint | Absolute structure parameter: 0.10 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Lu1 | 0.3333 | 0.6667 | 0.07616 (4) | 0.0074 (2) | |
Ba2 | 0.3333 | 0.6667 | 0.44902 (10) | 0.0099 (3) | 0.9 |
Ce2 | 0.3333 | 0.6667 | 0.44902 (10) | 0.0099 (3) | 0.1 |
Si1 | 0.8275 (2) | 0.1725 (2) | 0.2646 (5) | 0.0084 (5) | 0.95 |
Al1 | 0.8275 (2) | 0.1725 (2) | 0.2646 (5) | 0.0084 (5) | 0.05 |
Si2 | 0.0000 | 0.0000 | 0.0006 (7) | 0.0071 (9) | 0.95 |
Al2 | 0.0000 | 0.0000 | 0.0006 (7) | 0.0071 (9) | 0.05 |
N1 | 0.5097 (8) | 0.4903 (8) | 0.2112 (11) | 0.0087 (14) | 0.9857 |
O1 | 0.5097 (8) | 0.4903 (8) | 0.2112 (11) | 0.0087 (14) | 0.0143 |
N2 | 0.8474 (8) | 0.1526 (8) | 0.4404 (9) | 0.0123 (19) | 0.9857 |
O2 | 0.8474 (8) | 0.1526 (8) | 0.4404 (9) | 0.0123 (19) | 0.0143 |
N3 | 0.0000 | 0.0000 | 0.1880 (18) | 0.016 (3) | 0.9857 |
O3 | 0.0000 | 0.0000 | 0.1880 (18) | 0.016 (3) | 0.0143 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.0075 (3) | 0.0075 (3) | 0.0072 (4) | 0.00374 (13) | 0.000 | 0.000 |
Ba2 | 0.0098 (4) | 0.0098 (4) | 0.0101 (6) | 0.00489 (18) | 0.000 | 0.000 |
Ce2 | 0.0098 (4) | 0.0098 (4) | 0.0101 (6) | 0.00489 (18) | 0.000 | 0.000 |
Si1 | 0.0076 (8) | 0.0076 (8) | 0.0097 (10) | 0.0035 (9) | −0.0002 (6) | 0.0002 (6) |
Al1 | 0.0076 (8) | 0.0076 (8) | 0.0097 (10) | 0.0035 (9) | −0.0002 (6) | 0.0002 (6) |
Si2 | 0.0061 (10) | 0.0061 (10) | 0.009 (3) | 0.0031 (5) | 0.000 | 0.000 |
Al2 | 0.0061 (10) | 0.0061 (10) | 0.009 (3) | 0.0031 (5) | 0.000 | 0.000 |
N1 | 0.007 (2) | 0.007 (2) | 0.010 (3) | 0.002 (2) | 0.0010 (16) | −0.0010 (16) |
O1 | 0.007 (2) | 0.007 (2) | 0.010 (3) | 0.002 (2) | 0.0010 (16) | −0.0010 (16) |
N2 | 0.015 (3) | 0.015 (3) | 0.011 (5) | 0.011 (4) | 0.0010 (14) | −0.0010 (14) |
O2 | 0.015 (3) | 0.015 (3) | 0.011 (5) | 0.011 (4) | 0.0010 (14) | −0.0010 (14) |
N3 | 0.018 (5) | 0.018 (5) | 0.013 (8) | 0.009 (3) | 0.000 | 0.000 |
O3 | 0.018 (5) | 0.018 (5) | 0.013 (8) | 0.009 (3) | 0.000 | 0.000 |
Lu1—O1i | 2.271 (10) | Si1—Ba2ix | 3.521 (2) |
Lu1—N1i | 2.271 (10) | Si1—Ba2x | 3.521 (2) |
Lu1—O1ii | 2.271 (10) | Si2—O2xi | 1.701 (9) |
Lu1—N1ii | 2.271 (10) | Si2—N2xi | 1.701 (9) |
Lu1—N1 | 2.271 (10) | Si2—O2iv | 1.701 (9) |
Lu1—O2iii | 2.312 (9) | Si2—N2iv | 1.701 (9) |
Lu1—N2iii | 2.312 (9) | Si2—O2xii | 1.701 (9) |
Lu1—O2iv | 2.312 (9) | Si2—N2xii | 1.701 (9) |
Lu1—N2iv | 2.312 (9) | Si2—N3 | 1.839 (19) |
Lu1—O2v | 2.312 (9) | Si2—Ba2xiii | 3.5225 (11) |
Lu1—N2v | 2.312 (9) | Si2—Ba2xiv | 3.5225 (11) |
Ba2—N1 | 2.975 (10) | Si2—Ba2v | 3.5226 (11) |
Ba2—O1ii | 2.975 (10) | N1—Al1vii | 1.743 (6) |
Ba2—N1ii | 2.975 (10) | N1—Si1vii | 1.743 (6) |
Ba2—O1i | 2.975 (10) | N1—Al1vi | 1.743 (6) |
Ba2—N1i | 2.975 (10) | N1—Si1vi | 1.743 (6) |
Ba2—O2vi | 3.0236 (5) | N1—Ba2xiv | 3.052 (10) |
Ba2—N2vi | 3.0236 (5) | N2—Al2xv | 1.701 (9) |
Ba2—O2vii | 3.0236 (5) | N2—Si2xv | 1.701 (9) |
Ba2—N2vii | 3.0236 (5) | N2—Lu1xv | 2.313 (9) |
Ba2—O2viii | 3.0237 (6) | N2—Ba2ix | 3.0237 (6) |
Ba2—N2viii | 3.0237 (6) | N2—Ce2ix | 3.0237 (6) |
Si1—N2 | 1.738 (9) | N2—Ce2x | 3.0237 (6) |
Si1—O1vi | 1.743 (6) | N2—Ba2x | 3.0237 (6) |
Si1—N1vi | 1.743 (6) | N3—Al1vi | 1.954 (7) |
Si1—O1vii | 1.743 (6) | N3—Si1vi | 1.954 (7) |
Si1—N1vii | 1.743 (6) | N3—Al1xvi | 1.954 (7) |
Si1—O3ix | 1.954 (7) | N3—Si1xvi | 1.954 (7) |
Si1—N3ix | 1.954 (7) | N3—Si1viii | 1.954 (7) |
Si1—Al1vii | 2.914 (4) | N3—Al1viii | 1.954 (7) |
Si1—Al1vi | 2.914 (4) | ||
O1i—Lu1—N1i | 0.0 | N1vi—Si1—Al1vi | 88.8 (2) |
O1i—Lu1—O1ii | 89.4 (3) | O1vii—Si1—Al1vi | 33.3 (3) |
N1i—Lu1—O1ii | 89.4 (3) | N1vii—Si1—Al1vi | 33.3 (3) |
O1i—Lu1—N1ii | 89.4 | O3ix—Si1—Al1vi | 143.1 (3) |
N1i—Lu1—N1ii | 89.4 (3) | N3ix—Si1—Al1vi | 143.1 (3) |
O1ii—Lu1—N1ii | 0.0 | Al1vii—Si1—Al1vi | 60.0 |
O1i—Lu1—N1 | 89.4 | N2—Si1—Ba2ix | 59.17 (6) |
N1i—Lu1—N1 | 89.4 (3) | O1vi—Si1—Ba2ix | 57.6 (3) |
O1ii—Lu1—N1 | 89.4 | N1vi—Si1—Ba2ix | 57.6 (3) |
N1ii—Lu1—N1 | 89.4 (3) | O1vii—Si1—Ba2ix | 149.6 (3) |
O1i—Lu1—O2iii | 90.2 (2) | N1vii—Si1—Ba2ix | 149.6 (3) |
N1i—Lu1—O2iii | 90.2 (2) | O3ix—Si1—Ba2ix | 100.5 (2) |
O1ii—Lu1—O2iii | 90.2 (2) | N3ix—Si1—Ba2ix | 100.5 (2) |
N1ii—Lu1—O2iii | 90.2 (2) | Al1vii—Si1—Ba2ix | 65.56 (4) |
N1—Lu1—O2iii | 179.5 (3) | Al1vi—Si1—Ba2ix | 116.34 (4) |
O1i—Lu1—N2iii | 90.2 (2) | N2—Si1—Ba2x | 59.17 (6) |
N1i—Lu1—N2iii | 90.2 (2) | O1vi—Si1—Ba2x | 149.6 (3) |
O1ii—Lu1—N2iii | 90.2 (2) | N1vi—Si1—Ba2x | 149.6 (3) |
N1ii—Lu1—N2iii | 90.2 (2) | O1vii—Si1—Ba2x | 57.6 (3) |
N1—Lu1—N2iii | 179.5 (3) | N1vii—Si1—Ba2x | 57.6 (3) |
O2iii—Lu1—N2iii | 0.0 | O3ix—Si1—Ba2x | 100.5 (2) |
O1i—Lu1—O2iv | 179.5 (3) | N3ix—Si1—Ba2x | 100.5 (2) |
N1i—Lu1—O2iv | 179.5 (3) | Al1vii—Si1—Ba2x | 116.34 (4) |
O1ii—Lu1—O2iv | 90.2 (2) | Al1vi—Si1—Ba2x | 65.56 (4) |
N1ii—Lu1—O2iv | 90.2 (2) | Ba2ix—Si1—Ba2x | 118.08 (12) |
N1—Lu1—O2iv | 90.2 (2) | O2xi—Si2—N2xi | 0.0 |
O2iii—Lu1—O2iv | 90.1 (3) | O2xi—Si2—O2iv | 108.6 (4) |
N2iii—Lu1—O2iv | 90.1 (3) | N2xi—Si2—O2iv | 108.6 (4) |
O1i—Lu1—N2iv | 179.5 (3) | O2xi—Si2—N2iv | 108.6 |
N1i—Lu1—N2iv | 179.5 (3) | N2xi—Si2—N2iv | 108.6 (4) |
O1ii—Lu1—N2iv | 90.2 (2) | O2iv—Si2—N2iv | 0.0 |
N1ii—Lu1—N2iv | 90.2 (2) | O2xi—Si2—O2xii | 108.6 (4) |
N1—Lu1—N2iv | 90.2 (2) | N2xi—Si2—O2xii | 108.6 (4) |
O2iii—Lu1—N2iv | 90.1 | O2iv—Si2—O2xii | 108.6 (4) |
N2iii—Lu1—N2iv | 90.1 (3) | N2iv—Si2—O2xii | 108.6 (4) |
O2iv—Lu1—N2iv | 0.0 | O2xi—Si2—N2xii | 108.6 |
O1i—Lu1—O2v | 90.2 (2) | N2xi—Si2—N2xii | 108.6 (4) |
N1i—Lu1—O2v | 90.2 (2) | O2iv—Si2—N2xii | 108.6 |
O1ii—Lu1—O2v | 179.5 (3) | N2iv—Si2—N2xii | 108.6 (4) |
N1ii—Lu1—O2v | 179.5 (3) | O2xii—Si2—N2xii | 0.0 |
N1—Lu1—O2v | 90.2 (2) | O2xi—Si2—N3 | 110.3 (3) |
O2iii—Lu1—O2v | 90.1 (3) | N2xi—Si2—N3 | 110.3 (3) |
N2iii—Lu1—O2v | 90.1 (3) | O2iv—Si2—N3 | 110.3 (3) |
O2iv—Lu1—O2v | 90.1 (3) | N2iv—Si2—N3 | 110.3 (3) |
N2iv—Lu1—O2v | 90.1 (3) | O2xii—Si2—N3 | 110.3 (3) |
O1i—Lu1—N2v | 90.2 (2) | N2xii—Si2—N3 | 110.3 (3) |
N1i—Lu1—N2v | 90.2 (2) | O2xi—Si2—Ba2xiii | 59.07 (3) |
O1ii—Lu1—N2v | 179.5 (3) | N2xi—Si2—Ba2xiii | 59.07 (3) |
N1ii—Lu1—N2v | 179.5 (3) | O2iv—Si2—Ba2xiii | 151.4 (4) |
N1—Lu1—N2v | 90.2 (2) | N2iv—Si2—Ba2xiii | 151.4 (4) |
O2iii—Lu1—N2v | 90.1 | O2xii—Si2—Ba2xiii | 59.07 (3) |
N2iii—Lu1—N2v | 90.1 (3) | N2xii—Si2—Ba2xiii | 59.07 (3) |
O2iv—Lu1—N2v | 90.1 | N3—Si2—Ba2xiii | 98.27 (11) |
N2iv—Lu1—N2v | 90.1 (3) | O2xi—Si2—Ba2xiv | 151.4 (4) |
O2v—Lu1—N2v | 0.0 | N2xi—Si2—Ba2xiv | 151.4 (4) |
N1—Ba2—O1ii | 65.0 | O2iv—Si2—Ba2xiv | 59.07 (3) |
N1—Ba2—N1ii | 65.0 (3) | N2iv—Si2—Ba2xiv | 59.07 (3) |
O1ii—Ba2—N1ii | 0.0 | O2xii—Si2—Ba2xiv | 59.07 (3) |
N1—Ba2—O1i | 65.0 | N2xii—Si2—Ba2xiv | 59.07 (3) |
O1ii—Ba2—O1i | 65.0 (3) | N3—Si2—Ba2xiv | 98.27 (11) |
N1ii—Ba2—O1i | 65.0 (3) | Ba2xiii—Si2—Ba2xiv | 117.97 (6) |
N1—Ba2—N1i | 65.0 (3) | O2xi—Si2—Ba2v | 59.07 (3) |
O1ii—Ba2—N1i | 65.0 | N2xi—Si2—Ba2v | 59.07 (3) |
N1ii—Ba2—N1i | 65.0 (3) | O2iv—Si2—Ba2v | 59.07 (3) |
O1i—Ba2—N1i | 0.0 | N2iv—Si2—Ba2v | 59.07 (3) |
N1—Ba2—O2vi | 57.1 (2) | O2xii—Si2—Ba2v | 151.4 (4) |
O1ii—Ba2—O2vi | 87.01 (17) | N2xii—Si2—Ba2v | 151.4 (4) |
N1ii—Ba2—O2vi | 87.01 (17) | N3—Si2—Ba2v | 98.27 (11) |
O1i—Ba2—O2vi | 122.0 (3) | Ba2xiii—Si2—Ba2v | 117.97 (6) |
N1i—Ba2—O2vi | 122.0 (3) | Ba2xiv—Si2—Ba2v | 117.97 (6) |
N1—Ba2—N2vi | 57.1 (2) | Al1vii—N1—Si1vii | 0.0 |
O1ii—Ba2—N2vi | 87.01 (17) | Al1vii—N1—Al1vi | 113.4 (6) |
N1ii—Ba2—N2vi | 87.01 (17) | Si1vii—N1—Al1vi | 113.4 (6) |
O1i—Ba2—N2vi | 122.0 (3) | Al1vii—N1—Si1vi | 113.4 |
N1i—Ba2—N2vi | 122.0 (3) | Si1vii—N1—Si1vi | 113.4 (6) |
O2vi—Ba2—N2vi | 0.0 | Al1vi—N1—Si1vi | 0.0 |
N1—Ba2—O2vii | 57.1 (2) | Al1vii—N1—Lu1 | 123.3 (3) |
O1ii—Ba2—O2vii | 122.0 (3) | Si1vii—N1—Lu1 | 123.3 (3) |
N1ii—Ba2—O2vii | 122.0 (3) | Al1vi—N1—Lu1 | 123.3 (3) |
O1i—Ba2—O2vii | 87.01 (17) | Si1vi—N1—Lu1 | 123.3 (3) |
N1i—Ba2—O2vii | 87.01 (17) | Al1vii—N1—Ba2 | 92.8 (4) |
O2vi—Ba2—O2vii | 65.6 (3) | Si1vii—N1—Ba2 | 92.8 (4) |
N2vi—Ba2—O2vii | 65.6 (3) | Al1vi—N1—Ba2 | 92.8 (4) |
N1—Ba2—N2vii | 57.1 (2) | Si1vi—N1—Ba2 | 92.8 (4) |
O1ii—Ba2—N2vii | 122.0 (3) | Lu1—N1—Ba2 | 87.4 (2) |
N1ii—Ba2—N2vii | 122.0 (3) | Al1vii—N1—Ba2xiv | 90.4 (3) |
O1i—Ba2—N2vii | 87.01 (17) | Si1vii—N1—Ba2xiv | 90.4 (3) |
N1i—Ba2—N2vii | 87.01 (17) | Al1vi—N1—Ba2xiv | 90.4 (3) |
O2vi—Ba2—N2vii | 65.6 | Si1vi—N1—Ba2xiv | 90.4 (3) |
N2vi—Ba2—N2vii | 65.6 (3) | Lu1—N1—Ba2xiv | 86.8 (3) |
O2vii—Ba2—N2vii | 0.0 | Ba2—N1—Ba2xiv | 174.2 (4) |
N1—Ba2—O2viii | 87.01 (17) | Al2xv—N2—Si2xv | 0.0 |
O1ii—Ba2—O2viii | 57.1 (2) | Al2xv—N2—Si1 | 117.2 (5) |
N1ii—Ba2—O2viii | 57.1 (2) | Si2xv—N2—Si1 | 117.2 (5) |
O1i—Ba2—O2viii | 122.0 (3) | Al2xv—N2—Lu1xv | 124.5 (5) |
N1i—Ba2—O2viii | 122.0 (3) | Si2xv—N2—Lu1xv | 124.5 (5) |
O2vi—Ba2—O2viii | 54.4 (3) | Si1—N2—Lu1xv | 118.3 (4) |
N2vi—Ba2—O2viii | 54.4 (3) | Al2xv—N2—Ba2ix | 92.07 (17) |
O2vii—Ba2—O2viii | 119.924 (18) | Si2xv—N2—Ba2ix | 92.07 (17) |
N2vii—Ba2—O2viii | 119.924 (18) | Si1—N2—Ba2ix | 91.25 (18) |
N1—Ba2—N2viii | 87.01 (17) | Lu1xv—N2—Ba2ix | 86.80 (17) |
O1ii—Ba2—N2viii | 57.1 (2) | Al2xv—N2—Ce2ix | 92.07 (17) |
N1ii—Ba2—N2viii | 57.1 (2) | Si2xv—N2—Ce2ix | 92.07 (17) |
O1i—Ba2—N2viii | 122.0 (3) | Si1—N2—Ce2ix | 91.25 (18) |
N1i—Ba2—N2viii | 122.0 (3) | Lu1xv—N2—Ce2ix | 86.80 (17) |
O2vi—Ba2—N2viii | 54.4 | Ba2ix—N2—Ce2ix | 0.0 |
N2vi—Ba2—N2viii | 54.4 (3) | Al2xv—N2—Ce2x | 92.07 (17) |
O2vii—Ba2—N2viii | 119.9 | Si2xv—N2—Ce2x | 92.07 (17) |
N2vii—Ba2—N2viii | 119.924 (18) | Si1—N2—Ce2x | 91.25 (18) |
O2viii—Ba2—N2viii | 0.0 | Lu1xv—N2—Ce2x | 86.80 (17) |
N2—Si1—O1vi | 111.0 (4) | Ba2ix—N2—Ce2x | 173.6 (3) |
N2—Si1—N1vi | 111.0 (4) | Ce2ix—N2—Ce2x | 173.6 (3) |
O1vi—Si1—N1vi | 0.0 | Al2xv—N2—Ba2x | 92.07 (17) |
N2—Si1—O1vii | 111.0 (4) | Si2xv—N2—Ba2x | 92.07 (17) |
O1vi—Si1—O1vii | 109.3 (6) | Si1—N2—Ba2x | 91.25 (18) |
N1vi—Si1—O1vii | 109.3 (6) | Lu1xv—N2—Ba2x | 86.80 (17) |
N2—Si1—N1vii | 111.0 (4) | Ba2ix—N2—Ba2x | 173.6 (3) |
O1vi—Si1—N1vii | 109.3 | Ce2ix—N2—Ba2x | 173.6 |
N1vi—Si1—N1vii | 109.3 (6) | Ce2x—N2—Ba2x | 0.0 |
O1vii—Si1—N1vii | 0.0 | Si2—N3—Al1vi | 112.6 (5) |
N2—Si1—O3ix | 105.7 (6) | Si2—N3—Si1vi | 112.6 (5) |
O1vi—Si1—O3ix | 109.9 (4) | Al1vi—N3—Si1vi | 0.0 |
N1vi—Si1—O3ix | 109.9 (4) | Si2—N3—Al1xvi | 112.6 (5) |
O1vii—Si1—O3ix | 109.9 (4) | Al1vi—N3—Al1xvi | 106.2 (5) |
N1vii—Si1—O3ix | 109.9 (4) | Si1vi—N3—Al1xvi | 106.2 (5) |
N2—Si1—N3ix | 105.7 (6) | Si2—N3—Si1xvi | 112.6 (5) |
O1vi—Si1—N3ix | 109.9 (4) | Al1vi—N3—Si1xvi | 106.2 |
N1vi—Si1—N3ix | 109.9 (4) | Si1vi—N3—Si1xvi | 106.2 (5) |
O1vii—Si1—N3ix | 109.9 (4) | Al1xvi—N3—Si1xvi | 0.0 |
N1vii—Si1—N3ix | 109.9 (4) | Si2—N3—Si1viii | 112.6 (5) |
O3ix—Si1—N3ix | 0.0 | Al1vi—N3—Si1viii | 106.2 |
N2—Si1—Al1vii | 96.0 (2) | Si1vi—N3—Si1viii | 106.2 (5) |
O1vi—Si1—Al1vii | 33.3 (3) | Al1xvi—N3—Si1viii | 106.2 |
N1vi—Si1—Al1vii | 33.3 (3) | Si1xvi—N3—Si1viii | 106.2 (5) |
O1vii—Si1—Al1vii | 88.8 (2) | Si2—N3—Al1viii | 112.6 (5) |
N1vii—Si1—Al1vii | 88.8 (2) | Al1vi—N3—Al1viii | 106.2 (5) |
O3ix—Si1—Al1vii | 143.1 (3) | Si1vi—N3—Al1viii | 106.2 (5) |
N3ix—Si1—Al1vii | 143.1 (3) | Al1xvi—N3—Al1viii | 106.2 (5) |
N2—Si1—Al1vi | 96.0 (2) | Si1xvi—N3—Al1viii | 106.2 (5) |
O1vi—Si1—Al1vi | 88.8 (2) | Si1viii—N3—Al1viii | 0.0 (2) |
Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) −x+1, −y+1, z−1/2; (iv) y, −x+y+1, z−1/2; (v) x−y, x, z−1/2; (vi) −x+y+1, −x+1, z; (vii) −y+1, x−y, z; (viii) x−1, y, z; (ix) x+1, y, z; (x) x, y−1, z; (xi) x−y−1, x−1, z−1/2; (xii) −x+1, −y, z−1/2; (xiii) x−y, x−1, z−1/2; (xiv) x−y+1, x, z−1/2; (xv) x−y+1, x, z+1/2; (xvi) −y, x−y−1, z. |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.115, 1.32 |
No. of reflections | 395 |
No. of parameters | 39 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å-3) | 5.52, -3.46 |
Absolute structure | Refined as an inversion twin |
Absolute structure parameter | 0.12 (9) |
Acknowledgements
We thank Ms Y. Suzuki for preparing the sample and Mr T. Kamaya for the EPMA measurement. This work is supported by the joint research budget between Tohoku University and the Mitsubishi Chemical Corporation (J190002825).
Funding information
Funding for this research was provided by: a joint research with Tohoku University and the Mitsu-bishi Chemical Group, Science and Technology ResearchCenter, Inc. J190002825.
References
Baur, W. H. (1987). Cryst. Rev. 1, 59-83. CrossRef Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fang, C. M., Li, Y. Q., Hintzen, H. T. & de With, G. (2003). J. Mater. Chem. 13, 1480–1483. Web of Science CrossRef ICSD CAS Google Scholar
Horikawa, T., Fujitani, M., Hanzawa, H. & Machida, K. (2012). ECS J. Solid State Sci. Tech. 1, R113-R118. Google Scholar
Huppertz, H. & Schnick, W. (1997a). Acta Cryst. C53, 1751–1753. Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
Huppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212–217. CrossRef ICSD CAS Web of Science Google Scholar
Kurushima, T., Gundiah, G., Shimomura, Y., Mikami, M., Kijima, N. & Cheetham, A. K. (2010). J. Electrochem. Soc. 157, J64–68. Web of Science CrossRef CAS Google Scholar
Li, Y. Q., de With, G. & Hintzen, H. T. (2004). J. Alloys Compd. 385, 1–11. Web of Science CrossRef CAS Google Scholar
Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687–4694. Web of Science CrossRef ICSD CAS Google Scholar
Lieb, A., Kechele, J. A., Kraut, R. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 166–171. Web of Science CrossRef ICSD CAS Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537–544. Web of Science CrossRef CAS PubMed Google Scholar
Porob, D., Karkada, N., Kumar, N. P. & Setlur, A. A. (2012). ECS Trans. 41, 27-38. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vinograd, V. L., Juarez-Arellano, E. A., Lieb, A., Knorr, K., Schnick, W., Gale, J. D. & Winkler, B. (2007). Z. Kristallogr. 222, 402–415. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.