research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lu-atom-ordered oxonitridoaluminosilicate Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1

CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp

Edited by P. Roussel, ENSCL, France (Received 14 September 2020; accepted 29 September 2020; online 6 October 2020)

A single crystal of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 (barium cerium lutetium aluminosilicate nitride oxide) was obtained by heating a mixed powder of Ba3N2, Si3N4, Al, Lu2O3, and CeO2 at 2173 K for 1 h under N2 gas at 0.85 MPa. X-ray single-crystal structure analysis revealed that the title oxynitride is hexa­gonal (lattice constants: a = 6.0378 (5) Å, c = 9.8133 (9) Å; space group: P63mc) and isostructural with BaYbSi4N7. (Ba,Ce) and Lu atoms occupy twelvefold and sixfold coordination sites, respectively.

1. Chemical context

Huppertz & Schnick (1997b[Huppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212-217.]) determined the hexa­gonal crystal structures of two isotypic nitrides, SrYbSi4N7 [a = 5.9880 (3) Å, c = 9.7499 (9) Å] and BaYbSi4N7 [a = 6.0307 (2) Å, c = 9.8198 (4) Å] with space group P63mc (Z = 2), by single-crystal X-ray diffraction (XRD). In the crystal structure of BaYbSi4N7, the Ba, Yb, and Si atoms are coord­inated by twelve, six, and four N atoms of an anti­cubocta­hedron, octa­hedron, and a tetra­hedron, respectively. A three-dimensional framework of SiN4 tetra­hedra is formed by sharing vertex N atoms, and the inter­spaces of the framework are occupied by Ba and Yb atoms. N atoms at the N1 and N2 sites bond to two Si atoms, and N atoms at the N3 site are surrounded by four Si atoms. Such a high coordination number for the N3 site is characteristic of the crystal structures of SrYbSi4N7 and BaYbSi4N7 (Huppertz & Schnick, 1997b[Huppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212-217.]).

Other nitrides having the same structure type have been synthesized by substitution of Ca and/or other rare-earth (R) atoms for Sr, Ba, and Yb atoms. The crystal structure of SrYSi4N7 (a = 6.0160 (1) Å, c = 9.7894 (1) Å) was clarified by powder X-ray diffraction (pXRD) (Li, Fang, et al., 2004[Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687-4694.]). Some nitrides doped with Eu2+, such as Ba0.99Eu0.01YSi4N7 [a = 6.0275 (6) Å, c = 9.880 (1) Å], Sr0.99Eu0.01YSi4N7 [a = 6.0269 (7) Å, c = 9.878 (1)] , and Ca0.99Eu0.01YSi4N7 [a = 5.9866 (5) Å, c = 9.800 (1) Å] (Li, Fang, et al., 2004[Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687-4694.]; Porob et al., 2012[Porob, D., Karkada, N., Kumar, N. P. & Setlur, A. A. (2012). ECS Trans. 41, 27-38.]), have also been reported. Oxynitrides SrR(Si,Al)4(N,O)7 and BaR(Si,Al)4(N,O)7 (R = Ho, Er, Tm, Yb; Lieb et al., 2007[Lieb, A., Kechele, J. A., Kraut, R. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 166-171.]), in which the Si and N atoms are partly replaced by Al and O atoms, have also been synthesized. The crystal structures of the aforementioned compounds were found to be isotypic with SrYbSi4N7 and BaYbSi4N7. The alkaline-earth (A) atoms of Ca, Sr, or Ba are ordered at the anti­cubocta­hedral (a) site of twelvefold coordination of N or O atoms, and the R atoms are located at the octa­hedral (o) site of sixfold coordination of N or O atoms. However, the crystal structures of BaLuSi4N7 [a = 6.02185 (2) Å, c = 9.81219 (7) Å] and SrLuSi4N7 [a = 6.02113 (2) Å, c = 9.80105 (7) Å] were analyzed by the Rietveld method for pXRD patterns using a disordered model in which both Ba/Sr and Lu atoms were statistically located at the a and o sites with the same occupancy of 0.5 (Park et al., 2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]).

During our materials survey of novel Ce-doped phosphors in the Ba–Lu–Si–N system, small numbers of needle-like single crystals of 10 μm in diameter and 60 μm in length (at maximum) were grown at the contact surface between the BN crucible and an aggregate of fine particles consisting of amorphous and crystalline materials. The powder XRD pattern of the crystalline materials were indexed by the similar lattice constants as that of the needle-like crystals. Electron-probe microanalysis (EPMA) performed at 12 points on one of the needle-like single crystals gave a composition of Ce:Ba:Lu:Si:Al:N:O = 0.8 (2):7.6 (5):7.6 (6):29.6 (20):1.6 (4):49 (3):4(1) in weight percent (total mass was normalized to 100 mass%). The lower precision of the N and O contents was due to the lower energy of the characteristic X-rays of these light elements. The molar ratio obtained from the composition was Ce:Ba:Lu:Si:Al:N:O = 0.1 (3):0.99 (7):0.99 (8):3.9 (3):0.21 (5):6.4 (4):0.5 (2) (total sum 13), and the composition of the single crystal was regarded to be Ce0.1Ba0.9Lu1.0Si3.8Al0.2N6.9O0.1 by assuming Ce atoms situated at the a site with Ba atoms. The XRD spots from the crystal were indexed with hexa­gonal lattice constants of a = 6.0378 (5) Å and c = 9.8133 (9) Å (Table 1[link]), which were approximately the same as those reported for BaLuSi4N7 (Park et al., 2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]) within differences of 0.1 and 0.2%, respectively. Initially, a structure refinement of Ce0.1Ba0.9Lu1.0Si3.8Al0.2N6.9O0.1 was carried out with a disordered model of (Ce0.1Ba0.4Lu0.5)(Ba0.5Lu0.5)Al0.05Si0.95)4(N0.99O0.01)7, in which the Ce, Ba, and Lu atoms were at the a site with a ratio of 0.1:0.4:0.5 and Ba and Lu atoms were at the o site with a 0.5:0.5 ratio, in accordance with the structure model of BaLuSi4N7 (Park et al., 2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]). The R value of refinement was 4.2%, and residual electron densities of 5.52 and −3.46 e Å−3 were observed at 0.89 and 1.67 Å, respectively, from the a site and the N/O site (Table 2[link]). Refinement using the ordered model of (Ce0.1Ba0.9)(Lu)(Al0.05Si0.95)4(N0.99O0.01)7, in which the Ba and Ce atoms are at the a site with a ratio of 0.9:0.1 and Lu atoms fully occupy the o site, yielded an R value of 2.2% with residual electron densities of 1.70 and −1.40 e Å−3 (Table1). As a consequence, the Ba and Lu atoms in Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 were clarified to be ordered at the a and o sites, respectively (Fig. 1[link]).

Table 1
Experimental details

Crystal data
Chemical formula Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1
Mr 1045.99
Crystal system, space group Hexagonal, P63mc
Temperature (K) 301
a, c (Å) 6.0378 (5), 9.8133 (9)
V3) 309.82 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 22.95
Crystal size (μm) 0.13 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.37, 0.68
No. of measured, independent and observed [I > 2σ(I)] reflections 2818, 395, 381
Rint 0.059
(sin θ/λ)max−1) 0.713
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.04
No. of reflections 395
No. of parameters 33
No. of restraints 1
Δρmax, Δρmin (e Å−3) 1.70, −1.40
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.10 (3)
Computer programs: Instrument Service (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX3 (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), pubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Table 2
Disordered model (Ce0.1Ba0.4Lu0.5)(Ba0.5Lu0.5) (Al0.05Si0.95)4 (N0.99O0.01)7

Refinement  
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.32
No. of reflections 395
No. of parameters 39
No. of restraints 1
Δρmax, Δρmin (e Å−3) 5.52, −3.46
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.12 (9)
[Figure 1]
Figure 1
(a) Arrangement of cation-centered N/O atoms and (b) the crystal structure illustrated with cation-centered N/O-coordinated polyhedra for Ba0.90Ce0.10LuSi3.80Al0.20N6.90O0.10. Symmetry codes: (i) x, y, z; (ii) x − 1, y, z; (iii) x, y + 1, z; (iv) −y, x − y, z); (v) −y, x − y − 1, z; (vi) −x, −y, z + [{1\over 2}]); (vii) −y + 1, x − y, z); (viii) −x + y + 1, −x + 1, z; (ix) y, −x + y, z + [{1\over 2}]; (x) x − y + 1, x, z + [{1\over 2}]; (xi) −x + 1, −y + 1, z + [{1\over 2}]; (xii) y, −x + y + 1, z + [{1\over 2}]; (xiii) x − y, x, z + [{1\over 2}]; (xiv) −x + y + 1, −x + 2, z; (xv) −y + 1, x − y + 1, z.

2. Structural commentary

The inter­atomic distances of Ba/Ce—N/O for Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 are 2.975 (10) Å × 3, 3.0236 (5) Å × 4, 3.0236 (5) Å × 2, and 3.052 (10) Å × 3, which are comparable with the Ba/Lu—N distances for the a site of BaLuSi4N7 (2.975 Å × 3, 3.0372 Å × 3, 3.038 Å × 3, 3.0783 Å × 3) reported by Park et al. (2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]). Lu—N/O distances in the title compound are 2.271 (10) Å × 3 and 2.312 (9) Å × 3, which are 0.139 Å shorter than the Ba/Lu—N distances (2.414 Å × 3, 2.451 Å × 3) for the o site of BaLuSi4N7.

The Al/Si1—N/O distances are 1.701 (9) Å × 3 and 1.85 (2) Å, and the Al/Si2—N/O distances are 1.738 (9) Å, 1.743 (6) Å × 2, and 1.954 (7) Å. These distances are consistent with those of Si—N (1.705 Å × 3, 1.887 Å and 1.724 Å, 1.721 Å × 2, 1.962 Å) for BaYbSi4N7 (Huppertz & Schnick, 1997b[Huppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212-217.]) but 0.07–0.2 Å longer than those of Si1–N (1.478 Å × 3, 1.776 Å) and Si2—N (1.671, 1.673, 1.889, 1.937 Å) reported for BaLuSi4N7 by Park et al. (2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]), although the lattice constants of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 and BaLuSi4N7 are similar, as previously mentioned. The average distances of Al/Si2—N/O and Si2—O of 1.792 and 1.782 Å, respectively, are slightly longer than those of Al/Si1—N/O (1.741 Å) and Si1—N (1.750 Å). The IVSi4+IVN3− and IVAl3+IVN3− distances calculated with the effective ionic radius for nitrides (IVSi4+ = 0.29, IVAl3+ = 0.41 Å, IVN3− = 1.46 Å; Baur, 1987[Baur, W. H. (1987). Cryst. Rev. 1, 59-83.]) are 1.75 and 1.87 Å, respectively, which are similar to the Si—N and Al/Si—N/O distances of BaYbSi4N7 and Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1. The bond-valence sum (BVS) (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for the Lu site of Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1 was calculated to be 3.07 with a bond-valence parameter of Lu—N (r0 = 2.046, b = 0.37) reported by Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), in good agreement with the valence of Lu3+. The BVS with a parameter of Ba—N [r0 = 2.47; Brese and O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.])] is 2.73, which is greater than the valence of Ba2+. The BVSs of Al/Si1 and Al/Si2 with the parameter of Si–N (r0 = 1.77, b = 0.37) are 4.39 and 3.87, respectively.

3. Database survey

The Inorganic Crystal Structure Database (ICSD) includes some records of BaYbSi4N7-type nitrides and oxynitrides that include alkaline-earth and rare-earth elements: BaYbSi4N7 and SrYbSi4N7 by Huppertz & Schnick (1997b[Huppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212-217.]) and SrYSi4N7 by Li, Fang et al. (2004[Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687-4694.]). EuYbSi4N7 and EuYSi4N7 (Huppertz & Schnick, 1997a[Huppertz, H. & Schnick, W. (1997a). Acta Cryst. C53, 1751-1753.]; Li, Fang et al., 2004[Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687-4694.]) are isostructural with BaYbSi4N7 but do not include an alkaline-earth metal element.

Oxynitrides in which Si and N atoms were partly replaced with Al and O atoms, respectively, have also been reported: BaYb(Si,Al)4(O,N)7 (Vinograd et al., 2007[Vinograd, V. L., Juarez-Arellano, E. A., Lieb, A., Knorr, K., Schnick, W., Gale, J. D. & Winkler, B. (2007). Z. Kristallogr. 222, 402-415.]), BaEr(Si,Al)4(O,N)7, BaHo(Si,Al)4(O,N)7, BaTm(Si,Al)4(O,N)7, BaYb(Si,Al)4(O,N)7, SrEr(Si,Al)4(O,N)7, SrHo(Si,Al)4(O,N)7, SrTm(Si,Al)4(O,N)7, SrYb(Si,Al)4(O,N)7, EuEr(Si,Al)4(O,N)7, EuHo(Si,Al)4(O,N)7, EuTm(Si,Al)4(O,N)7, and EuYb(Si,Al)4(O,N)7 (Lieb et al., 2007[Lieb, A., Kechele, J. A., Kraut, R. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 166-171.]).

First-principles calculations of the electronic structures of SrYSi4N7 and BaYSi4N7 have been reported (Fang et al., 2003[Fang, C. M., Li, Y. Q., Hintzen, H. T. & de With, G. (2003). J. Mater. Chem. 13, 1480-1483.]). Moreover, numerous researchers have investigated the luminescence of oxynitrides and nitrides doped with Ce and Eu, including Ce3+-BaYSi4N7, Eu2+-BaYSi4N7 (Li, deWith et al., 2004[Li, Y. Q., de With, G. & Hintzen, H. T. (2004). J. Alloys Compd. 385, 1-11.]), Ce3+-SrYSi4N7, Eu2+-SrYSi4N7 (Li, Fang et al., 2004[Li, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687-4694.]), Eu2+-(Ca,Sr, or Ba)YSi4N7, Eu2+-(Ca,Sr, or Ba)Y(Si,Al)4(N,O)7 (Kurushima et al., 2010[Kurushima, T., Gundiah, G., Shimomura, Y., Mikami, M., Kijima, N. & Cheetham, A. K. (2010). J. Electrochem. Soc. 157, J64-68.]), Eu2+-(Ca, Sr, or Ba)(Sc, Y, or La)Si4N7 (Horikawa et al., 2012[Horikawa, T., Fujitani, M., Hanzawa, H. & Machida, K. (2012). ECS J. Solid State Sci. Tech. 1, R113-R118.]), Eu2+-(Ca,Sr, or Ba)Y(Y, La, or Lu)Si4N7 (Park et al., 2012[Park, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537-544.]), and Eu2+-SrScSi4(N,O)7 (Porob et al., 2012[Porob, D., Karkada, N., Kumar, N. P. & Setlur, A. A. (2012). ECS Trans. 41, 27-38.]).

4. Synthesis and crystallization

Powdered Si3N4 (Ube Industries Ltd., UBE-SN-E10, 95+%), Ba3N2 (Materion Corp., ∼20 mesh 99.7%), Al (Rare Metallic, ∼200 mesh, 99.9%), Lu2O3 (Nippon Yttrium Co. Ltd., 99.999%), CeO2 (Shin-Etsu Chemical Co. Ltd., 99.99%) were weighed out in an Si:Ba:Lu:Al:Ce molar ratio of 3.25:1:1:0.25:0.04 in an Ar-filled glove box (MBRAUN; [O2] and [H2O] < 1 ppm). The weighed powders were mixed in an agate mortar, and a disk-shaped pellet with a diameter of 10 mm was formed with a die in an Ar gas-filled glove box. The pellet was placed in a BN crucible (Showa Denko, K. K., 99.5%) with an 18 mm inner diameter and 20 mm height, and a BN lid was placed on it. The BN crucible was heated to 1200°C for 1 h under vacuum using a carbon furnace (VESTA, Shimadzu Industrial Systems Co., Ltd.), and the temperature was maintained at 1200 °C for 1 h. N2 gas (Taiyo Nippon Sanso Corp., 99.9995+%) was introduced into the furnace to a pressure of 0.85 MPa, and the furnace was then heated to 1900°C for 25 min. After the temperature and the N2 gas pressure were maintained for 1 h, the sample was cooled to 1200°C for 25 min. The heater power was then cut off. After the furnace reached room temperature, the crucible was removed from the furnace. The chemical composition of the single crystal was analyzed by EPMA (JEOL JXA-8200).

5. Refinement

Crystal data and the data collection details are summarized in Table 1[link], and the structural refinement details are reported in Table 2[link]. Ordered and disordered models were investigated, and the best result was obtained using an ordered model in which the Ce/Ba mixed site and Lu site are located at the a site and o site, respectively. Because the R and S values were not affected by refinement with ordered models of Al and Si atoms and N and O atoms, the occupancies of the Al/Si and N/O sites were fixed at 0.05/0.95 and 0.99/0.01, respectively. Final refinement was carried out with anisotropic displacement parameters.

Supporting information


Computing details top

Data collection: Instrument Service (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: pubCIF (Westrip, 2010).

Barium cerium lutetium aluminosilicate nitride oxide top
Crystal data top
Ba0.9Ce0.1LuAl0.2Si3.8N6.9O0.1Dx = 5.606 Mg m3
Mr = 1045.99Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 127 reflections
a = 6.0378 (5) Åθ = 4.2–30.8°
c = 9.8133 (9) ŵ = 22.95 mm1
V = 309.82 (6) Å3T = 301 K
Z = 1Block, colorless
F(000) = 4640.13 × 0.07 × 0.02 mm
Data collection top
Bruker D8 QUEST
diffractometer
381 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.059
ω and σcansθmax = 30.5°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 78
Tmin = 0.37, Tmax = 0.68k = 88
2818 measured reflectionsl = 1414
395 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.7267P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.022Δρmax = 1.70 e Å3
wR(F2) = 0.055Δρmin = 1.40 e Å3
S = 1.04Extinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
395 reflectionsExtinction coefficient: 0.0052 (16)
33 parametersAbsolute structure: Refined as an inversion twin.
1 restraintAbsolute structure parameter: 0.10 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Lu10.33330.66670.07616 (4)0.0074 (2)
Ba20.33330.66670.44902 (10)0.0099 (3)0.9
Ce20.33330.66670.44902 (10)0.0099 (3)0.1
Si10.8275 (2)0.1725 (2)0.2646 (5)0.0084 (5)0.95
Al10.8275 (2)0.1725 (2)0.2646 (5)0.0084 (5)0.05
Si20.00000.00000.0006 (7)0.0071 (9)0.95
Al20.00000.00000.0006 (7)0.0071 (9)0.05
N10.5097 (8)0.4903 (8)0.2112 (11)0.0087 (14)0.9857
O10.5097 (8)0.4903 (8)0.2112 (11)0.0087 (14)0.0143
N20.8474 (8)0.1526 (8)0.4404 (9)0.0123 (19)0.9857
O20.8474 (8)0.1526 (8)0.4404 (9)0.0123 (19)0.0143
N30.00000.00000.1880 (18)0.016 (3)0.9857
O30.00000.00000.1880 (18)0.016 (3)0.0143
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.0075 (3)0.0075 (3)0.0072 (4)0.00374 (13)0.0000.000
Ba20.0098 (4)0.0098 (4)0.0101 (6)0.00489 (18)0.0000.000
Ce20.0098 (4)0.0098 (4)0.0101 (6)0.00489 (18)0.0000.000
Si10.0076 (8)0.0076 (8)0.0097 (10)0.0035 (9)0.0002 (6)0.0002 (6)
Al10.0076 (8)0.0076 (8)0.0097 (10)0.0035 (9)0.0002 (6)0.0002 (6)
Si20.0061 (10)0.0061 (10)0.009 (3)0.0031 (5)0.0000.000
Al20.0061 (10)0.0061 (10)0.009 (3)0.0031 (5)0.0000.000
N10.007 (2)0.007 (2)0.010 (3)0.002 (2)0.0010 (16)0.0010 (16)
O10.007 (2)0.007 (2)0.010 (3)0.002 (2)0.0010 (16)0.0010 (16)
N20.015 (3)0.015 (3)0.011 (5)0.011 (4)0.0010 (14)0.0010 (14)
O20.015 (3)0.015 (3)0.011 (5)0.011 (4)0.0010 (14)0.0010 (14)
N30.018 (5)0.018 (5)0.013 (8)0.009 (3)0.0000.000
O30.018 (5)0.018 (5)0.013 (8)0.009 (3)0.0000.000
Geometric parameters (Å, º) top
Lu1—O1i2.271 (10)Si1—Ba2ix3.521 (2)
Lu1—N1i2.271 (10)Si1—Ba2x3.521 (2)
Lu1—O1ii2.271 (10)Si2—O2xi1.701 (9)
Lu1—N1ii2.271 (10)Si2—N2xi1.701 (9)
Lu1—N12.271 (10)Si2—O2iv1.701 (9)
Lu1—O2iii2.312 (9)Si2—N2iv1.701 (9)
Lu1—N2iii2.312 (9)Si2—O2xii1.701 (9)
Lu1—O2iv2.312 (9)Si2—N2xii1.701 (9)
Lu1—N2iv2.312 (9)Si2—N31.839 (19)
Lu1—O2v2.312 (9)Si2—Ba2xiii3.5225 (11)
Lu1—N2v2.312 (9)Si2—Ba2xiv3.5225 (11)
Ba2—N12.975 (10)Si2—Ba2v3.5226 (11)
Ba2—O1ii2.975 (10)N1—Al1vii1.743 (6)
Ba2—N1ii2.975 (10)N1—Si1vii1.743 (6)
Ba2—O1i2.975 (10)N1—Al1vi1.743 (6)
Ba2—N1i2.975 (10)N1—Si1vi1.743 (6)
Ba2—O2vi3.0236 (5)N1—Ba2xiv3.052 (10)
Ba2—N2vi3.0236 (5)N2—Al2xv1.701 (9)
Ba2—O2vii3.0236 (5)N2—Si2xv1.701 (9)
Ba2—N2vii3.0236 (5)N2—Lu1xv2.313 (9)
Ba2—O2viii3.0237 (6)N2—Ba2ix3.0237 (6)
Ba2—N2viii3.0237 (6)N2—Ce2ix3.0237 (6)
Si1—N21.738 (9)N2—Ce2x3.0237 (6)
Si1—O1vi1.743 (6)N2—Ba2x3.0237 (6)
Si1—N1vi1.743 (6)N3—Al1vi1.954 (7)
Si1—O1vii1.743 (6)N3—Si1vi1.954 (7)
Si1—N1vii1.743 (6)N3—Al1xvi1.954 (7)
Si1—O3ix1.954 (7)N3—Si1xvi1.954 (7)
Si1—N3ix1.954 (7)N3—Si1viii1.954 (7)
Si1—Al1vii2.914 (4)N3—Al1viii1.954 (7)
Si1—Al1vi2.914 (4)
O1i—Lu1—N1i0.0N1vi—Si1—Al1vi88.8 (2)
O1i—Lu1—O1ii89.4 (3)O1vii—Si1—Al1vi33.3 (3)
N1i—Lu1—O1ii89.4 (3)N1vii—Si1—Al1vi33.3 (3)
O1i—Lu1—N1ii89.4O3ix—Si1—Al1vi143.1 (3)
N1i—Lu1—N1ii89.4 (3)N3ix—Si1—Al1vi143.1 (3)
O1ii—Lu1—N1ii0.0Al1vii—Si1—Al1vi60.0
O1i—Lu1—N189.4N2—Si1—Ba2ix59.17 (6)
N1i—Lu1—N189.4 (3)O1vi—Si1—Ba2ix57.6 (3)
O1ii—Lu1—N189.4N1vi—Si1—Ba2ix57.6 (3)
N1ii—Lu1—N189.4 (3)O1vii—Si1—Ba2ix149.6 (3)
O1i—Lu1—O2iii90.2 (2)N1vii—Si1—Ba2ix149.6 (3)
N1i—Lu1—O2iii90.2 (2)O3ix—Si1—Ba2ix100.5 (2)
O1ii—Lu1—O2iii90.2 (2)N3ix—Si1—Ba2ix100.5 (2)
N1ii—Lu1—O2iii90.2 (2)Al1vii—Si1—Ba2ix65.56 (4)
N1—Lu1—O2iii179.5 (3)Al1vi—Si1—Ba2ix116.34 (4)
O1i—Lu1—N2iii90.2 (2)N2—Si1—Ba2x59.17 (6)
N1i—Lu1—N2iii90.2 (2)O1vi—Si1—Ba2x149.6 (3)
O1ii—Lu1—N2iii90.2 (2)N1vi—Si1—Ba2x149.6 (3)
N1ii—Lu1—N2iii90.2 (2)O1vii—Si1—Ba2x57.6 (3)
N1—Lu1—N2iii179.5 (3)N1vii—Si1—Ba2x57.6 (3)
O2iii—Lu1—N2iii0.0O3ix—Si1—Ba2x100.5 (2)
O1i—Lu1—O2iv179.5 (3)N3ix—Si1—Ba2x100.5 (2)
N1i—Lu1—O2iv179.5 (3)Al1vii—Si1—Ba2x116.34 (4)
O1ii—Lu1—O2iv90.2 (2)Al1vi—Si1—Ba2x65.56 (4)
N1ii—Lu1—O2iv90.2 (2)Ba2ix—Si1—Ba2x118.08 (12)
N1—Lu1—O2iv90.2 (2)O2xi—Si2—N2xi0.0
O2iii—Lu1—O2iv90.1 (3)O2xi—Si2—O2iv108.6 (4)
N2iii—Lu1—O2iv90.1 (3)N2xi—Si2—O2iv108.6 (4)
O1i—Lu1—N2iv179.5 (3)O2xi—Si2—N2iv108.6
N1i—Lu1—N2iv179.5 (3)N2xi—Si2—N2iv108.6 (4)
O1ii—Lu1—N2iv90.2 (2)O2iv—Si2—N2iv0.0
N1ii—Lu1—N2iv90.2 (2)O2xi—Si2—O2xii108.6 (4)
N1—Lu1—N2iv90.2 (2)N2xi—Si2—O2xii108.6 (4)
O2iii—Lu1—N2iv90.1O2iv—Si2—O2xii108.6 (4)
N2iii—Lu1—N2iv90.1 (3)N2iv—Si2—O2xii108.6 (4)
O2iv—Lu1—N2iv0.0O2xi—Si2—N2xii108.6
O1i—Lu1—O2v90.2 (2)N2xi—Si2—N2xii108.6 (4)
N1i—Lu1—O2v90.2 (2)O2iv—Si2—N2xii108.6
O1ii—Lu1—O2v179.5 (3)N2iv—Si2—N2xii108.6 (4)
N1ii—Lu1—O2v179.5 (3)O2xii—Si2—N2xii0.0
N1—Lu1—O2v90.2 (2)O2xi—Si2—N3110.3 (3)
O2iii—Lu1—O2v90.1 (3)N2xi—Si2—N3110.3 (3)
N2iii—Lu1—O2v90.1 (3)O2iv—Si2—N3110.3 (3)
O2iv—Lu1—O2v90.1 (3)N2iv—Si2—N3110.3 (3)
N2iv—Lu1—O2v90.1 (3)O2xii—Si2—N3110.3 (3)
O1i—Lu1—N2v90.2 (2)N2xii—Si2—N3110.3 (3)
N1i—Lu1—N2v90.2 (2)O2xi—Si2—Ba2xiii59.07 (3)
O1ii—Lu1—N2v179.5 (3)N2xi—Si2—Ba2xiii59.07 (3)
N1ii—Lu1—N2v179.5 (3)O2iv—Si2—Ba2xiii151.4 (4)
N1—Lu1—N2v90.2 (2)N2iv—Si2—Ba2xiii151.4 (4)
O2iii—Lu1—N2v90.1O2xii—Si2—Ba2xiii59.07 (3)
N2iii—Lu1—N2v90.1 (3)N2xii—Si2—Ba2xiii59.07 (3)
O2iv—Lu1—N2v90.1N3—Si2—Ba2xiii98.27 (11)
N2iv—Lu1—N2v90.1 (3)O2xi—Si2—Ba2xiv151.4 (4)
O2v—Lu1—N2v0.0N2xi—Si2—Ba2xiv151.4 (4)
N1—Ba2—O1ii65.0O2iv—Si2—Ba2xiv59.07 (3)
N1—Ba2—N1ii65.0 (3)N2iv—Si2—Ba2xiv59.07 (3)
O1ii—Ba2—N1ii0.0O2xii—Si2—Ba2xiv59.07 (3)
N1—Ba2—O1i65.0N2xii—Si2—Ba2xiv59.07 (3)
O1ii—Ba2—O1i65.0 (3)N3—Si2—Ba2xiv98.27 (11)
N1ii—Ba2—O1i65.0 (3)Ba2xiii—Si2—Ba2xiv117.97 (6)
N1—Ba2—N1i65.0 (3)O2xi—Si2—Ba2v59.07 (3)
O1ii—Ba2—N1i65.0N2xi—Si2—Ba2v59.07 (3)
N1ii—Ba2—N1i65.0 (3)O2iv—Si2—Ba2v59.07 (3)
O1i—Ba2—N1i0.0N2iv—Si2—Ba2v59.07 (3)
N1—Ba2—O2vi57.1 (2)O2xii—Si2—Ba2v151.4 (4)
O1ii—Ba2—O2vi87.01 (17)N2xii—Si2—Ba2v151.4 (4)
N1ii—Ba2—O2vi87.01 (17)N3—Si2—Ba2v98.27 (11)
O1i—Ba2—O2vi122.0 (3)Ba2xiii—Si2—Ba2v117.97 (6)
N1i—Ba2—O2vi122.0 (3)Ba2xiv—Si2—Ba2v117.97 (6)
N1—Ba2—N2vi57.1 (2)Al1vii—N1—Si1vii0.0
O1ii—Ba2—N2vi87.01 (17)Al1vii—N1—Al1vi113.4 (6)
N1ii—Ba2—N2vi87.01 (17)Si1vii—N1—Al1vi113.4 (6)
O1i—Ba2—N2vi122.0 (3)Al1vii—N1—Si1vi113.4
N1i—Ba2—N2vi122.0 (3)Si1vii—N1—Si1vi113.4 (6)
O2vi—Ba2—N2vi0.0Al1vi—N1—Si1vi0.0
N1—Ba2—O2vii57.1 (2)Al1vii—N1—Lu1123.3 (3)
O1ii—Ba2—O2vii122.0 (3)Si1vii—N1—Lu1123.3 (3)
N1ii—Ba2—O2vii122.0 (3)Al1vi—N1—Lu1123.3 (3)
O1i—Ba2—O2vii87.01 (17)Si1vi—N1—Lu1123.3 (3)
N1i—Ba2—O2vii87.01 (17)Al1vii—N1—Ba292.8 (4)
O2vi—Ba2—O2vii65.6 (3)Si1vii—N1—Ba292.8 (4)
N2vi—Ba2—O2vii65.6 (3)Al1vi—N1—Ba292.8 (4)
N1—Ba2—N2vii57.1 (2)Si1vi—N1—Ba292.8 (4)
O1ii—Ba2—N2vii122.0 (3)Lu1—N1—Ba287.4 (2)
N1ii—Ba2—N2vii122.0 (3)Al1vii—N1—Ba2xiv90.4 (3)
O1i—Ba2—N2vii87.01 (17)Si1vii—N1—Ba2xiv90.4 (3)
N1i—Ba2—N2vii87.01 (17)Al1vi—N1—Ba2xiv90.4 (3)
O2vi—Ba2—N2vii65.6Si1vi—N1—Ba2xiv90.4 (3)
N2vi—Ba2—N2vii65.6 (3)Lu1—N1—Ba2xiv86.8 (3)
O2vii—Ba2—N2vii0.0Ba2—N1—Ba2xiv174.2 (4)
N1—Ba2—O2viii87.01 (17)Al2xv—N2—Si2xv0.0
O1ii—Ba2—O2viii57.1 (2)Al2xv—N2—Si1117.2 (5)
N1ii—Ba2—O2viii57.1 (2)Si2xv—N2—Si1117.2 (5)
O1i—Ba2—O2viii122.0 (3)Al2xv—N2—Lu1xv124.5 (5)
N1i—Ba2—O2viii122.0 (3)Si2xv—N2—Lu1xv124.5 (5)
O2vi—Ba2—O2viii54.4 (3)Si1—N2—Lu1xv118.3 (4)
N2vi—Ba2—O2viii54.4 (3)Al2xv—N2—Ba2ix92.07 (17)
O2vii—Ba2—O2viii119.924 (18)Si2xv—N2—Ba2ix92.07 (17)
N2vii—Ba2—O2viii119.924 (18)Si1—N2—Ba2ix91.25 (18)
N1—Ba2—N2viii87.01 (17)Lu1xv—N2—Ba2ix86.80 (17)
O1ii—Ba2—N2viii57.1 (2)Al2xv—N2—Ce2ix92.07 (17)
N1ii—Ba2—N2viii57.1 (2)Si2xv—N2—Ce2ix92.07 (17)
O1i—Ba2—N2viii122.0 (3)Si1—N2—Ce2ix91.25 (18)
N1i—Ba2—N2viii122.0 (3)Lu1xv—N2—Ce2ix86.80 (17)
O2vi—Ba2—N2viii54.4Ba2ix—N2—Ce2ix0.0
N2vi—Ba2—N2viii54.4 (3)Al2xv—N2—Ce2x92.07 (17)
O2vii—Ba2—N2viii119.9Si2xv—N2—Ce2x92.07 (17)
N2vii—Ba2—N2viii119.924 (18)Si1—N2—Ce2x91.25 (18)
O2viii—Ba2—N2viii0.0Lu1xv—N2—Ce2x86.80 (17)
N2—Si1—O1vi111.0 (4)Ba2ix—N2—Ce2x173.6 (3)
N2—Si1—N1vi111.0 (4)Ce2ix—N2—Ce2x173.6 (3)
O1vi—Si1—N1vi0.0Al2xv—N2—Ba2x92.07 (17)
N2—Si1—O1vii111.0 (4)Si2xv—N2—Ba2x92.07 (17)
O1vi—Si1—O1vii109.3 (6)Si1—N2—Ba2x91.25 (18)
N1vi—Si1—O1vii109.3 (6)Lu1xv—N2—Ba2x86.80 (17)
N2—Si1—N1vii111.0 (4)Ba2ix—N2—Ba2x173.6 (3)
O1vi—Si1—N1vii109.3Ce2ix—N2—Ba2x173.6
N1vi—Si1—N1vii109.3 (6)Ce2x—N2—Ba2x0.0
O1vii—Si1—N1vii0.0Si2—N3—Al1vi112.6 (5)
N2—Si1—O3ix105.7 (6)Si2—N3—Si1vi112.6 (5)
O1vi—Si1—O3ix109.9 (4)Al1vi—N3—Si1vi0.0
N1vi—Si1—O3ix109.9 (4)Si2—N3—Al1xvi112.6 (5)
O1vii—Si1—O3ix109.9 (4)Al1vi—N3—Al1xvi106.2 (5)
N1vii—Si1—O3ix109.9 (4)Si1vi—N3—Al1xvi106.2 (5)
N2—Si1—N3ix105.7 (6)Si2—N3—Si1xvi112.6 (5)
O1vi—Si1—N3ix109.9 (4)Al1vi—N3—Si1xvi106.2
N1vi—Si1—N3ix109.9 (4)Si1vi—N3—Si1xvi106.2 (5)
O1vii—Si1—N3ix109.9 (4)Al1xvi—N3—Si1xvi0.0
N1vii—Si1—N3ix109.9 (4)Si2—N3—Si1viii112.6 (5)
O3ix—Si1—N3ix0.0Al1vi—N3—Si1viii106.2
N2—Si1—Al1vii96.0 (2)Si1vi—N3—Si1viii106.2 (5)
O1vi—Si1—Al1vii33.3 (3)Al1xvi—N3—Si1viii106.2
N1vi—Si1—Al1vii33.3 (3)Si1xvi—N3—Si1viii106.2 (5)
O1vii—Si1—Al1vii88.8 (2)Si2—N3—Al1viii112.6 (5)
N1vii—Si1—Al1vii88.8 (2)Al1vi—N3—Al1viii106.2 (5)
O3ix—Si1—Al1vii143.1 (3)Si1vi—N3—Al1viii106.2 (5)
N3ix—Si1—Al1vii143.1 (3)Al1xvi—N3—Al1viii106.2 (5)
N2—Si1—Al1vi96.0 (2)Si1xvi—N3—Al1viii106.2 (5)
O1vi—Si1—Al1vi88.8 (2)Si1viii—N3—Al1viii0.0 (2)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x+1, y+1, z1/2; (iv) y, x+y+1, z1/2; (v) xy, x, z1/2; (vi) x+y+1, x+1, z; (vii) y+1, xy, z; (viii) x1, y, z; (ix) x+1, y, z; (x) x, y1, z; (xi) xy1, x1, z1/2; (xii) x+1, y, z1/2; (xiii) xy, x1, z1/2; (xiv) xy+1, x, z1/2; (xv) xy+1, x, z+1/2; (xvi) y, xy1, z.
Disordered model (Ce0.1Ba0.4Lu0.5)(Ba0.5Lu0.5) (Al0.05Si0.95)4 (N0.99O0.01)7 top
Refinement
R[F2 > 2σ(F2)], wR(F2), S0.042, 0.115, 1.32
No. of reflections395
No. of parameters39
No. of restraints1
Δρmax, Δρmin (e Å-3)5.52, -3.46
Absolute structureRefined as an inversion twin
Absolute structure parameter0.12 (9)
 

Acknowledgements

We thank Ms Y. Suzuki for preparing the sample and Mr T. Kamaya for the EPMA measurement. This work is supported by the joint research budget between Tohoku University and the Mitsubishi Chemical Corporation (J190002825).

Funding information

Funding for this research was provided by: a joint research with Tohoku University and the Mitsu-bishi Chemical Group, Science and Technology ResearchCenter, Inc. J190002825.

References

First citationBaur, W. H. (1987). Cryst. Rev. 1, 59-83.  CrossRef Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, C. M., Li, Y. Q., Hintzen, H. T. & de With, G. (2003). J. Mater. Chem. 13, 1480–1483.  Web of Science CrossRef ICSD CAS Google Scholar
First citationHorikawa, T., Fujitani, M., Hanzawa, H. & Machida, K. (2012). ECS J. Solid State Sci. Tech. 1, R113-R118.  Google Scholar
First citationHuppertz, H. & Schnick, W. (1997a). Acta Cryst. C53, 1751–1753.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationHuppertz, H. & Schnick, W. (1997b). Z. Anorg. Allg. Chem. 623, 212–217.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKurushima, T., Gundiah, G., Shimomura, Y., Mikami, M., Kijima, N. & Cheetham, A. K. (2010). J. Electrochem. Soc. 157, J64–68.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y. Q., de With, G. & Hintzen, H. T. (2004). J. Alloys Compd. 385, 1–11.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y. Q., Fang, C. M., de With, G. & Hintzen, H. T. (2004). J. Solid State Chem. 177, 4687–4694.  Web of Science CrossRef ICSD CAS Google Scholar
First citationLieb, A., Kechele, J. A., Kraut, R. & Schnick, W. (2007). Z. Anorg. Allg. Chem. 633, 166–171.  Web of Science CrossRef ICSD CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, W. B., Son, K. H., Singh, S. P. & Sohn, K. S. (2012). ACS Comb. Sci. 14, 537–544.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPorob, D., Karkada, N., Kumar, N. P. & Setlur, A. A. (2012). ECS Trans. 41, 27-38.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinograd, V. L., Juarez-Arellano, E. A., Lieb, A., Knorr, K., Schnick, W., Gale, J. D. & Winkler, B. (2007). Z. Kristallogr. 222, 402–415.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds