research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of (±)-Goniotamirenone C

CROSSMARK_Color_square_no_text.svg

aCenter of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand, and bSchool of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
*Correspondence e-mail: spyne@uow.edu.au

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 22 September 2020; accepted 4 October 2020; online 9 October 2020)

The structure of the racemic version of the natural product Goniotamirenone C [racemic anti-6-(2-chloro-1-hy­droxy-2-phenyl­eth­yl)-2H-pyran-2-one, C13H11ClO3] at 150 K is reported. The compound crystallizes with monoclinic (P21/n) symmetry and with Z′ = 2. One independent mol­ecule is ordered while the other independent mol­ecule exhibits an inter­esting whole-mol­ecule enanti­omeric disorder with occupancies of 0.846 (4) and 0.154 (4). The independent mol­ecules are hydrogen bonded with –OH⋯O=C linkages into chains that run parallel to the a axis. This structural analysis corrects our previous assignment as the syn isomer [Meesakul et al. (2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]). Phytochemistry, 171, 112248–112255].

1. Chemical context

Goniothalamus is one of the largest genera belonging to the Annona­ceae family, which is distributed throughout tropical and subtropical areas. So far, over 160 species have been discovered globally (Saunders & Chalermglin, 2008[Saunders, R. M. K. & Chalermglin, P. (2008). Bot. J. Linn. Soc. 156, 355-384.]) with 15 species found in Thailand (Soonthornchareonnon et al., 1999[Soonthornchareonnon, N., Suwanborirux, K., Bavovada, R., Patarapanich, C. & Cassady, J. M. (1999). J. Nat. Prod. 62, 1390-1394.]). Many species of Goniothalamus have been used as folk medicines for the treatment of common illnesses and as a tonic. Goniothalamus is well known as a rich source of styryllactones, with over 100 compounds isolated and identified (Meesakul et al., 2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]; Jaidee et al., 2019[Jaidee, W., Andersen, R. J., Patrick, B. O., Pyne, S. G., Muanprasat, C., Borwornpinyo, S. & Laphookhieo, S. (2019). Phytochemistry, 157, 8-20.], Bihud et al., 2019[Bihud, N. R., Rasol, N. E., Imran, S., Awang, K., Ahmad, F. B., Mai, C.-W., Leong, C.-O., Cordell, G. A. & Ismail, N. H. (2019). J. Nat. Prod. 82, 2430-2442.]). However, chlorinated styryllactones are rarely reported in the Annona­ceae family. To the best of our knowledge, only two compounds, Parvistone A and Goniotamirenone C, have been isolated and identified from Polyalthia parviflora (Liou et al., 2014[Liou, J. R., Wu, T. Y., Thang, T. D., Hwang, T. L., Wu, C. C., Cheng, Y. B., Chiang, M. Y., Lan, Y. H., El-Shazly, M., Wu, S. L., Beerhues, L., Yuan, S. S., Hou, M. F., Chen, S. L., Chang, F. R. & Wu, Y. C. (2014). J. Nat. Prod. 77, 2626-2632.]) and Goniothalamus tamirensis (Meesakul et al., 2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]), respectively. Styryllactones show inter­esting pharmacological activities, such as cytotoxic activity against several tumor cell lines (Lan et al., 2005[Lan, Y. H., Chang, F. R., Liaw, C. C., Wu, C. C., Chiang, M. Y. & Wu, Y. C. (2005). Planta Med. 71, 153-159.]; Tian et al., 2006[Tian, Z., Chen, S., Zhang, Y., Huang, M., Shi, L., Huang, F., Fong, C., Yang, M. & Xiao, P. (2006). Phytomedicine, 13, 181-186.]; Prawat et al., 2012[Prawat, U., Chaimanee, S., Butsuri, A., Salae, A.-W. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 529-534.]), anti­mycobacterial (Lekphrom et al., 2009[Lekphrom, R., Kanokmedhakul, S. & Kanokmedhakul, K. (2009). J. Ethnopharmacol. 125, 47-50.]; Prawat et al., 2012[Prawat, U., Chaimanee, S., Butsuri, A., Salae, A.-W. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 529-534.]) and anti­plasmodial activities (Lekphrom et al., 2009[Lekphrom, R., Kanokmedhakul, S. & Kanokmedhakul, K. (2009). J. Ethnopharmacol. 125, 47-50.]; Prawat et al., 2012[Prawat, U., Chaimanee, S., Butsuri, A., Salae, A.-W. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 529-534.]). As a part of our continuing study of the phytochemistry of plants in the Annona­ceae family, we report here the synthesis and crystal structure of (±)-Goniotamirenone C.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the space group P21/n with Z′ = 2. The centrosymmetric space group confirms the compound crystallizes as a racemic mixture. One mol­ecule is ordered within the asymmetric unit and there is disorder of the other mol­ecular site with occupancies of 0.846 (4) and 0.154 (4) (Fig. 1[link]). The mol­ecules have two stereogenic carbon centres and the ordered mol­ecule has the configuration (7R,8S), in the asymmetric unit selected. The major occupancy component on the disordered site is of configuration (7S,8R) and the configuration of the minor component is (7R,8S). Thus the minor component of the disorder has the same configuration as the ordered mol­ecule in the selected asymmetric unit. These assignments confirm the relative stereochemistry as anti and thus the structural assignment can be revised from our earlier work (Meesakul et al. 2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]).

[Figure 1]
Figure 1
The contents of the asymmetric unit with complete atom labelling of the ordered mol­ecule and selected labelling of major and minor occupancy disordered mol­ecules, for clarity. The minor occupancy mol­ecule is shaded in pink. Displacement ellipsoids are plotted at the 50% probability level.

Each mol­ecule adopts a staggered conformation about the bond between the stereocentres with chlorine and hydroxyl groups anti­periplanar (Table 1[link]). The main conformational difference between mol­ecules on the ordered site and the disordered site is the dihedral angle between the phenyl (C9X–C14X; where X takes no value for the ordered site and A and B for the disordered site) and pyran-2-one rings (O1X, C2X–C6X). This angle is only 5.88 (6)° on the ordered site and 28.22 (18)° and 27.7 (11)°, respectively, for the major and minor occupancy mol­ecules on the disordered site.

Table 1
Selected torsion angles (°)

O7—C7—C8—Cl1 176.98 (10) O7B—C7B—C8B—Cl1B 177.9 (11)
O7A—C7A—C8A—Cl1A −179.6 (3)    

3. Supra­molecular features

The mol­ecules in the asymmetric unit are linked by hydrogen bonds between the hydroxyl groups as hydrogen-bond donors and the carbonyl groups of the lactones as hydrogen-bond acceptors. The hydrogen-bond metrics are presented in Table 2[link] and fall within standard values. These inter­actions link the mol­ecules into chains running parallel to the [100] direction (Fig. 2[link]). For clarity, the inter­actions between the ordered mol­ecule and the major component of the disorder are shown. These O—H⋯O inter­actions are supported by C–H⋯O=C inter­actions within the chain. The chains stack, seemingly rather awkwardly, in the [001] direction (Fig. 3[link]), presenting an inter­esting C5—H5⋯Cl (2.70 Å) inter-chain contact.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2A 0.84 1.95 2.775 (4) 169
O7—H7A⋯O2B 0.84 1.79 2.63 (3) 173
O7A—H7AB⋯O2i 0.84 2.01 2.835 (6) 170
O7B—H7BA⋯O2i 0.84 1.86 2.63 (3) 153
C3—H3⋯O2Aii 0.95 2.33 3.220 (6) 155
C3—H3⋯O2Bii 0.95 2.52 3.42 (4) 158
C3A—H3A⋯O2 0.95 2.36 3.236 (5) 153
C5—H5⋯Cl1iii 0.95 2.70 3.6042 (17) 159
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A perspective view, with hydrogen bonds shown as dotted magenta lines, of a part of one chain that propagates along the [100] direction. Symmetry code: (i) −1 + x, +y, +z. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 3]
Figure 3
A view along the [100] direction of the stacking of the hydrogen-bonded chains. Chains are coloured differently for clarity.

4. Synthesis and crystallization

The synthetic sequence starts by de­hydrogenating the natural product Goniothalamin by reaction with 2,3-di­chloro-5,6-di­cyano-1,4-benzo­quinone (DDQ) in refluxing benzene solution to give (E)-6-styryl­pyran-2-one (1) in 92% yield (Fig. 4[link]). The central alkene unit in 1 was epoxidized selectively under basic conditions using meta-chloro­perbenzoic acid (mCPBA) in di­chloro­methane solution at 273 K to give racemic 6-[3-phenyl-2-oxiran­yl]-2H-pyran-2-one (2), albeit in 28% yield. Compound 2 was ring-opened at 213 K using HCl in anhydrous diethyl ether solution, furnishing the desired compound as a colourless solid. Crystals suitable for analysis by single crystal X-ray diffraction grew from slow evaporation of a 1:4 di­chloro­methane:methanol solution.

[Figure 4]
Figure 4
Synthesis of (±)-Goniotamirenone C.

(E)-6-Styryl­pyran-2-one (1)

2,3-Di­chloro-5,6-di­cyano-1,4-benzo­quinone (DDQ; 52.8 mg, 0.52 mmol) was added to a solution of Goniothalamin (44.0 mg, 0.44 mmol), isolated as described previously (Meesakul et al., 2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]), in anhydrous benzene (5 mL) and the solution heated at reflux for 3 h. The cooled crude mixture was filtered through Celite and concentrated under reduced pressure. Purification of the residue by column chromatography (EtOAc/n-hexane, 1:5) yielded 1 (43.8 mg, 92%) as a yellow solid after evaporation of the solvent.

M.p. 387–388 K [lit. (Thibonnet et al., 2002[Thibonnet, J., Abarbri, M., Parrain, J. L. & Duchêne, A. (2002). J. Org. Chem. 67, 3941-3944.]) 388–389 K]; 1H NMR (CDCl3, 500 MHz) δH 6.21 (1H, d, J = 9.0 Hz, H-3), 6.14 (1H, d, J = 6.7 Hz, H-5), 6.62 (1H, d, J = 16.0 Hz, H-8), 7.39–7.29 (4H, m, H-4, H-11, H-12, H-13), 7.53–7.44 (3H, m, H-7, H-10, H-14); 13C NMR (CDCl3, 125 MHz) δC 161.8 (C-2), 114.3 (C-3), 143.7 (C-4), 105.0 (C-5), 159.7 (C-6), 135.4 (C-7), 118.8 (C-8), 135.3 (C-9), 127.4 (C-10, C-14), 128.9 (C-11, C-13), 129.5 (C-12).

(±)-6-[3-Phenyl-2-oxiran­yl]-2H-pyran-2-one (2)

NaHCO3 (84 mg, 1.0 mmol) followed by mCPBA (64 mg, 0.4 mmol) were added to a stirred solution of 1 (19.8 mg, 0.1 mmol) in CH2Cl2 (2 mL) at 273.15 K and then stirred at room temperature for 24 h. The mixture was quenched by the addition of saturated aqueous NaHCO3 (3 mL) and water (3 mL) and extracted with EtOAc (8 mL). Purification by column chromatography (EtOAc/n-hexane, 1:3) yielded 2 (5.6 mg, 28%) as a white solid after evaporation of the solvent,

M.p. 393–396 K; 1H NMR (CDCl3, 500 MHz) δH 6.26–6.32 (2H, m, H-3, H-5), 3.64 (1H, d, J = 1.8 Hz, H-7), 4.18 (1H, d, J = 1.8 Hz, H-8), 7.30–7.38 (6H, m, H-4, H-10 to H-14); 13C NMR (CDCl3, 125 MHz) δC 161.2 (C-2), 115.8 (C-3), 143.0 (C-4), 103.4 (C-5), 159.8 (C-6), 58.3 (C-7), 60.8 (C-8), 135.2 (C-9), 125.7 (C-10, C-14), 128.8 (C-11, C-13), 129.0 (C-12).

(±)-Goniotamireone C

2 M HCl in Et2O (0.023 mL, 0.046 mmol) was added to a solution of 2 (12.0 mg, 0.056 mmol) in CHCl3 (1 mL) and stirred at 213 K for 2h. The reaction was quenched by the addition of saturated aqueous NaHCO3 (3 mL) then extracted using EtOAc and purified by column chromatography (EtOAc/n-hexane, 2:5) to yield (±)-Goniotamireone C (10.7 mg, 89%) as a white solid. The NMR spectroscopic data were identical to that of natural Goniotamirenone C (Meesakul et al., 2020[Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248-112255.]).

M.p. 394–396 K; 1H NMR (CDCl3, 500 MHz) δH 6.23 (1H, d, J = 9.4 Hz, H-3), 7.24 (1H, dd, J = 9.4,6.2 Hz. H-4), 6.17 (1H, d, J = 6.4 Hz, H-5), 4.81 (1H, d, J = 6.2 Hz, H-7), 5.28 (1H, d, J = 6.2 Hz, H-8), 7.39–7.38 (2H, m, H-10, H-14), 7.34–7.35 (3H, m, H-11, H-12, H-13); 13C NMR (CDCl3, 125 MHz) δC 161.4 (C-2), 115.1 (C-3), 143.1 (C-4), 104.1 (C-5), 161.3 (C-6), 74.9 (C-7), 62.6 (C-8), 136.0 (C-9), 128.2 (C-10, C-14), 128.6 (C-11, C-13), 129.1 (C-12).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The disorder was modelled by reference to a free variable and the refined disorder occupancies are 0.846 (4) and 0.154 (4). The bond distances and 1,3-non-bonded distances in the pyran-2-one and chloro­hydrin parts of the minor disordered component were restrained to be the same as the corresponding distances in the ordered independent mol­ecule, subject to s.u. values of 0.02 and 0.04 Å, respectively, while the phenyl group of this mol­ecule was fitted as a regular hexa­gon and refined as free rotating group. Enhanced rigid bond restraints were applied to the pyran-2-one ring of the minor component. The anisotropic displacement parameters for the Cl atoms in the disordered mol­ecules were constrained to be identical. H atoms bonded to C atoms were located in difference maps for the ordered independent mol­ecule and the major component on the disordered site. All C-bound H atoms were placed in geometrically idealized positions with bond lengths of 0.95 Å (aromatic C-H) and 1.00 Å (aliphatic C—H), and refined using riding models with Uiso(H) = 1.2Ueq(C). H atoms attached to O were refined using riding models with Uiso(H) = 1.5Ueq(O) and as freely rotating idealized tetra­hedral groups with bond lengths of 0.84 Å.

Table 3
Experimental details

Crystal data
Chemical formula C13H11ClO3
Mr 250.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.79348 (19), 27.8665 (5), 10.2288 (3)
β (°) 112.393 (3)
V3) 2317.49 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.44 × 0.26 × 0.14
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.793, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 53946, 5716, 4902
Rint 0.034
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.08
No. of reflections 5716
No. of parameters 443
No. of restraints 64
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-(2-Chloro-1-hydroxy-2-phenylethyl)-2H-pyran-2-one top
Crystal data top
C13H11ClO3Dx = 1.437 Mg m3
Mr = 250.67Melting point = 394–396 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.79348 (19) ÅCell parameters from 21920 reflections
b = 27.8665 (5) Åθ = 2.3–30.4°
c = 10.2288 (3) ŵ = 0.32 mm1
β = 112.393 (3)°T = 150 K
V = 2317.49 (10) Å3Block, colourless
Z = 80.44 × 0.26 × 0.14 mm
F(000) = 1040
Data collection top
Rigaku XtaLAB Mini II
diffractometer
5716 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source4902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1111
Tmin = 0.793, Tmax = 1.000k = 3737
53946 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.0958P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5716 reflectionsΔρmax = 0.81 e Å3
443 parametersΔρmin = 0.31 e Å3
64 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Approximately 15% of the opposite enantiomer crystallises about the same position as one of the two independent molecules in the asymmetric unit. This was modelled using PART instructions and by using the SAME command for the minor component to the appropriate ordered molecule and the RIGU restraint. The refinement settled well.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.32805 (5)0.27929 (2)0.32248 (5)0.03931 (12)
O10.19539 (12)0.38851 (4)0.14334 (12)0.0280 (2)
C20.06986 (19)0.41632 (6)0.15322 (16)0.0291 (3)
O20.11024 (14)0.45514 (4)0.21042 (13)0.0358 (3)
C30.0917 (2)0.39555 (6)0.09867 (19)0.0371 (4)
H30.1806300.4123270.1087070.045*
C40.1185 (2)0.35297 (7)0.0340 (2)0.0410 (4)
H40.2264150.3398790.0022560.049*
C50.0135 (2)0.32706 (6)0.01912 (19)0.0375 (4)
H50.0061490.2973890.0302810.045*
C60.16559 (19)0.34516 (5)0.07573 (16)0.0286 (3)
C70.32159 (19)0.32161 (5)0.08075 (16)0.0285 (3)
H70.2923380.2899920.0312280.034*
O70.40270 (15)0.34945 (4)0.01160 (12)0.0344 (3)
H7A0.4507940.3725880.0635440.052*
C80.43932 (19)0.31233 (5)0.23401 (17)0.0284 (3)
H80.469 (2)0.3433 (7)0.2880 (19)0.034*
C90.5936 (2)0.28604 (6)0.24594 (17)0.0310 (3)
C100.7444 (2)0.30839 (7)0.31029 (19)0.0377 (4)
H100.7499030.3397730.3481150.045*
C110.8882 (2)0.28497 (8)0.3197 (2)0.0489 (5)
H110.9914290.3004790.3635570.059*
C120.8810 (3)0.23955 (8)0.2659 (2)0.0541 (5)
H120.9794280.2236470.2730040.065*
C130.7311 (3)0.21688 (8)0.2013 (2)0.0538 (5)
H130.7265500.1854370.1640880.065*
C140.5870 (2)0.24015 (6)0.1907 (2)0.0423 (4)
H140.4838960.2246570.1457340.051*
Cl1A0.93903 (13)0.57893 (5)0.49691 (10)0.0377 (2)0.846 (4)
O1A0.7230 (4)0.49234 (15)0.2049 (4)0.0260 (6)0.846 (4)
C2A0.5818 (5)0.46527 (14)0.1782 (7)0.0268 (10)0.846 (4)
O2A0.5979 (6)0.42183 (13)0.1788 (7)0.0329 (8)0.846 (4)
C3A0.4349 (5)0.49166 (15)0.1631 (8)0.0289 (8)0.846 (4)
H3A0.3363150.4747830.1501490.035*0.846 (4)
C4A0.4360 (5)0.53973 (17)0.1673 (8)0.0292 (8)0.846 (4)
H4A0.3384340.5564660.1582850.035*0.846 (4)
C5A0.5820 (4)0.56627 (14)0.1851 (4)0.0279 (6)0.846 (4)
H5A0.5815030.6003580.1849880.033*0.846 (4)
C6A0.7197 (4)0.54175 (13)0.2019 (5)0.0255 (7)0.846 (4)
C7A0.8852 (2)0.56233 (7)0.2189 (2)0.0252 (4)0.846 (4)
H7AA0.8710510.5977150.2025250.030*0.846 (4)
O7A0.9428 (6)0.5433 (2)0.1172 (4)0.0296 (8)0.846 (4)
H7AB0.9805170.5155790.1418340.044*0.846 (4)
C8A1.0153 (2)0.55472 (7)0.3678 (2)0.0260 (5)0.846 (4)
H8A1.0318530.5194060.3844430.031*0.846 (4)
C9A1.1797 (3)0.57712 (10)0.3931 (2)0.0263 (4)0.846 (4)
C10A1.1931 (3)0.62302 (12)0.3442 (3)0.0329 (6)0.846 (4)
H10A1.0964210.6403200.2900830.040*0.846 (4)
C11A1.3472 (5)0.64377 (11)0.3740 (4)0.0398 (7)0.846 (4)
H11A1.3551950.6750810.3404790.048*0.846 (4)
C12A1.4879 (5)0.61874 (18)0.4524 (6)0.0413 (10)0.846 (4)
H12A1.5928550.6328150.4729120.050*0.846 (4)
C13A1.4758 (6)0.57314 (17)0.5009 (5)0.0409 (12)0.846 (4)
H13A1.5727390.5560210.5554070.049*0.846 (4)
C14A1.3225 (6)0.55226 (13)0.4703 (4)0.0339 (7)0.846 (4)
H14A1.3154440.5206860.5025620.041*0.846 (4)
Cl1B0.9422 (9)0.5930 (2)0.4962 (7)0.0377 (2)0.154 (4)
O1B0.722 (3)0.4848 (8)0.206 (4)0.050 (7)0.154 (4)
C2B0.566 (3)0.4672 (8)0.186 (4)0.038 (6)0.154 (4)
O2B0.561 (3)0.4241 (9)0.156 (4)0.040 (6)0.154 (4)
C3B0.437 (3)0.5015 (8)0.151 (5)0.039 (7)0.154 (4)
H3B0.3261060.4911060.1135940.047*0.154 (4)
C4B0.471 (3)0.5473 (9)0.170 (4)0.026 (4)0.154 (4)
H4B0.3872100.5698870.1626660.031*0.154 (4)
C5B0.633 (2)0.5624 (8)0.202 (3)0.034 (5)0.154 (4)
H5B0.6547770.5958920.2071360.041*0.154 (4)
C6B0.7555 (18)0.5324 (7)0.226 (3)0.033 (5)0.154 (4)
C7B0.9378 (11)0.5427 (4)0.2782 (11)0.025 (2)0.154 (4)
H7B0.9997800.5166990.3446030.030*0.154 (4)
O7B0.975 (3)0.5408 (11)0.1509 (18)0.023 (3)0.154 (4)
H7BA1.0355350.5171520.1553960.035*0.154 (4)
C8B0.9942 (12)0.5899 (4)0.3448 (11)0.035 (3)0.154 (4)
H8B0.9317560.6154840.2770030.042*0.154 (4)
C9B1.1750 (11)0.5987 (6)0.3843 (12)0.0263 (4)0.154 (4)
C10B1.236 (2)0.6409 (5)0.3507 (11)0.034 (3)0.154 (4)
H10B1.1627890.6651770.2979040.041*0.154 (4)
C11B1.405 (2)0.6475 (6)0.394 (2)0.058 (7)0.154 (4)
H11B1.4469860.6763330.3714660.069*0.154 (4)
C12B1.5126 (12)0.6119 (9)0.472 (3)0.044 (8)0.154 (4)
H12B1.6280290.6164550.5015740.052*0.154 (4)
C13B1.4514 (18)0.5697 (8)0.505 (3)0.053 (12)0.154 (4)
H13B1.5248730.5454200.5581220.064*0.154 (4)
C14B1.283 (2)0.5631 (5)0.4616 (19)0.042 (7)0.154 (4)
H14B1.2406750.5342620.4845610.050*0.154 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0370 (2)0.0389 (2)0.0482 (3)0.00724 (16)0.02318 (19)0.01609 (18)
O10.0251 (5)0.0239 (5)0.0350 (6)0.0001 (4)0.0115 (4)0.0013 (4)
C20.0291 (7)0.0319 (8)0.0297 (8)0.0037 (6)0.0150 (6)0.0033 (6)
O20.0362 (6)0.0347 (6)0.0414 (7)0.0021 (5)0.0201 (5)0.0052 (5)
C30.0261 (8)0.0442 (9)0.0423 (9)0.0030 (7)0.0144 (7)0.0061 (7)
C40.0268 (8)0.0450 (10)0.0459 (10)0.0062 (7)0.0078 (7)0.0049 (8)
C50.0352 (9)0.0316 (8)0.0394 (9)0.0052 (7)0.0071 (7)0.0013 (7)
C60.0319 (8)0.0216 (7)0.0299 (8)0.0006 (6)0.0090 (6)0.0019 (6)
C70.0329 (8)0.0211 (6)0.0328 (8)0.0007 (6)0.0137 (6)0.0001 (6)
O70.0452 (7)0.0256 (5)0.0382 (6)0.0013 (5)0.0224 (5)0.0012 (4)
C80.0312 (7)0.0235 (7)0.0341 (8)0.0010 (6)0.0163 (6)0.0018 (6)
C90.0318 (8)0.0316 (8)0.0326 (8)0.0059 (6)0.0156 (6)0.0053 (6)
C100.0330 (8)0.0406 (9)0.0417 (9)0.0032 (7)0.0167 (7)0.0042 (7)
C110.0317 (9)0.0644 (13)0.0525 (12)0.0074 (8)0.0181 (8)0.0119 (10)
C120.0471 (11)0.0625 (13)0.0638 (13)0.0251 (10)0.0335 (10)0.0163 (11)
C130.0629 (13)0.0418 (11)0.0647 (14)0.0203 (9)0.0333 (11)0.0025 (9)
C140.0435 (10)0.0342 (9)0.0510 (11)0.0069 (7)0.0201 (8)0.0014 (8)
Cl1A0.0360 (2)0.0507 (6)0.0315 (2)0.0031 (4)0.01848 (17)0.0027 (4)
O1A0.0213 (10)0.0264 (14)0.0313 (12)0.0038 (8)0.0111 (8)0.0020 (9)
C2A0.0220 (12)0.0316 (17)0.029 (2)0.0015 (11)0.0128 (12)0.0049 (15)
O2A0.027 (2)0.0267 (11)0.046 (2)0.0031 (10)0.0153 (18)0.0004 (10)
C3A0.0236 (13)0.0302 (15)0.0333 (14)0.0021 (11)0.0111 (12)0.0041 (15)
C4A0.0229 (15)0.035 (2)0.0319 (14)0.0027 (13)0.0126 (16)0.0030 (16)
C5A0.0271 (18)0.0292 (11)0.0313 (13)0.0024 (13)0.0155 (14)0.0023 (9)
C6A0.0261 (14)0.0237 (14)0.0276 (14)0.0026 (12)0.0112 (13)0.0005 (11)
C7A0.0265 (9)0.0234 (9)0.0267 (10)0.0016 (7)0.0114 (8)0.0018 (8)
O7A0.0312 (17)0.0333 (12)0.0271 (16)0.0029 (12)0.0141 (15)0.0021 (14)
C8A0.0285 (9)0.0247 (10)0.0274 (10)0.0002 (7)0.0137 (8)0.0014 (7)
C9A0.0272 (9)0.0280 (12)0.0249 (8)0.0004 (9)0.0113 (7)0.0016 (9)
C10A0.0329 (11)0.0281 (13)0.0401 (12)0.0042 (9)0.0164 (9)0.0005 (12)
C11A0.037 (2)0.0402 (14)0.0470 (16)0.0115 (12)0.0215 (17)0.0079 (10)
C12A0.0326 (16)0.051 (2)0.045 (2)0.0102 (17)0.0201 (16)0.0168 (16)
C13A0.0251 (14)0.061 (3)0.036 (2)0.0040 (14)0.0104 (14)0.0124 (16)
C14A0.0290 (15)0.0414 (15)0.0301 (12)0.0039 (15)0.0100 (10)0.0018 (11)
Cl1B0.0360 (2)0.0507 (6)0.0315 (2)0.0031 (4)0.01848 (17)0.0027 (4)
O1B0.047 (9)0.023 (7)0.083 (14)0.004 (5)0.030 (8)0.000 (6)
C2B0.055 (11)0.031 (8)0.031 (10)0.024 (6)0.021 (9)0.024 (7)
O2B0.017 (9)0.047 (8)0.051 (12)0.008 (5)0.006 (8)0.005 (6)
C3B0.035 (8)0.042 (9)0.043 (16)0.027 (6)0.018 (8)0.017 (9)
C4B0.026 (9)0.019 (7)0.030 (7)0.004 (6)0.007 (8)0.002 (5)
C5B0.020 (9)0.022 (7)0.063 (11)0.006 (6)0.019 (8)0.004 (6)
C6B0.029 (7)0.035 (9)0.037 (12)0.007 (6)0.015 (7)0.008 (7)
C7B0.014 (4)0.039 (6)0.020 (5)0.001 (4)0.003 (4)0.007 (5)
O7B0.029 (8)0.023 (5)0.018 (7)0.000 (5)0.010 (7)0.001 (6)
C8B0.032 (5)0.042 (7)0.035 (6)0.001 (5)0.016 (4)0.009 (5)
C9B0.0272 (9)0.0280 (12)0.0249 (8)0.0004 (9)0.0113 (7)0.0016 (9)
C10B0.051 (11)0.024 (7)0.027 (6)0.009 (6)0.015 (7)0.005 (5)
C11B0.033 (13)0.101 (16)0.045 (10)0.029 (11)0.020 (10)0.019 (9)
C12B0.021 (8)0.071 (18)0.037 (11)0.011 (8)0.010 (7)0.009 (9)
C13B0.07 (3)0.045 (13)0.044 (14)0.029 (14)0.028 (15)0.019 (10)
C14B0.046 (15)0.031 (9)0.065 (13)0.000 (8)0.040 (13)0.001 (7)
Geometric parameters (Å, º) top
Cl1—C81.8162 (15)O7A—H7AB0.8400
O1—C21.3837 (18)C8A—H8A1.0000
O1—C61.3668 (18)C8A—C9A1.504 (3)
C2—O21.2166 (19)C9A—C10A1.395 (3)
C2—C31.435 (2)C9A—C14A1.387 (4)
C3—H30.9500C10A—H10A0.9500
C3—C41.335 (3)C10A—C11A1.396 (4)
C4—H40.9500C11A—H11A0.9500
C4—C51.424 (3)C11A—C12A1.380 (6)
C5—H50.9500C12A—H12A0.9500
C5—C61.337 (2)C12A—C13A1.383 (5)
C6—C71.504 (2)C13A—H13A0.9500
C7—H71.0000C13A—C14A1.390 (5)
C7—O71.4125 (18)C14A—H14A0.9500
C7—C81.536 (2)Cl1B—C8B1.775 (11)
O7—H7A0.8400O1B—C2B1.399 (18)
C8—H81.005 (19)O1B—C6B1.356 (16)
C8—C91.505 (2)C2B—O2B1.235 (18)
C9—C101.384 (2)C2B—C3B1.417 (17)
C9—C141.390 (2)C3B—H3B0.9500
C10—H100.9500C3B—C4B1.310 (17)
C10—C111.393 (2)C4B—H4B0.9500
C11—H110.9500C4B—C5B1.395 (14)
C11—C121.372 (3)C5B—H5B0.9500
C12—H120.9500C5B—C6B1.314 (14)
C12—C131.382 (3)C6B—C7B1.512 (15)
C13—H130.9500C7B—H7B1.0000
C13—C141.391 (3)C7B—O7B1.458 (17)
C14—H140.9500C7B—C8B1.478 (12)
Cl1A—C8A1.823 (2)O7B—H7BA0.8400
O1A—C2A1.388 (4)C8B—H8B1.0000
O1A—C6A1.377 (4)C8B—C9B1.504 (12)
C2A—O2A1.218 (4)C9B—C10B1.3900
C2A—C3A1.443 (4)C9B—C14B1.3900
C3A—H3A0.9500C10B—H10B0.9500
C3A—C4A1.340 (4)C10B—C11B1.3900
C4A—H4A0.9500C11B—H11B0.9500
C4A—C5A1.432 (4)C11B—C12B1.3900
C5A—H5A0.9500C12B—H12B0.9500
C5A—C6A1.342 (4)C12B—C13B1.3900
C6A—C7A1.512 (4)C13B—H13B0.9500
C7A—H7AA1.0000C13B—C14B1.3900
C7A—O7A1.422 (4)C14B—H14B0.9500
C7A—C8A1.531 (3)
C6—O1—C2121.84 (12)C7A—C8A—Cl1A109.13 (12)
O1—C2—C3116.39 (14)C7A—C8A—H8A108.1
O2—C2—O1116.01 (14)C9A—C8A—Cl1A108.45 (14)
O2—C2—C3127.58 (15)C9A—C8A—C7A114.75 (15)
C2—C3—H3119.6C9A—C8A—H8A108.1
C4—C3—C2120.89 (16)C10A—C9A—C8A121.7 (2)
C4—C3—H3119.6C14A—C9A—C8A119.6 (3)
C3—C4—H4119.8C14A—C9A—C10A118.7 (2)
C3—C4—C5120.40 (16)C9A—C10A—H10A119.7
C5—C4—H4119.8C9A—C10A—C11A120.6 (2)
C4—C5—H5120.5C11A—C10A—H10A119.7
C6—C5—C4118.97 (16)C10A—C11A—H11A120.0
C6—C5—H5120.5C12A—C11A—C10A119.9 (3)
O1—C6—C7111.82 (13)C12A—C11A—H11A120.0
C5—C6—O1121.31 (15)C11A—C12A—H12A120.0
C5—C6—C7126.81 (14)C11A—C12A—C13A119.9 (3)
C6—C7—H7108.2C13A—C12A—H12A120.0
C6—C7—C8111.08 (13)C12A—C13A—H13A119.9
O7—C7—C6111.80 (12)C12A—C13A—C14A120.3 (3)
O7—C7—H7108.2C14A—C13A—H13A119.9
O7—C7—C8109.33 (12)C9A—C14A—C13A120.6 (3)
C8—C7—H7108.2C9A—C14A—H14A119.7
C7—O7—H7A109.5C13A—C14A—H14A119.7
Cl1—C8—H8104.0 (10)C6B—O1B—C2B120.5 (18)
C7—C8—Cl1108.20 (10)O1B—C2B—C3B116.5 (19)
C7—C8—H8110.5 (10)O2B—C2B—O1B108 (2)
C9—C8—Cl1110.65 (10)O2B—C2B—C3B130 (2)
C9—C8—C7113.63 (13)C2B—C3B—H3B119.8
C9—C8—H8109.4 (10)C4B—C3B—C2B120 (2)
C10—C9—C8119.35 (15)C4B—C3B—H3B119.8
C10—C9—C14119.42 (16)C3B—C4B—H4B120.6
C14—C9—C8121.21 (15)C3B—C4B—C5B119 (2)
C9—C10—H10119.9C5B—C4B—H4B120.6
C9—C10—C11120.13 (18)C4B—C5B—H5B118.6
C11—C10—H10119.9C6B—C5B—C4B122.8 (17)
C10—C11—H11119.9C6B—C5B—H5B118.6
C12—C11—C10120.19 (19)O1B—C6B—C7B112.2 (15)
C12—C11—H11119.9C5B—C6B—O1B118.7 (16)
C11—C12—H12119.9C5B—C6B—C7B129.1 (16)
C11—C12—C13120.20 (18)C6B—C7B—H7B109.4
C13—C12—H12119.9O7B—C7B—C6B104.2 (15)
C12—C13—H13120.0O7B—C7B—H7B109.4
C12—C13—C14119.93 (19)O7B—C7B—C8B107.1 (14)
C14—C13—H13120.0C8B—C7B—C6B117.1 (12)
C9—C14—C13120.12 (19)C8B—C7B—H7B109.4
C9—C14—H14119.9C7B—O7B—H7BA109.5
C13—C14—H14119.9Cl1B—C8B—H8B108.4
C6A—O1A—C2A121.9 (3)C7B—C8B—Cl1B107.0 (7)
O1A—C2A—C3A116.2 (3)C7B—C8B—H8B108.4
O2A—C2A—O1A116.4 (4)C7B—C8B—C9B113.7 (9)
O2A—C2A—C3A127.2 (4)C9B—C8B—Cl1B110.8 (8)
C2A—C3A—H3A119.6C9B—C8B—H8B108.4
C4A—C3A—C2A120.7 (4)C10B—C9B—C8B122.7 (13)
C4A—C3A—H3A119.6C10B—C9B—C14B120.0
C3A—C4A—H4A119.5C14B—C9B—C8B117.2 (13)
C3A—C4A—C5A121.1 (4)C9B—C10B—H10B120.0
C5A—C4A—H4A119.5C9B—C10B—C11B120.0
C4A—C5A—H5A120.8C11B—C10B—H10B120.0
C6A—C5A—C4A118.3 (3)C10B—C11B—H11B120.0
C6A—C5A—H5A120.8C10B—C11B—C12B120.0
O1A—C6A—C7A111.4 (3)C12B—C11B—H11B120.0
C5A—C6A—O1A121.5 (3)C11B—C12B—H12B120.0
C5A—C6A—C7A127.1 (3)C13B—C12B—C11B120.0
C6A—C7A—H7AA107.6C13B—C12B—H12B120.0
C6A—C7A—C8A112.6 (2)C12B—C13B—H13B120.0
O7A—C7A—C6A111.7 (3)C14B—C13B—C12B120.0
O7A—C7A—H7AA107.6C14B—C13B—H13B120.0
O7A—C7A—C8A109.7 (2)C9B—C14B—H14B120.0
C8A—C7A—H7AA107.6C13B—C14B—C9B120.0
C7A—O7A—H7AB109.5C13B—C14B—H14B120.0
Cl1A—C8A—H8A108.1
Cl1—C8—C9—C10120.90 (15)C6A—O1A—C2A—C3A6.8 (8)
Cl1—C8—C9—C1460.55 (19)C6A—C7A—C8A—Cl1A54.6 (2)
O1—C2—C3—C44.2 (2)C6A—C7A—C8A—C9A176.5 (2)
O1—C6—C7—O761.88 (17)C7A—C8A—C9A—C10A42.4 (3)
O1—C6—C7—C860.54 (16)C7A—C8A—C9A—C14A139.4 (2)
C2—O1—C6—C51.8 (2)O7A—C7A—C8A—Cl1A179.6 (3)
C2—O1—C6—C7179.31 (12)O7A—C7A—C8A—C9A58.5 (3)
C2—C3—C4—C50.6 (3)C8A—C9A—C10A—C11A177.4 (2)
O2—C2—C3—C4177.78 (17)C8A—C9A—C14A—C13A176.9 (3)
C3—C4—C5—C62.6 (3)C9A—C10A—C11A—C12A0.1 (4)
C4—C5—C6—O12.1 (2)C10A—C9A—C14A—C13A1.4 (4)
C4—C5—C6—C7175.07 (16)C10A—C11A—C12A—C13A0.1 (4)
C5—C6—C7—O7120.76 (17)C11A—C12A—C13A—C14A0.4 (4)
C5—C6—C7—C8116.82 (18)C12A—C13A—C14A—C9A1.2 (4)
C6—O1—C2—O2176.92 (13)C14A—C9A—C10A—C11A0.9 (3)
C6—O1—C2—C34.8 (2)Cl1B—C8B—C9B—C10B107.5 (10)
C6—C7—C8—Cl153.13 (14)Cl1B—C8B—C9B—C14B70.4 (11)
C6—C7—C8—C9176.44 (12)O1B—C2B—C3B—C4B15 (6)
C7—C8—C9—C10117.14 (16)O1B—C6B—C7B—O7B80 (3)
C7—C8—C9—C1461.4 (2)O1B—C6B—C7B—C8B162 (2)
O7—C7—C8—Cl1176.98 (10)C2B—O1B—C6B—C5B11 (5)
O7—C7—C8—C959.71 (16)C2B—O1B—C6B—C7B167 (3)
C8—C9—C10—C11178.70 (16)C2B—C3B—C4B—C5B11 (6)
C8—C9—C14—C13179.04 (17)O2B—C2B—C3B—C4B167 (5)
C9—C10—C11—C120.3 (3)C3B—C4B—C5B—C6B6 (5)
C10—C9—C14—C130.5 (3)C4B—C5B—C6B—O1B6 (4)
C10—C11—C12—C130.4 (3)C4B—C5B—C6B—C7B172 (3)
C11—C12—C13—C140.0 (3)C5B—C6B—C7B—O7B101 (3)
C12—C13—C14—C90.4 (3)C5B—C6B—C7B—C8B17 (3)
C14—C9—C10—C110.1 (3)C6B—O1B—C2B—O2B173 (4)
Cl1A—C8A—C9A—C10A79.9 (2)C6B—O1B—C2B—C3B16 (5)
Cl1A—C8A—C9A—C14A98.3 (2)C6B—C7B—C8B—Cl1B61.4 (16)
O1A—C2A—C3A—C4A3.6 (9)C6B—C7B—C8B—C9B175.9 (15)
O1A—C6A—C7A—O7A54.5 (5)C7B—C8B—C9B—C10B132.0 (10)
O1A—C6A—C7A—C8A69.4 (4)C7B—C8B—C9B—C14B50.2 (12)
C2A—O1A—C6A—C5A5.8 (7)O7B—C7B—C8B—Cl1B177.9 (11)
C2A—O1A—C6A—C7A173.9 (4)O7B—C7B—C8B—C9B59.5 (15)
C2A—C3A—C4A—C5A0.7 (10)C8B—C9B—C10B—C11B177.8 (12)
O2A—C2A—C3A—C4A178.7 (7)C8B—C9B—C14B—C13B177.9 (12)
C3A—C4A—C5A—C6A2.0 (8)C9B—C10B—C11B—C12B0.0
C4A—C5A—C6A—O1A1.2 (6)C10B—C9B—C14B—C13B0.0
C4A—C5A—C6A—C7A178.5 (5)C10B—C11B—C12B—C13B0.0
C5A—C6A—C7A—O7A125.3 (5)C11B—C12B—C13B—C14B0.0
C5A—C6A—C7A—C8A110.8 (4)C12B—C13B—C14B—C9B0.0
C6A—O1A—C2A—O2A177.5 (6)C14B—C9B—C10B—C11B0.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2A0.841.952.775 (4)169
O7—H7A···O2B0.841.792.63 (3)173
O7A—H7AB···O2i0.842.012.835 (6)170
O7B—H7BA···O2i0.841.862.63 (3)153
C3—H3···O2Aii0.952.333.220 (6)155
C3—H3···O2Bii0.952.523.42 (4)158
C3A—H3A···O20.952.363.236 (5)153
C5—H5···Cl1iii0.952.703.6042 (17)159
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The University of Wollongong is acknowledged for providing laboratory facilities.

Funding information

Funding for this research was provided by: Thailand Research Fund (grant No. BRG5980012; grant No. DBG6280007; grant No. DBG5980001; studentship No. PHD/0010/2558 to PM); Mae Fah Luang University .

References

First citationBihud, N. R., Rasol, N. E., Imran, S., Awang, K., Ahmad, F. B., Mai, C.-W., Leong, C.-O., Cordell, G. A. & Ismail, N. H. (2019). J. Nat. Prod. 82, 2430–2442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaidee, W., Andersen, R. J., Patrick, B. O., Pyne, S. G., Muanprasat, C., Borwornpinyo, S. & Laphookhieo, S. (2019). Phytochemistry, 157, 8–20.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLan, Y. H., Chang, F. R., Liaw, C. C., Wu, C. C., Chiang, M. Y. & Wu, Y. C. (2005). Planta Med. 71, 153–159.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLekphrom, R., Kanokmedhakul, S. & Kanokmedhakul, K. (2009). J. Ethnopharmacol. 125, 47–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiou, J. R., Wu, T. Y., Thang, T. D., Hwang, T. L., Wu, C. C., Cheng, Y. B., Chiang, M. Y., Lan, Y. H., El-Shazly, M., Wu, S. L., Beerhues, L., Yuan, S. S., Hou, M. F., Chen, S. L., Chang, F. R. & Wu, Y. C. (2014). J. Nat. Prod. 77, 2626–2632.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248–112255.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPrawat, U., Chaimanee, S., Butsuri, A., Salae, A.-W. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 529–534.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaunders, R. M. K. & Chalermglin, P. (2008). Bot. J. Linn. Soc. 156, 355–384.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoonthornchareonnon, N., Suwanborirux, K., Bavovada, R., Patarapanich, C. & Cassady, J. M. (1999). J. Nat. Prod. 62, 1390–1394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThibonnet, J., Abarbri, M., Parrain, J. L. & Duchêne, A. (2002). J. Org. Chem. 67, 3941–3944.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTian, Z., Chen, S., Zhang, Y., Huang, M., Shi, L., Huang, F., Fong, C., Yang, M. & Xiao, P. (2006). Phytomedicine, 13, 181–186.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds