research communications
Synthesis and
of (±)-Goniotamirenone CaCenter of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand, and bSchool of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
*Correspondence e-mail: spyne@uow.edu.au
The structure of the racemic version of the natural product Goniotamirenone C [racemic anti-6-(2-chloro-1-hydroxy-2-phenylethyl)-2H-pyran-2-one, C13H11ClO3] at 150 K is reported. The compound crystallizes with monoclinic (P21/n) symmetry and with Z′ = 2. One independent molecule is ordered while the other independent molecule exhibits an interesting whole-molecule enantiomeric disorder with occupancies of 0.846 (4) and 0.154 (4). The independent molecules are hydrogen bonded with –OH⋯O=C linkages into chains that run parallel to the a axis. This structural analysis corrects our previous assignment as the syn isomer [Meesakul et al. (2020). Phytochemistry, 171, 112248–112255].
Keywords: crystal structure; Goniotamirenone C; natural product; semi-synthesis; chlorohydrin.
CCDC reference: 1842573
1. Chemical context
Goniothalamus is one of the largest genera belonging to the Annonaceae family, which is distributed throughout tropical and subtropical areas. So far, over 160 species have been discovered globally (Saunders & Chalermglin, 2008) with 15 species found in Thailand (Soonthornchareonnon et al., 1999). Many species of Goniothalamus have been used as folk medicines for the treatment of common illnesses and as a tonic. Goniothalamus is well known as a rich source of styryllactones, with over 100 compounds isolated and identified (Meesakul et al., 2020; Jaidee et al., 2019, Bihud et al., 2019). However, chlorinated styryllactones are rarely reported in the Annonaceae family. To the best of our knowledge, only two compounds, Parvistone A and Goniotamirenone C, have been isolated and identified from Polyalthia parviflora (Liou et al., 2014) and Goniothalamus tamirensis (Meesakul et al., 2020), respectively. Styryllactones show interesting pharmacological activities, such as cytotoxic activity against several tumor cell lines (Lan et al., 2005; Tian et al., 2006; Prawat et al., 2012), antimycobacterial (Lekphrom et al., 2009; Prawat et al., 2012) and antiplasmodial activities (Lekphrom et al., 2009; Prawat et al., 2012). As a part of our continuing study of the phytochemistry of plants in the Annonaceae family, we report here the synthesis and of (±)-Goniotamirenone C.
2. Structural commentary
The title compound crystallizes in the P21/n with Z′ = 2. The centrosymmetric confirms the compound crystallizes as a One molecule is ordered within the and there is disorder of the other molecular site with occupancies of 0.846 (4) and 0.154 (4) (Fig. 1). The molecules have two stereogenic carbon centres and the ordered molecule has the configuration (7R,8S), in the selected. The major occupancy component on the disordered site is of configuration (7S,8R) and the configuration of the minor component is (7R,8S). Thus the minor component of the disorder has the same configuration as the ordered molecule in the selected These assignments confirm the relative stereochemistry as anti and thus the structural assignment can be revised from our earlier work (Meesakul et al. 2020).
Each molecule adopts a ). The main conformational difference between molecules on the ordered site and the disordered site is the dihedral angle between the phenyl (C9X–C14X; where X takes no value for the ordered site and A and B for the disordered site) and pyran-2-one rings (O1X, C2X–C6X). This angle is only 5.88 (6)° on the ordered site and 28.22 (18)° and 27.7 (11)°, respectively, for the major and minor occupancy molecules on the disordered site.
about the bond between the stereocentres with chlorine and hydroxyl groups antiperiplanar (Table 1
|
3. Supramolecular features
The molecules in the and fall within standard values. These interactions link the molecules into chains running parallel to the [100] direction (Fig. 2). For clarity, the interactions between the ordered molecule and the major component of the disorder are shown. These O—H⋯O interactions are supported by C–H⋯O=C interactions within the chain. The chains stack, seemingly rather awkwardly, in the [001] direction (Fig. 3), presenting an interesting C5—H5⋯Cl (2.70 Å) inter-chain contact.
are linked by hydrogen bonds between the hydroxyl groups as hydrogen-bond donors and the carbonyl groups of the as hydrogen-bond acceptors. The hydrogen-bond metrics are presented in Table 24. Synthesis and crystallization
The synthetic sequence starts by dehydrogenating the natural product Goniothalamin by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in refluxing benzene solution to give (E)-6-styrylpyran-2-one (1) in 92% yield (Fig. 4). The central alkene unit in 1 was epoxidized selectively under basic conditions using meta-chloroperbenzoic acid (mCPBA) in dichloromethane solution at 273 K to give racemic 6-[3-phenyl-2-oxiranyl]-2H-pyran-2-one (2), albeit in 28% yield. Compound 2 was ring-opened at 213 K using HCl in anhydrous diethyl ether solution, furnishing the desired compound as a colourless solid. Crystals suitable for analysis by single crystal X-ray diffraction grew from slow evaporation of a 1:4 dichloromethane:methanol solution.
(E)-6-Styrylpyran-2-one (1)
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ; 52.8 mg, 0.52 mmol) was added to a solution of Goniothalamin (44.0 mg, 0.44 mmol), isolated as described previously (Meesakul et al., 2020), in anhydrous benzene (5 mL) and the solution heated at reflux for 3 h. The cooled crude mixture was filtered through Celite and concentrated under reduced pressure. Purification of the residue by (EtOAc/n-hexane, 1:5) yielded 1 (43.8 mg, 92%) as a yellow solid after evaporation of the solvent.
M.p. 387–388 K [lit. (Thibonnet et al., 2002) 388–389 K]; 1H NMR (CDCl3, 500 MHz) δH 6.21 (1H, d, J = 9.0 Hz, H-3), 6.14 (1H, d, J = 6.7 Hz, H-5), 6.62 (1H, d, J = 16.0 Hz, H-8), 7.39–7.29 (4H, m, H-4, H-11, H-12, H-13), 7.53–7.44 (3H, m, H-7, H-10, H-14); 13C NMR (CDCl3, 125 MHz) δC 161.8 (C-2), 114.3 (C-3), 143.7 (C-4), 105.0 (C-5), 159.7 (C-6), 135.4 (C-7), 118.8 (C-8), 135.3 (C-9), 127.4 (C-10, C-14), 128.9 (C-11, C-13), 129.5 (C-12).
(±)-6-[3-Phenyl-2-oxiranyl]-2H-pyran-2-one (2)
NaHCO3 (84 mg, 1.0 mmol) followed by mCPBA (64 mg, 0.4 mmol) were added to a stirred solution of 1 (19.8 mg, 0.1 mmol) in CH2Cl2 (2 mL) at 273.15 K and then stirred at room temperature for 24 h. The mixture was quenched by the addition of saturated aqueous NaHCO3 (3 mL) and water (3 mL) and extracted with EtOAc (8 mL). Purification by (EtOAc/n-hexane, 1:3) yielded 2 (5.6 mg, 28%) as a white solid after evaporation of the solvent,
M.p. 393–396 K; 1H NMR (CDCl3, 500 MHz) δH 6.26–6.32 (2H, m, H-3, H-5), 3.64 (1H, d, J = 1.8 Hz, H-7), 4.18 (1H, d, J = 1.8 Hz, H-8), 7.30–7.38 (6H, m, H-4, H-10 to H-14); 13C NMR (CDCl3, 125 MHz) δC 161.2 (C-2), 115.8 (C-3), 143.0 (C-4), 103.4 (C-5), 159.8 (C-6), 58.3 (C-7), 60.8 (C-8), 135.2 (C-9), 125.7 (C-10, C-14), 128.8 (C-11, C-13), 129.0 (C-12).
(±)-Goniotamireone C
2 M HCl in Et2O (0.023 mL, 0.046 mmol) was added to a solution of 2 (12.0 mg, 0.056 mmol) in CHCl3 (1 mL) and stirred at 213 K for 2h. The reaction was quenched by the addition of saturated aqueous NaHCO3 (3 mL) then extracted using EtOAc and purified by (EtOAc/n-hexane, 2:5) to yield (±)-Goniotamireone C (10.7 mg, 89%) as a white solid. The NMR spectroscopic data were identical to that of natural Goniotamirenone C (Meesakul et al., 2020).
M.p. 394–396 K; 1H NMR (CDCl3, 500 MHz) δH 6.23 (1H, d, J = 9.4 Hz, H-3), 7.24 (1H, dd, J = 9.4,6.2 Hz. H-4), 6.17 (1H, d, J = 6.4 Hz, H-5), 4.81 (1H, d, J = 6.2 Hz, H-7), 5.28 (1H, d, J = 6.2 Hz, H-8), 7.39–7.38 (2H, m, H-10, H-14), 7.34–7.35 (3H, m, H-11, H-12, H-13); 13C NMR (CDCl3, 125 MHz) δC 161.4 (C-2), 115.1 (C-3), 143.1 (C-4), 104.1 (C-5), 161.3 (C-6), 74.9 (C-7), 62.6 (C-8), 136.0 (C-9), 128.2 (C-10, C-14), 128.6 (C-11, C-13), 129.1 (C-12).
5. Refinement
Crystal data, data collection and structure . The disorder was modelled by reference to a free variable and the refined disorder occupancies are 0.846 (4) and 0.154 (4). The bond distances and 1,3-non-bonded distances in the pyran-2-one and chlorohydrin parts of the minor disordered component were restrained to be the same as the corresponding distances in the ordered independent molecule, subject to s.u. values of 0.02 and 0.04 Å, respectively, while the phenyl group of this molecule was fitted as a regular hexagon and refined as free rotating group. Enhanced rigid bond restraints were applied to the pyran-2-one ring of the minor component. The anisotropic displacement parameters for the Cl atoms in the disordered molecules were constrained to be identical. H atoms bonded to C atoms were located in difference maps for the ordered independent molecule and the major component on the disordered site. All C-bound H atoms were placed in geometrically idealized positions with bond lengths of 0.95 Å (aromatic C-H) and 1.00 Å (aliphatic C—H), and refined using riding models with Uiso(H) = 1.2Ueq(C). H atoms attached to O were refined using riding models with Uiso(H) = 1.5Ueq(O) and as freely rotating idealized tetrahedral groups with bond lengths of 0.84 Å.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1842573
https://doi.org/10.1107/S2056989020013298/vm2241sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989020013298/vm2241Isup2.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H11ClO3 | Dx = 1.437 Mg m−3 |
Mr = 250.67 | Melting point = 394–396 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.79348 (19) Å | Cell parameters from 21920 reflections |
b = 27.8665 (5) Å | θ = 2.3–30.4° |
c = 10.2288 (3) Å | µ = 0.32 mm−1 |
β = 112.393 (3)° | T = 150 K |
V = 2317.49 (10) Å3 | Block, colourless |
Z = 8 | 0.44 × 0.26 × 0.14 mm |
F(000) = 1040 |
Rigaku XtaLAB Mini II diffractometer | 5716 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 4902 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ω scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −11→11 |
Tmin = 0.793, Tmax = 1.000 | k = −37→37 |
53946 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0419P)2 + 1.0958P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
5716 reflections | Δρmax = 0.81 e Å−3 |
443 parameters | Δρmin = −0.31 e Å−3 |
64 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Approximately 15% of the opposite enantiomer crystallises about the same position as one of the two independent molecules in the asymmetric unit. This was modelled using PART instructions and by using the SAME command for the minor component to the appropriate ordered molecule and the RIGU restraint. The refinement settled well. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.32805 (5) | 0.27929 (2) | 0.32248 (5) | 0.03931 (12) | |
O1 | 0.19539 (12) | 0.38851 (4) | 0.14334 (12) | 0.0280 (2) | |
C2 | 0.06986 (19) | 0.41632 (6) | 0.15322 (16) | 0.0291 (3) | |
O2 | 0.11024 (14) | 0.45514 (4) | 0.21042 (13) | 0.0358 (3) | |
C3 | −0.0917 (2) | 0.39555 (6) | 0.09867 (19) | 0.0371 (4) | |
H3 | −0.180630 | 0.412327 | 0.108707 | 0.045* | |
C4 | −0.1185 (2) | 0.35297 (7) | 0.0340 (2) | 0.0410 (4) | |
H4 | −0.226415 | 0.339879 | −0.002256 | 0.049* | |
C5 | 0.0135 (2) | 0.32706 (6) | 0.01912 (19) | 0.0375 (4) | |
H5 | −0.006149 | 0.297389 | −0.030281 | 0.045* | |
C6 | 0.16559 (19) | 0.34516 (5) | 0.07573 (16) | 0.0286 (3) | |
C7 | 0.32159 (19) | 0.32161 (5) | 0.08075 (16) | 0.0285 (3) | |
H7 | 0.292338 | 0.289992 | 0.031228 | 0.034* | |
O7 | 0.40270 (15) | 0.34945 (4) | 0.01160 (12) | 0.0344 (3) | |
H7A | 0.450794 | 0.372588 | 0.063544 | 0.052* | |
C8 | 0.43932 (19) | 0.31233 (5) | 0.23401 (17) | 0.0284 (3) | |
H8 | 0.469 (2) | 0.3433 (7) | 0.2880 (19) | 0.034* | |
C9 | 0.5936 (2) | 0.28604 (6) | 0.24594 (17) | 0.0310 (3) | |
C10 | 0.7444 (2) | 0.30839 (7) | 0.31029 (19) | 0.0377 (4) | |
H10 | 0.749903 | 0.339773 | 0.348115 | 0.045* | |
C11 | 0.8882 (2) | 0.28497 (8) | 0.3197 (2) | 0.0489 (5) | |
H11 | 0.991429 | 0.300479 | 0.363557 | 0.059* | |
C12 | 0.8810 (3) | 0.23955 (8) | 0.2659 (2) | 0.0541 (5) | |
H12 | 0.979428 | 0.223647 | 0.273004 | 0.065* | |
C13 | 0.7311 (3) | 0.21688 (8) | 0.2013 (2) | 0.0538 (5) | |
H13 | 0.726550 | 0.185437 | 0.164088 | 0.065* | |
C14 | 0.5870 (2) | 0.24015 (6) | 0.1907 (2) | 0.0423 (4) | |
H14 | 0.483896 | 0.224657 | 0.145734 | 0.051* | |
Cl1A | 0.93903 (13) | 0.57893 (5) | 0.49691 (10) | 0.0377 (2) | 0.846 (4) |
O1A | 0.7230 (4) | 0.49234 (15) | 0.2049 (4) | 0.0260 (6) | 0.846 (4) |
C2A | 0.5818 (5) | 0.46527 (14) | 0.1782 (7) | 0.0268 (10) | 0.846 (4) |
O2A | 0.5979 (6) | 0.42183 (13) | 0.1788 (7) | 0.0329 (8) | 0.846 (4) |
C3A | 0.4349 (5) | 0.49166 (15) | 0.1631 (8) | 0.0289 (8) | 0.846 (4) |
H3A | 0.336315 | 0.474783 | 0.150149 | 0.035* | 0.846 (4) |
C4A | 0.4360 (5) | 0.53973 (17) | 0.1673 (8) | 0.0292 (8) | 0.846 (4) |
H4A | 0.338434 | 0.556466 | 0.158285 | 0.035* | 0.846 (4) |
C5A | 0.5820 (4) | 0.56627 (14) | 0.1851 (4) | 0.0279 (6) | 0.846 (4) |
H5A | 0.581503 | 0.600358 | 0.184988 | 0.033* | 0.846 (4) |
C6A | 0.7197 (4) | 0.54175 (13) | 0.2019 (5) | 0.0255 (7) | 0.846 (4) |
C7A | 0.8852 (2) | 0.56233 (7) | 0.2189 (2) | 0.0252 (4) | 0.846 (4) |
H7AA | 0.871051 | 0.597715 | 0.202525 | 0.030* | 0.846 (4) |
O7A | 0.9428 (6) | 0.5433 (2) | 0.1172 (4) | 0.0296 (8) | 0.846 (4) |
H7AB | 0.980517 | 0.515579 | 0.141834 | 0.044* | 0.846 (4) |
C8A | 1.0153 (2) | 0.55472 (7) | 0.3678 (2) | 0.0260 (5) | 0.846 (4) |
H8A | 1.031853 | 0.519406 | 0.384443 | 0.031* | 0.846 (4) |
C9A | 1.1797 (3) | 0.57712 (10) | 0.3931 (2) | 0.0263 (4) | 0.846 (4) |
C10A | 1.1931 (3) | 0.62302 (12) | 0.3442 (3) | 0.0329 (6) | 0.846 (4) |
H10A | 1.096421 | 0.640320 | 0.290083 | 0.040* | 0.846 (4) |
C11A | 1.3472 (5) | 0.64377 (11) | 0.3740 (4) | 0.0398 (7) | 0.846 (4) |
H11A | 1.355195 | 0.675081 | 0.340479 | 0.048* | 0.846 (4) |
C12A | 1.4879 (5) | 0.61874 (18) | 0.4524 (6) | 0.0413 (10) | 0.846 (4) |
H12A | 1.592855 | 0.632815 | 0.472912 | 0.050* | 0.846 (4) |
C13A | 1.4758 (6) | 0.57314 (17) | 0.5009 (5) | 0.0409 (12) | 0.846 (4) |
H13A | 1.572739 | 0.556021 | 0.555407 | 0.049* | 0.846 (4) |
C14A | 1.3225 (6) | 0.55226 (13) | 0.4703 (4) | 0.0339 (7) | 0.846 (4) |
H14A | 1.315444 | 0.520686 | 0.502562 | 0.041* | 0.846 (4) |
Cl1B | 0.9422 (9) | 0.5930 (2) | 0.4962 (7) | 0.0377 (2) | 0.154 (4) |
O1B | 0.722 (3) | 0.4848 (8) | 0.206 (4) | 0.050 (7) | 0.154 (4) |
C2B | 0.566 (3) | 0.4672 (8) | 0.186 (4) | 0.038 (6) | 0.154 (4) |
O2B | 0.561 (3) | 0.4241 (9) | 0.156 (4) | 0.040 (6) | 0.154 (4) |
C3B | 0.437 (3) | 0.5015 (8) | 0.151 (5) | 0.039 (7) | 0.154 (4) |
H3B | 0.326106 | 0.491106 | 0.113594 | 0.047* | 0.154 (4) |
C4B | 0.471 (3) | 0.5473 (9) | 0.170 (4) | 0.026 (4) | 0.154 (4) |
H4B | 0.387210 | 0.569887 | 0.162666 | 0.031* | 0.154 (4) |
C5B | 0.633 (2) | 0.5624 (8) | 0.202 (3) | 0.034 (5) | 0.154 (4) |
H5B | 0.654777 | 0.595892 | 0.207136 | 0.041* | 0.154 (4) |
C6B | 0.7555 (18) | 0.5324 (7) | 0.226 (3) | 0.033 (5) | 0.154 (4) |
C7B | 0.9378 (11) | 0.5427 (4) | 0.2782 (11) | 0.025 (2) | 0.154 (4) |
H7B | 0.999780 | 0.516699 | 0.344603 | 0.030* | 0.154 (4) |
O7B | 0.975 (3) | 0.5408 (11) | 0.1509 (18) | 0.023 (3) | 0.154 (4) |
H7BA | 1.035535 | 0.517152 | 0.155396 | 0.035* | 0.154 (4) |
C8B | 0.9942 (12) | 0.5899 (4) | 0.3448 (11) | 0.035 (3) | 0.154 (4) |
H8B | 0.931756 | 0.615484 | 0.277003 | 0.042* | 0.154 (4) |
C9B | 1.1750 (11) | 0.5987 (6) | 0.3843 (12) | 0.0263 (4) | 0.154 (4) |
C10B | 1.236 (2) | 0.6409 (5) | 0.3507 (11) | 0.034 (3) | 0.154 (4) |
H10B | 1.162789 | 0.665177 | 0.297904 | 0.041* | 0.154 (4) |
C11B | 1.405 (2) | 0.6475 (6) | 0.394 (2) | 0.058 (7) | 0.154 (4) |
H11B | 1.446986 | 0.676333 | 0.371466 | 0.069* | 0.154 (4) |
C12B | 1.5126 (12) | 0.6119 (9) | 0.472 (3) | 0.044 (8) | 0.154 (4) |
H12B | 1.628029 | 0.616455 | 0.501574 | 0.052* | 0.154 (4) |
C13B | 1.4514 (18) | 0.5697 (8) | 0.505 (3) | 0.053 (12) | 0.154 (4) |
H13B | 1.524873 | 0.545420 | 0.558122 | 0.064* | 0.154 (4) |
C14B | 1.283 (2) | 0.5631 (5) | 0.4616 (19) | 0.042 (7) | 0.154 (4) |
H14B | 1.240675 | 0.534262 | 0.484561 | 0.050* | 0.154 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0370 (2) | 0.0389 (2) | 0.0482 (3) | 0.00724 (16) | 0.02318 (19) | 0.01609 (18) |
O1 | 0.0251 (5) | 0.0239 (5) | 0.0350 (6) | −0.0001 (4) | 0.0115 (4) | −0.0013 (4) |
C2 | 0.0291 (7) | 0.0319 (8) | 0.0297 (8) | 0.0037 (6) | 0.0150 (6) | 0.0033 (6) |
O2 | 0.0362 (6) | 0.0347 (6) | 0.0414 (7) | 0.0021 (5) | 0.0201 (5) | −0.0052 (5) |
C3 | 0.0261 (8) | 0.0442 (9) | 0.0423 (9) | 0.0030 (7) | 0.0144 (7) | 0.0061 (7) |
C4 | 0.0268 (8) | 0.0450 (10) | 0.0459 (10) | −0.0062 (7) | 0.0078 (7) | 0.0049 (8) |
C5 | 0.0352 (9) | 0.0316 (8) | 0.0394 (9) | −0.0052 (7) | 0.0071 (7) | −0.0013 (7) |
C6 | 0.0319 (8) | 0.0216 (7) | 0.0299 (8) | −0.0006 (6) | 0.0090 (6) | 0.0019 (6) |
C7 | 0.0329 (8) | 0.0211 (6) | 0.0328 (8) | −0.0007 (6) | 0.0137 (6) | 0.0001 (6) |
O7 | 0.0452 (7) | 0.0256 (5) | 0.0382 (6) | −0.0013 (5) | 0.0224 (5) | 0.0012 (4) |
C8 | 0.0312 (7) | 0.0235 (7) | 0.0341 (8) | 0.0010 (6) | 0.0163 (6) | 0.0018 (6) |
C9 | 0.0318 (8) | 0.0316 (8) | 0.0326 (8) | 0.0059 (6) | 0.0156 (6) | 0.0053 (6) |
C10 | 0.0330 (8) | 0.0406 (9) | 0.0417 (9) | 0.0032 (7) | 0.0167 (7) | 0.0042 (7) |
C11 | 0.0317 (9) | 0.0644 (13) | 0.0525 (12) | 0.0074 (8) | 0.0181 (8) | 0.0119 (10) |
C12 | 0.0471 (11) | 0.0625 (13) | 0.0638 (13) | 0.0251 (10) | 0.0335 (10) | 0.0163 (11) |
C13 | 0.0629 (13) | 0.0418 (11) | 0.0647 (14) | 0.0203 (9) | 0.0333 (11) | 0.0025 (9) |
C14 | 0.0435 (10) | 0.0342 (9) | 0.0510 (11) | 0.0069 (7) | 0.0201 (8) | −0.0014 (8) |
Cl1A | 0.0360 (2) | 0.0507 (6) | 0.0315 (2) | −0.0031 (4) | 0.01848 (17) | −0.0027 (4) |
O1A | 0.0213 (10) | 0.0264 (14) | 0.0313 (12) | −0.0038 (8) | 0.0111 (8) | −0.0020 (9) |
C2A | 0.0220 (12) | 0.0316 (17) | 0.029 (2) | −0.0015 (11) | 0.0128 (12) | 0.0049 (15) |
O2A | 0.027 (2) | 0.0267 (11) | 0.046 (2) | −0.0031 (10) | 0.0153 (18) | 0.0004 (10) |
C3A | 0.0236 (13) | 0.0302 (15) | 0.0333 (14) | −0.0021 (11) | 0.0111 (12) | 0.0041 (15) |
C4A | 0.0229 (15) | 0.035 (2) | 0.0319 (14) | −0.0027 (13) | 0.0126 (16) | 0.0030 (16) |
C5A | 0.0271 (18) | 0.0292 (11) | 0.0313 (13) | 0.0024 (13) | 0.0155 (14) | 0.0023 (9) |
C6A | 0.0261 (14) | 0.0237 (14) | 0.0276 (14) | −0.0026 (12) | 0.0112 (13) | −0.0005 (11) |
C7A | 0.0265 (9) | 0.0234 (9) | 0.0267 (10) | −0.0016 (7) | 0.0114 (8) | 0.0018 (8) |
O7A | 0.0312 (17) | 0.0333 (12) | 0.0271 (16) | −0.0029 (12) | 0.0141 (15) | 0.0021 (14) |
C8A | 0.0285 (9) | 0.0247 (10) | 0.0274 (10) | −0.0002 (7) | 0.0137 (8) | 0.0014 (7) |
C9A | 0.0272 (9) | 0.0280 (12) | 0.0249 (8) | −0.0004 (9) | 0.0113 (7) | −0.0016 (9) |
C10A | 0.0329 (11) | 0.0281 (13) | 0.0401 (12) | −0.0042 (9) | 0.0164 (9) | 0.0005 (12) |
C11A | 0.037 (2) | 0.0402 (14) | 0.0470 (16) | −0.0115 (12) | 0.0215 (17) | −0.0079 (10) |
C12A | 0.0326 (16) | 0.051 (2) | 0.045 (2) | −0.0102 (17) | 0.0201 (16) | −0.0168 (16) |
C13A | 0.0251 (14) | 0.061 (3) | 0.036 (2) | −0.0040 (14) | 0.0104 (14) | −0.0124 (16) |
C14A | 0.0290 (15) | 0.0414 (15) | 0.0301 (12) | 0.0039 (15) | 0.0100 (10) | −0.0018 (11) |
Cl1B | 0.0360 (2) | 0.0507 (6) | 0.0315 (2) | −0.0031 (4) | 0.01848 (17) | −0.0027 (4) |
O1B | 0.047 (9) | 0.023 (7) | 0.083 (14) | −0.004 (5) | 0.030 (8) | 0.000 (6) |
C2B | 0.055 (11) | 0.031 (8) | 0.031 (10) | −0.024 (6) | 0.021 (9) | −0.024 (7) |
O2B | 0.017 (9) | 0.047 (8) | 0.051 (12) | 0.008 (5) | 0.006 (8) | 0.005 (6) |
C3B | 0.035 (8) | 0.042 (9) | 0.043 (16) | −0.027 (6) | 0.018 (8) | −0.017 (9) |
C4B | 0.026 (9) | 0.019 (7) | 0.030 (7) | −0.004 (6) | 0.007 (8) | 0.002 (5) |
C5B | 0.020 (9) | 0.022 (7) | 0.063 (11) | −0.006 (6) | 0.019 (8) | −0.004 (6) |
C6B | 0.029 (7) | 0.035 (9) | 0.037 (12) | 0.007 (6) | 0.015 (7) | −0.008 (7) |
C7B | 0.014 (4) | 0.039 (6) | 0.020 (5) | −0.001 (4) | 0.003 (4) | 0.007 (5) |
O7B | 0.029 (8) | 0.023 (5) | 0.018 (7) | 0.000 (5) | 0.010 (7) | −0.001 (6) |
C8B | 0.032 (5) | 0.042 (7) | 0.035 (6) | 0.001 (5) | 0.016 (4) | 0.009 (5) |
C9B | 0.0272 (9) | 0.0280 (12) | 0.0249 (8) | −0.0004 (9) | 0.0113 (7) | −0.0016 (9) |
C10B | 0.051 (11) | 0.024 (7) | 0.027 (6) | −0.009 (6) | 0.015 (7) | 0.005 (5) |
C11B | 0.033 (13) | 0.101 (16) | 0.045 (10) | −0.029 (11) | 0.020 (10) | −0.019 (9) |
C12B | 0.021 (8) | 0.071 (18) | 0.037 (11) | 0.011 (8) | 0.010 (7) | −0.009 (9) |
C13B | 0.07 (3) | 0.045 (13) | 0.044 (14) | 0.029 (14) | 0.028 (15) | 0.019 (10) |
C14B | 0.046 (15) | 0.031 (9) | 0.065 (13) | 0.000 (8) | 0.040 (13) | 0.001 (7) |
Cl1—C8 | 1.8162 (15) | O7A—H7AB | 0.8400 |
O1—C2 | 1.3837 (18) | C8A—H8A | 1.0000 |
O1—C6 | 1.3668 (18) | C8A—C9A | 1.504 (3) |
C2—O2 | 1.2166 (19) | C9A—C10A | 1.395 (3) |
C2—C3 | 1.435 (2) | C9A—C14A | 1.387 (4) |
C3—H3 | 0.9500 | C10A—H10A | 0.9500 |
C3—C4 | 1.335 (3) | C10A—C11A | 1.396 (4) |
C4—H4 | 0.9500 | C11A—H11A | 0.9500 |
C4—C5 | 1.424 (3) | C11A—C12A | 1.380 (6) |
C5—H5 | 0.9500 | C12A—H12A | 0.9500 |
C5—C6 | 1.337 (2) | C12A—C13A | 1.383 (5) |
C6—C7 | 1.504 (2) | C13A—H13A | 0.9500 |
C7—H7 | 1.0000 | C13A—C14A | 1.390 (5) |
C7—O7 | 1.4125 (18) | C14A—H14A | 0.9500 |
C7—C8 | 1.536 (2) | Cl1B—C8B | 1.775 (11) |
O7—H7A | 0.8400 | O1B—C2B | 1.399 (18) |
C8—H8 | 1.005 (19) | O1B—C6B | 1.356 (16) |
C8—C9 | 1.505 (2) | C2B—O2B | 1.235 (18) |
C9—C10 | 1.384 (2) | C2B—C3B | 1.417 (17) |
C9—C14 | 1.390 (2) | C3B—H3B | 0.9500 |
C10—H10 | 0.9500 | C3B—C4B | 1.310 (17) |
C10—C11 | 1.393 (2) | C4B—H4B | 0.9500 |
C11—H11 | 0.9500 | C4B—C5B | 1.395 (14) |
C11—C12 | 1.372 (3) | C5B—H5B | 0.9500 |
C12—H12 | 0.9500 | C5B—C6B | 1.314 (14) |
C12—C13 | 1.382 (3) | C6B—C7B | 1.512 (15) |
C13—H13 | 0.9500 | C7B—H7B | 1.0000 |
C13—C14 | 1.391 (3) | C7B—O7B | 1.458 (17) |
C14—H14 | 0.9500 | C7B—C8B | 1.478 (12) |
Cl1A—C8A | 1.823 (2) | O7B—H7BA | 0.8400 |
O1A—C2A | 1.388 (4) | C8B—H8B | 1.0000 |
O1A—C6A | 1.377 (4) | C8B—C9B | 1.504 (12) |
C2A—O2A | 1.218 (4) | C9B—C10B | 1.3900 |
C2A—C3A | 1.443 (4) | C9B—C14B | 1.3900 |
C3A—H3A | 0.9500 | C10B—H10B | 0.9500 |
C3A—C4A | 1.340 (4) | C10B—C11B | 1.3900 |
C4A—H4A | 0.9500 | C11B—H11B | 0.9500 |
C4A—C5A | 1.432 (4) | C11B—C12B | 1.3900 |
C5A—H5A | 0.9500 | C12B—H12B | 0.9500 |
C5A—C6A | 1.342 (4) | C12B—C13B | 1.3900 |
C6A—C7A | 1.512 (4) | C13B—H13B | 0.9500 |
C7A—H7AA | 1.0000 | C13B—C14B | 1.3900 |
C7A—O7A | 1.422 (4) | C14B—H14B | 0.9500 |
C7A—C8A | 1.531 (3) | ||
C6—O1—C2 | 121.84 (12) | C7A—C8A—Cl1A | 109.13 (12) |
O1—C2—C3 | 116.39 (14) | C7A—C8A—H8A | 108.1 |
O2—C2—O1 | 116.01 (14) | C9A—C8A—Cl1A | 108.45 (14) |
O2—C2—C3 | 127.58 (15) | C9A—C8A—C7A | 114.75 (15) |
C2—C3—H3 | 119.6 | C9A—C8A—H8A | 108.1 |
C4—C3—C2 | 120.89 (16) | C10A—C9A—C8A | 121.7 (2) |
C4—C3—H3 | 119.6 | C14A—C9A—C8A | 119.6 (3) |
C3—C4—H4 | 119.8 | C14A—C9A—C10A | 118.7 (2) |
C3—C4—C5 | 120.40 (16) | C9A—C10A—H10A | 119.7 |
C5—C4—H4 | 119.8 | C9A—C10A—C11A | 120.6 (2) |
C4—C5—H5 | 120.5 | C11A—C10A—H10A | 119.7 |
C6—C5—C4 | 118.97 (16) | C10A—C11A—H11A | 120.0 |
C6—C5—H5 | 120.5 | C12A—C11A—C10A | 119.9 (3) |
O1—C6—C7 | 111.82 (13) | C12A—C11A—H11A | 120.0 |
C5—C6—O1 | 121.31 (15) | C11A—C12A—H12A | 120.0 |
C5—C6—C7 | 126.81 (14) | C11A—C12A—C13A | 119.9 (3) |
C6—C7—H7 | 108.2 | C13A—C12A—H12A | 120.0 |
C6—C7—C8 | 111.08 (13) | C12A—C13A—H13A | 119.9 |
O7—C7—C6 | 111.80 (12) | C12A—C13A—C14A | 120.3 (3) |
O7—C7—H7 | 108.2 | C14A—C13A—H13A | 119.9 |
O7—C7—C8 | 109.33 (12) | C9A—C14A—C13A | 120.6 (3) |
C8—C7—H7 | 108.2 | C9A—C14A—H14A | 119.7 |
C7—O7—H7A | 109.5 | C13A—C14A—H14A | 119.7 |
Cl1—C8—H8 | 104.0 (10) | C6B—O1B—C2B | 120.5 (18) |
C7—C8—Cl1 | 108.20 (10) | O1B—C2B—C3B | 116.5 (19) |
C7—C8—H8 | 110.5 (10) | O2B—C2B—O1B | 108 (2) |
C9—C8—Cl1 | 110.65 (10) | O2B—C2B—C3B | 130 (2) |
C9—C8—C7 | 113.63 (13) | C2B—C3B—H3B | 119.8 |
C9—C8—H8 | 109.4 (10) | C4B—C3B—C2B | 120 (2) |
C10—C9—C8 | 119.35 (15) | C4B—C3B—H3B | 119.8 |
C10—C9—C14 | 119.42 (16) | C3B—C4B—H4B | 120.6 |
C14—C9—C8 | 121.21 (15) | C3B—C4B—C5B | 119 (2) |
C9—C10—H10 | 119.9 | C5B—C4B—H4B | 120.6 |
C9—C10—C11 | 120.13 (18) | C4B—C5B—H5B | 118.6 |
C11—C10—H10 | 119.9 | C6B—C5B—C4B | 122.8 (17) |
C10—C11—H11 | 119.9 | C6B—C5B—H5B | 118.6 |
C12—C11—C10 | 120.19 (19) | O1B—C6B—C7B | 112.2 (15) |
C12—C11—H11 | 119.9 | C5B—C6B—O1B | 118.7 (16) |
C11—C12—H12 | 119.9 | C5B—C6B—C7B | 129.1 (16) |
C11—C12—C13 | 120.20 (18) | C6B—C7B—H7B | 109.4 |
C13—C12—H12 | 119.9 | O7B—C7B—C6B | 104.2 (15) |
C12—C13—H13 | 120.0 | O7B—C7B—H7B | 109.4 |
C12—C13—C14 | 119.93 (19) | O7B—C7B—C8B | 107.1 (14) |
C14—C13—H13 | 120.0 | C8B—C7B—C6B | 117.1 (12) |
C9—C14—C13 | 120.12 (19) | C8B—C7B—H7B | 109.4 |
C9—C14—H14 | 119.9 | C7B—O7B—H7BA | 109.5 |
C13—C14—H14 | 119.9 | Cl1B—C8B—H8B | 108.4 |
C6A—O1A—C2A | 121.9 (3) | C7B—C8B—Cl1B | 107.0 (7) |
O1A—C2A—C3A | 116.2 (3) | C7B—C8B—H8B | 108.4 |
O2A—C2A—O1A | 116.4 (4) | C7B—C8B—C9B | 113.7 (9) |
O2A—C2A—C3A | 127.2 (4) | C9B—C8B—Cl1B | 110.8 (8) |
C2A—C3A—H3A | 119.6 | C9B—C8B—H8B | 108.4 |
C4A—C3A—C2A | 120.7 (4) | C10B—C9B—C8B | 122.7 (13) |
C4A—C3A—H3A | 119.6 | C10B—C9B—C14B | 120.0 |
C3A—C4A—H4A | 119.5 | C14B—C9B—C8B | 117.2 (13) |
C3A—C4A—C5A | 121.1 (4) | C9B—C10B—H10B | 120.0 |
C5A—C4A—H4A | 119.5 | C9B—C10B—C11B | 120.0 |
C4A—C5A—H5A | 120.8 | C11B—C10B—H10B | 120.0 |
C6A—C5A—C4A | 118.3 (3) | C10B—C11B—H11B | 120.0 |
C6A—C5A—H5A | 120.8 | C10B—C11B—C12B | 120.0 |
O1A—C6A—C7A | 111.4 (3) | C12B—C11B—H11B | 120.0 |
C5A—C6A—O1A | 121.5 (3) | C11B—C12B—H12B | 120.0 |
C5A—C6A—C7A | 127.1 (3) | C13B—C12B—C11B | 120.0 |
C6A—C7A—H7AA | 107.6 | C13B—C12B—H12B | 120.0 |
C6A—C7A—C8A | 112.6 (2) | C12B—C13B—H13B | 120.0 |
O7A—C7A—C6A | 111.7 (3) | C14B—C13B—C12B | 120.0 |
O7A—C7A—H7AA | 107.6 | C14B—C13B—H13B | 120.0 |
O7A—C7A—C8A | 109.7 (2) | C9B—C14B—H14B | 120.0 |
C8A—C7A—H7AA | 107.6 | C13B—C14B—C9B | 120.0 |
C7A—O7A—H7AB | 109.5 | C13B—C14B—H14B | 120.0 |
Cl1A—C8A—H8A | 108.1 | ||
Cl1—C8—C9—C10 | −120.90 (15) | C6A—O1A—C2A—C3A | −6.8 (8) |
Cl1—C8—C9—C14 | 60.55 (19) | C6A—C7A—C8A—Cl1A | −54.6 (2) |
O1—C2—C3—C4 | −4.2 (2) | C6A—C7A—C8A—C9A | −176.5 (2) |
O1—C6—C7—O7 | −61.88 (17) | C7A—C8A—C9A—C10A | 42.4 (3) |
O1—C6—C7—C8 | 60.54 (16) | C7A—C8A—C9A—C14A | −139.4 (2) |
C2—O1—C6—C5 | −1.8 (2) | O7A—C7A—C8A—Cl1A | −179.6 (3) |
C2—O1—C6—C7 | −179.31 (12) | O7A—C7A—C8A—C9A | 58.5 (3) |
C2—C3—C4—C5 | 0.6 (3) | C8A—C9A—C10A—C11A | 177.4 (2) |
O2—C2—C3—C4 | 177.78 (17) | C8A—C9A—C14A—C13A | −176.9 (3) |
C3—C4—C5—C6 | 2.6 (3) | C9A—C10A—C11A—C12A | 0.1 (4) |
C4—C5—C6—O1 | −2.1 (2) | C10A—C9A—C14A—C13A | 1.4 (4) |
C4—C5—C6—C7 | 175.07 (16) | C10A—C11A—C12A—C13A | 0.1 (4) |
C5—C6—C7—O7 | 120.76 (17) | C11A—C12A—C13A—C14A | 0.4 (4) |
C5—C6—C7—C8 | −116.82 (18) | C12A—C13A—C14A—C9A | −1.2 (4) |
C6—O1—C2—O2 | −176.92 (13) | C14A—C9A—C10A—C11A | −0.9 (3) |
C6—O1—C2—C3 | 4.8 (2) | Cl1B—C8B—C9B—C10B | −107.5 (10) |
C6—C7—C8—Cl1 | 53.13 (14) | Cl1B—C8B—C9B—C14B | 70.4 (11) |
C6—C7—C8—C9 | 176.44 (12) | O1B—C2B—C3B—C4B | −15 (6) |
C7—C8—C9—C10 | 117.14 (16) | O1B—C6B—C7B—O7B | 80 (3) |
C7—C8—C9—C14 | −61.4 (2) | O1B—C6B—C7B—C8B | −162 (2) |
O7—C7—C8—Cl1 | 176.98 (10) | C2B—O1B—C6B—C5B | −11 (5) |
O7—C7—C8—C9 | −59.71 (16) | C2B—O1B—C6B—C7B | 167 (3) |
C8—C9—C10—C11 | −178.70 (16) | C2B—C3B—C4B—C5B | 11 (6) |
C8—C9—C14—C13 | 179.04 (17) | O2B—C2B—C3B—C4B | −167 (5) |
C9—C10—C11—C12 | −0.3 (3) | C3B—C4B—C5B—C6B | −6 (5) |
C10—C9—C14—C13 | 0.5 (3) | C4B—C5B—C6B—O1B | 6 (4) |
C10—C11—C12—C13 | 0.4 (3) | C4B—C5B—C6B—C7B | −172 (3) |
C11—C12—C13—C14 | 0.0 (3) | C5B—C6B—C7B—O7B | −101 (3) |
C12—C13—C14—C9 | −0.4 (3) | C5B—C6B—C7B—C8B | 17 (3) |
C14—C9—C10—C11 | −0.1 (3) | C6B—O1B—C2B—O2B | 173 (4) |
Cl1A—C8A—C9A—C10A | −79.9 (2) | C6B—O1B—C2B—C3B | 16 (5) |
Cl1A—C8A—C9A—C14A | 98.3 (2) | C6B—C7B—C8B—Cl1B | 61.4 (16) |
O1A—C2A—C3A—C4A | 3.6 (9) | C6B—C7B—C8B—C9B | −175.9 (15) |
O1A—C6A—C7A—O7A | 54.5 (5) | C7B—C8B—C9B—C10B | 132.0 (10) |
O1A—C6A—C7A—C8A | −69.4 (4) | C7B—C8B—C9B—C14B | −50.2 (12) |
C2A—O1A—C6A—C5A | 5.8 (7) | O7B—C7B—C8B—Cl1B | 177.9 (11) |
C2A—O1A—C6A—C7A | −173.9 (4) | O7B—C7B—C8B—C9B | −59.5 (15) |
C2A—C3A—C4A—C5A | 0.7 (10) | C8B—C9B—C10B—C11B | 177.8 (12) |
O2A—C2A—C3A—C4A | 178.7 (7) | C8B—C9B—C14B—C13B | −177.9 (12) |
C3A—C4A—C5A—C6A | −2.0 (8) | C9B—C10B—C11B—C12B | 0.0 |
C4A—C5A—C6A—O1A | −1.2 (6) | C10B—C9B—C14B—C13B | 0.0 |
C4A—C5A—C6A—C7A | 178.5 (5) | C10B—C11B—C12B—C13B | 0.0 |
C5A—C6A—C7A—O7A | −125.3 (5) | C11B—C12B—C13B—C14B | 0.0 |
C5A—C6A—C7A—C8A | 110.8 (4) | C12B—C13B—C14B—C9B | 0.0 |
C6A—O1A—C2A—O2A | 177.5 (6) | C14B—C9B—C10B—C11B | 0.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O2A | 0.84 | 1.95 | 2.775 (4) | 169 |
O7—H7A···O2B | 0.84 | 1.79 | 2.63 (3) | 173 |
O7A—H7AB···O2i | 0.84 | 2.01 | 2.835 (6) | 170 |
O7B—H7BA···O2i | 0.84 | 1.86 | 2.63 (3) | 153 |
C3—H3···O2Aii | 0.95 | 2.33 | 3.220 (6) | 155 |
C3—H3···O2Bii | 0.95 | 2.52 | 3.42 (4) | 158 |
C3A—H3A···O2 | 0.95 | 2.36 | 3.236 (5) | 153 |
C5—H5···Cl1iii | 0.95 | 2.70 | 3.6042 (17) | 159 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The University of Wollongong is acknowledged for providing laboratory facilities.
Funding information
Funding for this research was provided by: Thailand Research Fund (grant No. BRG5980012; grant No. DBG6280007; grant No. DBG5980001; studentship No. PHD/0010/2558 to PM); Mae Fah Luang University .
References
Bihud, N. R., Rasol, N. E., Imran, S., Awang, K., Ahmad, F. B., Mai, C.-W., Leong, C.-O., Cordell, G. A. & Ismail, N. H. (2019). J. Nat. Prod. 82, 2430–2442. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jaidee, W., Andersen, R. J., Patrick, B. O., Pyne, S. G., Muanprasat, C., Borwornpinyo, S. & Laphookhieo, S. (2019). Phytochemistry, 157, 8–20. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lan, Y. H., Chang, F. R., Liaw, C. C., Wu, C. C., Chiang, M. Y. & Wu, Y. C. (2005). Planta Med. 71, 153–159. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lekphrom, R., Kanokmedhakul, S. & Kanokmedhakul, K. (2009). J. Ethnopharmacol. 125, 47–50. Web of Science CrossRef PubMed CAS Google Scholar
Liou, J. R., Wu, T. Y., Thang, T. D., Hwang, T. L., Wu, C. C., Cheng, Y. B., Chiang, M. Y., Lan, Y. H., El-Shazly, M., Wu, S. L., Beerhues, L., Yuan, S. S., Hou, M. F., Chen, S. L., Chang, F. R. & Wu, Y. C. (2014). J. Nat. Prod. 77, 2626–2632. Web of Science CSD CrossRef CAS PubMed Google Scholar
Meesakul, P., Jaidee, W., Richardson, C., Andersen, R. J., Patrick, B. O., Willis, A. C., Muanprasat, C., Wang, J., Lei, X., Hadsadee, S., Jungsuttiwong, S., Pyne, S. G. & Laphookhieo, S. (2020). Phytochemistry, 171, 112248–112255. Web of Science CSD CrossRef PubMed Google Scholar
Prawat, U., Chaimanee, S., Butsuri, A., Salae, A.-W. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 529–534. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saunders, R. M. K. & Chalermglin, P. (2008). Bot. J. Linn. Soc. 156, 355–384. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soonthornchareonnon, N., Suwanborirux, K., Bavovada, R., Patarapanich, C. & Cassady, J. M. (1999). J. Nat. Prod. 62, 1390–1394. Web of Science CrossRef PubMed CAS Google Scholar
Thibonnet, J., Abarbri, M., Parrain, J. L. & Duchêne, A. (2002). J. Org. Chem. 67, 3941–3944. Web of Science CrossRef PubMed CAS Google Scholar
Tian, Z., Chen, S., Zhang, Y., Huang, M., Shi, L., Huang, F., Fong, C., Yang, M. & Xiao, P. (2006). Phytomedicine, 13, 181–186. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.