research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ammonium bis­­[tris­­(oxamide dioxime-κ2N,N′)nickel(II)] bis­­[tris­­(oxalato-κ2O,O′)chromate(III)] 6.76-hydrate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Higher Teachers' Training College, University of Maroua, PO Box 55, Maroua, Cameroon, bChemistry Department, Faculty of Science, University of Maroua, PO Box 814, Maroua, Cameroon, cChemistry Department, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon, and dUniversité de Lorraine, CNRS, CRM2, F54000, Nancy, France
*Correspondence e-mail: mbiangueya@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 September 2020; accepted 6 October 2020; online 9 October 2020)

The asymmetric unit of the title compound, (NH4)2[Ni(C2H6N4O2)3]2[Cr(C2O4)3]2·6.76H2O, comprises two NH4+ cations, two [Ni(C2H6N4O2)3]2+ cations and two [Cr(C2O4)3]3– anions, as well as eight water mol­ecules of crystallization of which only one is fully occupied. In the cationic and anionic complexes, the central atoms (NiII and CrIII) are each surrounded by three bidentate ligands (N-chelating oxamide dioxime and O-chelating oxalate, respectively), resulting in distorted octa­hedral coordination spheres. In the crystal, O—H⋯O hydrogen bonds between the oxamide dioxime ligands as donor groups and the oxalate ligands as acceptor groups alternately connect the cationic and anionic complexes into infinite pillars extending parallel to [100]. Moreover, N—H⋯O hydrogen bonds between the same ligands connect neighboring pillars, thus delineating channels that accommodate the charge-balancing NH4+ cations as well as the water mol­ecules of crystallization. Although the H atoms could not be localized for these two species, the corresponding N⋯O and O⋯O distances indicate hydrogen bonds of medium strength.

1. Chemical context

Tris(oxalato)metallate(III) complex anions, [MIII(C2O4)3]3–, are versatile building blocks for the design of new mol­ecule-based materials with inter­esting magnetic, electrical and optical properties (Coronado et al., 2000[Coronado, E., Clemente-León, M., Galán-Mascarós, J. R., Giménez-Saiz, C., Gómez-García, C. J. & Martínez-Ferrero, E. (2000). J. Chem. Soc. Dalton Trans. pp. 3955-3961.]). Through coordin­ation bonds with a variety of metallic ions, these anions can act as ligands, forming various one-, two- and three-dimensional polymeric networks (Pardo et al., 2012[Pardo, E., Train, C., Boubekeur, K., Gontard, G., Cano, J., Lloret, F., Nakatani, K. & Verdaguer, M. (2012). Inorg. Chem. 51, 11582-11593.]; Decurtins et al., 1998[Decurtins, S., Schmalle, H. & Pellaux, R. (1998). New J. Chem. 22. 117-121.]). Moreover, in the presence of appropriate hydrogen-donor groups, they can act as hydrogen-bond acceptors resulting in a multitude of hydrogen-bonded networks (Kenfack Tsobnang et al., 2014[Kenfack Tsobnang, P., Wenger, E., Biache, C., Lambi Ngolui, J., Ponou, S., Dahaoui, S. & Lecomte, C. (2014). Acta Cryst. B70, 900-902.]; Muzioł et al., 2011[Muzioł, T. M., Wrzeszcz, G. & Chrząszcz, Ł. (2011). Polyhedron, 30, 169-177.]; Zhuge et al., 2010[Zhuge, F., Wu, B., Dong, L., Yang, J., Janiak, C., Tang, N. & Yang, X.-J. (2010). Aust. J. Chem. 63, 1358-1364.]; Borel et al., 2009[Borel, C., Larsson, K., Håkansson, M., Olsson, B. E., Bond, A. D. & Öhrström, L. (2009). Cryst. Growth Des. 9, 2821-2827.]). When [MIII(C2O4)3]3– anions are combined with triply charged tris-bidentate complex cations of D3 symmetry in which the ligating atoms are all bonded to H atoms or OH groups, they build infinite neutral pillars of alternating complex cations and anions that leave channels in the structure (Bélombé et al., 2009[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009). Dalton Trans. pp. 4519-4525.]; Hua et al., 2001[Hua, X., Larsson, K., Neal, T. J., Wyllie, G. R. A., Shang, M. & Lappin, A. G. (2001). Inorg. Chem. Commun. 4, 635-639.]; Kuroda, 1991[Kuroda, R. (1991). Inorg. Chem. 30, 4954-4959.]). If functional species (such as spin-crossover or photochromic complexes) are inserted into such voids, inter­esting properties of the resulting material can be expected, similar to what has been achieved with oxalate-based two-dimensional polymeric networks (Clemente-León et al., 2011[Clemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473-497.]). A convenient way of forcing additional species into the channels would be by designing compounds with charged, instead of neutral, pillars. In this way, the charge-balancing species could only reside in the channels. This strategy proved successful by combining tris­(oxalato)chromate(III) anions, [Cr(C2O4)3]3–, with tris(oxamide dioxime)nickel(II) cations, [Ni(C2H6N4O2)3]2+, the charge-balancing species being K+ and H3O+ (Mbiangué et al., 2012[Mbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngouné, J. & Álvarez, E. (2012). ScienceJet, 1, 1-9.]). An attempt to insert NH4+ (a proton carrier) into such channels led to (NH4)2[Ni(C2H6N4O2)3]2[Cr(C2O4)3]2·6.76H2O (I). Herein, we report its structure.

[Scheme 1]

2. Structural commentary

The structure of (I) is made up of infinite negatively charged pillars of alternating [Ni(C2H6N4O2)3]2+ cations and [Cr(C2O4)3]3– anions. The pillars run parallel to [100] and delimit channels containing the charge-compensating cations, NH4+, as well as the water mol­ecules of crystallization (Figs. 1[link], 2[link]). The mol­ecular components of the asymmetric unit are depicted in Fig. 3[link]. For each metal, two crystallographically independent sites (Ni1 and Ni2 and Cr1 and Cr2, respectively) are present. All of these sites are coordinated in the form of distorted octa­hedra by six imino N atoms from three bidentate oxamide dioxime ligands (for the nickel sites) and six O atoms from three bidentate oxalate ligands (for the chromium sites). The resulting complexes are chiral. Within a pillar, all the metallic sites have the same chirality, either Δ or Λ. Thus, each pillar is chiral but related to another pillar in the crystal through an inversion center. The Ni—N bond lengths range from 2.051 (3) to 2.097 (3) Å and the Cr—O bond lengths, from 1.947 (3) to 1.983 (3) Å (Table 1[link]). Within a pillar, the Ni1⋯Cr1 distances alternate between 4.8897 (8) and 4.9170 (8) Å, and the Ni2⋯Cr2 distances between 4.8743 (7) and 4.9323 (7) Å.

Table 1
Selected bond lengths (Å)

Cr1—O14 1.947 (3) Ni1—N2 2.055 (3)
Cr1—O13 1.962 (3) Ni1—N6 2.059 (3)
Cr1—O17 1.969 (3) Ni1—N5 2.076 (3)
Cr1—O22 1.975 (2) Ni1—N9 2.083 (3)
Cr1—O21 1.977 (3) Ni1—N1 2.083 (3)
Cr1—O18 1.983 (3) Ni1—N10 2.097 (3)
Cr2—O25 1.954 (2) Ni2—N13 2.051 (3)
Cr2—O33 1.959 (2) Ni2—N17 2.067 (3)
Cr2—O29 1.963 (2) Ni2—N14 2.071 (3)
Cr2—O34 1.968 (2) Ni2—N21 2.083 (3)
Cr2—O30 1.973 (2) Ni2—N18 2.086 (3)
Cr2—O26 1.979 (2) Ni2—N22 2.086 (3)
[Figure 1]
Figure 1
Arrangement of alternating [Ni(C2H6N4O2)3]2+ cations and [Cr(C2O4)3]3− anions into pillars in the structure of (I), viewed along [010]. Dashed lines indicate hydrogen bonds.
[Figure 2]
Figure 2
A view along [100] of the crystal packing of (I), illustrating the orientation of the complex ions in an eclipsed configuration within each pillar as well as the channels between the pillars.
[Figure 3]
Figure 3
The mol­ecular components of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the crystal, extensive N—H⋯O and O—H⋯O hydrogen-bonding inter­actions are observed (Table 2[link]). Neighboring metal complexes are linked by inter­molecular O—H⋯O hydrogen bonds between three hydroxyl groups from the oxamide dioxime ligands as donor groups and three ligating O atoms from the oxalate ligands as acceptors. These inter­actions connect the metal complexes into pillars running parallel to the [100] direction (Fig. 1[link]). Adjacent pillars are further linked to each other through inter­molecular N—H⋯O hydrogen bonds involving the amino groups from the oxamide dioxime ligands as donor groups and the non-coordinating O atoms from the oxalate ligands as acceptor groups. The formed pillars delimit two types of channel propagating parallel to [100] (Fig. 4[link]). Five of these N—H⋯O hydrogen bonds are bifurcated: N4—H4B⋯(O19iii,O35i), N7—H7B⋯(O35iii,O36iii), N15—H15B⋯(O31viii,O32viii), N19—H19B⋯(O27vi,O28vi) and N20—H20B⋯(O27vi,O28vi) (symmetry codes refer to Table 2[link]). There are two N—H⋯O hydrogen bonds between two amino groups from the oxamide dioxime ligands as donor groups and two water mol­ecules (O1W and O6W) as acceptor groups. There are also numerous hydrogen-bonding inter­actions involving the water mol­ecules and the ammonium cations (Table 2[link]). Together, these hydrogen-bonding inter­actions lead to a three-dimensional hydrogen-bonded network. Although the H atoms could not be localized for the ammonium cations and water mol­ecules of crystallization, the corresponding N⋯O and O⋯O distances (Table 2[link]) indicate hydrogen bonds of medium strength.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O9 0.88 2.42 2.863 (4) 112
N3—H3B⋯O35i 0.88 2.52 3.387 (4) 168
N4—H4A⋯O2ii 0.88 2.13 2.811 (4) 134
N4—H4B⋯O19iii 0.88 2.21 2.954 (4) 142
N4—H4B⋯O35i 0.88 2.65 3.190 (4) 121
N7—H7A⋯O16iii 0.88 2.32 3.183 (4) 167
N7—H7B⋯O35iii 0.88 2.36 3.198 (4) 159
N7—H7B⋯O36iii 0.88 2.58 3.228 (4) 131
N8—H8A⋯O6W 0.88 2.34 3.135 (6) 150
N8—H8B⋯O36iii 0.88 2.06 2.932 (4) 169
N11—H11B⋯O28iv 0.88 2.14 2.913 (4) 146
N12—H12A⋯O7v 0.88 2.56 3.170 (4) 128
N12—H12B⋯O32vi 0.88 2.18 3.007 (4) 155
N15—H15A⋯O1Wvii 0.88 2.09 2.948 (4) 166
N15—H15B⋯O31viii 0.88 2.25 3.057 (4) 152
N15—H15B⋯O32viii 0.88 2.34 3.020 (4) 134
N16—H16A⋯O23ix 0.88 2.30 3.129 (4) 157
N16—H16B⋯O32viii 0.88 2.43 3.295 (4) 167
N19—H19A⋯O1W 0.88 2.07 2.912 (4) 159
N19—H19B⋯O27vi 0.88 2.08 2.924 (4) 160
N19—H19B⋯O28vi 0.88 2.59 3.210 (4) 128
N20—H20A⋯O24viii 0.88 2.38 3.215 (4) 158
N20—H20B⋯O27vi 0.88 2.52 3.086 (4) 123
N20—H20B⋯O28vi 0.88 2.52 3.383 (4) 168
N23—H23A⋯O16 0.88 2.17 2.858 (4) 135
N23—H23B⋯O19iii 0.88 2.15 2.983 (4) 159
N24—H24A⋯N2Hix 0.88 2.57 3.394 (8) 156
N24—H24B⋯O20iii 0.88 2.25 3.116 (4) 170
O1—H1⋯O22 0.84 1.91 2.750 (4) 176
O2—H2⋯O17i 0.84 1.81 2.644 (4) 176
O3—H3⋯O14 0.84 1.90 2.730 (4) 171
O4—H4⋯O21i 0.84 1.89 2.726 (4) 172
O5—H5⋯O18 0.84 1.81 2.647 (4) 173
O6—H6⋯O13i 0.84 1.90 2.727 (4) 171
O7—H7⋯O30i 0.84 1.87 2.698 (3) 167
O8—H8⋯O34 0.84 1.97 2.775 (3) 159
O9—H9⋯O33i 0.84 1.84 2.679 (3) 177
O10—H10⋯O25 0.84 1.81 2.642 (3) 171
O11—H11⋯O29 0.84 1.85 2.681 (3) 172
O12—H12⋯O26i 0.84 1.86 2.702 (3) 177
O15⋯N1H     2.737 (5)  
O20⋯O5W     2.740 (7)  
O23⋯O7W     2.810 (5)  
O24⋯O2W     2.840 (5)  
O36⋯O8W     2.797 (6)  
O1W⋯N1Hi     2.856 (5)  
O3W⋯O4W     2.705 (6)  
O5W⋯O8Wx     2.817 (11)  
O6W⋯N2Hxi     2.674 (11)  
O6W⋯O6Wxi     2.723 (11)  
O6W⋯O8Wiv     2.779 (8)  
O7W⋯O8Wx     2.729 (8)  
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x-1, y-1, z; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) x, y+1, z; (x) x, y-1, z; (xi) -x, -y, -z.
[Figure 4]
Figure 4
The connection of three (a) and four (b) neighboring pillars through hydrogen bonds (dashed lines) in the structure of (I).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, August 2020 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tris-bidentate transition metal complexes with five membered chelate rings and only N-donor atoms gave 5914 hits. A search for similar complexes but with O-donor atoms gave 1009 hits. A combined search with the two previous queries gave 77 hits. A close examination of the latter structures revealed that only four of them contain hydrogen-bonded pillars of alternating cations and anions with D3 symmetry. Their CSD refcodes are RUPGEP (Bélombé et al., 2009[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009). Dalton Trans. pp. 4519-4525.]), IFOCEL and IFOCIP (Hua et al., 2001[Hua, X., Larsson, K., Neal, T. J., Wyllie, G. R. A., Shang, M. & Lappin, A. G. (2001). Inorg. Chem. Commun. 4, 635-639.]), and SOZFIW (Kuroda, 1991[Kuroda, R. (1991). Inorg. Chem. 30, 4954-4959.]). A related compound of formula (H3O)[K(H2O)3][Ni(C2H6N4O2)3]2[Cr(C2O4)3]2·3H2O, absent from the CSD, was reported a few years ago (Mbiangué et al., 2012[Mbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngouné, J. & Álvarez, E. (2012). ScienceJet, 1, 1-9.]).

5. Synthesis and crystallization

The two precursor salts, (NH4)3[Cr(C2O4)3]·3H2O (Bailar & Jones, 1939[Bailar, J. C. & Jones, E. M. (1939). Inorg. Synth. 1, 35-38.]) and [Ni(C2H6N4O2)3]SO4·5H2O (Bélombé et al., 2008[Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Fokwa, B. P. T. & Dronskowski, R. (2008). Acta Cryst. E64, m1440-m1441.]), were synthesized as described in the literature. The title compound was prepared as follows: finely powdered [Ni(C2H6N4O2)3]SO4·5H2O (0.18 g, 0.30 mmol) was added in successive small portions to an aqueous solution (20 ml) of (NH4)3[Cr(C2O4)3]·3H2O (0.13 g, 0.31 mmol) acidified with two drops of sulfuric acid. The resulting violet mixture was stirred at room temperature (303 K) for 45 min and then filtered. The filtrate was left for evaporation. After one day, violet single crystals were harvested. Upon drying, these crystals lost their brightness, suggesting a possible dehydration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms of the cationic complex were located in difference-Fourier maps but were finally placed in geometrically idealized positions with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). The assignment of water O atoms and ammonium N atoms was not straightforward. Hence, ten isolated peaks with significant electron densities (between 3.46 and 9.45 eÅ−3) were first modeled as N atoms. Their site occupancies were subsequently refined freely. Two of these ten N atoms then had site occupancies inferior but close to unity (0.98 and 0.99). Finally, taking into consideration the electroneutrality of the crystal, the assignment of the aforementioned two N atoms (labeled as N1H and N2H) was assumed to be correct and their site occupancies were fixed to 1. The remainder of the alleged N atoms were finally treated as water O atoms. The site occupancies of these O atoms were fixed to 1 for one of them (O1W) and refined to 0.797 (12), 0.840 (11), 0.835 (11), 0.692 (14), 0.878 (14), 0.909 (13) and 0.812 (14), for the seven others (O2W–O8W). The hydrogen atoms of the ammonium ions and water mol­ecules could not be found in difference-Fourier maps, but they were included in the final formula.

Table 3
Experimental details

Crystal data
Chemical formula (NH4)2[Ni(C2H6N4O3)3][Cr(C2O4)3]·6.76H2O
Mr 1616.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 9.8065 (3), 16.6719 (4), 37.2296 (9)
β (°) 95.562 (3)
V3) 6058.1 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.74
Crystal size (mm) 0.22 × 0.10 × 0.05
 
Data collection
Diffractometer Rigaku Supernova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.503, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 97200, 12706, 11294
Rint 0.063
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.178, 1.06
No. of reflections 12706
No. of parameters 903
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.42, −1.03
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2018[Brandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2018); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Diammonium bis[tris(oxamide dioxime-κ2N,N')nickel(II)] bis[tris(oxalato-κ2O,O')chromate(III)] 6.76-hydrate top
Crystal data top
(NH4)2[Ni(C2H6N4O3)3][Cr(C2O4)3]·6.76H2OF(000) = 3319
Mr = 1616.12Dx = 1.772 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.8065 (3) ÅCell parameters from 25623 reflections
b = 16.6719 (4) Åθ = 3.6–76.1°
c = 37.2296 (9) ŵ = 4.74 mm1
β = 95.562 (3)°T = 110 K
V = 6058.1 (3) Å3Block, light violet
Z = 40.22 × 0.10 × 0.05 mm
Data collection top
Rigaku Supernova, Dual, Cu at zero, Atlas
diffractometer
12706 independent reflections
Radiation source: micro-focus sealed X-ray tube11294 reflections with I > 2σ(I)
Detector resolution: 10.4508 pixels mm-1Rint = 0.063
ω scansθmax = 77.1°, θmin = 3.6°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
h = 1112
Tmin = 0.503, Tmax = 1.000k = 2021
97200 measured reflectionsl = 4644
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.087P)2 + 14.3935P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
12706 reflectionsΔρmax = 1.42 e Å3
903 parametersΔρmin = 1.03 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00017 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.68174 (6)0.34082 (4)0.08081 (2)0.02787 (16)
Cr20.97595 (5)0.84426 (3)0.17692 (2)0.01784 (13)
Ni10.18292 (6)0.34083 (3)0.08024 (2)0.02253 (15)
Ni20.47905 (5)0.84438 (3)0.17732 (2)0.01840 (14)
C10.2393 (4)0.5086 (2)0.09426 (9)0.0286 (7)
C20.1288 (4)0.5065 (2)0.06463 (9)0.0271 (7)
C30.1932 (3)0.3064 (2)0.00496 (9)0.0248 (6)
C40.0974 (3)0.2453 (2)0.01735 (9)0.0256 (7)
C50.2559 (3)0.2231 (2)0.13544 (10)0.0292 (7)
C60.1685 (3)0.2812 (2)0.15249 (9)0.0248 (6)
C70.4432 (3)0.98703 (19)0.21879 (9)0.0222 (6)
C80.5383 (3)1.01223 (19)0.19201 (9)0.0209 (6)
C90.4447 (3)0.69710 (19)0.21655 (9)0.0221 (6)
C100.5546 (3)0.74110 (19)0.23883 (8)0.0209 (6)
C110.4931 (3)0.7777 (2)0.10617 (9)0.0235 (6)
C120.3911 (3)0.8438 (2)0.10062 (9)0.0261 (7)
C130.7688 (4)0.4982 (2)0.09099 (11)0.0367 (8)
C140.6267 (4)0.5024 (2)0.06938 (10)0.0345 (8)
C150.7034 (4)0.2972 (2)0.00937 (10)0.0321 (8)
C160.5863 (4)0.2458 (2)0.02192 (10)0.0333 (8)
C170.7617 (4)0.2274 (2)0.13340 (10)0.0312 (7)
C180.6527 (4)0.2806 (2)0.14923 (10)0.0309 (7)
C190.9164 (3)0.98494 (19)0.21210 (9)0.0236 (6)
C201.0438 (3)1.0043 (2)0.19202 (9)0.0239 (6)
C210.9078 (3)0.7118 (2)0.21691 (9)0.0251 (6)
C221.0451 (3)0.74359 (19)0.23552 (9)0.0228 (6)
C231.0169 (3)0.7775 (2)0.11045 (9)0.0250 (7)
C240.8931 (4)0.8354 (2)0.10380 (9)0.0259 (7)
N10.2938 (3)0.43929 (18)0.10155 (8)0.0266 (6)
N20.0678 (3)0.43760 (17)0.06127 (8)0.0255 (6)
N30.2680 (4)0.5798 (2)0.11054 (9)0.0376 (7)
H3A0.3317790.5828670.1288170.045*
H3B0.2228910.6231280.1028820.045*
N40.0990 (3)0.57149 (19)0.04458 (9)0.0357 (7)
H4A0.0319760.5700280.0270650.043*
H4B0.1462630.6159010.0488620.043*
N50.2674 (3)0.34121 (17)0.03123 (8)0.0257 (6)
N60.0671 (3)0.25722 (17)0.05017 (8)0.0254 (6)
N70.1942 (3)0.32244 (19)0.02999 (8)0.0305 (6)
H7A0.2488450.3598480.0371130.037*
H7B0.1400950.2956710.0460000.037*
N80.0538 (4)0.1854 (2)0.00403 (9)0.0364 (7)
H8A0.0012090.1488440.0036530.044*
H8B0.0797980.1821090.0259520.044*
N90.3001 (3)0.24949 (19)0.10590 (8)0.0288 (6)
N100.0988 (3)0.32704 (17)0.12955 (7)0.0237 (5)
N110.2827 (4)0.1515 (2)0.15068 (10)0.0395 (8)
H11A0.3350460.1170090.1405370.047*
H11B0.2478940.1388230.1708490.047*
N120.1710 (3)0.2831 (2)0.18860 (8)0.0318 (7)
H12A0.1212720.3185370.1990250.038*
H12B0.2224900.2489190.2018400.038*
N130.3875 (3)0.91758 (16)0.21219 (7)0.0205 (5)
N140.5787 (3)0.95297 (16)0.17310 (7)0.0207 (5)
N150.4270 (3)1.03191 (19)0.24762 (8)0.0341 (7)
H15A0.3749091.0148180.2640040.041*
H15B0.4682991.0786820.2503020.041*
N160.5712 (3)1.08961 (17)0.18838 (8)0.0273 (6)
H16A0.6251121.1040200.1719380.033*
H16B0.5389721.1260120.2024370.033*
N170.3809 (3)0.74086 (15)0.19129 (7)0.0205 (5)
N180.6005 (3)0.80218 (16)0.22246 (7)0.0208 (5)
N190.4225 (3)0.62018 (18)0.22271 (9)0.0329 (7)
H19A0.3594450.5938740.2089940.040*
H19B0.4709000.5953770.2405080.040*
N200.5941 (3)0.71809 (18)0.27266 (8)0.0269 (6)
H20A0.6569890.7456000.2858730.032*
H20B0.5570780.6754290.2817070.032*
N210.5652 (3)0.78076 (16)0.13698 (7)0.0218 (5)
N220.3539 (3)0.87233 (17)0.13046 (7)0.0228 (5)
N230.4997 (3)0.72258 (19)0.08063 (8)0.0316 (6)
H23A0.5583070.6826650.0839070.038*
H23B0.4454890.7259970.0604160.038*
N240.3494 (4)0.8678 (2)0.06708 (9)0.0432 (8)
H24A0.2899470.9072200.0635830.052*
H24B0.3813490.8441160.0484990.052*
N1H0.9853 (4)0.5775 (2)0.16293 (10)0.0448 (8)
N2H0.2033 (10)0.0523 (4)0.0669 (2)0.126 (3)
O10.3892 (3)0.44158 (17)0.13244 (7)0.0343 (6)
H10.4492000.4062200.1307260.052*
O20.0262 (3)0.43808 (16)0.03019 (7)0.0347 (6)
H20.0897750.4055270.0328680.052*
O30.3422 (3)0.40429 (17)0.01736 (7)0.0351 (6)
H30.4076260.4169980.0325290.053*
O40.0117 (3)0.19277 (15)0.06173 (7)0.0332 (6)
H40.0660350.2099340.0760790.050*
O50.3719 (3)0.18831 (17)0.08945 (8)0.0417 (7)
H50.4362170.2086590.0792010.063*
O60.0285 (3)0.38670 (16)0.14740 (7)0.0312 (5)
H60.0375000.4040110.1334640.047*
O70.3165 (2)0.89258 (14)0.24155 (6)0.0253 (5)
H70.2552970.8595680.2342640.038*
O80.6582 (2)0.98038 (14)0.14605 (6)0.0265 (5)
H80.7023450.9418230.1383980.040*
O90.2908 (2)0.69258 (14)0.16882 (7)0.0264 (5)
H90.2243780.7204450.1600320.040*
O100.6920 (2)0.84692 (14)0.24630 (6)0.0263 (5)
H100.7461290.8725570.2344300.039*
O110.6481 (2)0.71123 (14)0.14187 (7)0.0280 (5)
H110.7134880.7202340.1576380.042*
O120.2674 (3)0.93955 (16)0.12412 (7)0.0352 (6)
H120.2128310.9419870.1401450.053*
O130.8061 (3)0.42528 (16)0.10084 (7)0.0322 (5)
O140.5692 (3)0.43221 (16)0.06414 (7)0.0317 (5)
O150.8365 (3)0.55867 (19)0.09739 (9)0.0482 (7)
O160.5786 (3)0.56575 (18)0.05959 (8)0.0438 (7)
O170.7682 (3)0.33748 (16)0.03526 (7)0.0313 (5)
O180.5585 (3)0.26170 (16)0.05446 (7)0.0326 (5)
O190.7289 (3)0.29564 (18)0.02222 (7)0.0390 (6)
O200.5311 (3)0.1948 (2)0.00224 (8)0.0444 (7)
O210.7961 (3)0.25263 (16)0.10273 (7)0.0305 (5)
O220.5947 (3)0.33159 (16)0.12630 (7)0.0303 (5)
O230.8071 (3)0.16760 (17)0.14945 (8)0.0399 (6)
O240.6293 (3)0.27345 (19)0.18052 (7)0.0427 (7)
O250.8708 (2)0.91302 (13)0.20658 (6)0.0220 (4)
O261.0842 (2)0.94373 (13)0.17383 (6)0.0229 (4)
O270.8682 (3)1.03459 (15)0.23084 (7)0.0326 (6)
O281.0950 (3)1.07009 (15)0.19461 (8)0.0357 (6)
O290.8653 (2)0.75077 (13)0.18774 (6)0.0234 (5)
O301.0915 (2)0.80565 (13)0.21976 (6)0.0223 (4)
O310.8507 (3)0.65533 (15)0.22965 (8)0.0365 (6)
O321.0993 (3)0.71118 (15)0.26239 (7)0.0314 (5)
O331.0756 (2)0.78179 (14)0.14334 (6)0.0244 (5)
O340.8593 (2)0.87042 (14)0.13244 (6)0.0237 (5)
O351.0517 (3)0.73358 (17)0.08720 (7)0.0361 (6)
O360.8374 (3)0.84520 (17)0.07336 (7)0.0358 (6)
O1W0.2328 (3)0.4997 (2)0.19080 (8)0.0437 (7)
O2W0.4899 (5)0.4035 (2)0.21006 (10)0.0508 (14)0.797 (12)
O3W0.6077 (4)0.5443 (2)0.15144 (10)0.0478 (13)0.840 (11)
O4W0.7854 (4)0.4944 (2)0.20708 (11)0.0513 (14)0.835 (11)
O5W0.4730 (9)0.0484 (4)0.0306 (2)0.099 (3)0.692 (14)
O6W0.1286 (6)0.0307 (3)0.00672 (16)0.082 (2)0.878 (14)
O7W0.9316 (5)0.0544 (2)0.10722 (12)0.0657 (16)0.909 (13)
O8W0.7410 (7)0.9990 (3)0.05478 (16)0.083 (2)0.812 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0252 (3)0.0352 (3)0.0237 (3)0.0008 (2)0.0050 (2)0.0045 (2)
Cr20.0164 (3)0.0193 (3)0.0181 (3)0.00003 (17)0.00341 (19)0.00098 (18)
Ni10.0216 (3)0.0285 (3)0.0178 (3)0.0004 (2)0.0037 (2)0.0016 (2)
Ni20.0179 (3)0.0188 (3)0.0190 (3)0.00010 (18)0.0040 (2)0.00044 (18)
C10.0309 (17)0.0331 (18)0.0228 (16)0.0065 (14)0.0086 (13)0.0016 (13)
C20.0266 (16)0.0315 (17)0.0241 (16)0.0008 (13)0.0076 (13)0.0001 (13)
C30.0225 (15)0.0303 (16)0.0222 (15)0.0026 (13)0.0045 (12)0.0005 (12)
C40.0254 (16)0.0281 (16)0.0234 (16)0.0028 (13)0.0036 (13)0.0016 (12)
C50.0206 (15)0.0369 (18)0.0304 (17)0.0010 (13)0.0044 (13)0.0082 (14)
C60.0197 (15)0.0347 (17)0.0207 (15)0.0037 (12)0.0058 (12)0.0043 (13)
C70.0195 (14)0.0245 (15)0.0233 (15)0.0002 (11)0.0052 (12)0.0043 (12)
C80.0164 (14)0.0210 (14)0.0255 (15)0.0003 (11)0.0038 (11)0.0002 (12)
C90.0220 (15)0.0223 (15)0.0223 (15)0.0014 (12)0.0035 (12)0.0014 (12)
C100.0190 (14)0.0230 (14)0.0214 (15)0.0031 (11)0.0049 (11)0.0007 (12)
C110.0216 (15)0.0281 (16)0.0215 (15)0.0005 (12)0.0054 (12)0.0002 (12)
C120.0218 (16)0.0336 (18)0.0231 (16)0.0023 (13)0.0038 (13)0.0056 (13)
C130.038 (2)0.039 (2)0.0341 (19)0.0004 (16)0.0088 (16)0.0035 (16)
C140.036 (2)0.039 (2)0.0306 (18)0.0057 (16)0.0126 (15)0.0027 (15)
C150.0288 (18)0.040 (2)0.0274 (17)0.0004 (15)0.0038 (14)0.0022 (15)
C160.0322 (18)0.041 (2)0.0268 (17)0.0011 (15)0.0029 (14)0.0039 (15)
C170.0290 (18)0.0344 (18)0.0307 (18)0.0021 (14)0.0053 (14)0.0023 (14)
C180.0301 (18)0.0355 (18)0.0281 (17)0.0021 (14)0.0076 (14)0.0036 (14)
C190.0207 (15)0.0227 (15)0.0275 (16)0.0006 (12)0.0033 (12)0.0001 (12)
C200.0237 (15)0.0261 (16)0.0221 (15)0.0011 (12)0.0028 (12)0.0019 (12)
C210.0228 (15)0.0237 (15)0.0294 (16)0.0011 (12)0.0051 (13)0.0017 (13)
C220.0226 (15)0.0211 (14)0.0255 (16)0.0020 (12)0.0057 (12)0.0023 (12)
C230.0234 (16)0.0283 (16)0.0239 (16)0.0000 (12)0.0053 (12)0.0005 (13)
C240.0249 (16)0.0284 (16)0.0247 (17)0.0002 (12)0.0043 (13)0.0013 (12)
N10.0220 (13)0.0369 (16)0.0209 (13)0.0046 (11)0.0011 (10)0.0010 (11)
N20.0216 (13)0.0305 (14)0.0240 (14)0.0014 (11)0.0006 (11)0.0003 (11)
N30.0438 (19)0.0357 (17)0.0326 (16)0.0033 (14)0.0001 (14)0.0057 (13)
N40.0397 (18)0.0303 (15)0.0358 (17)0.0006 (13)0.0028 (14)0.0025 (13)
N50.0251 (14)0.0314 (15)0.0213 (13)0.0020 (11)0.0059 (11)0.0028 (11)
N60.0255 (14)0.0261 (14)0.0256 (14)0.0019 (11)0.0074 (11)0.0008 (11)
N70.0366 (16)0.0375 (16)0.0179 (13)0.0048 (13)0.0052 (12)0.0011 (12)
N80.0464 (19)0.0372 (17)0.0272 (15)0.0112 (14)0.0118 (14)0.0072 (13)
N90.0241 (14)0.0370 (16)0.0267 (14)0.0059 (12)0.0089 (11)0.0052 (12)
N100.0225 (13)0.0301 (14)0.0192 (13)0.0019 (11)0.0061 (10)0.0001 (11)
N110.0379 (18)0.0441 (19)0.0395 (18)0.0150 (14)0.0190 (15)0.0171 (14)
N120.0309 (15)0.0455 (18)0.0194 (13)0.0047 (13)0.0038 (11)0.0042 (12)
N130.0191 (12)0.0233 (13)0.0204 (12)0.0017 (10)0.0077 (10)0.0003 (10)
N140.0188 (12)0.0219 (12)0.0228 (13)0.0003 (10)0.0090 (10)0.0000 (10)
N150.0401 (17)0.0330 (16)0.0323 (16)0.0151 (13)0.0189 (13)0.0125 (13)
N160.0275 (14)0.0210 (13)0.0355 (16)0.0016 (11)0.0138 (12)0.0020 (11)
N170.0179 (12)0.0196 (12)0.0238 (13)0.0023 (9)0.0020 (10)0.0026 (10)
N180.0182 (12)0.0227 (13)0.0214 (12)0.0026 (10)0.0013 (10)0.0027 (10)
N190.0340 (16)0.0254 (14)0.0374 (17)0.0055 (12)0.0066 (13)0.0046 (12)
N200.0284 (14)0.0299 (14)0.0220 (13)0.0037 (11)0.0007 (11)0.0030 (11)
N210.0190 (12)0.0229 (13)0.0239 (13)0.0026 (10)0.0034 (10)0.0032 (10)
N220.0193 (12)0.0263 (13)0.0231 (13)0.0041 (10)0.0033 (10)0.0037 (10)
N230.0314 (15)0.0387 (16)0.0243 (14)0.0042 (13)0.0009 (12)0.0059 (12)
N240.048 (2)0.059 (2)0.0237 (15)0.0203 (17)0.0074 (14)0.0095 (15)
N1H0.0413 (19)0.048 (2)0.046 (2)0.0034 (16)0.0077 (16)0.0041 (16)
N2H0.182 (8)0.078 (4)0.116 (6)0.007 (5)0.001 (5)0.055 (4)
O10.0302 (13)0.0444 (15)0.0269 (12)0.0016 (11)0.0051 (10)0.0034 (11)
O20.0310 (13)0.0386 (14)0.0322 (13)0.0036 (11)0.0089 (11)0.0052 (11)
O30.0345 (14)0.0436 (15)0.0279 (13)0.0124 (11)0.0059 (10)0.0059 (11)
O40.0374 (14)0.0323 (13)0.0323 (13)0.0081 (11)0.0166 (11)0.0019 (10)
O50.0412 (16)0.0414 (15)0.0468 (16)0.0129 (12)0.0260 (13)0.0107 (13)
O60.0320 (13)0.0374 (14)0.0249 (12)0.0074 (10)0.0061 (10)0.0044 (10)
O70.0255 (11)0.0298 (12)0.0219 (11)0.0078 (9)0.0092 (9)0.0018 (9)
O80.0264 (12)0.0260 (11)0.0293 (12)0.0030 (9)0.0144 (9)0.0031 (9)
O90.0230 (11)0.0239 (11)0.0307 (12)0.0012 (9)0.0047 (9)0.0036 (9)
O100.0239 (12)0.0321 (12)0.0229 (11)0.0084 (9)0.0025 (9)0.0005 (9)
O110.0235 (11)0.0270 (12)0.0324 (13)0.0076 (9)0.0031 (9)0.0071 (10)
O120.0360 (14)0.0395 (14)0.0326 (13)0.0188 (11)0.0160 (11)0.0135 (11)
O130.0290 (13)0.0367 (13)0.0311 (13)0.0008 (10)0.0039 (10)0.0015 (10)
O140.0266 (12)0.0357 (13)0.0332 (13)0.0030 (10)0.0054 (10)0.0054 (10)
O150.0544 (19)0.0439 (17)0.0462 (17)0.0038 (14)0.0040 (14)0.0021 (13)
O160.0491 (17)0.0387 (15)0.0443 (16)0.0104 (13)0.0087 (13)0.0014 (12)
O170.0290 (13)0.0429 (14)0.0224 (12)0.0013 (10)0.0054 (10)0.0000 (10)
O180.0288 (13)0.0407 (14)0.0289 (13)0.0011 (10)0.0066 (10)0.0028 (11)
O190.0373 (15)0.0546 (17)0.0258 (13)0.0103 (12)0.0065 (11)0.0000 (12)
O200.0449 (17)0.0532 (18)0.0359 (15)0.0146 (14)0.0080 (13)0.0060 (13)
O210.0283 (12)0.0395 (14)0.0244 (12)0.0043 (10)0.0062 (10)0.0058 (10)
O220.0274 (12)0.0388 (14)0.0256 (12)0.0008 (10)0.0078 (10)0.0045 (10)
O230.0436 (16)0.0408 (15)0.0365 (15)0.0075 (12)0.0101 (12)0.0086 (12)
O240.0523 (17)0.0502 (17)0.0279 (14)0.0099 (14)0.0147 (12)0.0076 (12)
O250.0213 (10)0.0220 (11)0.0234 (11)0.0009 (8)0.0063 (8)0.0027 (8)
O260.0228 (11)0.0241 (11)0.0224 (11)0.0027 (8)0.0058 (9)0.0000 (8)
O270.0300 (13)0.0287 (12)0.0402 (14)0.0003 (10)0.0090 (11)0.0107 (11)
O280.0443 (15)0.0268 (13)0.0379 (14)0.0126 (11)0.0137 (12)0.0023 (11)
O290.0215 (11)0.0212 (10)0.0276 (11)0.0025 (8)0.0024 (9)0.0005 (9)
O300.0220 (11)0.0225 (11)0.0224 (11)0.0010 (8)0.0021 (8)0.0021 (8)
O310.0293 (13)0.0303 (13)0.0497 (17)0.0035 (10)0.0036 (12)0.0119 (11)
O320.0367 (14)0.0297 (12)0.0265 (12)0.0004 (10)0.0027 (10)0.0060 (10)
O330.0208 (11)0.0297 (12)0.0230 (11)0.0031 (9)0.0035 (9)0.0056 (9)
O340.0223 (11)0.0286 (11)0.0203 (11)0.0040 (9)0.0021 (9)0.0008 (9)
O350.0383 (14)0.0417 (15)0.0289 (13)0.0100 (11)0.0063 (11)0.0108 (11)
O360.0397 (15)0.0476 (16)0.0195 (12)0.0095 (11)0.0011 (11)0.0033 (10)
O1W0.0399 (15)0.0605 (19)0.0324 (14)0.0161 (14)0.0127 (12)0.0054 (13)
O2W0.068 (3)0.046 (2)0.037 (2)0.0112 (19)0.0051 (18)0.0030 (16)
O3W0.046 (2)0.050 (2)0.045 (2)0.0076 (16)0.0051 (16)0.0077 (16)
O4W0.056 (3)0.048 (2)0.050 (2)0.0026 (17)0.0073 (18)0.0070 (17)
O5W0.133 (7)0.065 (4)0.095 (6)0.035 (4)0.011 (5)0.021 (4)
O6W0.086 (4)0.056 (3)0.105 (4)0.005 (2)0.018 (3)0.001 (3)
O7W0.082 (3)0.053 (2)0.065 (3)0.013 (2)0.023 (2)0.0124 (19)
O8W0.102 (5)0.070 (4)0.078 (4)0.005 (3)0.011 (3)0.005 (3)
Geometric parameters (Å, º) top
Cr1—O141.947 (3)C17—C181.549 (5)
Cr1—O131.962 (3)C18—O241.215 (5)
Cr1—O171.969 (3)C18—O221.297 (5)
Cr1—O221.975 (2)C19—O271.208 (4)
Cr1—O211.977 (3)C19—O251.289 (4)
Cr1—O181.983 (3)C19—C201.551 (4)
Cr2—O251.954 (2)C20—O281.206 (4)
Cr2—O331.959 (2)C20—O261.299 (4)
Cr2—O291.963 (2)C21—O311.215 (4)
Cr2—O341.968 (2)C21—O291.299 (4)
Cr2—O301.973 (2)C21—C221.547 (5)
Cr2—O261.979 (2)C22—O321.213 (4)
Ni1—N22.055 (3)C22—O301.294 (4)
Ni1—N62.059 (3)C23—O351.208 (4)
Ni1—N52.076 (3)C23—O331.303 (4)
Ni1—N92.083 (3)C23—C241.553 (5)
Ni1—N12.083 (3)C24—O361.220 (4)
Ni1—N102.097 (3)C24—O341.287 (4)
Ni2—N132.051 (3)N1—O11.410 (4)
Ni2—N172.067 (3)N2—O21.407 (4)
Ni2—N142.071 (3)N3—H3A0.88
Ni2—N212.083 (3)N3—H3B0.88
Ni2—N182.086 (3)N4—H4A0.88
Ni2—N222.086 (3)N4—H4B0.88
C1—N11.291 (5)N5—O31.408 (4)
C1—N31.350 (5)N6—O41.415 (4)
C1—C21.470 (5)N7—H7A0.88
C2—N21.295 (5)N7—H7B0.88
C2—N41.333 (5)N8—H8A0.88
C3—N51.298 (5)N8—H8B0.88
C3—N71.329 (4)N9—O51.412 (4)
C3—C41.489 (5)N10—O61.413 (4)
C4—N61.300 (4)N11—H11A0.88
C4—N81.322 (5)N11—H11B0.88
C5—N91.298 (5)N12—H12A0.88
C5—N111.337 (5)N12—H12B0.88
C5—C61.478 (5)N13—O71.414 (3)
C6—N101.291 (4)N14—O81.408 (3)
C6—N121.342 (4)N15—H15A0.88
C7—N131.294 (4)N15—H15B0.88
C7—N151.331 (4)N16—H16A0.88
C7—C81.490 (4)N16—H16B0.88
C8—N141.297 (4)N17—O91.409 (3)
C8—N161.340 (4)N18—O101.412 (3)
C9—N171.301 (4)N19—H19A0.88
C9—N191.324 (4)N19—H19B0.88
C9—C101.488 (4)N20—H20A0.88
C10—N181.290 (4)N20—H20B0.88
C10—N201.338 (4)N21—O111.417 (3)
C11—N211.289 (4)N22—O121.412 (3)
C11—N231.328 (4)N23—H23A0.88
C11—C121.489 (5)N23—H23B0.88
C12—N221.293 (4)N24—H24A0.88
C12—N241.337 (5)N24—H24B0.88
C13—O151.217 (5)O1—H10.84
C13—O131.312 (5)O2—H20.84
C13—C141.541 (6)O3—H30.84
C14—O161.199 (5)O4—H40.84
C14—O141.306 (5)O5—H50.84
C15—O191.226 (5)O6—H60.84
C15—O171.290 (5)O7—H70.84
C15—C161.542 (5)O8—H80.84
C16—O201.215 (5)O9—H90.84
C16—O181.295 (5)O10—H100.84
C17—O231.223 (5)O11—H110.84
C17—O211.292 (4)O12—H120.84
O14—Cr1—O1382.64 (11)O27—C19—O25125.5 (3)
O14—Cr1—O1791.47 (11)O27—C19—C20121.0 (3)
O13—Cr1—O1792.52 (11)O25—C19—C20113.6 (3)
O14—Cr1—O2293.18 (11)O28—C20—O26127.1 (3)
O13—Cr1—O2291.98 (11)O28—C20—C19120.0 (3)
O17—Cr1—O22173.90 (11)O26—C20—C19113.0 (3)
O14—Cr1—O21174.18 (11)O31—C21—O29126.3 (3)
O13—Cr1—O2194.01 (11)O31—C21—C22120.3 (3)
O17—Cr1—O2193.44 (11)O29—C21—C22113.4 (3)
O22—Cr1—O2182.14 (10)O32—C22—O30125.8 (3)
O14—Cr1—O1893.64 (11)O32—C22—C21120.6 (3)
O13—Cr1—O18172.69 (11)O30—C22—C21113.6 (3)
O17—Cr1—O1881.25 (11)O35—C23—O33125.3 (3)
O22—Cr1—O1894.52 (11)O35—C23—C24122.2 (3)
O21—Cr1—O1890.21 (11)O33—C23—C24112.5 (3)
O25—Cr2—O33174.63 (10)O36—C24—O34125.5 (3)
O25—Cr2—O2991.00 (9)O36—C24—C23120.3 (3)
O33—Cr2—O2991.63 (10)O34—C24—C23114.2 (3)
O25—Cr2—O3492.86 (10)C1—N1—O1112.1 (3)
O33—Cr2—O3482.31 (10)C1—N1—Ni1115.8 (2)
O29—Cr2—O3493.49 (10)O1—N1—Ni1127.8 (2)
O25—Cr2—O3091.60 (10)C2—N2—O2109.5 (3)
O33—Cr2—O3093.40 (10)C2—N2—Ni1115.4 (2)
O29—Cr2—O3081.99 (9)O2—N2—Ni1125.5 (2)
O34—Cr2—O30173.71 (10)C1—N3—H3A120.0
O25—Cr2—O2681.77 (9)C1—N3—H3B120.0
O33—Cr2—O2696.01 (10)H3A—N3—H3B120.0
O29—Cr2—O26171.07 (10)C2—N4—H4A120.0
O34—Cr2—O2692.11 (10)C2—N4—H4B120.0
O30—Cr2—O2692.92 (9)H4A—N4—H4B120.0
N2—Ni1—N695.09 (12)C3—N5—O3109.4 (3)
N2—Ni1—N587.03 (11)C3—N5—Ni1114.8 (2)
N6—Ni1—N576.71 (11)O3—N5—Ni1126.2 (2)
N2—Ni1—N9172.73 (12)C4—N6—O4110.5 (3)
N6—Ni1—N990.29 (12)C4—N6—Ni1116.7 (2)
N5—Ni1—N998.98 (11)O4—N6—Ni1129.6 (2)
N2—Ni1—N176.20 (12)C3—N7—H7A120.0
N6—Ni1—N1168.70 (12)C3—N7—H7B120.0
N5—Ni1—N195.42 (11)H7A—N7—H7B120.0
N9—Ni1—N199.03 (13)C4—N8—H8A120.0
N2—Ni1—N1097.90 (11)C4—N8—H8B120.0
N6—Ni1—N1099.13 (11)H8A—N8—H8B120.0
N5—Ni1—N10173.87 (12)C5—N9—O5110.1 (3)
N9—Ni1—N1076.38 (11)C5—N9—Ni1115.0 (2)
N1—Ni1—N1089.31 (11)O5—N9—Ni1127.2 (2)
N13—Ni2—N1795.42 (10)C6—N10—O6110.9 (3)
N13—Ni2—N1476.50 (10)C6—N10—Ni1114.6 (2)
N17—Ni2—N14169.69 (11)O6—N10—Ni1125.9 (2)
N13—Ni2—N21172.83 (11)C5—N11—H11A120.0
N17—Ni2—N2189.29 (11)C5—N11—H11B120.0
N14—Ni2—N2199.39 (10)H11A—N11—H11B120.0
N13—Ni2—N1886.67 (11)C6—N12—H12A120.0
N17—Ni2—N1876.06 (10)C6—N12—H12B120.0
N14—Ni2—N1896.84 (11)H12A—N12—H12B120.0
N21—Ni2—N1899.75 (11)C7—N13—O7110.3 (2)
N13—Ni2—N2297.94 (11)C7—N13—Ni2116.7 (2)
N17—Ni2—N2298.42 (11)O7—N13—Ni2126.31 (19)
N14—Ni2—N2289.14 (11)C8—N14—O8111.1 (2)
N21—Ni2—N2275.97 (11)C8—N14—Ni2117.0 (2)
N18—Ni2—N22173.19 (11)O8—N14—Ni2129.50 (19)
N1—C1—N3128.9 (3)C7—N15—H15A120.0
N1—C1—C2113.3 (3)C7—N15—H15B120.0
N3—C1—C2117.7 (3)H15A—N15—H15B120.0
N2—C2—N4126.4 (3)C8—N16—H16A120.0
N2—C2—C1113.2 (3)C8—N16—H16B120.0
N4—C2—C1120.4 (3)H16A—N16—H16B120.0
N5—C3—N7126.2 (3)C9—N17—O9109.8 (2)
N5—C3—C4113.4 (3)C9—N17—Ni2116.6 (2)
N7—C3—C4120.4 (3)O9—N17—Ni2127.4 (2)
N6—C4—N8126.3 (3)C10—N18—O10110.5 (3)
N6—C4—C3113.3 (3)C10—N18—Ni2116.6 (2)
N8—C4—C3120.5 (3)O10—N18—Ni2127.34 (19)
N9—C5—N11126.5 (3)C9—N19—H19A120.0
N9—C5—C6113.4 (3)C9—N19—H19B120.0
N11—C5—C6120.1 (3)H19A—N19—H19B120.0
N10—C6—N12127.3 (3)C10—N20—H20A120.0
N10—C6—C5113.3 (3)C10—N20—H20B120.0
N12—C6—C5119.3 (3)H20A—N20—H20B120.0
N13—C7—N15125.1 (3)C11—N21—O11109.9 (3)
N13—C7—C8113.9 (3)C11—N21—Ni2115.9 (2)
N15—C7—C8120.9 (3)O11—N21—Ni2126.2 (2)
N14—C8—N16126.1 (3)C12—N22—O12111.3 (3)
N14—C8—C7113.1 (3)C12—N22—Ni2116.4 (2)
N16—C8—C7120.8 (3)O12—N22—Ni2127.8 (2)
N17—C9—N19126.3 (3)C11—N23—H23A120.0
N17—C9—C10113.4 (3)C11—N23—H23B120.0
N19—C9—C10120.2 (3)H23A—N23—H23B120.0
N18—C10—N20126.1 (3)C12—N24—H24A120.0
N18—C10—C9113.1 (3)C12—N24—H24B120.0
N20—C10—C9120.7 (3)H24A—N24—H24B120.0
N21—C11—N23127.2 (3)N1—O1—H1109.5
N21—C11—C12113.4 (3)N2—O2—H2109.5
N23—C11—C12119.4 (3)N5—O3—H3109.5
N22—C12—N24127.3 (3)N6—O4—H4109.5
N22—C12—C11113.3 (3)N9—O5—H5109.5
N24—C12—C11119.4 (3)N10—O6—H6109.5
O15—C13—O13125.5 (4)N13—O7—H7109.5
O15—C13—C14120.8 (4)N14—O8—H8109.5
O13—C13—C14113.7 (3)N17—O9—H9109.5
O16—C14—O14126.3 (4)N18—O10—H10109.5
O16—C14—C13120.5 (4)N21—O11—H11109.5
O14—C14—C13113.1 (3)N22—O12—H12109.5
O19—C15—O17126.6 (4)C13—O13—Cr1114.4 (2)
O19—C15—C16120.4 (3)C14—O14—Cr1115.5 (2)
O17—C15—C16113.0 (3)C15—O17—Cr1115.9 (2)
O20—C16—O18125.9 (4)C16—O18—Cr1115.2 (2)
O20—C16—C15120.5 (3)C17—O21—Cr1114.9 (2)
O18—C16—C15113.6 (3)C18—O22—Cr1114.7 (2)
O23—C17—O21125.7 (4)C19—O25—Cr2116.2 (2)
O23—C17—C18120.8 (3)C20—O26—Cr2115.4 (2)
O21—C17—C18113.5 (3)C21—O29—Cr2115.5 (2)
O24—C18—O22125.8 (4)C22—O30—Cr2115.3 (2)
O24—C18—C17120.7 (3)C23—O33—Cr2115.3 (2)
O22—C18—C17113.6 (3)C24—O34—Cr2114.9 (2)
N1—C1—C2—N227.1 (4)N8—C4—N6—O45.0 (5)
N3—C1—C2—N2151.3 (3)C3—C4—N6—O4173.6 (3)
N1—C1—C2—N4153.6 (3)N8—C4—N6—Ni1167.0 (3)
N3—C1—C2—N428.0 (5)C3—C4—N6—Ni111.6 (4)
N5—C3—C4—N624.0 (4)N11—C5—N9—O55.7 (5)
N7—C3—C4—N6154.1 (3)C6—C5—N9—O5174.6 (3)
N5—C3—C4—N8154.7 (3)N11—C5—N9—Ni1157.5 (3)
N7—C3—C4—N827.2 (5)C6—C5—N9—Ni122.8 (4)
N9—C5—C6—N1031.4 (4)N12—C6—N10—O64.4 (5)
N11—C5—C6—N10148.9 (4)C5—C6—N10—O6173.9 (3)
N9—C5—C6—N12147.0 (3)N12—C6—N10—Ni1154.2 (3)
N11—C5—C6—N1232.7 (5)C5—C6—N10—Ni124.0 (4)
N13—C7—C8—N1418.4 (4)N15—C7—N13—O75.3 (5)
N15—C7—C8—N14157.9 (3)C8—C7—N13—O7170.8 (3)
N13—C7—C8—N16159.7 (3)N15—C7—N13—Ni2158.6 (3)
N15—C7—C8—N1624.0 (5)C8—C7—N13—Ni217.5 (4)
N17—C9—C10—N1823.3 (4)N16—C8—N14—O83.2 (5)
N19—C9—C10—N18154.8 (3)C7—C8—N14—O8174.7 (2)
N17—C9—C10—N20154.7 (3)N16—C8—N14—Ni2167.3 (3)
N19—C9—C10—N2027.2 (5)C7—C8—N14—Ni210.7 (4)
N21—C11—C12—N2225.7 (4)N19—C9—N17—O95.1 (5)
N23—C11—C12—N22153.0 (3)C10—C9—N17—O9172.8 (2)
N21—C11—C12—N24153.6 (3)N19—C9—N17—Ni2159.6 (3)
N23—C11—C12—N2427.7 (5)C10—C9—N17—Ni218.3 (3)
O15—C13—C14—O162.6 (6)N20—C10—N18—O105.0 (4)
O13—C13—C14—O16177.9 (3)C9—C10—N18—O10172.9 (2)
O15—C13—C14—O14178.4 (4)N20—C10—N18—Ni2160.7 (3)
O13—C13—C14—O141.1 (5)C9—C10—N18—Ni217.1 (3)
O19—C15—C16—O2010.7 (6)N23—C11—N21—O115.3 (5)
O17—C15—C16—O20167.7 (4)C12—C11—N21—O11173.3 (3)
O19—C15—C16—O18170.8 (4)N23—C11—N21—Ni2156.2 (3)
O17—C15—C16—O1810.8 (5)C12—C11—N21—Ni222.4 (4)
O23—C17—C18—O2414.1 (6)N24—C12—N22—O124.8 (5)
O21—C17—C18—O24166.2 (4)C11—C12—N22—O12174.5 (3)
O23—C17—C18—O22166.8 (4)N24—C12—N22—Ni2162.8 (3)
O21—C17—C18—O2212.9 (5)C11—C12—N22—Ni216.5 (4)
O27—C19—C20—O281.0 (5)O15—C13—O13—Cr1172.8 (3)
O25—C19—C20—O28179.0 (3)C14—C13—O13—Cr16.7 (4)
O27—C19—C20—O26178.4 (3)O16—C14—O14—Cr1175.9 (3)
O25—C19—C20—O261.6 (4)C13—C14—O14—Cr15.2 (4)
O31—C21—C22—O322.1 (5)O19—C15—O17—Cr1170.1 (3)
O29—C21—C22—O32177.5 (3)C16—C15—O17—Cr111.7 (4)
O31—C21—C22—O30177.6 (3)O20—C16—O18—Cr1173.7 (3)
O29—C21—C22—O302.8 (4)C15—C16—O18—Cr14.6 (4)
O35—C23—C24—O369.0 (5)O23—C17—O21—Cr1170.6 (3)
O33—C23—C24—O36171.5 (3)C18—C17—O21—Cr19.1 (4)
O35—C23—C24—O34171.6 (3)O24—C18—O22—Cr1168.9 (3)
O33—C23—C24—O347.8 (4)C17—C18—O22—Cr110.1 (4)
N3—C1—N1—O14.4 (5)O27—C19—O25—Cr2176.9 (3)
C2—C1—N1—O1173.7 (3)C20—C19—O25—Cr23.1 (3)
N3—C1—N1—Ni1162.7 (3)O28—C20—O26—Cr2178.7 (3)
C2—C1—N1—Ni115.4 (4)C19—C20—O26—Cr20.6 (3)
N4—C2—N2—O26.9 (5)O31—C21—O29—Cr2175.6 (3)
C1—C2—N2—O2173.9 (3)C22—C21—O29—Cr24.8 (3)
N4—C2—N2—Ni1155.2 (3)O32—C22—O30—Cr2179.0 (3)
C1—C2—N2—Ni125.6 (4)C21—C22—O30—Cr20.7 (3)
N7—C3—N5—O35.0 (5)O35—C23—O33—Cr2169.5 (3)
C4—C3—N5—O3172.9 (3)C24—C23—O33—Cr210.0 (3)
N7—C3—N5—Ni1153.4 (3)O36—C24—O34—Cr2177.5 (3)
C4—C3—N5—Ni124.6 (4)C23—C24—O34—Cr21.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O90.882.422.863 (4)112
N3—H3B···O35i0.882.523.387 (4)168
N4—H4A···O2ii0.882.132.811 (4)134
N4—H4B···O19iii0.882.212.954 (4)142
N4—H4B···O35i0.882.653.190 (4)121
N7—H7A···O16iii0.882.323.183 (4)167
N7—H7B···O35iii0.882.363.198 (4)159
N7—H7B···O36iii0.882.583.228 (4)131
N8—H8A···O6W0.882.343.135 (6)150
N8—H8B···O36iii0.882.062.932 (4)169
N11—H11B···O28iv0.882.142.913 (4)146
N12—H12A···O7v0.882.563.170 (4)128
N12—H12B···O32vi0.882.183.007 (4)155
N15—H15A···O1Wvii0.882.092.948 (4)166
N15—H15B···O31viii0.882.253.057 (4)152
N15—H15B···O32viii0.882.343.020 (4)134
N16—H16A···O23ix0.882.303.129 (4)157
N16—H16B···O32viii0.882.433.295 (4)167
N19—H19A···O1W0.882.072.912 (4)159
N19—H19B···O27vi0.882.082.924 (4)160
N19—H19B···O28vi0.882.593.210 (4)128
N20—H20A···O24viii0.882.383.215 (4)158
N20—H20B···O27vi0.882.523.086 (4)123
N20—H20B···O28vi0.882.523.383 (4)168
N23—H23A···O160.882.172.858 (4)135
N23—H23B···O19iii0.882.152.983 (4)159
N24—H24A···N2Hix0.882.573.394 (8)156
N24—H24B···O20iii0.882.253.116 (4)170
O1—H1···O220.841.912.750 (4)176
O2—H2···O17i0.841.812.644 (4)176
O3—H3···O140.841.902.730 (4)171
O4—H4···O21i0.841.892.726 (4)172
O5—H5···O180.841.812.647 (4)173
O6—H6···O13i0.841.902.727 (4)171
O7—H7···O30i0.841.872.698 (3)167
O8—H8···O340.841.972.775 (3)159
O9—H9···O33i0.841.842.679 (3)177
O10—H10···O250.841.812.642 (3)171
O11—H11···O290.841.852.681 (3)172
O12—H12···O26i0.841.862.702 (3)177
O15···N1H2.737 (5)
O20···O5W2.740 (7)
O23···O7W2.810 (5)
O24···O2W2.840 (5)
O36···O8W2.797 (6)
O1W···N1Hi2.856 (5)
O3W···O4W2.705 (6)
O5W···O8Wx2.817 (11)
O6W···N2Hxi2.674 (11)
O6W···O6Wxi2.723 (11)
O6W···O8Wiv2.779 (8)
O7W···O8Wx2.729 (8)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x+1/2, y1/2, z+1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x, y+1, z; (x) x, y1, z; (xi) x, y, z.
 

Acknowledgements

YAM thanks the PMD2X X-ray diffraction facility of the Institut Jean Barriol, Université de Lorraine, for X-ray diffraction measurements, data processing and analysis, and for the provision of reports for publication: https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x). YAM thanks also the CCDC for providing access to the Cambridge Structural Database through the FAIRE programme.

References

First citationBailar, J. C. & Jones, E. M. (1939). Inorg. Synth. 1, 35–38.  CrossRef Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Fokwa, B. P. T. & Dronskowski, R. (2008). Acta Cryst. E64, m1440–m1441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBélombé, M. M., Nenwa, J., Mbiangué, Y. A., Majoumo-Mbé, F., Lönnecke, P. & Hey-Hawkins, E. (2009). Dalton Trans. pp. 4519–4525.  Google Scholar
First citationBorel, C., Larsson, K., Håkansson, M., Olsson, B. E., Bond, A. D. & Öhrström, L. (2009). Cryst. Growth Des. 9, 2821–2827.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473–497.  Web of Science PubMed Google Scholar
First citationCoronado, E., Clemente-León, M., Galán-Mascarós, J. R., Giménez-Saiz, C., Gómez-García, C. J. & Martínez-Ferrero, E. (2000). J. Chem. Soc. Dalton Trans. pp. 3955–3961.  Web of Science CSD CrossRef Google Scholar
First citationDecurtins, S., Schmalle, H. & Pellaux, R. (1998). New J. Chem. 22. 117–121.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHua, X., Larsson, K., Neal, T. J., Wyllie, G. R. A., Shang, M. & Lappin, A. G. (2001). Inorg. Chem. Commun. 4, 635–639.  Web of Science CSD CrossRef CAS Google Scholar
First citationKenfack Tsobnang, P., Wenger, E., Biache, C., Lambi Ngolui, J., Ponou, S., Dahaoui, S. & Lecomte, C. (2014). Acta Cryst. B70, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuroda, R. (1991). Inorg. Chem. 30, 4954–4959.  CSD CrossRef CAS Web of Science Google Scholar
First citationMbiangué, Y. A., Nenwa, J., Bélombé, M. M., Ngouné, J. & Álvarez, E. (2012). ScienceJet, 1, 1-9.  Google Scholar
First citationMuzioł, T. M., Wrzeszcz, G. & Chrząszcz, Ł. (2011). Polyhedron, 30, 169–177.  Google Scholar
First citationPardo, E., Train, C., Boubekeur, K., Gontard, G., Cano, J., Lloret, F., Nakatani, K. & Verdaguer, M. (2012). Inorg. Chem. 51, 11582–11593.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuge, F., Wu, B., Dong, L., Yang, J., Janiak, C., Tang, N. & Yang, X.-J. (2010). Aust. J. Chem. 63, 1358–1364.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds