research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (N^C) cyclo­metalated AuIII diazide at 100 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
*Correspondence e-mail: mats.tilset@kjemi.uio.no

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 12 August 2020; accepted 22 September 2020; online 9 October 2020)

The title compound, an (N^C)-cyclo­metalated gold(III) diazide, namely, di­azido­[5-eth­oxy­carbonyl-2-(5-eth­oxy­carbonyl­pyridin-2-yl)phenyl-κ2C1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au—N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au—N(trans to C) of 2.067 (2) Å versus Au—N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.

1. Chemical context

Among gold azide complexes, AuI have dominated over AuIII azides (Del Castillo et al., 2011[Del Castillo, T. J., Sarkar, S., Abboud, K. A. & Veige, A. S. (2011). Dalton Trans. 40, 8140-8144.]; Powers et al., 2015[Powers, A. R., Ghiviriga, I., Abboud, K. A. & Veige, A. S. (2015). Dalton Trans. 44, 14747-14752.]; Partyka et al., 2007[Partyka, D. V., Updegraff, J. B., Zeller, M., Hunter, A. D. & Gray, T. G. (2007). Organometallics, 26, 183-186.]). Until now, only three examples of AuIII azide complexes have been reported (Fig. 1[link]). The reported compounds feature the N-heterocyclic carbene complex and pyridine coordinated Au–triazide groups (Schuh et al., 2016[Schuh, E., Werner, S., Otte, D., Monkowius, U. & Mohr, F. (2016). Organometallics, 35, 3448-3451.]; Peng et al., 2019[Peng, K., Friedrich, A. & Schatzschneider, U. (2019). Chem. Commun. 55, 8142-8145.]) as well as cationic cyclo­metalated monoazide (Roth et al., 2016[Roth, T., Wadepohl, H. & Gade, L. H. (2016). Eur. J. Inorg. Chem. pp. 1184-1191.]). To the best of our knowledge, a cyclo­metalated phenyl pyridine AuIII azide complex has not been reported before.

[Scheme 1]
[Figure 1]
Figure 1
AuIII–azide complexes reported in the literature

2. Structural commentary

The mol­ecular structure of Au(ppyEt)(N3)2 (2) is shown in Fig. 2[link]. The complex forms monoclinic crystals belonging to the space group P21/c and crystallizes with one mol­ecule in the asymmetric unit. The solid-state structure of 2 displays a square-planar coordination geometry, as expected for the d8 electron configuration of the AuIII center. The Au—N bond length trans to the pyridine N atom [2.042 (2) Å] is shorter than the one trans to the C atom [2.067 (2) Å], indicating the stronger trans influence of the phenyl carbon atom. N—N bond distances in the azide ligands are in line with reported literature values (Dori et al., 1973[Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.]) with shorter terminal N—N bond lengths compared to the inter­nal ones (1.150 vs 1.200 Å, on average). The N—N—N angles [174.7 (3) and 173.8 (3)°] deviate only slightly from the expected linear arrangement and the Au—N—N angles of 118.7 (2)° and 119.2 (2)° for the azide groups trans to N and C, respectively, indicate the expected bent coordination of these ligands. The azide groups are twisted by 56.2 (2)° with respect to each other, and point in-and-out of the plane with distances of 1.092 (2) Å for the terminal N atom trans to C and 0.975 (2) Å for the terminal N atom trans to the pyridine N atom (Fig. 3[link]). The pyridine and benzene rings are essentially coplanar, the angle formed by their mean planes being 3.64 (10)°.

[Figure 2]
Figure 2
Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Mutual orientation of the azide groups with respect to the metalacycle plane.

3. Supra­molecular features

The title crystal structure features infinite stacking chains along the [100] direction. The neighboring mol­ecules within the stack are related by inversion. The mean plane of the core of the complex mol­ecule including the Au atom, both aromatic rings and two N atoms of azide groups attached to the Au atom form an angle with the a-axis direction of 69.53 (2)°. The distances between these planes of neighboring mol­ecules within the stack are 3.331 (1) and 3.314 (1) Å (Fig. 4[link]).

[Figure 4]
Figure 4
Crystal packing of the title compound viewed along the a axis.

4. Database survey

A search was performed in the Cambridge Structural Database (CSD version 5.41; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the following constraints: an AuIII complex featuring a phenyl­pyridine backbone and two additional non-cyclic ligands bonding to Au through N or C. Fourteen structures were found to match this motif. The features of the title structure resemble those observed in the structures found in this database survey, e.g. an observable trans effect (distance Au—L trans to N is always shorter than that trans to C), Au—C bond lengths are shorter than the Au—N ones and angles around the AuIII center are close to 90°.

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title compound is provided in Fig. 5[link]. The gold complex Au(ppyEt)Cl2 (1) was prepared according to previously published procedure (Levchenko et al., 2020[Levchenko, V. A., Siah, H.-S. M., Øien-Ødegaard, S., Kaur, G., Fiksdahl, A. & Tilset, M. (2020). Mol. Catal. 492, 111009-111018.]). Complex 1 (70 mg, 0.124 mmol, 1 equiv.) was stirred with sodium azide (64.5 mg, 1 mmol, 8 equiv.) in water for 24 h at room temperature. The solids were recovered by filtration, washed with large excess of water and dried in air giving 50 mg (70%) of 2 as a white solid. Needle-like crystals were obtained by slow diffusion of cyclo­hexane into a solution of the product in CH2Cl2 containing few drops of acetone. 1H NMR (600 MHz, DMSO-d6): δH 9.28 (s, 1H), 8.82 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.07–8.02 (m, 2H), 4.45 (dd, J = 12.5, 5.4 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 1.37 (dt, J = 13.8, 7.2 Hz, 6H). 13C NMR (151 MHz, DMSO-d6): δC 165.1, 164.5, 162.3, 148.9, 147.0, 146.3, 143.8, 132.5, 129.6, 128.2, 127.4, 127.1, 122.8, 62.3, 61.5, 14.1, 14.0. MS (ESI, CH3OH): m/z = 591.091 ([M − N3 + OCH3 + Na]+, 100), 602.082 ([M + Na]+, 9). HRMS (CH3OH): calculated for C18H19AuN4O5Na+ [M − N3 + OCH3 + Na]+ 591.0913, found 591.0914 (Δ 0.00 ppm). Calculated for C17H16AuN7O4Na+ [M + Na]+ 602.0822, found 602.0821 (Δ 0.10 ppm).

[Figure 5]
Figure 5
Synthesis of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. OLEX2 was used as user inter­face (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). All hydrogen atoms were placed in calculated positions with C—H = 0.95-0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2-1.5Ueq(C)].

Table 1
Experimental details

Crystal data
Chemical formula [Au(C17H16NO4)(N3)2]
Mr 579.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.0788 (5), 24.6279 (16), 10.5840 (7)
β (°) 91.059 (1)
V3) 1844.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.02
Crystal size (mm) 0.2 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker D8 Photon 100 area detector
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.554, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 37671, 5655, 4677
Rint 0.023
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.036, 1.09
No. of reflections 5655
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.92, −1.10
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: APEX3 (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Diazido[5-ethoxycarbonyl-2-(5-ethoxycarbonylpyridin-2-yl)phenyl-κ2C1,N]gold(III) top
Crystal data top
[Au(C17H16NO4)(N3)2]F(000) = 1112
Mr = 579.33Dx = 2.086 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0788 (5) ÅCell parameters from 9519 reflections
b = 24.6279 (16) Åθ = 2.5–30.6°
c = 10.5840 (7) ŵ = 8.02 mm1
β = 91.059 (1)°T = 100 K
V = 1844.9 (2) Å3Needle, colorless
Z = 40.2 × 0.03 × 0.01 mm
Data collection top
Bruker D8 Photon 100 area detector
diffractometer
5655 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4677 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.023
Detector resolution: 10.42 pixels mm-1θmax = 30.6°, θmin = 2.5°
ω and φ shutterless scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
k = 3535
Tmin = 0.554, Tmax = 0.746l = 1415
37671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.036H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0071P)2 + 3.5107P]
where P = (Fo2 + 2Fc2)/3
5655 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.75297 (2)0.00058 (2)0.64453 (2)0.01001 (2)
O10.4872 (2)0.22687 (7)0.35894 (15)0.0181 (3)
O41.0437 (3)0.20014 (8)0.49251 (17)0.0272 (4)
O30.9998 (2)0.20622 (7)0.28226 (15)0.0170 (3)
O20.4569 (3)0.20965 (8)0.56671 (17)0.0271 (4)
N60.7546 (3)0.04933 (9)0.88472 (19)0.0213 (4)
N10.8122 (3)0.04540 (8)0.48884 (17)0.0141 (4)
N50.6697 (3)0.05028 (8)0.78531 (18)0.0180 (4)
N40.7094 (4)0.07941 (11)0.9575 (2)0.0327 (5)
N20.8539 (3)0.06048 (8)0.76482 (18)0.0173 (4)
N70.8264 (4)0.05242 (11)0.9828 (2)0.0346 (6)
N30.7753 (3)0.06848 (9)0.86238 (19)0.0211 (4)
C10.6763 (3)0.05386 (8)0.50946 (19)0.0097 (4)
C20.6095 (3)0.10502 (9)0.5321 (2)0.0144 (4)
H20.5912250.1168740.6164580.017*
C60.7021 (3)0.03570 (9)0.3866 (2)0.0119 (4)
C70.7724 (3)0.01977 (9)0.3753 (2)0.0120 (4)
C100.9087 (3)0.12530 (9)0.3809 (2)0.0135 (4)
C120.4984 (3)0.19541 (9)0.4620 (2)0.0164 (4)
C90.8673 (3)0.10048 (9)0.2653 (2)0.0156 (4)
H90.8854180.1197180.1886350.019*
C80.7995 (3)0.04760 (9)0.2623 (2)0.0152 (4)
H80.7716190.0304650.1837380.018*
C50.6615 (3)0.07016 (9)0.2849 (2)0.0159 (4)
H50.6791710.0580260.2007230.019*
C170.9570 (4)0.30317 (11)0.3331 (3)0.0324 (6)
H17A0.8355960.3012530.2873160.049*
H17B0.9369990.2972410.4233920.049*
H17C1.0135750.3390510.3205340.049*
C40.5950 (3)0.12224 (9)0.3074 (2)0.0161 (4)
H40.5679870.1459290.2385540.019*
C30.5680 (3)0.13978 (9)0.4310 (2)0.0139 (4)
C161.0875 (3)0.26013 (9)0.2839 (2)0.0194 (5)
H16A1.2034160.2590240.3376080.023*
H16B1.1249400.2698130.1970570.023*
C150.9899 (3)0.18128 (9)0.3932 (2)0.0156 (4)
C130.4230 (4)0.28268 (10)0.3779 (2)0.0220 (5)
H13A0.3244100.2831700.4430700.026*
H13B0.3661530.2966540.2981770.026*
C110.8795 (3)0.09698 (9)0.4924 (2)0.0140 (4)
H110.9067300.1137930.5714300.017*
C140.5832 (4)0.31882 (11)0.4186 (3)0.0338 (7)
H14A0.6785200.3195310.3526640.051*
H14B0.6401290.3048890.4972500.051*
H14C0.5356870.3556730.4325480.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01148 (3)0.01142 (4)0.00713 (3)0.00123 (3)0.00055 (2)0.00031 (3)
O10.0228 (8)0.0159 (8)0.0156 (8)0.0037 (6)0.0019 (6)0.0042 (6)
O40.0454 (12)0.0202 (9)0.0159 (8)0.0049 (8)0.0039 (8)0.0024 (7)
O30.0211 (8)0.0162 (8)0.0137 (8)0.0017 (6)0.0006 (6)0.0042 (6)
O20.0426 (11)0.0221 (9)0.0171 (9)0.0038 (8)0.0093 (8)0.0025 (7)
N60.0256 (11)0.0225 (10)0.0158 (9)0.0013 (8)0.0036 (8)0.0022 (8)
N10.0139 (8)0.0166 (9)0.0119 (8)0.0039 (7)0.0014 (7)0.0030 (7)
N50.0201 (9)0.0203 (9)0.0138 (9)0.0059 (8)0.0011 (7)0.0039 (7)
N40.0417 (14)0.0388 (14)0.0178 (11)0.0078 (11)0.0049 (10)0.0061 (10)
N20.0197 (9)0.0166 (9)0.0155 (9)0.0067 (7)0.0008 (7)0.0008 (7)
N70.0392 (14)0.0469 (15)0.0175 (11)0.0068 (12)0.0050 (10)0.0075 (10)
N30.0256 (10)0.0210 (10)0.0165 (10)0.0017 (8)0.0041 (8)0.0010 (8)
C10.0081 (8)0.0102 (9)0.0109 (9)0.0026 (7)0.0006 (7)0.0032 (7)
C20.0130 (9)0.0158 (10)0.0144 (10)0.0032 (8)0.0007 (8)0.0028 (8)
C60.0105 (9)0.0132 (9)0.0121 (9)0.0032 (7)0.0002 (7)0.0004 (7)
C70.0104 (9)0.0162 (9)0.0095 (9)0.0039 (7)0.0004 (7)0.0005 (7)
C100.0131 (9)0.0138 (9)0.0136 (10)0.0046 (8)0.0018 (7)0.0024 (8)
C120.0154 (10)0.0174 (10)0.0165 (10)0.0025 (8)0.0022 (8)0.0043 (8)
C90.0188 (10)0.0164 (10)0.0117 (9)0.0050 (8)0.0019 (8)0.0048 (8)
C80.0176 (10)0.0179 (10)0.0100 (9)0.0046 (8)0.0009 (8)0.0013 (8)
C50.0195 (10)0.0173 (10)0.0109 (9)0.0030 (8)0.0002 (8)0.0014 (8)
C170.0302 (14)0.0163 (12)0.0509 (18)0.0024 (10)0.0096 (13)0.0062 (12)
C40.0165 (10)0.0173 (10)0.0146 (10)0.0035 (8)0.0000 (8)0.0044 (8)
C30.0119 (9)0.0141 (9)0.0157 (10)0.0026 (8)0.0002 (7)0.0021 (8)
C160.0200 (11)0.0173 (11)0.0209 (11)0.0029 (9)0.0033 (9)0.0052 (9)
C150.0175 (10)0.0143 (10)0.0150 (10)0.0036 (8)0.0014 (8)0.0033 (8)
C130.0255 (12)0.0182 (11)0.0224 (12)0.0100 (9)0.0046 (10)0.0049 (9)
C110.0127 (9)0.0159 (10)0.0135 (10)0.0039 (8)0.0018 (7)0.0019 (8)
C140.0397 (16)0.0146 (11)0.0473 (18)0.0045 (11)0.0031 (14)0.0010 (11)
Geometric parameters (Å, º) top
Au1—C12.027 (2)C10—C91.394 (3)
Au1—N12.0335 (18)C10—C151.498 (3)
Au1—N52.0418 (19)C12—C31.494 (3)
Au1—N22.0674 (19)C9—C81.388 (3)
O1—C121.339 (3)C9—H90.9500
O1—C131.463 (3)C8—H80.9500
O4—C151.204 (3)C5—C41.388 (3)
O3—C151.328 (3)C5—H50.9500
O3—C161.466 (3)C17—C161.505 (4)
O2—C121.205 (3)C17—H17A0.9800
N6—N71.150 (3)C17—H17B0.9800
N6—N51.202 (3)C17—H17C0.9800
N1—C111.357 (3)C4—C31.395 (3)
N1—C71.382 (3)C4—H40.9500
N4—N31.150 (3)C16—H16A0.9900
N2—N31.198 (3)C16—H16B0.9900
C1—C21.369 (3)C13—C141.499 (4)
C1—C61.390 (3)C13—H13A0.9900
C2—C31.397 (3)C13—H13B0.9900
C2—H20.9500C11—H110.9500
C6—C51.397 (3)C14—H14A0.9800
C6—C71.459 (3)C14—H14B0.9800
C7—C81.395 (3)C14—H14C0.9800
C10—C111.390 (3)
C1—Au1—N181.03 (8)C4—C5—C6119.7 (2)
C1—Au1—N591.82 (8)C4—C5—H5120.2
N1—Au1—N5172.30 (8)C6—C5—H5120.2
C1—Au1—N2172.51 (8)C16—C17—H17A109.5
N1—Au1—N292.15 (8)C16—C17—H17B109.5
N5—Au1—N295.13 (8)H17A—C17—H17B109.5
C12—O1—C13116.48 (18)C16—C17—H17C109.5
C15—O3—C16115.97 (18)H17A—C17—H17C109.5
N7—N6—N5173.8 (3)H17B—C17—H17C109.5
C11—N1—C7121.18 (19)C5—C4—C3120.0 (2)
C11—N1—Au1124.28 (15)C5—C4—H4120.0
C7—N1—Au1114.51 (15)C3—C4—H4120.0
N6—N5—Au1118.70 (16)C4—C3—C2119.9 (2)
N3—N2—Au1119.17 (16)C4—C3—C12122.8 (2)
N4—N3—N2174.7 (3)C2—C3—C12117.3 (2)
C2—C1—C6120.80 (19)O3—C16—C17112.3 (2)
C2—C1—Au1125.05 (16)O3—C16—H16A109.1
C6—C1—Au1114.12 (15)C17—C16—H16A109.1
C1—C2—C3119.9 (2)O3—C16—H16B109.1
C1—C2—H2120.1C17—C16—H16B109.1
C3—C2—H2120.1H16A—C16—H16B107.9
C1—C6—C5119.8 (2)O4—C15—O3124.9 (2)
C1—C6—C7115.39 (19)O4—C15—C10123.1 (2)
C5—C6—C7124.8 (2)O3—C15—C10112.00 (19)
N1—C7—C8119.5 (2)O1—C13—C14111.2 (2)
N1—C7—C6114.87 (18)O1—C13—H13A109.4
C8—C7—C6125.7 (2)C14—C13—H13A109.4
C11—C10—C9119.5 (2)O1—C13—H13B109.4
C11—C10—C15116.8 (2)C14—C13—H13B109.4
C9—C10—C15123.7 (2)H13A—C13—H13B108.0
O2—C12—O1124.7 (2)N1—C11—C10120.3 (2)
O2—C12—C3123.8 (2)N1—C11—H11119.9
O1—C12—C3111.5 (2)C10—C11—H11119.9
C8—C9—C10119.9 (2)C13—C14—H14A109.5
C8—C9—H9120.1C13—C14—H14B109.5
C10—C9—H9120.1H14A—C14—H14B109.5
C9—C8—C7119.7 (2)C13—C14—H14C109.5
C9—C8—H8120.2H14A—C14—H14C109.5
C7—C8—H8120.2H14B—C14—H14C109.5
C6—C1—C2—C30.6 (3)C7—C6—C5—C4180.0 (2)
Au1—C1—C2—C3177.50 (15)C6—C5—C4—C30.4 (3)
C2—C1—C6—C50.7 (3)C5—C4—C3—C20.5 (3)
Au1—C1—C6—C5177.58 (16)C5—C4—C3—C12179.5 (2)
C2—C1—C6—C7179.42 (19)C1—C2—C3—C40.0 (3)
Au1—C1—C6—C72.3 (2)C1—C2—C3—C12179.05 (19)
C11—N1—C7—C80.9 (3)O2—C12—C3—C4172.6 (2)
Au1—N1—C7—C8177.14 (16)O1—C12—C3—C47.0 (3)
C11—N1—C7—C6179.65 (18)O2—C12—C3—C28.4 (3)
Au1—N1—C7—C62.4 (2)O1—C12—C3—C2171.98 (19)
C1—C6—C7—N13.1 (3)C15—O3—C16—C1776.9 (3)
C5—C6—C7—N1176.8 (2)C16—O3—C15—O41.5 (3)
C1—C6—C7—C8176.4 (2)C16—O3—C15—C10176.64 (18)
C5—C6—C7—C83.8 (3)C11—C10—C15—O46.3 (3)
C13—O1—C12—O21.2 (3)C9—C10—C15—O4171.9 (2)
C13—O1—C12—C3179.18 (19)C11—C10—C15—O3175.56 (19)
C11—C10—C9—C80.8 (3)C9—C10—C15—O36.3 (3)
C15—C10—C9—C8177.4 (2)C12—O1—C13—C1484.2 (3)
C10—C9—C8—C70.3 (3)C7—N1—C11—C100.4 (3)
N1—C7—C8—C90.5 (3)Au1—N1—C11—C10177.39 (15)
C6—C7—C8—C9179.9 (2)C9—C10—C11—N10.4 (3)
C1—C6—C5—C40.2 (3)C15—C10—C11—N1177.85 (19)
 

Funding information

Funding for this research was provided by: Norges Forskningsråd (grant No. 250795).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2018). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDel Castillo, T. J., Sarkar, S., Abboud, K. A. & Veige, A. S. (2011). Dalton Trans. 40, 8140–8144.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLevchenko, V. A., Siah, H.-S. M., Øien-Ødegaard, S., Kaur, G., Fiksdahl, A. & Tilset, M. (2020). Mol. Catal. 492, 111009–111018.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPartyka, D. V., Updegraff, J. B., Zeller, M., Hunter, A. D. & Gray, T. G. (2007). Organometallics, 26, 183–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, K., Friedrich, A. & Schatzschneider, U. (2019). Chem. Commun. 55, 8142–8145.  Web of Science CSD CrossRef CAS Google Scholar
First citationPowers, A. R., Ghiviriga, I., Abboud, K. A. & Veige, A. S. (2015). Dalton Trans. 44, 14747–14752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRoth, T., Wadepohl, H. & Gade, L. H. (2016). Eur. J. Inorg. Chem. pp. 1184–1191.  Web of Science CSD CrossRef Google Scholar
First citationSchuh, E., Werner, S., Otte, D., Monkowius, U. & Mohr, F. (2016). Organometallics, 35, 3448–3451.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds