research communications
III diazide at 100 K
of (N^C) cyclometalated AuaDepartment of Chemistry and Center for Materials Science and Nanotechnology (SMN), University of Oslo, PO Box 1126 Blindern, N-0318 Oslo, Norway
*Correspondence e-mail: mats.tilset@kjemi.uio.no
The title compound, an (N^C)-cyclometalated gold(III) diazide, namely, diazido[5-ethoxycarbonyl-2-(5-ethoxycarbonylpyridin-2-yl)phenyl-κ2C1,N]gold(III), [Au(C17H16NO4)(N3)2] or Au(ppyEt)(N3)2, was synthesized by reacting Au(ppyEt)Cl2 with NaN3 in water for 24 h. The complex has been structurally characterized and features a gold center with a square-planar environment. The Au—N(azide) bond lengths are significantly different depending on the influence of the atom trans to the azide group [Au—N(trans to C) of 2.067 (2) Å versus Au—N(trans to N) of 2.042 (2) Å]. The azide groups are twisted in-and-out of plane by 56.2 (2)°.
Keywords: crystal structure; azide; gold(III); cyclometallated; trans influence.
CCDC reference: 2033308
1. Chemical context
Among gold azide complexes, AuI have dominated over AuIII (Del Castillo et al., 2011; Powers et al., 2015; Partyka et al., 2007). Until now, only three examples of AuIII azide complexes have been reported (Fig. 1). The reported compounds feature the N-heterocyclic carbene complex and pyridine coordinated Au–triazide groups (Schuh et al., 2016; Peng et al., 2019) as well as cationic cyclometalated monoazide (Roth et al., 2016). To the best of our knowledge, a cyclometalated phenyl pyridine AuIII azide complex has not been reported before.
2. Structural commentary
The molecular structure of Au(ppyEt)(N3)2 (2) is shown in Fig. 2. The complex forms monoclinic crystals belonging to the P21/c and crystallizes with one molecule in the The solid-state structure of 2 displays a square-planar coordination geometry, as expected for the d8 of the AuIII center. The Au—N bond length trans to the pyridine N atom [2.042 (2) Å] is shorter than the one trans to the C atom [2.067 (2) Å], indicating the stronger trans influence of the phenyl carbon atom. N—N bond distances in the azide ligands are in line with reported literature values (Dori et al., 1973) with shorter terminal N—N bond lengths compared to the internal ones (1.150 vs 1.200 Å, on average). The N—N—N angles [174.7 (3) and 173.8 (3)°] deviate only slightly from the expected linear arrangement and the Au—N—N angles of 118.7 (2)° and 119.2 (2)° for the azide groups trans to N and C, respectively, indicate the expected bent coordination of these ligands. The azide groups are twisted by 56.2 (2)° with respect to each other, and point in-and-out of the plane with distances of 1.092 (2) Å for the terminal N atom trans to C and 0.975 (2) Å for the terminal N atom trans to the pyridine N atom (Fig. 3). The pyridine and benzene rings are essentially coplanar, the angle formed by their mean planes being 3.64 (10)°.
3. Supramolecular features
The title a-axis direction of 69.53 (2)°. The distances between these planes of neighboring molecules within the stack are 3.331 (1) and 3.314 (1) Å (Fig. 4).
features infinite stacking chains along the [100] direction. The neighboring molecules within the stack are related by inversion. The mean plane of the core of the complex molecule including the Au atom, both aromatic rings and two N atoms of azide groups attached to the Au atom form an angle with the4. Database survey
A search was performed in the Cambridge Structural Database (CSD version 5.41; Groom et al., 2016) with the following constraints: an AuIII complex featuring a phenylpyridine backbone and two additional non-cyclic ligands bonding to Au through N or C. Fourteen structures were found to match this motif. The features of the title structure resemble those observed in the structures found in this database survey, e.g. an observable trans effect (distance Au—L trans to N is always shorter than that trans to C), Au—C bond lengths are shorter than the Au—N ones and angles around the AuIII center are close to 90°.
5. Synthesis and crystallization
The reaction scheme for the synthesis of the title compound is provided in Fig. 5. The gold complex Au(ppyEt)Cl2 (1) was prepared according to previously published procedure (Levchenko et al., 2020). Complex 1 (70 mg, 0.124 mmol, 1 equiv.) was stirred with sodium azide (64.5 mg, 1 mmol, 8 equiv.) in water for 24 h at room temperature. The solids were recovered by filtration, washed with large excess of water and dried in air giving 50 mg (70%) of 2 as a white solid. Needle-like crystals were obtained by slow diffusion of cyclohexane into a solution of the product in CH2Cl2 containing few drops of acetone. 1H NMR (600 MHz, DMSO-d6): δH 9.28 (s, 1H), 8.82 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.2 Hz, 1H), 8.07–8.02 (m, 2H), 4.45 (dd, J = 12.5, 5.4 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 1.37 (dt, J = 13.8, 7.2 Hz, 6H). 13C NMR (151 MHz, DMSO-d6): δC 165.1, 164.5, 162.3, 148.9, 147.0, 146.3, 143.8, 132.5, 129.6, 128.2, 127.4, 127.1, 122.8, 62.3, 61.5, 14.1, 14.0. MS (ESI, CH3OH): m/z = 591.091 ([M − N3 + OCH3 + Na]+, 100), 602.082 ([M + Na]+, 9). HRMS (CH3OH): calculated for C18H19AuN4O5Na+ [M − N3 + OCH3 + Na]+ 591.0913, found 591.0914 (Δ 0.00 ppm). Calculated for C17H16AuN7O4Na+ [M + Na]+ 602.0822, found 602.0821 (Δ 0.10 ppm).
6. Refinement
Crystal data, data collection and structure . OLEX2 was used as user interface (Dolomanov et al., 2009). All hydrogen atoms were placed in calculated positions with C—H = 0.95-0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2-1.5Ueq(C)].
details are summarized in Table 1Supporting information
CCDC reference: 2033308
https://doi.org/10.1107/S2056989020012955/yk2139sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020012955/yk2139Isup2.hkl
Data collection: APEX3 (Bruker, 2018); cell
APEX3 (Bruker, 2018); data reduction: APEX3 (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: enCIFer (Allen et al., 2004).[Au(C17H16NO4)(N3)2] | F(000) = 1112 |
Mr = 579.33 | Dx = 2.086 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0788 (5) Å | Cell parameters from 9519 reflections |
b = 24.6279 (16) Å | θ = 2.5–30.6° |
c = 10.5840 (7) Å | µ = 8.02 mm−1 |
β = 91.059 (1)° | T = 100 K |
V = 1844.9 (2) Å3 | Needle, colorless |
Z = 4 | 0.2 × 0.03 × 0.01 mm |
Bruker D8 Photon 100 area detector diffractometer | 5655 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4677 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.023 |
Detector resolution: 10.42 pixels mm-1 | θmax = 30.6°, θmin = 2.5° |
ω and φ shutterless scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | k = −35→35 |
Tmin = 0.554, Tmax = 0.746 | l = −14→15 |
37671 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.036 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0071P)2 + 3.5107P] where P = (Fo2 + 2Fc2)/3 |
5655 reflections | (Δ/σ)max = 0.001 |
264 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.75297 (2) | −0.00058 (2) | 0.64453 (2) | 0.01001 (2) | |
O1 | 0.4872 (2) | 0.22687 (7) | 0.35894 (15) | 0.0181 (3) | |
O4 | 1.0437 (3) | −0.20014 (8) | 0.49251 (17) | 0.0272 (4) | |
O3 | 0.9998 (2) | −0.20622 (7) | 0.28226 (15) | 0.0170 (3) | |
O2 | 0.4569 (3) | 0.20965 (8) | 0.56671 (17) | 0.0271 (4) | |
N6 | 0.7546 (3) | 0.04933 (9) | 0.88472 (19) | 0.0213 (4) | |
N1 | 0.8122 (3) | −0.04540 (8) | 0.48884 (17) | 0.0141 (4) | |
N5 | 0.6697 (3) | 0.05028 (8) | 0.78531 (18) | 0.0180 (4) | |
N4 | 0.7094 (4) | −0.07941 (11) | 0.9575 (2) | 0.0327 (5) | |
N2 | 0.8539 (3) | −0.06048 (8) | 0.76482 (18) | 0.0173 (4) | |
N7 | 0.8264 (4) | 0.05242 (11) | 0.9828 (2) | 0.0346 (6) | |
N3 | 0.7753 (3) | −0.06848 (9) | 0.86238 (19) | 0.0211 (4) | |
C1 | 0.6763 (3) | 0.05386 (8) | 0.50946 (19) | 0.0097 (4) | |
C2 | 0.6095 (3) | 0.10502 (9) | 0.5321 (2) | 0.0144 (4) | |
H2 | 0.591225 | 0.116874 | 0.616458 | 0.017* | |
C6 | 0.7021 (3) | 0.03570 (9) | 0.3866 (2) | 0.0119 (4) | |
C7 | 0.7724 (3) | −0.01977 (9) | 0.3753 (2) | 0.0120 (4) | |
C10 | 0.9087 (3) | −0.12530 (9) | 0.3809 (2) | 0.0135 (4) | |
C12 | 0.4984 (3) | 0.19541 (9) | 0.4620 (2) | 0.0164 (4) | |
C9 | 0.8673 (3) | −0.10048 (9) | 0.2653 (2) | 0.0156 (4) | |
H9 | 0.885418 | −0.119718 | 0.188635 | 0.019* | |
C8 | 0.7995 (3) | −0.04760 (9) | 0.2623 (2) | 0.0152 (4) | |
H8 | 0.771619 | −0.030465 | 0.183738 | 0.018* | |
C5 | 0.6615 (3) | 0.07016 (9) | 0.2849 (2) | 0.0159 (4) | |
H5 | 0.679171 | 0.058026 | 0.200723 | 0.019* | |
C17 | 0.9570 (4) | −0.30317 (11) | 0.3331 (3) | 0.0324 (6) | |
H17A | 0.835596 | −0.301253 | 0.287316 | 0.049* | |
H17B | 0.936999 | −0.297241 | 0.423392 | 0.049* | |
H17C | 1.013575 | −0.339051 | 0.320534 | 0.049* | |
C4 | 0.5950 (3) | 0.12224 (9) | 0.3074 (2) | 0.0161 (4) | |
H4 | 0.567987 | 0.145929 | 0.238554 | 0.019* | |
C3 | 0.5680 (3) | 0.13978 (9) | 0.4310 (2) | 0.0139 (4) | |
C16 | 1.0875 (3) | −0.26013 (9) | 0.2839 (2) | 0.0194 (5) | |
H16A | 1.203416 | −0.259024 | 0.337608 | 0.023* | |
H16B | 1.124940 | −0.269813 | 0.197057 | 0.023* | |
C15 | 0.9899 (3) | −0.18128 (9) | 0.3932 (2) | 0.0156 (4) | |
C13 | 0.4230 (4) | 0.28268 (10) | 0.3779 (2) | 0.0220 (5) | |
H13A | 0.324410 | 0.283170 | 0.443070 | 0.026* | |
H13B | 0.366153 | 0.296654 | 0.298177 | 0.026* | |
C11 | 0.8795 (3) | −0.09698 (9) | 0.4924 (2) | 0.0140 (4) | |
H11 | 0.906730 | −0.113793 | 0.571430 | 0.017* | |
C14 | 0.5832 (4) | 0.31882 (11) | 0.4186 (3) | 0.0338 (7) | |
H14A | 0.678520 | 0.319531 | 0.352664 | 0.051* | |
H14B | 0.640129 | 0.304889 | 0.497250 | 0.051* | |
H14C | 0.535687 | 0.355673 | 0.432548 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.01148 (3) | 0.01142 (4) | 0.00713 (3) | −0.00123 (3) | 0.00055 (2) | −0.00031 (3) |
O1 | 0.0228 (8) | 0.0159 (8) | 0.0156 (8) | 0.0037 (6) | 0.0019 (6) | 0.0042 (6) |
O4 | 0.0454 (12) | 0.0202 (9) | 0.0159 (8) | 0.0049 (8) | −0.0039 (8) | −0.0024 (7) |
O3 | 0.0211 (8) | 0.0162 (8) | 0.0137 (8) | 0.0017 (6) | 0.0006 (6) | −0.0042 (6) |
O2 | 0.0426 (11) | 0.0221 (9) | 0.0171 (9) | 0.0038 (8) | 0.0093 (8) | 0.0025 (7) |
N6 | 0.0256 (11) | 0.0225 (10) | 0.0158 (9) | 0.0013 (8) | 0.0036 (8) | −0.0022 (8) |
N1 | 0.0139 (8) | 0.0166 (9) | 0.0119 (8) | −0.0039 (7) | 0.0014 (7) | −0.0030 (7) |
N5 | 0.0201 (9) | 0.0203 (9) | 0.0138 (9) | 0.0059 (8) | 0.0011 (7) | −0.0039 (7) |
N4 | 0.0417 (14) | 0.0388 (14) | 0.0178 (11) | −0.0078 (11) | 0.0049 (10) | 0.0061 (10) |
N2 | 0.0197 (9) | 0.0166 (9) | 0.0155 (9) | 0.0067 (7) | −0.0008 (7) | 0.0008 (7) |
N7 | 0.0392 (14) | 0.0469 (15) | 0.0175 (11) | 0.0068 (12) | −0.0050 (10) | −0.0075 (10) |
N3 | 0.0256 (10) | 0.0210 (10) | 0.0165 (10) | −0.0017 (8) | −0.0041 (8) | −0.0010 (8) |
C1 | 0.0081 (8) | 0.0102 (9) | 0.0109 (9) | −0.0026 (7) | 0.0006 (7) | 0.0032 (7) |
C2 | 0.0130 (9) | 0.0158 (10) | 0.0144 (10) | −0.0032 (8) | 0.0007 (8) | 0.0028 (8) |
C6 | 0.0105 (9) | 0.0132 (9) | 0.0121 (9) | −0.0032 (7) | 0.0002 (7) | 0.0004 (7) |
C7 | 0.0104 (9) | 0.0162 (9) | 0.0095 (9) | −0.0039 (7) | 0.0004 (7) | −0.0005 (7) |
C10 | 0.0131 (9) | 0.0138 (9) | 0.0136 (10) | −0.0046 (8) | 0.0018 (7) | −0.0024 (8) |
C12 | 0.0154 (10) | 0.0174 (10) | 0.0165 (10) | −0.0025 (8) | 0.0022 (8) | 0.0043 (8) |
C9 | 0.0188 (10) | 0.0164 (10) | 0.0117 (9) | −0.0050 (8) | 0.0019 (8) | −0.0048 (8) |
C8 | 0.0176 (10) | 0.0179 (10) | 0.0100 (9) | −0.0046 (8) | 0.0009 (8) | −0.0013 (8) |
C5 | 0.0195 (10) | 0.0173 (10) | 0.0109 (9) | −0.0030 (8) | 0.0002 (8) | 0.0014 (8) |
C17 | 0.0302 (14) | 0.0163 (12) | 0.0509 (18) | −0.0024 (10) | 0.0096 (13) | −0.0062 (12) |
C4 | 0.0165 (10) | 0.0173 (10) | 0.0146 (10) | −0.0035 (8) | 0.0000 (8) | 0.0044 (8) |
C3 | 0.0119 (9) | 0.0141 (9) | 0.0157 (10) | −0.0026 (8) | 0.0002 (7) | 0.0021 (8) |
C16 | 0.0200 (11) | 0.0173 (11) | 0.0209 (11) | 0.0029 (9) | 0.0033 (9) | −0.0052 (9) |
C15 | 0.0175 (10) | 0.0143 (10) | 0.0150 (10) | −0.0036 (8) | 0.0014 (8) | −0.0033 (8) |
C13 | 0.0255 (12) | 0.0182 (11) | 0.0224 (12) | 0.0100 (9) | 0.0046 (10) | 0.0049 (9) |
C11 | 0.0127 (9) | 0.0159 (10) | 0.0135 (10) | −0.0039 (8) | 0.0018 (7) | −0.0019 (8) |
C14 | 0.0397 (16) | 0.0146 (11) | 0.0473 (18) | 0.0045 (11) | 0.0031 (14) | 0.0010 (11) |
Au1—C1 | 2.027 (2) | C10—C9 | 1.394 (3) |
Au1—N1 | 2.0335 (18) | C10—C15 | 1.498 (3) |
Au1—N5 | 2.0418 (19) | C12—C3 | 1.494 (3) |
Au1—N2 | 2.0674 (19) | C9—C8 | 1.388 (3) |
O1—C12 | 1.339 (3) | C9—H9 | 0.9500 |
O1—C13 | 1.463 (3) | C8—H8 | 0.9500 |
O4—C15 | 1.204 (3) | C5—C4 | 1.388 (3) |
O3—C15 | 1.328 (3) | C5—H5 | 0.9500 |
O3—C16 | 1.466 (3) | C17—C16 | 1.505 (4) |
O2—C12 | 1.205 (3) | C17—H17A | 0.9800 |
N6—N7 | 1.150 (3) | C17—H17B | 0.9800 |
N6—N5 | 1.202 (3) | C17—H17C | 0.9800 |
N1—C11 | 1.357 (3) | C4—C3 | 1.395 (3) |
N1—C7 | 1.382 (3) | C4—H4 | 0.9500 |
N4—N3 | 1.150 (3) | C16—H16A | 0.9900 |
N2—N3 | 1.198 (3) | C16—H16B | 0.9900 |
C1—C2 | 1.369 (3) | C13—C14 | 1.499 (4) |
C1—C6 | 1.390 (3) | C13—H13A | 0.9900 |
C2—C3 | 1.397 (3) | C13—H13B | 0.9900 |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C6—C5 | 1.397 (3) | C14—H14A | 0.9800 |
C6—C7 | 1.459 (3) | C14—H14B | 0.9800 |
C7—C8 | 1.395 (3) | C14—H14C | 0.9800 |
C10—C11 | 1.390 (3) | ||
C1—Au1—N1 | 81.03 (8) | C4—C5—C6 | 119.7 (2) |
C1—Au1—N5 | 91.82 (8) | C4—C5—H5 | 120.2 |
N1—Au1—N5 | 172.30 (8) | C6—C5—H5 | 120.2 |
C1—Au1—N2 | 172.51 (8) | C16—C17—H17A | 109.5 |
N1—Au1—N2 | 92.15 (8) | C16—C17—H17B | 109.5 |
N5—Au1—N2 | 95.13 (8) | H17A—C17—H17B | 109.5 |
C12—O1—C13 | 116.48 (18) | C16—C17—H17C | 109.5 |
C15—O3—C16 | 115.97 (18) | H17A—C17—H17C | 109.5 |
N7—N6—N5 | 173.8 (3) | H17B—C17—H17C | 109.5 |
C11—N1—C7 | 121.18 (19) | C5—C4—C3 | 120.0 (2) |
C11—N1—Au1 | 124.28 (15) | C5—C4—H4 | 120.0 |
C7—N1—Au1 | 114.51 (15) | C3—C4—H4 | 120.0 |
N6—N5—Au1 | 118.70 (16) | C4—C3—C2 | 119.9 (2) |
N3—N2—Au1 | 119.17 (16) | C4—C3—C12 | 122.8 (2) |
N4—N3—N2 | 174.7 (3) | C2—C3—C12 | 117.3 (2) |
C2—C1—C6 | 120.80 (19) | O3—C16—C17 | 112.3 (2) |
C2—C1—Au1 | 125.05 (16) | O3—C16—H16A | 109.1 |
C6—C1—Au1 | 114.12 (15) | C17—C16—H16A | 109.1 |
C1—C2—C3 | 119.9 (2) | O3—C16—H16B | 109.1 |
C1—C2—H2 | 120.1 | C17—C16—H16B | 109.1 |
C3—C2—H2 | 120.1 | H16A—C16—H16B | 107.9 |
C1—C6—C5 | 119.8 (2) | O4—C15—O3 | 124.9 (2) |
C1—C6—C7 | 115.39 (19) | O4—C15—C10 | 123.1 (2) |
C5—C6—C7 | 124.8 (2) | O3—C15—C10 | 112.00 (19) |
N1—C7—C8 | 119.5 (2) | O1—C13—C14 | 111.2 (2) |
N1—C7—C6 | 114.87 (18) | O1—C13—H13A | 109.4 |
C8—C7—C6 | 125.7 (2) | C14—C13—H13A | 109.4 |
C11—C10—C9 | 119.5 (2) | O1—C13—H13B | 109.4 |
C11—C10—C15 | 116.8 (2) | C14—C13—H13B | 109.4 |
C9—C10—C15 | 123.7 (2) | H13A—C13—H13B | 108.0 |
O2—C12—O1 | 124.7 (2) | N1—C11—C10 | 120.3 (2) |
O2—C12—C3 | 123.8 (2) | N1—C11—H11 | 119.9 |
O1—C12—C3 | 111.5 (2) | C10—C11—H11 | 119.9 |
C8—C9—C10 | 119.9 (2) | C13—C14—H14A | 109.5 |
C8—C9—H9 | 120.1 | C13—C14—H14B | 109.5 |
C10—C9—H9 | 120.1 | H14A—C14—H14B | 109.5 |
C9—C8—C7 | 119.7 (2) | C13—C14—H14C | 109.5 |
C9—C8—H8 | 120.2 | H14A—C14—H14C | 109.5 |
C7—C8—H8 | 120.2 | H14B—C14—H14C | 109.5 |
C6—C1—C2—C3 | −0.6 (3) | C7—C6—C5—C4 | 180.0 (2) |
Au1—C1—C2—C3 | 177.50 (15) | C6—C5—C4—C3 | −0.4 (3) |
C2—C1—C6—C5 | 0.7 (3) | C5—C4—C3—C2 | 0.5 (3) |
Au1—C1—C6—C5 | −177.58 (16) | C5—C4—C3—C12 | 179.5 (2) |
C2—C1—C6—C7 | −179.42 (19) | C1—C2—C3—C4 | 0.0 (3) |
Au1—C1—C6—C7 | 2.3 (2) | C1—C2—C3—C12 | −179.05 (19) |
C11—N1—C7—C8 | 0.9 (3) | O2—C12—C3—C4 | 172.6 (2) |
Au1—N1—C7—C8 | −177.14 (16) | O1—C12—C3—C4 | −7.0 (3) |
C11—N1—C7—C6 | −179.65 (18) | O2—C12—C3—C2 | −8.4 (3) |
Au1—N1—C7—C6 | 2.4 (2) | O1—C12—C3—C2 | 171.98 (19) |
C1—C6—C7—N1 | −3.1 (3) | C15—O3—C16—C17 | 76.9 (3) |
C5—C6—C7—N1 | 176.8 (2) | C16—O3—C15—O4 | −1.5 (3) |
C1—C6—C7—C8 | 176.4 (2) | C16—O3—C15—C10 | 176.64 (18) |
C5—C6—C7—C8 | −3.8 (3) | C11—C10—C15—O4 | −6.3 (3) |
C13—O1—C12—O2 | 1.2 (3) | C9—C10—C15—O4 | 171.9 (2) |
C13—O1—C12—C3 | −179.18 (19) | C11—C10—C15—O3 | 175.56 (19) |
C11—C10—C9—C8 | 0.8 (3) | C9—C10—C15—O3 | −6.3 (3) |
C15—C10—C9—C8 | −177.4 (2) | C12—O1—C13—C14 | 84.2 (3) |
C10—C9—C8—C7 | −0.3 (3) | C7—N1—C11—C10 | −0.4 (3) |
N1—C7—C8—C9 | −0.5 (3) | Au1—N1—C11—C10 | 177.39 (15) |
C6—C7—C8—C9 | −179.9 (2) | C9—C10—C11—N1 | −0.4 (3) |
C1—C6—C5—C4 | −0.2 (3) | C15—C10—C11—N1 | 177.85 (19) |
Funding information
Funding for this research was provided by: Norges Forskningsråd (grant No. 250795).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2018). APEX3 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Del Castillo, T. J., Sarkar, S., Abboud, K. A. & Veige, A. S. (2011). Dalton Trans. 40, 8140–8144. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Levchenko, V. A., Siah, H.-S. M., Øien-Ødegaard, S., Kaur, G., Fiksdahl, A. & Tilset, M. (2020). Mol. Catal. 492, 111009–111018. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Partyka, D. V., Updegraff, J. B., Zeller, M., Hunter, A. D. & Gray, T. G. (2007). Organometallics, 26, 183–186. Web of Science CSD CrossRef CAS Google Scholar
Peng, K., Friedrich, A. & Schatzschneider, U. (2019). Chem. Commun. 55, 8142–8145. Web of Science CSD CrossRef CAS Google Scholar
Powers, A. R., Ghiviriga, I., Abboud, K. A. & Veige, A. S. (2015). Dalton Trans. 44, 14747–14752. Web of Science CSD CrossRef CAS PubMed Google Scholar
Roth, T., Wadepohl, H. & Gade, L. H. (2016). Eur. J. Inorg. Chem. pp. 1184–1191. Web of Science CSD CrossRef Google Scholar
Schuh, E., Werner, S., Otte, D., Monkowius, U. & Mohr, F. (2016). Organometallics, 35, 3448–3451. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.