research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­chlorido­(methanol-κO)bis­­(2-methyl­pyridine-κN)copper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, School of Sciences, Indrashil University, Rajpur, Gujarat, 382740, India
*Correspondence e-mail: j.prakashareddy@gmail.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 30 September 2020; accepted 20 October 2020; online 23 October 2020)

In the title complex, [CuCl2(C6H7N)2(CH3OH)], the copper atom is five-coordinated by two nitro­gen atoms of 2-methyl­pyridine ligands, two chloro ligands and an oxygen atom of the methanol mol­ecule, being in a tetra­gonal–pyramidal environment with N and Cl atoms forming the basal plane. In the crystal, complex mol­ecules related by the twofold rotation axis are joined into dimeric units by pairs of O—H⋯Cl hydrogen bonds. These dimeric units are assembled through C—H⋯Cl inter­actions into layers parallel to (001).

1. Chemical context

Both organic (from simple mol­ecules to peptides and proteins) and inorganic complexes have been known for more than a century and are central to modern chemistry because of their fascinating, aesthetic architectures and multiple applications (Gan et al., 2011[Gan, Q., Ferrand, Y., Bao, C., Kauffmann, B., Grélard, A., Jiang, H. & Huc, I. (2011). Science, 331, 1172-1175.]; Gellman, 1998[Gellman, S. H. (1998). Acc. Chem. Res. 31, 173-180.]; Thorat et al., 2013[Thorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. 2013, 3529-3542.]; Vijayadas et al., 2013[Vijayadas, K. N., Nair, R. V., Gawade, R. L., Kotmale, A. S., Prabhakaran, P., Gonnade, R. G., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Org. Biomol. Chem. 11, 8348-8356.]; Ziach et al., 2018[Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10, 511-518.]). Recently, coordination compounds have been reported that find applications in fields such as catalysis, gas storage, separation technology and mol­ecular sensing (Mueller et al., 2006[Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626-636.]; Wan et al., 2006[Wan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423-432.]; Férey et al., 2003[Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976-2977.]; James, 2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]; Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]; Ruben et al., 2005[Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94-100.], Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). There are many reports of coordination complexes where solvent mol­ecules are located in the voids of the crystal structure. However, reports describing the replacement of coordinated solvent mol­ecules with other mol­ecules are relatively scarce. As part of ongoing work in our laboratory, employing pyridine ligands in the preparation of various coordination networks (PrakashaReddy & Pedireddi, 2007[PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150-1158.]), we have extended our work to the synthesis of other coordination networks. A literature survey revealed that coordination complex aqua­dichloro­bis­(2-methyl­pyridine)­copper(II) had been reported (Marsh et al., 1982[Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684.]). Our inter­est was to see whether we could replace the coordinated water mol­ecule in the complex with other solvent mol­ecules such as methanol or ethanol via single-crystal-to-single-crystal transition (SCSCT) to investigate the structural changes. Although we could not succeed in SCSCT of the complex, we were successful in synthesizing the methanol-coordinated copper complex incorporating 2-methyl­pyridine as reported herein.

[Scheme 1]

2. Structural commentary

The title complex crystallizes in the monoclinic space group C2/c with one complex mol­ecule per asymmetric unit. Two nitro­gen atoms of 2-methyl­pyridine and two chloride ligands, which are trans to each other, form a rectangle around the copper atom, and its coordination is accomplished by the methanol oxygen atom, thus giving a tetra­gonal pyramid with the oxygen atom in the apical position (Fig. 1[link]). The copper atom deviates by 0.161 (1) Å from the basal plane, and the angles around the copper atom are close to 90 and 180°. A plausible reason why the formation of a dimeric unit, as observed in [Cu(2-pic)2Cl2] (Marsh et al., 1982[Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684.]), was precluded might be the presence of the coordinated methanol mol­ecule on one side of the coordination rectangle and the methyl groups on the other side. The methyl­pyridine rings form angles of 83.96 (8) and 85.70 (8)° with respect to the basal plane of the coordination polyhedron, thereby plausibly blocking the sixth coordination position at the copper atom. The Cu—O bond distance of 2.353 (2) Å is relatively short for an apical atom in typical copper(II) tetra­gonal–pyramidal structure, whereas the Cu—N bond lengths [Cu1—N1= 2.031 (2) Å, Cu1—N2 = 2.017 (2) Å] agree well with those reported for related structures (Wang et al., 2006[Wang, X.-L., Qin, C. & &Wang, E.-B. (2006). Cryst. Growth Des. 6, 439-443.]; Gong et al., 2009[Gong, Y.-N., Liu, C.-B., Huang, D.-H. & Xiong, Z.-Q. (2009). Z. Kristallogr. New Cryst. Struct. 224, 421-422.]; Hu & Zhang, 2010[Hu, M. & Zhang, Q. (2010). Z. Kristallogr. New Cryst. Struct. 225, 155-156.]; Li, 2011[Li, N.-Y. (2011). Acta Cryst. E67, m1397.]; Sun et al., 2013[Sun, C.-Y., Li, W.-J. & Che, P. (2013). Z. Anorg. Allg. Chem. 639, 129-133.]; Sanram et al., 2016[Sanram, S., Boonmak, J. & Youngme, S. (2016). Polyhedron, 119, 151-159.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

Complex mol­ecules related by the twofold rotation axis are connected by pairs of O—H⋯Cl inter­actions (Table 1[link]) involving the apical methanol ligand of one complex and a chloride ligand of the other, thus forming dimers (Fig. 2[link]). The O⋯Cl and H⋯Cl distances and associated O—H⋯Cl angle lie within the ranges observed for other O—H⋯Cl inter­actions reported in the literature (Veal et al., 1972[Veal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597-600.]; Taylor, 2016[Taylor, R. (2016). Cryst. Growth Des. 16, 4165-4168.]; Ristić et al., 2020[Ristić, P., Blagojević, V., Janjić, G., Rodić, M., Vulić, P., Donnard, M., Gulea, M., Chylewska, A., Makowski, M., Todorović, T. & Filipović, N. (2020). Cryst. Growth Des. 20, 3018-3033.]; Estes et al., 1976[Estes, E. D. & Hodgson, D. J. (1976). Inorg. Chem. 15, 348-352.]). These dimers are further connected through C—H⋯Cl inter­actions, generating layers parallel to (001) (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.75 (3) 2.37 (3) 3.1033 (16) 169 (3)
C7—H7⋯O1 0.93 2.46 3.148 (3) 130
C8—H8⋯O1 0.93 2.34 3.036 (3) 131
C11—H11⋯Cl2ii 0.93 2.83 3.624 (2) 143
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The O—H⋯Cl inter­actions between two mol­ecules in the crystal of the title compound. The mol­ecules are related by the symmetry operation −x + 1, y, −z + [{1\over 2}].
[Figure 3]
Figure 3
A general view of the crystal packing of the title compound along the b-axis direction with inter­molecular contacts shown as dashed lines.

A Hirshfeld surface analysis was performed and two-dimensional fingerprint plots were prepared using Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to further investigate the inter­molecular inter­actions in the title structure. The Hirshfeld surface mapped over dnorm with corresponding colours representing inter­molecular inter­actions is shown in Fig. 4[link]. The red spots on the surface correspond to the O—H⋯Cl, C—H⋯Cl and C—H⋯O inter­actions (Table 1[link]). The two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 5[link]. Weak van der Waals H⋯H contacts make the largest contribution (53.1%) to the Hirshfeld surface. The two-dimensional fingerprint plot shows two spikes that correspond to H⋯Cl/Cl⋯H (25.2%) inter­actions, which highlight the hydrogen bonds between adjacent mol­ecules. The C⋯H/H⋯C (15.5%) inter­actions also appear as two spikes. These inter­actions play a crucial role in the overall cohesion of the crystal packing.

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm highlighting the regions of O—H⋯Cl and C—H⋯Cl inter­molecular contacts.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plot for the title compound and those delineated into H⋯H (53.1%), Cl⋯H/H⋯Cl (25.2%) and C⋯H/H⋯C (15.5%) contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed three closely related complexes: di­chloro­bis­(2-methyl­pyridine)­copper(II) (refcode CMPYCU01; Marsh et al., 1982[Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684.]), aqua­dichloro­bis­(2-methyl­pyridine)­copper(II) (BIJWUM; Marsh et al., 1982[Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684.]) and bis­(iso­thio­cyanato)­methanolbis­(2-methyl­pyridine)­copper(II) (ABOSIW; Handy et al., 2017[Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75.]). Structures CMPYCU01 and BIJWUM display dimeric arrangements of the complex mol­ecules arising from C—H⋯Cl and O—H⋯Cl inter­actions, respectively, while in the copper(II) thio­cyanate complex ABOSIW, the three-dimensional network is formed as a result of O—H⋯S, C—H⋯S and C—H⋯C inter­actions.

5. Synthesis and crystallization

2-Methyl­pyridine and anhydrous copper(II) chloride were obtained from Aldrich, and HPLC grade methanol was used for reaction. Anhydrous copper(II) chloride (0.675 g, 0.005 mol) was dissolved in 15 ml of methanol. To this solution, 2-methyl­pyridine (0.93 g, 0.01 mol) dissolved in 15 mL of methanol was added. The resulting mixture was stirred for ca 40 min. at room temperature and filtered to remove the greenish precipitate. The blue filtrate was then allowed to stand at room temperature for a few hours, before being filtered and left at room temperature for crystallization. A mixture of dark-blue crystals of different sizes was obtained after 24 h.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference map. The C-bound H atoms were placed in calculated positions with C—H = 0.93-0.96 Å and refined as riding, whereas the coordinates of O-bound H atom were freely refined. All hydrogen atoms were refined with fixed isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C,O)]

Table 2
Experimental details

Crystal data
Chemical formula [CuCl2(C6H7N)2(CH4O)]
Mr 352.73
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 14.4554 (4), 8.5865 (2), 24.8055 (8)
β (°) 99.209 (3)
V3) 3039.22 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.78
Crystal size (mm) 0.21 × 0.16 × 0.11
 
Data collection
Diffractometer Agilent XCalibur diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.549, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15974, 5137, 4251
Rint 0.040
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 1.13
No. of reflections 5137
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.51
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dichlorido(methanol-κO)bis(2-methylpyridine-κN)copper(II) top
Crystal data top
[CuCl2(C6H7N)2(CH4O)]F(000) = 1448
Mr = 352.73Dx = 1.542 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.4554 (4) ÅCell parameters from 4621 reflections
b = 8.5865 (2) Åθ = 3.1–32.0°
c = 24.8055 (8) ŵ = 1.78 mm1
β = 99.209 (3)°T = 120 K
V = 3039.22 (16) Å3Block, blue
Z = 80.21 × 0.16 × 0.11 mm
Data collection top
Agilent XCalibur
diffractometer
4251 reflections with I > 2σ(I)
Detector resolution: 16.1511 pixels mm-1Rint = 0.040
ω scansθmax = 32.6°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 2021
Tmin = 0.549, Tmax = 1.000k = 1211
15974 measured reflectionsl = 3737
5137 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0199P)2 + 4.4488P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
5137 reflectionsΔρmax = 0.54 e Å3
178 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50986 (2)0.75598 (3)0.37062 (2)0.01272 (6)
Cl10.41953 (3)0.66088 (6)0.43059 (2)0.01703 (10)
Cl20.61677 (3)0.86629 (5)0.32152 (2)0.01706 (10)
O10.40656 (10)0.69534 (18)0.29006 (6)0.0192 (3)
H10.408 (2)0.738 (3)0.2640 (12)0.029*
N20.45788 (11)0.97058 (19)0.38001 (7)0.0145 (3)
N10.57721 (11)0.54847 (19)0.37032 (7)0.0149 (3)
C10.49779 (13)1.0690 (2)0.41912 (8)0.0141 (3)
C20.45939 (14)1.2154 (2)0.42581 (8)0.0168 (4)
H20.4885441.2828020.4526310.020*
C30.64638 (14)0.5067 (2)0.41102 (9)0.0175 (4)
C40.58446 (14)1.0157 (2)0.45567 (8)0.0188 (4)
H4A0.5714440.9211070.4736690.028*
H4B0.6043551.0945010.4824960.028*
H4C0.6332090.9973530.4343170.028*
C50.66783 (15)0.2646 (2)0.36638 (9)0.0220 (4)
H50.6986990.1700120.3649950.026*
C60.69292 (14)0.3650 (2)0.40943 (9)0.0216 (4)
H60.7409830.3383290.4374940.026*
C70.37914 (14)1.0160 (2)0.34693 (9)0.0201 (4)
H70.3519900.9485820.3195640.024*
C80.55316 (15)0.4492 (2)0.32849 (8)0.0190 (4)
H80.5055120.4778380.3004610.023*
C90.37781 (15)1.2600 (2)0.39241 (9)0.0192 (4)
H90.3507011.3563280.3969820.023*
C100.59622 (16)0.3063 (2)0.32532 (9)0.0220 (4)
H100.5772150.2397220.2960700.026*
C110.33724 (15)1.1589 (3)0.35209 (9)0.0223 (4)
H110.2826861.1863870.3288340.027*
C120.32370 (15)0.6023 (3)0.28385 (9)0.0231 (4)
H12A0.3263200.5254480.2560340.035*
H12B0.2698270.6675410.2735410.035*
H12C0.3192110.5514340.3177920.035*
C130.67215 (16)0.6175 (3)0.45740 (10)0.0271 (5)
H13A0.6915080.7148060.4437290.041*
H13B0.7226220.5746070.4829430.041*
H13C0.6188720.6343700.4753340.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01378 (11)0.01059 (11)0.01375 (11)0.00289 (8)0.00206 (8)0.00104 (8)
Cl10.0200 (2)0.0157 (2)0.0161 (2)0.00216 (17)0.00497 (17)0.00003 (17)
Cl20.0182 (2)0.0149 (2)0.0192 (2)0.00028 (16)0.00627 (17)0.00322 (17)
O10.0226 (7)0.0190 (7)0.0152 (7)0.0020 (6)0.0008 (6)0.0024 (6)
N20.0145 (7)0.0122 (7)0.0175 (8)0.0024 (6)0.0047 (6)0.0004 (6)
N10.0152 (7)0.0133 (7)0.0168 (8)0.0020 (6)0.0045 (6)0.0011 (6)
C10.0168 (8)0.0135 (8)0.0128 (8)0.0014 (7)0.0049 (7)0.0018 (7)
C20.0226 (9)0.0128 (9)0.0165 (9)0.0015 (7)0.0075 (8)0.0011 (7)
C30.0157 (9)0.0155 (9)0.0217 (10)0.0024 (7)0.0041 (7)0.0004 (8)
C40.0216 (9)0.0175 (9)0.0164 (9)0.0042 (8)0.0005 (8)0.0029 (8)
C50.0252 (10)0.0135 (9)0.0304 (11)0.0057 (8)0.0138 (9)0.0027 (8)
C60.0186 (9)0.0196 (10)0.0264 (11)0.0077 (8)0.0030 (8)0.0034 (8)
C70.0178 (9)0.0175 (9)0.0237 (10)0.0031 (7)0.0009 (8)0.0033 (8)
C80.0235 (10)0.0190 (10)0.0154 (9)0.0031 (8)0.0055 (8)0.0020 (8)
C90.0233 (10)0.0138 (9)0.0225 (10)0.0058 (7)0.0094 (8)0.0022 (8)
C100.0293 (11)0.0163 (9)0.0222 (10)0.0021 (8)0.0101 (9)0.0044 (8)
C110.0198 (9)0.0205 (10)0.0252 (11)0.0076 (8)0.0007 (8)0.0007 (8)
C120.0202 (10)0.0289 (11)0.0202 (10)0.0001 (8)0.0033 (8)0.0023 (9)
C130.0236 (10)0.0235 (11)0.0303 (12)0.0082 (9)0.0081 (9)0.0069 (9)
Geometric parameters (Å, º) top
Cu1—Cl12.2818 (5)C4—H4C0.9600
Cu1—Cl22.3175 (5)C5—H50.9300
Cu1—O12.3534 (15)C5—C61.375 (3)
Cu1—N22.0174 (16)C5—C101.378 (3)
Cu1—N12.0310 (16)C6—H60.9300
O1—H10.75 (3)C7—H70.9300
O1—C121.427 (3)C7—C111.383 (3)
N2—C11.345 (2)C8—H80.9300
N2—C71.350 (3)C8—C101.384 (3)
N1—C31.351 (3)C9—H90.9300
N1—C81.345 (3)C9—C111.382 (3)
C1—C21.395 (3)C10—H100.9300
C1—C41.496 (3)C11—H110.9300
C2—H20.9300C12—H12A0.9600
C2—C91.382 (3)C12—H12B0.9600
C3—C61.394 (3)C12—H12C0.9600
C3—C131.494 (3)C13—H13A0.9600
C4—H4A0.9600C13—H13B0.9600
C4—H4B0.9600C13—H13C0.9600
Cl1—Cu1—Cl2171.17 (2)C6—C5—H5120.5
Cl1—Cu1—O197.06 (4)C6—C5—C10118.99 (19)
Cl2—Cu1—O191.73 (4)C10—C5—H5120.5
N2—Cu1—Cl189.37 (5)C3—C6—H6120.0
N2—Cu1—Cl288.82 (5)C5—C6—C3120.0 (2)
N2—Cu1—O195.90 (6)C5—C6—H6120.0
N2—Cu1—N1171.61 (7)N2—C7—H7118.7
N1—Cu1—Cl190.74 (5)N2—C7—C11122.6 (2)
N1—Cu1—Cl289.79 (5)C11—C7—H7118.7
N1—Cu1—O192.42 (6)N1—C8—H8118.6
Cu1—O1—H1121 (2)N1—C8—C10122.9 (2)
C12—O1—Cu1128.53 (13)C10—C8—H8118.6
C12—O1—H1109 (2)C2—C9—H9120.6
C1—N2—Cu1122.19 (13)C2—C9—C11118.84 (19)
C1—N2—C7118.63 (17)C11—C9—H9120.6
C7—N2—Cu1119.16 (14)C5—C10—C8118.7 (2)
C3—N1—Cu1121.89 (13)C5—C10—H10120.7
C8—N1—Cu1119.60 (13)C8—C10—H10120.7
C8—N1—C3118.50 (17)C7—C11—H11120.6
N2—C1—C2121.29 (18)C9—C11—C7118.87 (19)
N2—C1—C4117.75 (17)C9—C11—H11120.6
C2—C1—C4120.96 (18)O1—C12—H12A109.5
C1—C2—H2120.1O1—C12—H12B109.5
C9—C2—C1119.71 (19)O1—C12—H12C109.5
C9—C2—H2120.1H12A—C12—H12B109.5
N1—C3—C6120.91 (19)H12A—C12—H12C109.5
N1—C3—C13118.02 (17)H12B—C12—H12C109.5
C6—C3—C13121.06 (19)C3—C13—H13A109.5
C1—C4—H4A109.5C3—C13—H13B109.5
C1—C4—H4B109.5C3—C13—H13C109.5
C1—C4—H4C109.5H13A—C13—H13B109.5
H4A—C4—H4B109.5H13A—C13—H13C109.5
H4A—C4—H4C109.5H13B—C13—H13C109.5
H4B—C4—H4C109.5
Cu1—N2—C1—C2178.36 (14)C1—C2—C9—C111.5 (3)
Cu1—N2—C1—C41.1 (2)C2—C9—C11—C70.6 (3)
Cu1—N2—C7—C11177.53 (17)C3—N1—C8—C100.1 (3)
Cu1—N1—C3—C6178.70 (15)C4—C1—C2—C9178.23 (18)
Cu1—N1—C3—C130.6 (3)C6—C5—C10—C81.1 (3)
Cu1—N1—C8—C10179.63 (16)C7—N2—C1—C20.0 (3)
N2—C1—C2—C91.2 (3)C7—N2—C1—C4179.42 (18)
N2—C7—C11—C90.5 (3)C8—N1—C3—C61.0 (3)
N1—C3—C6—C50.9 (3)C8—N1—C3—C13179.70 (19)
N1—C8—C10—C51.0 (3)C10—C5—C6—C30.2 (3)
C1—N2—C7—C110.9 (3)C13—C3—C6—C5179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.75 (3)2.37 (3)3.1033 (16)169 (3)
C7—H7···O10.932.463.148 (3)130
C8—H8···O10.932.343.036 (3)131
C11—H11···Cl2ii0.932.833.624 (2)143
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The author thanks Professor G. C. Diaz de Delgado for her help and discussions on the crystallographic aspect of this work.

Funding information

Funding for this research was provided by: Indrashil University.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEstes, E. D. & Hodgson, D. J. (1976). Inorg. Chem. 15, 348–352.  CSD CrossRef CAS Google Scholar
First citationFérey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976–2977.  Google Scholar
First citationGan, Q., Ferrand, Y., Bao, C., Kauffmann, B., Grélard, A., Jiang, H. & Huc, I. (2011). Science, 331, 1172–1175.  CSD CrossRef CAS PubMed Google Scholar
First citationGellman, S. H. (1998). Acc. Chem. Res. 31, 173–180.  Web of Science CrossRef CAS Google Scholar
First citationGong, Y.-N., Liu, C.-B., Huang, D.-H. & Xiong, Z.-Q. (2009). Z. Kristallogr. New Cryst. Struct. 224, 421–422.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64–75.  CSD CrossRef CAS Google Scholar
First citationHu, M. & Zhang, Q. (2010). Z. Kristallogr. New Cryst. Struct. 225, 155–156.  CrossRef CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, N.-Y. (2011). Acta Cryst. E67, m1397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679–2684.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626–636.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150–1158.  Web of Science CSD CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRistić, P., Blagojević, V., Janjić, G., Rodić, M., Vulić, P., Donnard, M., Gulea, M., Chylewska, A., Makowski, M., Todorović, T. & Filipović, N. (2020). Cryst. Growth Des. 20, 3018–3033.  Google Scholar
First citationRuben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94–100.  CSD CrossRef Google Scholar
First citationSanram, S., Boonmak, J. & Youngme, S. (2016). Polyhedron, 119, 151–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, C.-Y., Li, W.-J. & Che, P. (2013). Z. Anorg. Allg. Chem. 639, 129–133.  Web of Science CSD CrossRef CAS Google Scholar
First citationTaylor, R. (2016). Cryst. Growth Des. 16, 4165–4168.  Web of Science CrossRef CAS Google Scholar
First citationThorat, V. H., Ingole, T. S., Vijayadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. 2013, 3529–3542.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVeal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597–600.  CSD CrossRef CAS Google Scholar
First citationVijayadas, K. N., Nair, R. V., Gawade, R. L., Kotmale, A. S., Prabhakaran, P., Gonnade, R. G., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Org. Biomol. Chem. 11, 8348–8356.  CSD CrossRef CAS PubMed Google Scholar
First citationWan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423–432.  CrossRef PubMed CAS Google Scholar
First citationWang, X.-L., Qin, C. & &Wang, E.-B. (2006). Cryst. Growth Des. 6, 439–443.  Web of Science CSD CrossRef CAS Google Scholar
First citationZiach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10, 511–518.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds