research communications
μ-N-(η2-prop-2-en-1-yl)piperidine-1-carbothioamide-κ2S:S]bis[(thiocyanato-κN)copper(I)]
of bis[aOsaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi, Osaka 594-1157, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: tanakata@tri-osaka.jp
The title crystalline compound, [Cu2(NCS)2(C9H16N2)2], was obtained from the reaction of copper(I) thiocyanate (CuSCN) with (N-prop-2-en-1-yl)piperidine-1-carbothioamide as a chelating and bridging thiourea ligand in chlorobenzene. The Cu2S2 core of the dimeric molecule is situated on a crystallographic inversion centre. The copper atom is coordinated by a thiocyanate nitrogen atom, each sulfur atom of the two thiourea ligands, and the C=C double bond of the ligand in a distorted tetrahedral geometry. The dimers are linked by N—H⋯S hydrogen bonds, forming a network extending in two dimensions parallel to (100).
Keywords: crystal structure; CuI dimer; thiourea; N—H⋯S interaction; C—H⋯S interaction; η2-π-allyl coordination.
CCDC reference: 2034488
1. Chemical context
Thiourea and its derivatives, N-substituted thiourea and N, N′-disubstituted thiourea, are well-known ligands to copper ions, such as for their structural relatedness of proteins in bioinorganic chemistry and controlling redox potentials of copper ions in electrochemistry. Recently, copper–thiourea complexes [Cu(tu)s] have been investigated as electronic materials, for precursors of copper sulfide to be applied as semiconductors (Shamraiz et al., 2017; Sarma et al., 2019; Patel et al., 2019), photocatalysts (Tran et al., 2012; Pal et al., 2015), and sensors (Liu & Xue, 2011; Sabah et al., 2016; Sagade & Sharma, 2008). Cu(tu)s have also been used as a component of the precursor ink for forming CuIn(S, Se) as photo-absorbing layers in solar cells (Uhl et al., 2016). The solubility of Cu(tu)s in non-polar solvents is a potentially important property for their application as electronic materials. In order to synthesize a hydrophobic Cu(tu)s, we developed an allyl and a piperidinyl group bearing thiourea, (N-prop-2-en-1-yl)piperidine-1-carbothioamide, as a hydrophobic bidentate ligand and report here the of the title non-ionic CuI complex containing thiocyanates as coordinating anions.
2. Structural commentary
The molecular structure of the title compound possessing a Cu2S2 central core is shown in Fig. 1. The dimeric molecule is situated on a crystallographic inversion centre. Selected geometric parameters are shown in Table 1. The coordination about the Cu atom can be described as distorted tetrahedral containing N6, S2, S2i, and Cg1 [Cg1 is the mid-point of C14 and C15; symmetry code: (i) −x + 1, −y + 1, −z + 1]. The four-coordinate geometry index, τ4 = [360° - (α + β)] / 141°, evaluated from the two largest angles (α < β), which has ideal values of 1 for a tetrahedral and 0 for a square-planar geometry (Yang et al., 2007), is equal to 0.83. The Cu⋯Cui separation in the dimer is 3.1180 (6) Å. The C14=C15 double bond is η2-π-coordinated to Cu, the bond being elongated to 1.351 (5) Å. The N atom of the piperidine ring (N4) shows no pyramidalization, with a displacement of 0.041 (3) Å from the plane of the bonded C atoms (C7, C11 and C12). The piperidine ring adopts a chair conformation with puckering parameters: Q = 0.573 (4), θ = 176.3 (4), and φ = 153 (6) (Cremer & Pople, 1975). There is one intramolecular interaction, C7—H7B⋯S2, generating an S(5) ring motif (Fig. 1 and Table 2). In comparison, the of bis(acetonitrile)bis(η2-N-allylthiourea)dicopper(I) dinitrate [Cu2(atu)2(CH3CN)2](NO3)2, a cationic analogue of the title compound with acetonitrile instead of thiocyanate and without the piperidine ring, shows a similar geometry around copper but has no crystallographic inversion centre because of the asymmetric packing of the nitrate anions [Cambridge Structural Database (CSD) refcode RENNON; Filinchuk et al., 1996].
3. Supramolecular features
In the crystal, the dimers are linked by N—H⋯S hydrogen bonds [N5—H5⋯S3ii; symmetry code: (ii) −x + 1, y + , −z + ], forming a network extending in two dimensions parallel to (100) (Fig. 2, Fig. 3, and Table 2). There is no significant interaction between two-dimensional networks. In contrast, the of [Cu2(atu)2(CH3CN)2](NO3)2 exhibits a complementary C—H⋯S interaction between discrete copper dimers forming a dimer of dimeric structures (RENNON; Filinchuk et al., 1996). The discrete copper dimer exhibits six N—H⋯O interactions to the surrounding six nitrate anions.
4. Database survey
A search of the CSD (Version 5.41, update of August 2020; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for compounds containing the 1-allylthiourea skeleton gave 892 hits, and for those containing the thiourea derivatives as ligands gave 945 hits of Cu complexes. The crystal structures of the ligand of the title compound, (N-prop-2-en-1-yl)piperidine-1-carbothioamide, itself and its metal complexes have not been reported. A survey for a Cu complex containing the 1-allylthiourea fragment as a κS-coordination ligand reveals 53 examples, which includes six examples of η2-π-coordination of an allyl group to Cu. All of these six examples are CuI complexes, which comprise four coordination polymers of 4-allyl-semicarbazide as ligands (Mel'nyk et al., 2001, 2011; Olijnik et al., 2011), one coordination polymer of 1,3-diallylthiourea as ligand (BOGNUH; Vakulka et al., 2007), and one discrete centrosymmetric dimer of 1-allylthiourea as ligand (RENNON; Filinchuk et al., 1996).
5. Synthesis and crystallization
To a chlorobenzene solution (2.5 mL) containing copper(I) thiocyanate (CuSCN, 122 mg, 1.0 mmol) and allyl isothiocyanate (298 mg, 3.0 mmol) in a 20 mL capped screw-tube bottle was slowly added piperidine (171 mg, 2.0 mmol) at 373 K under air and the mixture was stirred for 5 minutes. After that, it was left at room temperature. The pale-white precipitate formed in the bottle, and gradually changed to a pale-white solid containing single crystals. The mixture was filtered after 5 days to give a pale-white solid containing single crystals (267 mg, 0.87 mmol, 87%). Single crystals suitable for X-ray crystallographic analysis were selected in the product. Analysis calculated for (C10H16CuN3S2)2: C, 39.26; H, 5.27; N, 13.74; S, 20.96. Found: C, 38.72; H, 4.78; N, 13.59; S, 20.28.
6. Refinement
Crystal data, data collection and structure . Atoms H14, H15A, and H15B were located in a difference-Fourier map and refined freely, considering the influence of the coordination of the ethenyl group to CuI. H11A and H11B were also located in the difference-Fourier map and refined freely, because the distance between intramolecular H11B and H5 in the neighbouring molecule was abnormally short in the riding model. Other C-bound H atoms were placed in geometrically calculated positions (C—H = 0.99 Å) and refined as part of a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H5 atom was located in the difference-Fourier map but was refined with a distance restraint of N—H = 0.86±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2034488
https://doi.org/10.1107/S2056989020013146/yz2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020013146/yz2001Isup2.hkl
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Cu2(NCS)2(C9H16N2S)2] | F(000) = 632 |
Mr = 611.83 | Dx = 1.518 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 13.9881 (5) Å | Cell parameters from 9884 reflections |
b = 9.8220 (4) Å | θ = 5.0–55.0° |
c = 9.7446 (4) Å | µ = 1.92 mm−1 |
β = 91.391 (6)° | T = 173 K |
V = 1338.43 (9) Å3 | Block, clear colourless |
Z = 2 | 0.15 × 0.15 × 0.1 mm |
Rigaku R-AXIS RAPID diffractometer | 3071 independent reflections |
Radiation source: sealed X-ray tube | 2516 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −18→17 |
Tmin = 0.747, Tmax = 1.000 | k = −12→12 |
12737 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0406P)2 + 1.6287P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3071 reflections | Δρmax = 0.61 e Å−3 |
168 parameters | Δρmin = −0.40 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.55125 (3) | 0.62670 (4) | 0.43953 (4) | 0.03267 (13) | |
S2 | 0.42819 (5) | 0.51488 (7) | 0.33025 (7) | 0.02780 (17) | |
S3 | 0.83263 (6) | 0.47774 (11) | 0.22981 (13) | 0.0594 (3) | |
N4 | 0.23866 (19) | 0.5307 (3) | 0.3387 (3) | 0.0402 (6) | |
N6 | 0.66753 (18) | 0.5688 (3) | 0.3556 (3) | 0.0353 (6) | |
N5 | 0.31829 (18) | 0.7313 (3) | 0.3819 (3) | 0.0376 (6) | |
H5 | 0.2655 (15) | 0.774 (3) | 0.369 (4) | 0.045* | |
C14 | 0.4691 (2) | 0.7864 (3) | 0.5090 (3) | 0.0346 (7) | |
C16 | 0.7358 (2) | 0.5304 (3) | 0.3044 (3) | 0.0331 (7) | |
C12 | 0.3206 (2) | 0.5985 (3) | 0.3524 (3) | 0.0301 (6) | |
C15 | 0.5614 (2) | 0.8269 (3) | 0.5125 (4) | 0.0342 (7) | |
C13 | 0.4006 (2) | 0.8228 (3) | 0.3952 (3) | 0.0367 (7) | |
H13A | 0.377117 | 0.916542 | 0.410448 | 0.044* | |
H13B | 0.435145 | 0.822461 | 0.307731 | 0.044* | |
C7 | 0.2322 (2) | 0.3865 (3) | 0.2969 (4) | 0.0448 (9) | |
H7A | 0.197211 | 0.334276 | 0.366632 | 0.054* | |
H7B | 0.297289 | 0.347654 | 0.291007 | 0.054* | |
C8 | 0.1816 (3) | 0.3743 (4) | 0.1611 (4) | 0.0510 (9) | |
H8A | 0.174400 | 0.276834 | 0.137225 | 0.061* | |
H8B | 0.220513 | 0.417941 | 0.089947 | 0.061* | |
C11 | 0.1427 (3) | 0.5915 (4) | 0.3497 (5) | 0.0548 (11) | |
C10 | 0.0912 (3) | 0.5872 (4) | 0.2135 (5) | 0.0608 (12) | |
H10A | 0.126101 | 0.642923 | 0.146529 | 0.073* | |
H10B | 0.026342 | 0.626044 | 0.222292 | 0.073* | |
C9 | 0.0836 (3) | 0.4406 (4) | 0.1618 (5) | 0.0625 (12) | |
H9A | 0.041038 | 0.388028 | 0.221843 | 0.075* | |
H9B | 0.055244 | 0.439964 | 0.067737 | 0.075* | |
H15A | 0.600 (2) | 0.820 (3) | 0.596 (3) | 0.026 (8)* | |
H15B | 0.591 (3) | 0.872 (4) | 0.437 (4) | 0.048 (11)* | |
H14 | 0.439 (2) | 0.754 (4) | 0.592 (4) | 0.048 (10)* | |
H11A | 0.096 (3) | 0.536 (4) | 0.409 (4) | 0.046 (10)* | |
H11B | 0.148 (3) | 0.677 (5) | 0.384 (4) | 0.065 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0320 (2) | 0.0261 (2) | 0.0401 (2) | −0.00062 (15) | 0.00349 (16) | −0.00623 (16) |
S2 | 0.0315 (4) | 0.0221 (3) | 0.0298 (4) | 0.0011 (3) | 0.0010 (3) | −0.0023 (3) |
S3 | 0.0348 (5) | 0.0492 (6) | 0.0952 (8) | −0.0068 (4) | 0.0218 (5) | −0.0268 (5) |
N4 | 0.0328 (13) | 0.0283 (13) | 0.0595 (18) | −0.0020 (11) | −0.0021 (13) | −0.0037 (13) |
N6 | 0.0344 (14) | 0.0333 (14) | 0.0383 (15) | −0.0027 (11) | 0.0053 (12) | −0.0028 (11) |
N5 | 0.0318 (13) | 0.0241 (13) | 0.0568 (17) | 0.0039 (11) | −0.0007 (13) | −0.0033 (12) |
C14 | 0.0492 (18) | 0.0220 (14) | 0.0329 (16) | 0.0044 (13) | 0.0047 (15) | −0.0025 (12) |
C16 | 0.0319 (15) | 0.0270 (15) | 0.0404 (17) | −0.0057 (12) | −0.0011 (14) | −0.0036 (13) |
C12 | 0.0343 (15) | 0.0246 (15) | 0.0313 (15) | 0.0017 (12) | 0.0002 (13) | 0.0021 (12) |
C15 | 0.0475 (18) | 0.0212 (14) | 0.0335 (16) | −0.0015 (13) | −0.0060 (16) | −0.0024 (12) |
C13 | 0.0436 (17) | 0.0219 (14) | 0.0444 (18) | 0.0004 (13) | −0.0016 (15) | −0.0017 (13) |
C7 | 0.0388 (17) | 0.0244 (16) | 0.071 (2) | −0.0027 (13) | −0.0087 (17) | 0.0017 (16) |
C8 | 0.045 (2) | 0.0370 (19) | 0.071 (3) | 0.0051 (16) | −0.0147 (19) | −0.0061 (18) |
C11 | 0.0334 (18) | 0.041 (2) | 0.091 (3) | −0.0019 (16) | 0.010 (2) | −0.012 (2) |
C10 | 0.0366 (18) | 0.042 (2) | 0.103 (4) | 0.0095 (16) | −0.015 (2) | 0.003 (2) |
C9 | 0.046 (2) | 0.047 (2) | 0.093 (3) | 0.0064 (18) | −0.028 (2) | −0.007 (2) |
Cu1—S2 | 2.2835 (8) | C15—H15A | 0.96 (3) |
Cu1—S2i | 2.6491 (8) | C15—H15B | 0.96 (4) |
Cu1—N6 | 1.924 (3) | C13—H13A | 0.9900 |
Cu1—C14 | 2.068 (3) | C13—H13B | 0.9900 |
Cu1—C15 | 2.095 (3) | C7—H7A | 0.9900 |
S2—C12 | 1.733 (3) | C7—H7B | 0.9900 |
S3—C16 | 1.636 (3) | C7—C8 | 1.490 (5) |
N4—C12 | 1.329 (4) | C8—H8A | 0.9900 |
N4—C7 | 1.476 (4) | C8—H8B | 0.9900 |
N4—C11 | 1.476 (4) | C8—C9 | 1.517 (5) |
N6—C16 | 1.151 (4) | C11—C10 | 1.494 (6) |
Cu1—Cg1 | 1.969 | C11—H11A | 1.04 (4) |
N5—H5 | 0.856 (10) | C11—H11B | 0.91 (5) |
N5—C12 | 1.336 (4) | C10—H10A | 0.9900 |
N5—C13 | 1.464 (4) | C10—H10B | 0.9900 |
C14—C15 | 1.351 (5) | C10—C9 | 1.528 (6) |
C14—C13 | 1.492 (5) | C9—H9A | 0.9900 |
C14—H14 | 0.98 (4) | C9—H9B | 0.9900 |
S2—Cu1—S2i | 101.98 (3) | H15A—C15—H15B | 115 (3) |
N6—Cu1—S2 | 107.15 (8) | N5—C13—C14 | 114.1 (3) |
N6—Cu1—S2i | 97.44 (8) | N5—C13—H13A | 108.7 |
N6—Cu1—C14 | 147.71 (13) | N5—C13—H13B | 108.7 |
N6—Cu1—C15 | 111.75 (13) | C14—C13—H13A | 108.7 |
C14—Cu1—S2 | 95.68 (9) | C14—C13—H13B | 108.7 |
C14—Cu1—S2i | 99.83 (9) | H13A—C13—H13B | 107.6 |
C14—Cu1—C15 | 37.86 (13) | N4—C7—H7A | 109.6 |
C15—Cu1—S2 | 130.85 (10) | N4—C7—H7B | 109.6 |
C15—Cu1—S2i | 101.56 (10) | N4—C7—C8 | 110.3 (3) |
Cu1—S2—Cu1i | 78.02 (3) | H7A—C7—H7B | 108.1 |
C12—S2—Cu1i | 102.73 (10) | C8—C7—H7A | 109.6 |
Cg1—Cu1—S2 | 113.57 | C8—C7—H7B | 109.6 |
Cg1—Cu1—S2i | 101.31 | C7—C8—H8A | 109.3 |
Cg1—Cu1—N6 | 129.88 | C7—C8—H8B | 109.3 |
C12—S2—Cu1 | 111.18 (10) | C7—C8—C9 | 111.8 (4) |
C12—N4—C7 | 123.7 (3) | H8A—C8—H8B | 107.9 |
C12—N4—C11 | 125.0 (3) | C9—C8—H8A | 109.3 |
C7—N4—C11 | 111.0 (3) | C9—C8—H8B | 109.3 |
C16—N6—Cu1 | 177.9 (3) | N4—C11—C10 | 110.1 (4) |
C12—N5—H5 | 118 (3) | N4—C11—H11A | 114 (2) |
C12—N5—C13 | 126.5 (3) | N4—C11—H11B | 109 (3) |
C13—N5—H5 | 113 (3) | C10—C11—H11A | 101 (2) |
Cu1—C14—H14 | 106 (2) | C10—C11—H11B | 113 (3) |
C15—C14—Cu1 | 72.15 (19) | H11A—C11—H11B | 109 (3) |
C15—C14—C13 | 123.0 (3) | C11—C10—H10A | 109.6 |
C15—C14—H14 | 120 (2) | C11—C10—H10B | 109.6 |
C13—C14—Cu1 | 106.9 (2) | C11—C10—C9 | 110.4 (3) |
C13—C14—H14 | 115 (2) | H10A—C10—H10B | 108.1 |
N6—C16—S3 | 179.1 (3) | C9—C10—H10A | 109.6 |
N4—C12—S2 | 119.9 (2) | C9—C10—H10B | 109.6 |
N4—C12—N5 | 119.1 (3) | C8—C9—C10 | 110.5 (3) |
N5—C12—S2 | 121.0 (2) | C8—C9—H9A | 109.6 |
Cu1—C15—H15A | 104.7 (19) | C8—C9—H9B | 109.6 |
Cu1—C15—H15B | 102 (2) | C10—C9—H9A | 109.6 |
C14—C15—Cu1 | 69.98 (18) | C10—C9—H9B | 109.6 |
C14—C15—H15A | 121.1 (18) | H9A—C9—H9B | 108.1 |
C14—C15—H15B | 123 (2) | ||
Cu1—S2—C12—N4 | −157.3 (2) | C13—N5—C12—S2 | 2.0 (5) |
Cu1i—S2—C12—N4 | −75.4 (3) | C13—N5—C12—N4 | −177.4 (3) |
Cu1i—S2—C12—N5 | 105.2 (3) | C13—C14—C15—Cu1 | −98.9 (3) |
Cu1—S2—C12—N5 | 23.3 (3) | C7—N4—C12—S2 | −3.8 (5) |
Cu1—C14—C13—N5 | 78.7 (3) | C7—N4—C12—N5 | 175.6 (3) |
N4—C7—C8—C9 | −55.6 (4) | C7—N4—C11—C10 | −61.3 (4) |
N4—C11—C10—C9 | 57.8 (5) | C7—C8—C9—C10 | 52.8 (5) |
C12—N4—C7—C8 | −114.7 (4) | C11—N4—C12—S2 | −177.5 (3) |
C12—N4—C11—C10 | 113.1 (4) | C11—N4—C12—N5 | 1.9 (5) |
C12—N5—C13—C14 | −62.8 (4) | C11—N4—C7—C8 | 59.7 (4) |
C15—C14—C13—N5 | 158.0 (3) | C11—C10—C9—C8 | −53.6 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···S3ii | 0.86 (2) | 2.60 (3) | 3.375 (3) | 151 (3) |
C7—H7B···S2 | 0.99 | 2.48 | 3.028 (3) | 114 |
Symmetry code: (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We thank Professor Koji Kubono (Osaka Kyoiku University) for fruitful discussions and his helpful advice. We also thank Mr. Kazuki Maeda (Osaka Research Institute of Industrial Science and Technology) for a cooperation to bring the authors together at the beginning of this study.
References
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Filinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815–820. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, J. & Xue, D. (2011). J. Mater. Chem. 21, 223–228. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2001). Z. Anorg. Allg. Chem. 627, 287–293. CAS Google Scholar
Mel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 814517). CCDC, Cambridge, England. Google Scholar
Olijnik, V. V., Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 816764). CCDC, Cambridge, England. Google Scholar
Pal, M., Mathews, N. R., Sanchez-Mora, E., Pal, U., Paraguay-Delgado, F. & Mathew, X. (2015). J. Nanopart. Res. 17, 301. Web of Science CrossRef Google Scholar
Patel, T. A., Balasubramanian, G. & Panda, E. (2019). J. Cryst. Growth, 505, 26–32. Web of Science CrossRef CAS Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sabah, F. A., Ahmed, N. M., Hassan, Z. & Rasheed, H. S. (2016). Sens. Actuators A-Phys. 249, 68–76. Web of Science CrossRef CAS Google Scholar
Sagade, A. A. & Sharma, R. (2008). Sens. Actuators B Chem. 133, 135–143. Web of Science CrossRef CAS Google Scholar
Sarma, A., Dippel, A.-C., Gutowski, O., Etter, M., Lippmann, M., Seeck, O., Manna, G., Sanyal, M. K., Keller, T. F., Kulkarni, S., Guha, P., Satyam, P. V. & Zimmermann, M. V. (2019). RSC Adv. 9, 31900–31910. Web of Science CrossRef CAS Google Scholar
Shamraiz, U., Badshah, A., Hussain, R. A., Nadeem, M. A. & Saba, S. (2017). J. Saudi Chem. Soc. 21, 390–398. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tran, P. D., Nguyen, M., Pramana, S. S., Bhattacharjee, A., Chiam, S. Y., Fize, J., Field, M. J., Artero, V., Wong, L. H., Loo, J. & Barber, J. (2012). Energy Environ. Sci. 5, 8912–8916. Web of Science CrossRef CAS Google Scholar
Uhl, A. R., Katahara, J. K. & Hillhouse, H. W. (2016). Energy Environ. Sci. 9, 130–134. Web of Science CSD CrossRef CAS Google Scholar
Vakulka, A. A., Filinchuk, Ya. E. & Mys'kiv, M. G. (2007). Russ. J. Coord. Chem. 33, 809–814. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.