research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-N-(η2-prop-2-en-1-yl)piperidine-1-carbo­thio­amide-κ2S:S]bis­­[(thio­cyanato-κN)copper(I)]

CROSSMARK_Color_square_no_text.svg

aOsaka Research Institute of Industrial Science and Technology, 2-7-1 Ayumino, Izumi, Osaka 594-1157, Japan, and bOsaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
*Correspondence e-mail: tanakata@tri-osaka.jp

Edited by C. Schulzke, Universität Greifswald, Germany (Received 14 September 2020; accepted 29 September 2020; online 6 October 2020)

The title crystalline compound, [Cu2(NCS)2(C9H16N2)2], was obtained from the reaction of copper(I) thio­cyanate (CuSCN) with (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide as a chelating and bridging thio­urea ligand in chloro­benzene. The Cu2S2 core of the dimeric mol­ecule is situated on a crystallographic inversion centre. The copper atom is coordinated by a thio­cyanate nitro­gen atom, each sulfur atom of the two thio­urea ligands, and the C=C double bond of the ligand in a distorted tetra­hedral geometry. The dimers are linked by N—H⋯S hydrogen bonds, forming a network extending in two dimensions parallel to (100).

1. Chemical context

Thio­urea and its derivatives, N-substituted thio­urea and N, N′-disubstituted thio­urea, are well-known ligands to copper ions, such as for their structural relatedness of proteins in bioinorganic chemistry and controlling redox potentials of copper ions in electrochemistry. Recently, copper–thio­urea complexes [Cu(tu)s] have been investigated as electronic materials, for precursors of copper sulfide to be applied as semiconductors (Shamraiz et al., 2017[Shamraiz, U., Badshah, A., Hussain, R. A., Nadeem, M. A. & Saba, S. (2017). J. Saudi Chem. Soc. 21, 390-398.]; Sarma et al., 2019[Sarma, A., Dippel, A.-C., Gutowski, O., Etter, M., Lippmann, M., Seeck, O., Manna, G., Sanyal, M. K., Keller, T. F., Kulkarni, S., Guha, P., Satyam, P. V. & Zimmermann, M. V. (2019). RSC Adv. 9, 31900-31910.]; Patel et al., 2019[Patel, T. A., Balasubramanian, G. & Panda, E. (2019). J. Cryst. Growth, 505, 26-32.]), photocatalysts (Tran et al., 2012[Tran, P. D., Nguyen, M., Pramana, S. S., Bhattacharjee, A., Chiam, S. Y., Fize, J., Field, M. J., Artero, V., Wong, L. H., Loo, J. & Barber, J. (2012). Energy Environ. Sci. 5, 8912-8916.]; Pal et al., 2015[Pal, M., Mathews, N. R., Sanchez-Mora, E., Pal, U., Paraguay-Delgado, F. & Mathew, X. (2015). J. Nanopart. Res. 17, 301.]), and sensors (Liu & Xue, 2011[Liu, J. & Xue, D. (2011). J. Mater. Chem. 21, 223-228.]; Sabah et al., 2016[Sabah, F. A., Ahmed, N. M., Hassan, Z. & Rasheed, H. S. (2016). Sens. Actuators A-Phys. 249, 68-76.]; Sagade & Sharma, 2008[Sagade, A. A. & Sharma, R. (2008). Sens. Actuators B Chem. 133, 135-143.]). Cu(tu)s have also been used as a component of the precursor ink for forming CuIn(S, Se) as photo-absorbing layers in solar cells (Uhl et al., 2016[Uhl, A. R., Katahara, J. K. & Hillhouse, H. W. (2016). Energy Environ. Sci. 9, 130-134.]). The solubility of Cu(tu)s in non-polar solvents is a potentially important property for their application as electronic materials. In order to synthesize a hydro­phobic Cu(tu)s, we developed an allyl and a piperidinyl group bearing thio­urea, (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide, as a hydro­phobic bidentate ligand and report here the crystal structure of the title non-ionic CuI complex containing thio­cyanates as coordinating anions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound possessing a Cu2S2 central core is shown in Fig. 1[link]. The dimeric mol­ecule is situated on a crystallographic inversion centre. Selected geometric parameters are shown in Table 1[link]. The coordination about the Cu atom can be described as distorted tetra­hedral containing N6, S2, S2i, and Cg1 [Cg1 is the mid-point of C14 and C15; symmetry code: (i) −x + 1, −y + 1, −z + 1]. The four-coordinate geometry index, τ4 = [360° - (α + β)] / 141°, evaluated from the two largest angles (α < β), which has ideal values of 1 for a tetra­hedral and 0 for a square-planar geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), is equal to 0.83. The Cu⋯Cui separation in the dimer is 3.1180 (6) Å. The C14=C15 double bond is η2-π-coordinated to Cu, the bond being elongated to 1.351 (5) Å. The N atom of the piperidine ring (N4) shows no pyramidalization, with a displacement of 0.041 (3) Å from the plane of the bonded C atoms (C7, C11 and C12). The piperidine ring adopts a chair conformation with puckering parameters: Q = 0.573 (4), θ = 176.3 (4), and φ = 153 (6) (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). There is one intra­molecular inter­action, C7—H7B⋯S2, generating an S(5) ring motif (Fig. 1[link] and Table 2[link]). In comparison, the crystal structure of bis­(aceto­nitrile)­bis­(η2-N-allyl­thio­urea)dicopper(I) dinitrate [Cu2(atu)2(CH3CN)2](NO3)2, a cationic analogue of the title compound with aceto­nitrile instead of thio­cyanate and without the piperidine ring, shows a similar geometry around copper but has no crystallographic inversion centre because of the asymmetric packing of the nitrate anions [Cambridge Structural Database (CSD) refcode RENNON; Filinchuk et al., 1996[Filinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815-820.]].

Table 1
Selected geometric parameters (Å, °)

Cu1—S2 2.2835 (8) Cu1—C15 2.095 (3)
Cu1—S2i 2.6491 (8) Cu1—Cg1 1.969
Cu1—N6 1.924 (3) N5—H5 0.856 (10)
Cu1—C14 2.068 (3) C14—C15 1.351 (5)
       
S2—Cu1—S2i 101.98 (3) C14—Cu1—C15 37.86 (13)
N6—Cu1—S2 107.15 (8) C15—Cu1—S2 130.85 (10)
N6—Cu1—S2i 97.44 (8) C15—Cu1—S2i 101.56 (10)
N6—Cu1—C14 147.71 (13) Cu1—S2—Cu1i 78.02 (3)
N6—Cu1—C15 111.75 (13) Cg1—Cu1—S2 113.57
C14—Cu1—S2 95.68 (9) Cg1—Cu1—S2i 101.31
C14—Cu1—S2i 99.83 (9) Cg1—Cu1—N6 129.88
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯S3ii 0.86 (2) 2.60 (3) 3.375 (3) 151 (3)
C7—H7B⋯S2 0.99 2.48 3.028 (3) 114
Symmetry code: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The hydrogen bonds are shown as green dashed lines. [Symmetry code: (i) −x + 1, −y + 1, −z + 1].

3. Supra­molecular features

In the crystal, the dimers are linked by N—H⋯S hydrogen bonds [N5—H5⋯S3ii; symmetry code: (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]], forming a network extending in two dimensions parallel to (100) (Fig. 2[link], Fig. 3[link], and Table 2[link]). There is no significant inter­action between two-dimensional networks. In contrast, the crystal structure of [Cu2(atu)2(CH3CN)2](NO3)2 exhibits a complementary C—H⋯S inter­action between discrete copper dimers forming a dimer of dimeric structures (RENNON; Filinchuk et al., 1996[Filinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815-820.]). The discrete copper dimer exhibits six N—H⋯O inter­actions to the surrounding six nitrate anions.

[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the a axis, i.e. a top view of the two-dimensional network. The N—H⋯S hydrogen bonds are shown as green dashed lines. H atoms not involved in the inter­actions were omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the b axis, i.e. a side view of the two-dimensional network. The N—H⋯S hydrogen bonds are shown as green dashed lines. H atoms not involved in the inter­actions were omitted for clarity.

4. Database survey

A search of the CSD (Version 5.41, update of August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for compounds containing the 1-allyl­thio­urea skeleton gave 892 hits, and for those containing the thio­urea derivatives as ligands gave 945 hits of Cu complexes. The crystal structures of the ligand of the title compound, (N-prop-2-en-1-yl)piperidine-1-carbo­thio­amide, itself and its metal complexes have not been reported. A survey for a Cu complex containing the 1-allylthio­urea fragment as a κS-coordination ligand reveals 53 examples, which includes six examples of η2-π-coordination of an allyl group to Cu. All of these six examples are CuI complexes, which comprise four coordination polymers of 4-allyl-semicarbazide as ligands (Mel'nyk et al., 2001[Mel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2001). Z. Anorg. Allg. Chem. 627, 287-293.], 2011[Mel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 814517). CCDC, Cambridge, England.]; Olijnik et al., 2011[Olijnik, V. V., Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 816764). CCDC, Cambridge, England.]), one coordination polymer of 1,3-di­allyl­thio­urea as ligand (BOGNUH; Vakulka et al., 2007[Vakulka, A. A., Filinchuk, Ya. E. & Mys'kiv, M. G. (2007). Russ. J. Coord. Chem. 33, 809-814.]), and one discrete centrosymmetric dimer of 1-allyl­thio­urea as ligand (RENNON; Filinchuk et al., 1996[Filinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815-820.]).

5. Synthesis and crystallization

To a chloro­benzene solution (2.5 mL) containing copper(I) thio­cyanate (CuSCN, 122 mg, 1.0 mmol) and allyl iso­thio­cyanate (298 mg, 3.0 mmol) in a 20 mL capped screw-tube bottle was slowly added piperidine (171 mg, 2.0 mmol) at 373 K under air and the mixture was stirred for 5 minutes. After that, it was left at room temperature. The pale-white precipitate formed in the bottle, and gradually changed to a pale-white solid containing single crystals. The mixture was filtered after 5 days to give a pale-white solid containing single crystals (267 mg, 0.87 mmol, 87%). Single crystals suitable for X-ray crystallographic analysis were selected in the product. Analysis calculated for (C10H16CuN3S2)2: C, 39.26; H, 5.27; N, 13.74; S, 20.96. Found: C, 38.72; H, 4.78; N, 13.59; S, 20.28.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms H14, H15A, and H15B were located in a difference-Fourier map and refined freely, considering the influence of the coordination of the ethenyl group to CuI. H11A and H11B were also located in the difference-Fourier map and refined freely, because the distance between intramolecular H11B and H5 in the neighbouring mol­ecule was abnormally short in the riding model. Other C-bound H atoms were placed in geometrically calculated positions (C—H = 0.99 Å) and refined as part of a riding model with Uiso(H) = 1.2Ueq(C). The N-bound H5 atom was located in the difference-Fourier map but was refined with a distance restraint of N—H = 0.86±0.01 Å, and with Uiso(H) set to 1.2Ueq(N).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(NCS)2(C9H16N2S)2]
Mr 611.83
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.9881 (5), 9.8220 (4), 9.7446 (4)
β (°) 91.391 (6)
V3) 1338.43 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.92
Crystal size (mm) 0.15 × 0.15 × 0.1
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.747, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12737, 3071, 2516
Rint 0.041
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.08
No. of reflections 3071
No. of parameters 168
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.40
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT 2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXT 2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

[µ-1κS:2κS,2(η2)-N-(Prop-2-en-1-yl)piperidine-1-carbothioamide]µ-2κS,2(η2):1κS-N-(prop-2-en-1-yl)piperidine-1-carbothioamide]bis[(thiocyanato-κN)copper(I)] top
Crystal data top
[Cu2(NCS)2(C9H16N2S)2]F(000) = 632
Mr = 611.83Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 13.9881 (5) ÅCell parameters from 9884 reflections
b = 9.8220 (4) Åθ = 5.0–55.0°
c = 9.7446 (4) ŵ = 1.92 mm1
β = 91.391 (6)°T = 173 K
V = 1338.43 (9) Å3Block, clear colourless
Z = 20.15 × 0.15 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3071 independent reflections
Radiation source: sealed X-ray tube2516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1817
Tmin = 0.747, Tmax = 1.000k = 1212
12737 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.6287P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3071 reflectionsΔρmax = 0.61 e Å3
168 parametersΔρmin = 0.40 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.55125 (3)0.62670 (4)0.43953 (4)0.03267 (13)
S20.42819 (5)0.51488 (7)0.33025 (7)0.02780 (17)
S30.83263 (6)0.47774 (11)0.22981 (13)0.0594 (3)
N40.23866 (19)0.5307 (3)0.3387 (3)0.0402 (6)
N60.66753 (18)0.5688 (3)0.3556 (3)0.0353 (6)
N50.31829 (18)0.7313 (3)0.3819 (3)0.0376 (6)
H50.2655 (15)0.774 (3)0.369 (4)0.045*
C140.4691 (2)0.7864 (3)0.5090 (3)0.0346 (7)
C160.7358 (2)0.5304 (3)0.3044 (3)0.0331 (7)
C120.3206 (2)0.5985 (3)0.3524 (3)0.0301 (6)
C150.5614 (2)0.8269 (3)0.5125 (4)0.0342 (7)
C130.4006 (2)0.8228 (3)0.3952 (3)0.0367 (7)
H13A0.3771170.9165420.4104480.044*
H13B0.4351450.8224610.3077310.044*
C70.2322 (2)0.3865 (3)0.2969 (4)0.0448 (9)
H7A0.1972110.3342760.3666320.054*
H7B0.2972890.3476540.2910070.054*
C80.1816 (3)0.3743 (4)0.1611 (4)0.0510 (9)
H8A0.1744000.2768340.1372250.061*
H8B0.2205130.4179410.0899470.061*
C110.1427 (3)0.5915 (4)0.3497 (5)0.0548 (11)
C100.0912 (3)0.5872 (4)0.2135 (5)0.0608 (12)
H10A0.1261010.6429230.1465290.073*
H10B0.0263420.6260440.2222920.073*
C90.0836 (3)0.4406 (4)0.1618 (5)0.0625 (12)
H9A0.0410380.3880280.2218430.075*
H9B0.0552440.4399640.0677370.075*
H15A0.600 (2)0.820 (3)0.596 (3)0.026 (8)*
H15B0.591 (3)0.872 (4)0.437 (4)0.048 (11)*
H140.439 (2)0.754 (4)0.592 (4)0.048 (10)*
H11A0.096 (3)0.536 (4)0.409 (4)0.046 (10)*
H11B0.148 (3)0.677 (5)0.384 (4)0.065 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0320 (2)0.0261 (2)0.0401 (2)0.00062 (15)0.00349 (16)0.00623 (16)
S20.0315 (4)0.0221 (3)0.0298 (4)0.0011 (3)0.0010 (3)0.0023 (3)
S30.0348 (5)0.0492 (6)0.0952 (8)0.0068 (4)0.0218 (5)0.0268 (5)
N40.0328 (13)0.0283 (13)0.0595 (18)0.0020 (11)0.0021 (13)0.0037 (13)
N60.0344 (14)0.0333 (14)0.0383 (15)0.0027 (11)0.0053 (12)0.0028 (11)
N50.0318 (13)0.0241 (13)0.0568 (17)0.0039 (11)0.0007 (13)0.0033 (12)
C140.0492 (18)0.0220 (14)0.0329 (16)0.0044 (13)0.0047 (15)0.0025 (12)
C160.0319 (15)0.0270 (15)0.0404 (17)0.0057 (12)0.0011 (14)0.0036 (13)
C120.0343 (15)0.0246 (15)0.0313 (15)0.0017 (12)0.0002 (13)0.0021 (12)
C150.0475 (18)0.0212 (14)0.0335 (16)0.0015 (13)0.0060 (16)0.0024 (12)
C130.0436 (17)0.0219 (14)0.0444 (18)0.0004 (13)0.0016 (15)0.0017 (13)
C70.0388 (17)0.0244 (16)0.071 (2)0.0027 (13)0.0087 (17)0.0017 (16)
C80.045 (2)0.0370 (19)0.071 (3)0.0051 (16)0.0147 (19)0.0061 (18)
C110.0334 (18)0.041 (2)0.091 (3)0.0019 (16)0.010 (2)0.012 (2)
C100.0366 (18)0.042 (2)0.103 (4)0.0095 (16)0.015 (2)0.003 (2)
C90.046 (2)0.047 (2)0.093 (3)0.0064 (18)0.028 (2)0.007 (2)
Geometric parameters (Å, º) top
Cu1—S22.2835 (8)C15—H15A0.96 (3)
Cu1—S2i2.6491 (8)C15—H15B0.96 (4)
Cu1—N61.924 (3)C13—H13A0.9900
Cu1—C142.068 (3)C13—H13B0.9900
Cu1—C152.095 (3)C7—H7A0.9900
S2—C121.733 (3)C7—H7B0.9900
S3—C161.636 (3)C7—C81.490 (5)
N4—C121.329 (4)C8—H8A0.9900
N4—C71.476 (4)C8—H8B0.9900
N4—C111.476 (4)C8—C91.517 (5)
N6—C161.151 (4)C11—C101.494 (6)
Cu1—Cg11.969C11—H11A1.04 (4)
N5—H50.856 (10)C11—H11B0.91 (5)
N5—C121.336 (4)C10—H10A0.9900
N5—C131.464 (4)C10—H10B0.9900
C14—C151.351 (5)C10—C91.528 (6)
C14—C131.492 (5)C9—H9A0.9900
C14—H140.98 (4)C9—H9B0.9900
S2—Cu1—S2i101.98 (3)H15A—C15—H15B115 (3)
N6—Cu1—S2107.15 (8)N5—C13—C14114.1 (3)
N6—Cu1—S2i97.44 (8)N5—C13—H13A108.7
N6—Cu1—C14147.71 (13)N5—C13—H13B108.7
N6—Cu1—C15111.75 (13)C14—C13—H13A108.7
C14—Cu1—S295.68 (9)C14—C13—H13B108.7
C14—Cu1—S2i99.83 (9)H13A—C13—H13B107.6
C14—Cu1—C1537.86 (13)N4—C7—H7A109.6
C15—Cu1—S2130.85 (10)N4—C7—H7B109.6
C15—Cu1—S2i101.56 (10)N4—C7—C8110.3 (3)
Cu1—S2—Cu1i78.02 (3)H7A—C7—H7B108.1
C12—S2—Cu1i102.73 (10)C8—C7—H7A109.6
Cg1—Cu1—S2113.57C8—C7—H7B109.6
Cg1—Cu1—S2i101.31C7—C8—H8A109.3
Cg1—Cu1—N6129.88C7—C8—H8B109.3
C12—S2—Cu1111.18 (10)C7—C8—C9111.8 (4)
C12—N4—C7123.7 (3)H8A—C8—H8B107.9
C12—N4—C11125.0 (3)C9—C8—H8A109.3
C7—N4—C11111.0 (3)C9—C8—H8B109.3
C16—N6—Cu1177.9 (3)N4—C11—C10110.1 (4)
C12—N5—H5118 (3)N4—C11—H11A114 (2)
C12—N5—C13126.5 (3)N4—C11—H11B109 (3)
C13—N5—H5113 (3)C10—C11—H11A101 (2)
Cu1—C14—H14106 (2)C10—C11—H11B113 (3)
C15—C14—Cu172.15 (19)H11A—C11—H11B109 (3)
C15—C14—C13123.0 (3)C11—C10—H10A109.6
C15—C14—H14120 (2)C11—C10—H10B109.6
C13—C14—Cu1106.9 (2)C11—C10—C9110.4 (3)
C13—C14—H14115 (2)H10A—C10—H10B108.1
N6—C16—S3179.1 (3)C9—C10—H10A109.6
N4—C12—S2119.9 (2)C9—C10—H10B109.6
N4—C12—N5119.1 (3)C8—C9—C10110.5 (3)
N5—C12—S2121.0 (2)C8—C9—H9A109.6
Cu1—C15—H15A104.7 (19)C8—C9—H9B109.6
Cu1—C15—H15B102 (2)C10—C9—H9A109.6
C14—C15—Cu169.98 (18)C10—C9—H9B109.6
C14—C15—H15A121.1 (18)H9A—C9—H9B108.1
C14—C15—H15B123 (2)
Cu1—S2—C12—N4157.3 (2)C13—N5—C12—S22.0 (5)
Cu1i—S2—C12—N475.4 (3)C13—N5—C12—N4177.4 (3)
Cu1i—S2—C12—N5105.2 (3)C13—C14—C15—Cu198.9 (3)
Cu1—S2—C12—N523.3 (3)C7—N4—C12—S23.8 (5)
Cu1—C14—C13—N578.7 (3)C7—N4—C12—N5175.6 (3)
N4—C7—C8—C955.6 (4)C7—N4—C11—C1061.3 (4)
N4—C11—C10—C957.8 (5)C7—C8—C9—C1052.8 (5)
C12—N4—C7—C8114.7 (4)C11—N4—C12—S2177.5 (3)
C12—N4—C11—C10113.1 (4)C11—N4—C12—N51.9 (5)
C12—N5—C13—C1462.8 (4)C11—N4—C7—C859.7 (4)
C15—C14—C13—N5158.0 (3)C11—C10—C9—C853.6 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···S3ii0.86 (2)2.60 (3)3.375 (3)151 (3)
C7—H7B···S20.992.483.028 (3)114
Symmetry code: (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Koji Kubono (Osaka Kyoiku University) for fruitful discussions and his helpful advice. We also thank Mr. Kazuki Maeda (Osaka Research Institute of Industrial Science and Technology) for a cooperation to bring the authors together at the beginning of this study.

References

First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilinchuk, Ya. E., Schollmeyer, D., Olijnik, V. V., Mys'kiv, M. G. & Goreshnik, E. A. (1996). Russ. J. Coord. Chem. 22, 815–820.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, J. & Xue, D. (2011). J. Mater. Chem. 21, 223–228.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2001). Z. Anorg. Allg. Chem. 627, 287–293.  CAS Google Scholar
First citationMel'nyk, O. P., Filinchuk, Ya. E., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 814517). CCDC, Cambridge, England.  Google Scholar
First citationOlijnik, V. V., Goreshnik, E. A., Schollmeyer, D. & Mys'kiv, M. G. (2011). CSD communication (CCDC deposition number 816764). CCDC, Cambridge, England.  Google Scholar
First citationPal, M., Mathews, N. R., Sanchez-Mora, E., Pal, U., Paraguay-Delgado, F. & Mathew, X. (2015). J. Nanopart. Res. 17, 301.  Web of Science CrossRef Google Scholar
First citationPatel, T. A., Balasubramanian, G. & Panda, E. (2019). J. Cryst. Growth, 505, 26–32.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSabah, F. A., Ahmed, N. M., Hassan, Z. & Rasheed, H. S. (2016). Sens. Actuators A-Phys. 249, 68–76.  Web of Science CrossRef CAS Google Scholar
First citationSagade, A. A. & Sharma, R. (2008). Sens. Actuators B Chem. 133, 135–143.  Web of Science CrossRef CAS Google Scholar
First citationSarma, A., Dippel, A.-C., Gutowski, O., Etter, M., Lippmann, M., Seeck, O., Manna, G., Sanyal, M. K., Keller, T. F., Kulkarni, S., Guha, P., Satyam, P. V. & Zimmermann, M. V. (2019). RSC Adv. 9, 31900–31910.  Web of Science CrossRef CAS Google Scholar
First citationShamraiz, U., Badshah, A., Hussain, R. A., Nadeem, M. A. & Saba, S. (2017). J. Saudi Chem. Soc. 21, 390–398.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTran, P. D., Nguyen, M., Pramana, S. S., Bhattacharjee, A., Chiam, S. Y., Fize, J., Field, M. J., Artero, V., Wong, L. H., Loo, J. & Barber, J. (2012). Energy Environ. Sci. 5, 8912–8916.  Web of Science CrossRef CAS Google Scholar
First citationUhl, A. R., Katahara, J. K. & Hillhouse, H. W. (2016). Energy Environ. Sci. 9, 130–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationVakulka, A. A., Filinchuk, Ya. E. & Mys'kiv, M. G. (2007). Russ. J. Coord. Chem. 33, 809–814.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds