research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nickel(II) carbonyl, ammonia, and aceto­nitrile complexes supported by a pyridine dipyrrolide pincer ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
*Correspondence e-mail: dias@uta.edu

Edited by M. Zeller, Purdue University, USA (Received 27 September 2020; accepted 5 October 2020; online 9 October 2020)

The synthesis, isolation and crystal structures of nickel(II) carbonyl, aceto­nitrile and ammonia complexes supported by a dianionic, pyridine dipyrrolide pincer ligand [pyrr2py]2−, namely, carbonyl[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]­nickel(II), [Ni(C41H33N3)(CO)], ammine[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(NH3)], and (aceto­nitrile-κN)[2,2′-(pyridine-2,6-di­yl)bis­(3,5-di-p-tolyl­pyrrolido-κN)]nickel(II), [Ni(C41H33N3)(CH3CN)], as well as the free ligand 2,6-bis­(3,5-di-p-tolyl­pyrrol-2-yl)pyridine, C41H35N3 or [pyrr2py]H2 are reported. The nickel complexes are four-coordinate and adopt a square-planar geometry. The CO stretch of the nickel-bound carbon monoxide ligand of [pyrr2py]Ni(CO) has been observed at 2101 cm−1. The ammonia and aceto­nitrile complexes, [pyrr2py]Ni(NH3) and [pyrr2py]Ni(NCMe) feature all-nitro­gen coordination spheres around nickel consisting of different N-donor ligand types.

1. Chemical context

Pincer ligands were first introduced by Moulton and Shaw in 1976 (Moulton & Shaw, 1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.]). They are utilized widely as auxiliary ligands to produce transition-metal complexes useful in a range of applications including catalysis (Alig et al., 2019[Alig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681-2751.]; Peris & Crabtree, 2004[Peris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239-2246.], 2018[Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959-1968.]; Piccirilli et al., 2020[Piccirilli, L., Pinheiro, D. L. J. & Nielsen, M. (2020). Catalysts 10, 773.]; Albrecht & van Koten, 2001[Albrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750-3781.]). There are several pincer-ligand varieties in the literature ranging from those featuring both symmetric and non-symmetric flanking arms, P-, N-, O-, S- and C- donor sites, as well as neutral, mono, di- and trianionic systems. Monoanionic, carbon-centered (e.g., from phen­yl) ligands with P- or N-donors at the flanking arms are more common among pincers (Peris & Crabtree, 2018[Peris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959-1968.]). These tridentate ligands are particularly inter­esting for their ability to preferentially occupy the meridional coordination sites on a metal ion.

We have been working on tridentate, nitro­gen-based ligands such as tris­(pyrazol­yl)borates with a preference for facial coordination for several years (Dias & Lovely, 2008[Dias, H. V. R. & Lovely, C. J. (2008). Chem. Rev. 108, 3223-3238.]; Dias et al., 1995[Dias, H. V. R., Huai, L., Jin, W. & Bott, S. G. (1995). Inorg. Chem. 34, 1973-1974.], 1996[Dias, H. V. R., Jin, W., Kim, H.-J. & Lu, H.-L. (1996). Inorg. Chem. 35, 2317-2328.]; Dias & Lu, 1995[Dias, H. V. R. & Lu, H.-L. (1995). Inorg. Chem. 34, 5380-5382.]). This paper describes results from our efforts to expand the ligand repertoire to include tridentate ligands with a preference for meridional geometry (Adiraju et al., 2020[Adiraju, V. A. K., Jin, W., Yousufuddin, M. & Dias, H. V. R. (2020). Z. Anorg. Allg. Chem. 646, 215-219.]) at transition-metal ions in our laboratory. In particular, we describe the synthesis and use of a pyridine dipyrrolide pincer ligand bearing tolyl substituents, (Pramanik et al., 2014[Pramanik, A., Das, A., Yousufuddin, M. & Dias, H. V. R. (2014). Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas, TX, United States, March 16-20, 2014, INOR-266.]; Pramanik, 2015[Pramanik, A. (2015). MS thesis, The University of Texas at Arlington, Arlington, Texas, USA.]) and its chemistry with nickel(II) featuring CO, NH3 and NCMe mol­ecules (Fig. 1[link]). The pyridine dipyrrolide is a particularly attractive ligand framework, as several examples of pyridine dipyrrolide pincers with different substituents on the ligand backbone (e.g., Me, t-Bu, Ph, Mes) are known and have already been successfully used with both early and late transition-metal ions such as Ti (Zhang et al., 2016[Zhang, Y., Petersen, J. L. & Milsmann, C. (2016). J. Am. Chem. Soc. 138, 13115-13118.]), Zr (Zhang et al., 2016[Zhang, Y., Petersen, J. L. & Milsmann, C. (2016). J. Am. Chem. Soc. 138, 13115-13118.], 2020[Zhang, Y., Lee, T. S., Favale, J. M., Leary, D. C., Petersen, J. L., Scholes, G. D., Castellano, F. N. & Milsmann, C. (2020). Nat. Chem. 12, 345-352.]), Cr (Gowda et al., 2018[Gowda, A. S., Petersen, J. L. & Milsmann, C. (2018). Inorg. Chem. 57, 1919-1934.]), Mo (Gowda et al., 2018[Gowda, A. S., Petersen, J. L. & Milsmann, C. (2018). Inorg. Chem. 57, 1919-1934.]), Fe (Sorsche et al., 2020[Sorsche, D., Miehlich, M., Searles, K., Gouget, G., Zolnhofer, E. M., Fortier, S., Chen, C.-H., Gau, M. R., Carroll, P. J., Murray, C. B., Caulton, K. G., Khusniyarov, M. M., Meyer, K. & Mindiola, D. J. (2020). J. Am. Chem. Soc. 142, 8147-8159.]; Hakey et al., 2019[Hakey, B. M., Darmon, J. M., Zhang, Y., Petersen, J. L. & Milsmann, C. (2019). Inorg. Chem. 58, 1252-1266.]), Co (Grant et al., 2016[Grant, L. N., Carroll, M. E., Carroll, P. J. & Mindiola, D. J. (2016). Inorg. Chem. 55, 7997-8002.]), Pt (Komine et al., 2014[Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361-1369.]), Pd (Yadav et al., 2018[Yadav, S., Singh, A., Rashid, N., Ghotia, M., Roy, T. K., Ingole, P. P., Ray, S., Mobin, S. M. & Dash, C. (2018). ChemistrySelect 3, 9469-9475.]) and Zn (Komine et al., 2014[Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361-1369.]) to form well-defined metal complexes.

[Scheme 1]
[Figure 1]
Figure 1
The dianionic, pyridine dipyrrolide pincer ligand [pyrr2Py]2− and the nickel(II) complexes.

2. Structural commentary

The free ligand [pyrr2Py]H2 is monomeric and crystallizes with both pyrrole nitro­gen atoms facing the center of the coord­ination pit, well situated for metal-ion coordination (Fig. 2[link]). This is different from the structure observed with the t-butyl substituted pincer analog (VIWSOL; Komine et al., 2014[Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361-1369.]) in which one pyrrole N-H bond is directed outward to form a hydrogen bond with a lattice aceto­nitrile mol­ecule. The pyrrole and pyridine moieties are essentially coplanar. The nickel(II) carbonyl complex [pyrr2Py]Ni(CO) was synthesized from the in situ-generated potassium salt K2[pyrr2Py] and Ni(OTf)2 in the presence of carbon monoxide. The important CO stretch of this mol­ecule is observed at 2101 cm−1, which is only slightly lower than that of free CO (2143 cm−1), indicating relatively weak Ni→CO π-backbonding. The nickel(I) tris­(pyrazol­yl)borate complex [HB(3-Ph,5-MePz)3]Ni(CO) for comparison displays its CO stretch at 2003 cm−1 (Abubekerov et al., 2016[Abubekerov, M., Eymann, L. Y. M., Gianetti, T. L. & Arnold, J. (2016). Dalton Trans. 45, 14581-14590.]). The X-ray crystal structure shows that the pincer complex [pyrr2Py]Ni(CO) is a monomeric, square-planar complex (Fig. 3[link]). The carbonyl moiety sits above the ligand plane, as is evident from the N1—Ni—C22 angle of 160.41 (13)°. The Ni—C22 distance of 1.809 (3) Å is significantly longer than the corresponding distance of 1.766 (4) Å in [HB(3-Ph,5-MePz)3]Ni(CO), which is a tetra­hedral nickel complex (ENUROW; Abubekerov et al., 2016[Abubekerov, M., Eymann, L. Y. M., Gianetti, T. L. & Arnold, J. (2016). Dalton Trans. 45, 14581-14590.]). The Ni—N(pyrr) (pyrr = pyrrolide) distances of 1.8667 (18) and 1.8666 (18) Å are not significantly different from the Ni—N(pyridine) separation of 1.853 (3) Å.

[Figure 2]
Figure 2
Mol­ecular structure of [pyrr2Py]H2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of [pyrr2Py]Ni(CO) with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1 + x, [{3\over 2}] − y, z.

Compounds [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe) are also four-coordinate nickel(II) complexes with square-planar metal sites (Figs. 4[link] and 5[link], respectively). They have all nitro­gen coordination spheres at nickel, but with an inter­esting variety of donor sites ranging from sp to sp3-hybridized nitro­gen atoms, as well as neutral and formally anionic N-centers. Both the NH3 and NCMe ligands bend out of the [pyrr2Py] ligand plane as evident from the N2—Ni—N4 angles of 162.16 (5) and 168.09 (10)°, respectively, for the two complexes. The Ni—N1 and Ni—N3 bond distances of [pyrr2Py]Ni(NH3) are 1.8858 (10) and 1.8876 (10) Å, respectively. These values are marginally smaller than the corresponding distances of [pyrr2Py]Ni(NCMe) [1.896 (2) and 1.906 (2) Å]. The Ni—N2 distances (to the pyridine moieties) at 1.8490 (10) and 1.846 (2) Å are similar in the two adducts, but they are both much shorter than the Ni—N(pyrr) distances noted above. The Ni—N bond distance to the NH3 and NCMe ligands in [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe) are 1.9291 (11) and 1.861 (2) Å, respectively. These are bonds to sp3 and sp-hybridized nitro­gen sites, respectively, and therefore the longer distance for the former is not unusual. Four-coordinate nickel–ammonia complexes are rare and there is one example in the CSD (PEWROZ; Tapper et al., 1993[Tapper, A. E., Billo, E. J. & Golen, J. A. (1993). Inorg. Chim. Acta, 210, 71-75.]), and that has an Ni—N(H3) distance of 1.912 Å.

[Figure 4]
Figure 4
Mol­ecular structure of [pyrr2Py]Ni(NH3) with displacement ellipsoids drawn at the 50% probability level.
[Figure 5]
Figure 5
Mol­ecular structure of [pyrr2Py]Ni(NCMe) with displacement ellipsoids drawn at the 50% probability level. A disordered hexane mol­ecule has been omitted for clarity.

3. Supra­molecular features

Important inter­mol­ecular contacts and a packing diagram of [pyrr2Py]H2 are shown in Fig. 6[link] and Fig. S1 in the supporting information. Neighboring mol­ecules of [pyrr2Py]H2 show ππ contacts between pyrrole and pyridine groups (the closest separation is 3.21 Å) as well as C(arene)—H⋯arene contacts. The complex [pyrr2Py]Ni(CO) does not show extensive inter­molecular inter­actions apart from NiCO⋯H—C(arene) contacts between the carbonyl moieties and hydrogen atoms of neighboring arene as illustrated in Fig. 7[link] and Fig. S2. In the structure of [pyrr2Py]Ni(NH3), the arene groups inter­act with neighboring mol­ecules via the ammonia hydrogen atoms (see Fig. 8[link] and Fig. S3). In [pyrr2Py]Ni(NCMe), the hexane mol­ecules in the lattice occupy regions surrounded by tolyl substituents. The major inter­molecular inter­actions are between arenes and the hydrogen atoms of the aceto­nitrile moieties. The resulting packing diagram is shown in Fig. 9[link] and Fig. S4.

[Figure 6]
Figure 6
The crystal packing of [pyrr2Py]H2.
[Figure 7]
Figure 7
The crystal packing of [pyrr2Py]Ni(CO).
[Figure 8]
Figure 8
The crystal packing of [pyrr2Py]Ni(NH3). Hydrogen atoms except those on ammonia have been omitted for clarity.
[Figure 9]
Figure 9
The crystal packing of [pyrr2Py]Ni(NCMe). Hydrogen atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database for related pyridine dipyrrolide complexes involving transition-metal ions revealed 38 hits involving ligands with different alkyl or aryl substituents (CSD Version 5.41, Update 2, May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). No nickel pyridine dipyrrolide complexes have been reported thus far. Perhaps the most closely related compounds are the four-coordinate platinum (VIWSIF; Komine et al., 2014[Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361-1369.]), palladium (XIKKIO, XIKKOU; Yadav et al., 2018[Yadav, S., Singh, A., Rashid, N., Ghotia, M., Roy, T. K., Ingole, P. P., Ray, S., Mobin, S. M. & Dash, C. (2018). ChemistrySelect 3, 9469-9475.]) and zinc (VIWSIF; Komine et al., 2014[Komine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361-1369.]) complexes featuring all-nitro­gen coordination spheres at the metal. In addition, there are ten hits for related free ligands. Most of them, however, are different solvates of the same ligand system.

5. Synthesis and crystallization

All experiments were done under a purified nitro­gen atmosphere with standard Schlenk techniques. Solvents were purchased from commercial sources and purified using an Innovative Technology SPS-400 PureSolv solvent-drying system or distilled over conventional drying agents and degassed by the freeze–pump–thaw method three times prior to use. All other chemicals needed were obtained from commercial vendors. Glassware was oven dried at 150°C overnight. The NMR spectra were recorded at 25°C on JEOL Eclipse 500 and 300 spectrometers (1H: 500.16 MHz or 300.53 MHz). Proton chemical shifts are reported in ppm versus Me4Si. Infrared spectra were taken on a JASCO FT–IR 410 spectrometer.

Synthesis of 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine, [pyrr2Py]H2:

1,3-Bis(4-tol­yl)-2-propen-1-one (chalcone) was prepared following a literature procedure (Yang et al., 2005[Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278-3279.]) from tolu­aldehyde and 4-methyl­aceto­phenone. Then the chalcone (1.75 g, 7.4 mmol) was reacted with 2,6-pyridine­dicarbaldehyde (0.50 g, 3.7 mmol), 3-benzyl-5-(-hy­droxy­eth­yl)-4-methyl­thia­zolium chloride (0.20 g, 0.74 mmol) and sodium t-butoxide (0.57 g, 0.74 mmol) in ethanol at reflux for 24 h to form a brown suspension. Water was added and the mixture was extracted with chloro­form. The chloro­form was removed to obtain 2,6-bis­(2,4-ditolyl-1,4-dioxobut­yl)pyridine. This was purified further by rinsing with hexane to get an orange solid. The inter­mediate ketone was reacted with NH4OAc (2.8 g, 37 mmol) in ethanol at reflux for 24 h. Water was added and the yellow solid was filtered and washed with water. Then the crude product was suspended in 10 mL of ethanol and refluxed at 373 K for 7 h to obtain 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine, [pyrr2Py]H2 as a yellow solid (yield 64%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 2.38 (s, 12H, CH3) 6.57 (m, 2H), 7.02 (d, J = 8.05, 2H), 7.17–7.22 (m, 9H), 7.38 (d, 4H), 7.47 (d, J = 8 Hz, 4H), 9.56 (2H, NH).

Synthesis of [pyrr2Py]Ni(NCCH3):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2; 0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was collected and added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. The volatile materials were removed under reduced pressure and the residue was extracted into ether and filtered. Ether was removed under vacuum and 10 mL of aceto­nitrile were added. After 1 h, it was filtered, and the filtrate was concentrated to 4 mL. Finally, hexane was layered above the aceto­nitrile and allowed to diffuse slowly into aceto­nitrile solution at room temperature, producing brown crystals of [pyrr2Py]Ni(CH3CN) (yield 34%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 0.738 (s, 3H, CH3) 2.32 (s, 6H, CH3), 2.37 (s, 6H, CH3) 6.06 (s, 2H), 6.60 (d, J = 8 Hz, 2H), 7.04 (t, J = 8 Hz, 1H), 7.15 (m, 8H), 7.36 (d, J = 8 Hz, 4H), 7.62 (d, J = 8.05 Hz, 4H).

Synthesis of [pyrr2Py]Ni(CO):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2) (0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. Then THF was removed and the residue was extracted into ether. Then anhydrous carbon monoxide gas was passed through the ether solution for 20 minutes at 273 K. After stirring for 1 h, the solution was filtered, and the volume of the solution was decreased to 4 mL. Red crystals of [pyrr2Py]Ni(CO) were observed after keeping the solution in a 253 K freezer for 3 d (yield 24%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 2.37 (s, 6H, CH3), 2.38 (s, 6H, CH3) 6.21 (s, 2H), 6.77 (d, J = 7.45 Hz, 2H), 7.02 (t, J = 8 Hz, 1H), 7.21 (m, 8H), 7.38 (d, J = 7.5 Hz, 4H), 7.47 (d, J = 8.05 Hz, 4H). 13C{1H} NMR (CDCl3, 125.77 MHz, 298 K, selected): δ 174.4 (CO). IR (crystals, ATR, selected band) cm−1: 2101 (CO).

Synthesis of [pyrr2Py]Ni(NH3):

A solid sample of the ligand 2,6-bis­(3,5-ditolyl-2-pyrrol­yl)pyridine ([pyrr2Py]H2) (0.10 g, 0.175 mmol) and KH (0.021 g, 0.525 mmol) were placed in a 50 mL Schlenk flask. THF (ca 10 mL) was added to the mixture at room temperature and then refluxed for 1.5 h. It was allowed to cool down to room temperature and filtered through a Celite pad, which was then washed with 5 mL of THF. The filtrate was added to Ni(OTf)2 (0.062 g, 0.175 mmol) in 10 mL of THF and stirred overnight at room temperature. Then THF was removed and the residue was extracted into ether. Then anhydrous ammonia gas was passed through the ether solution for 20 minutes at 273 K. After stirring for 1 h, the solution was filtered, and the volume of the solution was decreased to 4 mL. Red crystals of [pyrr2Py]Ni(NH3) were formed after keeping the solution in a 253 K freezer for 3 d (yield 54%). 1H NMR (CDCl3, 500.16 MHz, 298 K): δ 0.49 (s, 3H, NH3) 2.35 (s, 6H, CH3), 2.38 (s, 6H, CH3) 6.08 (s, 2H), 6.63 (d, J = 8 Hz, 2H), 7.05 (t, J = 8.05 Hz, 1H), 7.19 (m, 8H), 7.36 (d, J = 8.05, 4H), 7.62 (d, J = 7.45 Hz, 4H). IR (crystals, ATR, selected bands) cm−1: 3310, 3360 (NH).

6. Refinement

Crystal data, data collection and structure refinement details for [pyrr2Py]H2, [pyrr2Py]Ni(CO), [pyrr2Py]Ni(NH3) and [pyrr2Py]Ni(NCMe)·hexane are summarized in Table 1[link]. Non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms, except for the N—H hydrogen atoms, were placed in calculated positions using riding models, and refined riding on their parent atoms with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene hydrogen atoms (of hexa­ne), and C—H = 0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl hydrogen atoms. The N—H hydrogen atoms of [pyrr2Py]H2 and [pyrr2Py]Ni(NH3) were obtained from a difference-Fourier map and refined freely. The nickel carbonyl complex [pyrr2Py]Ni(CO) is located on a plane of symmetry containing the Ni–CO moiety but perpendicular to the [pyrr2Py] ligand plane, and consequently only a half is contained in the asymmetric unit. The complex [pyrr2Py]Ni(NCCH3) crystallizes with a mol­ecule of hexane, which was disordered over two sites [with refined occupancy rates of 77.9 (5)% and 22.1 (5)%]. C—C bond distances were restrained to a target value of 1.53 (2) Å (DFIX restraint of SHELXL), 1,3 C⋯C distances were restrained to be similar to each other (SADI restraint of SHELXL, esd = 0.04 Å), and Uij components of ADPs were restrained to be similar for atoms closer to each other than two Å (SIMU restraint of SHELXL, esd = 0.02 Å2 for terminal atoms and 0.01 Å2 for all others).

Table 1
Experimental details

  [pyrr2PyH2] [pyrr2Py]Ni(CO) [pyrr2Py]Ni(NH3) [pyrr2Py]Ni(NCMe)
Crystal data
Chemical formula C41H35N3 [Ni(C41H33N3)(CO)] [Ni(C41H33N3)(NH3)] [Ni(C41H33N3)(C2H3N)]
Mr 569.72 654.42 643.45 753.64
Crystal system, space group Monoclinic, P21/c Monoclinic, P121/m1 Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100 100 100
a, b, c (Å) 14.8940 (15), 35.155 (4), 5.9513 (6) 6.6482 (4), 27.1709 (18), 9.1322 (6) 15.9773 (6), 14.9441 (5), 14.3238 (5) 11.2735 (16), 14.1802 (19), 14.688 (2)
α, β, γ (°) 90, 100.987 (2), 90 90, 101.0700 (12), 90 90, 107.8140 (8), 90 67.162 (2), 68.881 (2), 80.665 (2)
V3) 3059.0 (5) 1618.92 (18) 3256.1 (2) 2018.0 (5)
Z 4 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.07 0.64 0.63 0.52
Crystal size (mm) 0.28 × 0.18 × 0.12 0.36 × 0.27 × 0.05 0.46 × 0.41 × 0.14 0.20 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker D8 Quest with a Photon 100 CMOS detector Bruker D8 Quest with a Photon 100 CMOS detector Bruker D8 Quest with a Photon 100 CMOS detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.341, 0.431 0.859, 1.000 0.858, 0.967 0.686, 0.899
No. of measured, independent and observed [I > 2σ(I)] reflections 31843, 7596, 5005 18888, 4080, 3280 48278, 9931, 8502 21869, 9994, 7327
Rint 0.076 0.057 0.026 0.058
(sin θ/λ)max−1) 0.669 0.667 0.714 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.182, 1.06 0.050, 0.119, 1.07 0.036, 0.098, 1.05 0.068, 0.193, 1.00
No. of reflections 7596 4080 9931 9994
No. of parameters 409 222 431 551
No. of restraints 0 0 0 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.25 0.67, −0.33 0.51, −0.26 1.75, −0.93
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,6-Bis[3,5-bis(4-methylphenyl)pyrrol-2-yl]pyridine (pyrr2PyH2) top
Crystal data top
C41H35N3F(000) = 1208
Mr = 569.72Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.8940 (15) ÅCell parameters from 6014 reflections
b = 35.155 (4) Åθ = 3.0–28.0°
c = 5.9513 (6) ŵ = 0.07 mm1
β = 100.987 (2)°T = 100 K
V = 3059.0 (5) Å3Plates, yellow
Z = 40.28 × 0.18 × 0.12 mm
Data collection top
Bruker D8 Quest with a Photon 100 CMOS detector
diffractometer
7596 independent reflections
Radiation source: sealed tube5005 reflections with I > 2σ(I)
Curved-graphite monochromatorRint = 0.076
Detector resolution: 8 pixels mm-1θmax = 28.4°, θmin = 2.9°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 4646
Tmin = 0.341, Tmax = 0.431l = 77
31843 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: mixed
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0644P)2 + 2.7619P]
where P = (Fo2 + 2Fc2)/3
7596 reflections(Δ/σ)max < 0.001
409 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31778 (13)0.41078 (6)0.3752 (4)0.0269 (5)
H10.3085 (17)0.3918 (8)0.284 (5)0.023 (7)*
N20.15143 (12)0.38454 (5)0.2069 (3)0.0220 (4)
N30.15725 (13)0.34057 (6)0.1524 (3)0.0218 (4)
H30.201 (2)0.3567 (8)0.090 (5)0.035 (8)*
C10.39793 (16)0.42861 (7)0.4672 (4)0.0284 (6)
C20.37801 (16)0.45430 (8)0.6255 (5)0.0309 (6)
H20.4205280.4708450.7166110.037*
C30.28267 (16)0.45185 (7)0.6295 (4)0.0268 (5)
C40.24695 (15)0.42390 (7)0.4728 (4)0.0239 (5)
C50.48235 (16)0.41980 (7)0.3826 (5)0.0298 (6)
C60.47946 (18)0.40299 (9)0.1714 (5)0.0411 (7)
H60.4219440.3974310.0773990.049*
C70.55943 (19)0.39409 (9)0.0944 (6)0.0422 (7)
H70.5555100.3824150.0511010.051*
C80.64462 (17)0.40191 (8)0.2254 (5)0.0339 (6)
C90.64744 (19)0.41900 (10)0.4340 (6)0.0486 (8)
H90.7051820.4248930.5258870.058*
C100.56826 (18)0.42799 (9)0.5151 (6)0.0456 (8)
H100.5726010.4396990.6605980.055*
C110.73140 (18)0.39198 (9)0.1421 (6)0.0419 (7)
H11A0.7787050.4108430.1991970.063*
H11B0.7194070.3919430.0256120.063*
H11C0.7523800.3667050.1987320.063*
C120.23419 (16)0.47692 (7)0.7652 (4)0.0257 (5)
C130.27181 (17)0.48578 (7)0.9915 (4)0.0304 (6)
H130.3294170.4753311.0594550.036*
C140.22680 (19)0.50962 (8)1.1203 (5)0.0327 (6)
H140.2537100.5149261.2749690.039*
C150.14287 (18)0.52581 (7)1.0254 (5)0.0299 (6)
C160.10546 (17)0.51734 (7)0.7991 (5)0.0286 (6)
H160.0480600.5280060.7313060.034*
C170.15026 (16)0.49357 (7)0.6694 (5)0.0265 (5)
H170.1235890.4885890.5141380.032*
C180.0944 (2)0.55256 (8)1.1610 (5)0.0396 (7)
H18A0.1061020.5788981.1209270.059*
H18B0.1172000.5485801.3249500.059*
H18C0.0284990.5475661.1252100.059*
C190.15686 (15)0.40612 (7)0.3944 (4)0.0226 (5)
C200.08401 (16)0.40989 (7)0.5100 (4)0.0247 (5)
H200.0903140.4241500.6477650.030*
C210.00241 (16)0.39217 (7)0.4173 (4)0.0250 (5)
H210.0489920.3949360.4890850.030*
C220.00481 (16)0.37054 (7)0.2219 (4)0.0245 (5)
H220.0612070.3589020.1555060.029*
C230.07227 (15)0.36606 (6)0.1232 (4)0.0205 (5)
C240.07687 (15)0.34119 (7)0.0706 (4)0.0215 (5)
C250.01808 (15)0.31582 (7)0.2046 (4)0.0217 (5)
C260.06570 (15)0.30020 (7)0.3677 (4)0.0235 (5)
H260.0423220.2819640.4817130.028*
C270.15233 (15)0.31619 (7)0.3319 (4)0.0219 (5)
C280.07829 (15)0.30748 (7)0.1857 (4)0.0220 (5)
C290.09980 (16)0.28944 (7)0.0044 (4)0.0258 (5)
H290.0518970.2806480.1217710.031*
C300.18999 (17)0.28401 (7)0.0264 (4)0.0279 (5)
H300.2027660.2717970.1591910.033*
C310.26155 (16)0.29607 (7)0.1417 (5)0.0279 (6)
C320.24067 (16)0.31310 (7)0.3364 (5)0.0300 (6)
H320.2887880.3210510.4557860.036*
C330.15012 (16)0.31866 (7)0.3587 (4)0.0264 (5)
H330.1372680.3302140.4933860.032*
C340.35951 (18)0.29081 (9)0.1141 (6)0.0425 (7)
H34A0.3762820.3112210.0177850.064*
H34B0.3659630.2661690.0418860.064*
H34C0.3998560.2916410.2647790.064*
C350.23013 (15)0.31055 (7)0.4467 (4)0.0224 (5)
C360.21959 (17)0.29117 (7)0.6546 (4)0.0258 (5)
H360.1612290.2814780.7229710.031*
C370.29340 (17)0.28587 (7)0.7625 (4)0.0274 (5)
H370.2848010.2724420.9035410.033*
C380.38005 (16)0.29991 (7)0.6680 (4)0.0287 (6)
C390.39012 (16)0.31946 (8)0.4625 (5)0.0321 (6)
H390.4482920.3295110.3955620.039*
C400.31675 (16)0.32462 (8)0.3528 (5)0.0295 (6)
H400.3256320.3379630.2114630.035*
C410.46052 (19)0.29329 (9)0.7846 (5)0.0396 (7)
H41A0.5051420.3138310.7441080.059*
H41B0.4392340.2928510.9508500.059*
H41C0.4893070.2688850.7342670.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0196 (10)0.0316 (12)0.0297 (12)0.0012 (8)0.0049 (8)0.0087 (10)
N20.0167 (9)0.0257 (10)0.0240 (11)0.0030 (8)0.0051 (8)0.0003 (8)
N30.0155 (9)0.0277 (11)0.0224 (10)0.0006 (8)0.0041 (8)0.0005 (8)
C10.0197 (12)0.0332 (14)0.0315 (14)0.0017 (10)0.0025 (10)0.0049 (11)
C20.0203 (12)0.0380 (14)0.0322 (14)0.0016 (10)0.0007 (10)0.0084 (12)
C30.0214 (11)0.0311 (13)0.0270 (13)0.0054 (10)0.0023 (10)0.0012 (11)
C40.0199 (11)0.0271 (12)0.0254 (13)0.0047 (9)0.0061 (9)0.0001 (10)
C50.0203 (12)0.0307 (14)0.0385 (15)0.0021 (10)0.0062 (11)0.0067 (12)
C60.0221 (13)0.0505 (18)0.0509 (19)0.0024 (12)0.0074 (12)0.0149 (15)
C70.0290 (14)0.0495 (18)0.0504 (19)0.0028 (12)0.0130 (13)0.0179 (15)
C80.0218 (12)0.0321 (14)0.0497 (18)0.0006 (10)0.0117 (12)0.0001 (13)
C90.0199 (13)0.060 (2)0.063 (2)0.0009 (13)0.0015 (13)0.0137 (17)
C100.0257 (14)0.060 (2)0.0500 (19)0.0005 (13)0.0037 (13)0.0205 (16)
C110.0251 (14)0.0444 (17)0.060 (2)0.0001 (12)0.0179 (13)0.0017 (15)
C120.0230 (12)0.0261 (13)0.0282 (13)0.0019 (9)0.0056 (10)0.0037 (10)
C130.0276 (13)0.0338 (14)0.0286 (14)0.0050 (10)0.0023 (11)0.0023 (11)
C140.0402 (15)0.0322 (14)0.0260 (14)0.0027 (11)0.0071 (11)0.0039 (11)
C150.0355 (14)0.0259 (13)0.0317 (14)0.0020 (10)0.0147 (11)0.0011 (11)
C160.0247 (12)0.0254 (13)0.0367 (15)0.0031 (10)0.0087 (11)0.0009 (11)
C170.0225 (12)0.0258 (13)0.0309 (14)0.0005 (9)0.0042 (10)0.0027 (10)
C180.0478 (17)0.0346 (15)0.0415 (17)0.0094 (13)0.0212 (14)0.0009 (13)
C190.0213 (11)0.0215 (12)0.0253 (13)0.0028 (9)0.0052 (9)0.0015 (10)
C200.0257 (12)0.0241 (12)0.0263 (13)0.0033 (9)0.0098 (10)0.0005 (10)
C210.0226 (12)0.0227 (12)0.0333 (14)0.0036 (9)0.0141 (10)0.0010 (10)
C220.0201 (11)0.0255 (12)0.0294 (13)0.0007 (9)0.0084 (10)0.0020 (10)
C230.0184 (11)0.0225 (11)0.0213 (12)0.0020 (9)0.0054 (9)0.0039 (9)
C240.0171 (10)0.0271 (12)0.0212 (12)0.0026 (9)0.0061 (9)0.0018 (10)
C250.0185 (11)0.0248 (12)0.0216 (12)0.0003 (9)0.0032 (9)0.0028 (10)
C260.0203 (11)0.0276 (13)0.0222 (12)0.0000 (9)0.0027 (9)0.0013 (10)
C270.0176 (11)0.0266 (12)0.0211 (12)0.0023 (9)0.0029 (9)0.0024 (10)
C280.0191 (11)0.0225 (12)0.0248 (12)0.0005 (9)0.0053 (9)0.0024 (9)
C290.0228 (12)0.0309 (13)0.0234 (13)0.0007 (10)0.0037 (10)0.0013 (10)
C300.0306 (13)0.0297 (13)0.0259 (13)0.0060 (10)0.0120 (11)0.0011 (10)
C310.0202 (12)0.0278 (13)0.0381 (15)0.0033 (9)0.0114 (10)0.0069 (11)
C320.0201 (12)0.0331 (14)0.0360 (15)0.0014 (10)0.0034 (10)0.0022 (11)
C330.0202 (11)0.0322 (13)0.0276 (13)0.0003 (10)0.0071 (10)0.0039 (11)
C340.0243 (14)0.0534 (18)0.0538 (19)0.0074 (12)0.0179 (13)0.0046 (15)
C350.0195 (11)0.0249 (12)0.0231 (12)0.0058 (9)0.0048 (9)0.0038 (10)
C360.0242 (12)0.0270 (13)0.0258 (13)0.0018 (9)0.0035 (10)0.0027 (10)
C370.0302 (13)0.0299 (13)0.0234 (13)0.0052 (10)0.0082 (10)0.0003 (10)
C380.0221 (12)0.0351 (14)0.0311 (14)0.0080 (10)0.0110 (10)0.0046 (11)
C390.0160 (11)0.0453 (16)0.0359 (15)0.0023 (10)0.0071 (10)0.0037 (12)
C400.0222 (12)0.0386 (15)0.0282 (14)0.0013 (10)0.0058 (10)0.0058 (11)
C410.0289 (14)0.0569 (19)0.0368 (16)0.0090 (13)0.0158 (12)0.0023 (14)
Geometric parameters (Å, º) top
N1—H10.86 (3)C19—C201.398 (3)
N1—C11.367 (3)C20—H200.9500
N1—C41.377 (3)C20—C211.384 (3)
N2—C191.339 (3)C21—H210.9500
N2—C231.355 (3)C21—C221.377 (3)
N3—H30.89 (3)C22—H220.9500
N3—C241.376 (3)C22—C231.394 (3)
N3—C271.360 (3)C23—C241.460 (3)
C1—C21.378 (4)C24—C251.390 (3)
C1—C51.474 (3)C25—C261.417 (3)
C2—H20.9500C25—C281.490 (3)
C2—C31.427 (3)C26—H260.9500
C3—C41.389 (3)C26—C271.386 (3)
C3—C121.474 (3)C27—C351.466 (3)
C4—C191.473 (3)C28—C291.387 (3)
C5—C61.382 (4)C28—C331.393 (3)
C5—C101.399 (4)C29—H290.9500
C6—H60.9500C29—C301.387 (3)
C6—C71.391 (4)C30—H300.9500
C7—H70.9500C30—C311.382 (4)
C7—C81.384 (4)C31—C321.391 (4)
C8—C91.372 (4)C31—C341.510 (3)
C8—C111.511 (4)C32—H320.9500
C9—H90.9500C32—C331.394 (3)
C9—C101.393 (4)C33—H330.9500
C10—H100.9500C34—H34A0.9800
C11—H11A0.9800C34—H34B0.9800
C11—H11B0.9800C34—H34C0.9800
C11—H11C0.9800C35—C361.395 (3)
C12—C131.392 (4)C35—C401.395 (3)
C12—C171.400 (3)C36—H360.9500
C13—H130.9500C36—C371.388 (3)
C13—C141.391 (4)C37—H370.9500
C14—H140.9500C37—C381.396 (4)
C14—C151.391 (4)C38—C391.386 (4)
C15—C161.388 (4)C38—C411.513 (3)
C15—C181.510 (4)C39—H390.9500
C16—H160.9500C39—C401.388 (3)
C16—C171.391 (3)C40—H400.9500
C17—H170.9500C41—H41A0.9800
C18—H18A0.9800C41—H41B0.9800
C18—H18B0.9800C41—H41C0.9800
C18—H18C0.9800
C1—N1—H1129.5 (17)C21—C20—C19117.8 (2)
C1—N1—C4111.0 (2)C21—C20—H20121.1
C4—N1—H1119.0 (17)C20—C21—H21119.8
C19—N2—C23119.21 (19)C22—C21—C20120.5 (2)
C24—N3—H3117.5 (18)C22—C21—H21119.8
C27—N3—H3130.8 (18)C21—C22—H22120.7
C27—N3—C24111.56 (19)C21—C22—C23118.7 (2)
N1—C1—C2106.8 (2)C23—C22—H22120.7
N1—C1—C5120.2 (2)N2—C23—C22121.3 (2)
C2—C1—C5132.9 (2)N2—C23—C24114.15 (19)
C1—C2—H2125.8C22—C23—C24124.5 (2)
C1—C2—C3108.5 (2)N3—C24—C23117.7 (2)
C3—C2—H2125.8N3—C24—C25106.4 (2)
C2—C3—C12124.5 (2)C25—C24—C23135.9 (2)
C4—C3—C2106.6 (2)C24—C25—C26107.4 (2)
C4—C3—C12128.7 (2)C24—C25—C28126.4 (2)
N1—C4—C3107.1 (2)C26—C25—C28126.2 (2)
N1—C4—C19116.7 (2)C25—C26—H26126.0
C3—C4—C19136.2 (2)C27—C26—C25108.1 (2)
C6—C5—C1121.3 (2)C27—C26—H26126.0
C6—C5—C10117.9 (2)N3—C27—C26106.6 (2)
C10—C5—C1120.8 (2)N3—C27—C35121.5 (2)
C5—C6—H6119.5C26—C27—C35131.9 (2)
C5—C6—C7121.0 (3)C29—C28—C25121.8 (2)
C7—C6—H6119.5C29—C28—C33117.9 (2)
C6—C7—H7119.3C33—C28—C25120.2 (2)
C8—C7—C6121.3 (3)C28—C29—H29119.4
C8—C7—H7119.3C28—C29—C30121.2 (2)
C7—C8—C11121.3 (3)C30—C29—H29119.4
C9—C8—C7117.6 (2)C29—C30—H30119.5
C9—C8—C11121.2 (3)C31—C30—C29121.1 (2)
C8—C9—H9119.0C31—C30—H30119.5
C8—C9—C10122.0 (3)C30—C31—C32118.1 (2)
C10—C9—H9119.0C30—C31—C34120.8 (2)
C5—C10—H10119.9C32—C31—C34121.1 (2)
C9—C10—C5120.1 (3)C31—C32—H32119.5
C9—C10—H10119.9C31—C32—C33120.9 (2)
C8—C11—H11A109.5C33—C32—H32119.5
C8—C11—H11B109.5C28—C33—C32120.7 (2)
C8—C11—H11C109.5C28—C33—H33119.6
H11A—C11—H11B109.5C32—C33—H33119.6
H11A—C11—H11C109.5C31—C34—H34A109.5
H11B—C11—H11C109.5C31—C34—H34B109.5
C13—C12—C3121.0 (2)C31—C34—H34C109.5
C13—C12—C17117.7 (2)H34A—C34—H34B109.5
C17—C12—C3121.3 (2)H34A—C34—H34C109.5
C12—C13—H13119.3H34B—C34—H34C109.5
C14—C13—C12121.4 (2)C36—C35—C27120.9 (2)
C14—C13—H13119.3C36—C35—C40117.9 (2)
C13—C14—H14119.6C40—C35—C27121.2 (2)
C13—C14—C15120.9 (3)C35—C36—H36119.6
C15—C14—H14119.6C37—C36—C35120.7 (2)
C14—C15—C18121.4 (3)C37—C36—H36119.6
C16—C15—C14118.0 (2)C36—C37—H37119.4
C16—C15—C18120.5 (2)C36—C37—C38121.3 (2)
C15—C16—H16119.3C38—C37—H37119.4
C15—C16—C17121.4 (2)C37—C38—C41120.9 (2)
C17—C16—H16119.3C39—C38—C37117.9 (2)
C12—C17—H17119.6C39—C38—C41121.3 (2)
C16—C17—C12120.7 (2)C38—C39—H39119.4
C16—C17—H17119.6C38—C39—C40121.2 (2)
C15—C18—H18A109.5C40—C39—H39119.4
C15—C18—H18B109.5C35—C40—H40119.5
C15—C18—H18C109.5C39—C40—C35121.1 (2)
H18A—C18—H18B109.5C39—C40—H40119.5
H18A—C18—H18C109.5C38—C41—H41A109.5
H18B—C18—H18C109.5C38—C41—H41B109.5
N2—C19—C4114.3 (2)C38—C41—H41C109.5
N2—C19—C20122.3 (2)H41A—C41—H41B109.5
C20—C19—C4123.3 (2)H41A—C41—H41C109.5
C19—C20—H20121.1H41B—C41—H41C109.5
N1—C1—C2—C30.1 (3)C15—C16—C17—C121.0 (4)
N1—C1—C5—C619.5 (4)C17—C12—C13—C141.5 (4)
N1—C1—C5—C10160.0 (3)C18—C15—C16—C17178.2 (2)
N1—C4—C19—N212.1 (3)C19—N2—C23—C223.1 (3)
N1—C4—C19—C20165.2 (2)C19—N2—C23—C24175.5 (2)
N2—C19—C20—C213.7 (4)C19—C20—C21—C222.2 (4)
N2—C23—C24—N33.0 (3)C20—C21—C22—C231.7 (4)
N2—C23—C24—C25176.4 (3)C21—C22—C23—N24.5 (3)
N3—C24—C25—C260.0 (3)C21—C22—C23—C24174.0 (2)
N3—C24—C25—C28178.2 (2)C22—C23—C24—N3178.4 (2)
N3—C27—C35—C36168.1 (2)C22—C23—C24—C252.2 (4)
N3—C27—C35—C4011.4 (4)C23—N2—C19—C4178.4 (2)
C1—N1—C4—C31.4 (3)C23—N2—C19—C201.0 (3)
C1—N1—C4—C19178.1 (2)C23—C24—C25—C26179.5 (3)
C1—C2—C3—C40.8 (3)C23—C24—C25—C282.3 (4)
C1—C2—C3—C12175.3 (2)C24—N3—C27—C260.3 (3)
C1—C5—C6—C7178.8 (3)C24—N3—C27—C35179.6 (2)
C1—C5—C10—C9179.1 (3)C24—C25—C26—C270.1 (3)
C2—C1—C5—C6156.7 (3)C24—C25—C28—C2966.8 (3)
C2—C1—C5—C1023.7 (5)C24—C25—C28—C33111.5 (3)
C2—C3—C4—N11.3 (3)C25—C26—C27—N30.3 (3)
C2—C3—C4—C19178.1 (3)C25—C26—C27—C35179.5 (2)
C2—C3—C12—C1344.1 (4)C25—C28—C29—C30175.9 (2)
C2—C3—C12—C17133.9 (3)C25—C28—C33—C32176.0 (2)
C3—C4—C19—N2168.6 (3)C26—C25—C28—C29115.4 (3)
C3—C4—C19—C2014.1 (4)C26—C25—C28—C3366.3 (3)
C3—C12—C13—C14179.6 (2)C26—C27—C35—C3612.8 (4)
C3—C12—C17—C16179.7 (2)C26—C27—C35—C40167.8 (3)
C4—N1—C1—C21.0 (3)C27—N3—C24—C23179.8 (2)
C4—N1—C1—C5178.1 (2)C27—N3—C24—C250.2 (3)
C4—C3—C12—C13140.8 (3)C27—C35—C36—C37180.0 (2)
C4—C3—C12—C1741.2 (4)C27—C35—C40—C39179.6 (2)
C4—C19—C20—C21179.2 (2)C28—C25—C26—C27178.0 (2)
C5—C1—C2—C3176.7 (3)C28—C29—C30—C310.6 (4)
C5—C6—C7—C80.4 (5)C29—C28—C33—C322.4 (4)
C6—C5—C10—C90.4 (5)C29—C30—C31—C321.4 (4)
C6—C7—C8—C90.4 (5)C29—C30—C31—C34178.6 (2)
C6—C7—C8—C11179.6 (3)C30—C31—C32—C331.5 (4)
C7—C8—C9—C100.7 (5)C31—C32—C33—C280.4 (4)
C8—C9—C10—C50.3 (5)C33—C28—C29—C302.5 (4)
C10—C5—C6—C70.8 (5)C34—C31—C32—C33178.5 (2)
C11—C8—C9—C10179.2 (3)C35—C36—C37—C380.4 (4)
C12—C3—C4—N1174.5 (2)C36—C35—C40—C390.1 (4)
C12—C3—C4—C196.1 (5)C36—C37—C38—C390.2 (4)
C12—C13—C14—C150.8 (4)C36—C37—C38—C41178.7 (2)
C13—C12—C17—C161.6 (4)C37—C38—C39—C400.6 (4)
C13—C14—C15—C160.2 (4)C38—C39—C40—C350.5 (4)
C13—C14—C15—C18178.3 (3)C40—C35—C36—C370.6 (4)
C14—C15—C16—C170.3 (4)C41—C38—C39—C40178.3 (3)
Carbonyl{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCO) top
Crystal data top
[Ni(C41H33N3)(CO)]F(000) = 684
Mr = 654.42Dx = 1.342 Mg m3
Monoclinic, P121/m1Mo Kα radiation, λ = 0.71073 Å
a = 6.6482 (4) ÅCell parameters from 5886 reflections
b = 27.1709 (18) Åθ = 3.0–30.5°
c = 9.1322 (6) ŵ = 0.64 mm1
β = 101.0700 (12)°T = 100 K
V = 1618.92 (18) Å3Plates, yellow
Z = 20.36 × 0.27 × 0.05 mm
Data collection top
Bruker D8 Quest with a Photon 100 CMOS detector
diffractometer
4080 independent reflections
Radiation source: sealed tube3280 reflections with I > 2σ(I)
Curved-graphite monochromatorRint = 0.057
Detector resolution: 8 pixels mm-1θmax = 28.3°, θmin = 3.0°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3636
Tmin = 0.859, Tmax = 1.000l = 1212
18888 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.9514P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.04446 (6)0.7500000.86705 (4)0.01505 (12)
O0.2636 (4)0.7500000.5582 (3)0.0313 (6)
N10.1861 (4)0.7500001.0178 (3)0.0161 (5)
N20.0255 (3)0.81813 (7)0.89233 (19)0.0169 (4)
C10.5450 (5)0.7500001.2176 (4)0.0242 (7)
H10.6701050.7500001.2882740.029*
C20.4567 (4)0.79465 (9)1.1677 (3)0.0218 (5)
H20.5199730.8248081.2035800.026*
C30.2721 (3)0.79438 (8)1.0632 (2)0.0170 (4)
C40.1516 (3)0.83425 (8)0.9875 (2)0.0183 (5)
C50.1610 (3)0.88577 (8)0.9845 (2)0.0185 (5)
C60.0168 (3)0.90088 (8)0.8840 (2)0.0205 (5)
H60.0550290.9339420.8587990.025*
C70.1264 (3)0.85917 (8)0.8283 (2)0.0179 (4)
C80.3181 (3)0.91905 (8)1.0691 (2)0.0185 (4)
C90.5277 (4)0.91026 (9)1.0823 (3)0.0221 (5)
H90.5725950.8829781.0319250.027*
C100.6717 (4)0.94084 (9)1.1680 (3)0.0229 (5)
H100.8132880.9335851.1768970.028*
C110.6134 (4)0.98169 (9)1.2407 (3)0.0221 (5)
C120.4036 (4)0.99210 (9)1.2217 (3)0.0233 (5)
H120.3595281.0205791.2670310.028*
C130.2591 (4)0.96129 (8)1.1373 (3)0.0218 (5)
H130.1176220.9690851.1258420.026*
C140.7677 (4)1.01476 (10)1.3376 (3)0.0294 (6)
H14A0.9063041.0020611.3401510.044*
H14B0.7395801.0154721.4390280.044*
H14C0.7570291.0481481.2962010.044*
C150.3239 (3)0.85618 (8)0.7220 (2)0.0174 (4)
C160.3557 (4)0.88339 (8)0.5890 (3)0.0210 (5)
H160.2504000.9043610.5681150.025*
C170.5400 (4)0.87994 (9)0.4874 (3)0.0242 (5)
H170.5585250.8985370.3977410.029*
C180.6980 (4)0.84969 (10)0.5148 (3)0.0246 (5)
C190.6676 (4)0.82337 (9)0.6479 (3)0.0243 (5)
H190.7739840.8028480.6692210.029*
C200.4837 (4)0.82661 (9)0.7504 (3)0.0218 (5)
H200.4667660.8084520.8408100.026*
C210.8980 (4)0.84547 (13)0.4040 (3)0.0388 (7)
H21A0.8987460.8148720.3470970.058*
H21B0.9123850.8735910.3355680.058*
H21C1.0123600.8452290.4575590.058*
C220.2023 (5)0.7500000.6821 (4)0.0204 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0181 (2)0.0143 (2)0.01106 (19)0.0000.00126 (14)0.000
O0.0447 (16)0.0315 (14)0.0148 (12)0.0000.0018 (11)0.000
N10.0188 (13)0.0167 (13)0.0115 (12)0.0000.0003 (10)0.000
N20.0214 (10)0.0150 (9)0.0133 (9)0.0003 (7)0.0003 (7)0.0019 (7)
C10.0263 (17)0.0288 (18)0.0135 (15)0.0000.0058 (13)0.000
C20.0247 (12)0.0216 (12)0.0166 (11)0.0031 (9)0.0024 (9)0.0031 (9)
C30.0239 (11)0.0160 (10)0.0106 (9)0.0006 (8)0.0020 (8)0.0007 (8)
C40.0195 (11)0.0190 (11)0.0156 (10)0.0015 (9)0.0012 (8)0.0008 (8)
C50.0216 (11)0.0168 (11)0.0169 (10)0.0008 (9)0.0032 (9)0.0010 (8)
C60.0242 (12)0.0150 (10)0.0208 (11)0.0002 (9)0.0004 (9)0.0004 (9)
C70.0203 (11)0.0179 (11)0.0145 (10)0.0019 (9)0.0009 (8)0.0008 (8)
C80.0235 (11)0.0158 (10)0.0153 (10)0.0033 (9)0.0012 (8)0.0011 (8)
C90.0252 (12)0.0207 (11)0.0212 (11)0.0025 (9)0.0066 (9)0.0023 (9)
C100.0181 (11)0.0267 (12)0.0245 (12)0.0038 (9)0.0053 (9)0.0000 (10)
C110.0236 (12)0.0207 (11)0.0209 (11)0.0062 (9)0.0019 (9)0.0033 (9)
C120.0263 (12)0.0151 (11)0.0273 (12)0.0009 (9)0.0022 (10)0.0027 (9)
C130.0196 (11)0.0164 (11)0.0278 (12)0.0008 (9)0.0001 (9)0.0005 (9)
C140.0248 (13)0.0307 (14)0.0307 (13)0.0071 (10)0.0009 (10)0.0061 (11)
C150.0198 (11)0.0157 (10)0.0157 (10)0.0025 (8)0.0007 (8)0.0027 (8)
C160.0256 (12)0.0166 (11)0.0207 (11)0.0024 (9)0.0039 (9)0.0004 (9)
C170.0288 (13)0.0256 (12)0.0171 (11)0.0091 (10)0.0022 (9)0.0021 (9)
C180.0214 (12)0.0330 (14)0.0185 (11)0.0066 (10)0.0017 (9)0.0026 (10)
C190.0213 (12)0.0306 (13)0.0215 (12)0.0017 (10)0.0051 (9)0.0017 (10)
C200.0233 (12)0.0236 (12)0.0183 (11)0.0022 (9)0.0037 (9)0.0012 (9)
C210.0231 (13)0.067 (2)0.0243 (13)0.0050 (13)0.0001 (10)0.0025 (14)
C220.0260 (17)0.0165 (15)0.0185 (16)0.0000.0039 (13)0.000
Geometric parameters (Å, º) top
Ni—N11.853 (3)C10—H100.9500
Ni—N2i1.8667 (18)C10—C111.386 (3)
Ni—N21.8666 (18)C11—C121.401 (3)
Ni—C221.809 (3)C11—C141.515 (3)
O—C221.126 (4)C12—H120.9500
N1—C3i1.364 (2)C12—C131.391 (3)
N1—C31.364 (2)C13—H130.9500
N2—C41.393 (3)C14—H14A0.9800
N2—C71.373 (3)C14—H14B0.9800
C1—H10.9500C14—H14C0.9800
C1—C21.386 (3)C15—C161.402 (3)
C1—C2i1.386 (3)C15—C201.395 (3)
C2—H20.9500C16—H160.9500
C2—C31.403 (3)C16—C171.391 (3)
C3—C41.442 (3)C17—H170.9500
C4—C51.402 (3)C17—C181.394 (4)
C5—C61.411 (3)C18—C191.391 (3)
C5—C81.482 (3)C18—C211.512 (3)
C6—H60.9500C19—H190.9500
C6—C71.390 (3)C19—C201.392 (3)
C7—C151.478 (3)C20—H200.9500
C8—C91.396 (3)C21—H21A0.9800
C8—C131.398 (3)C21—H21B0.9800
C9—H90.9500C21—H21C0.9800
C9—C101.390 (3)
N1—Ni—N283.20 (6)C11—C10—H10119.2
N1—Ni—N2i83.20 (6)C10—C11—C12117.7 (2)
N2—Ni—N2i165.18 (11)C10—C11—C14122.3 (2)
C22—Ni—N1160.41 (13)C12—C11—C14119.9 (2)
C22—Ni—N297.39 (5)C11—C12—H12119.6
C22—Ni—N2i97.40 (6)C13—C12—C11120.8 (2)
C3i—N1—Ni117.66 (13)C13—C12—H12119.6
C3—N1—Ni117.66 (13)C8—C13—H13119.4
C3i—N1—C3124.2 (3)C12—C13—C8121.2 (2)
C4—N2—Ni114.70 (15)C12—C13—H13119.4
C7—N2—Ni137.48 (15)C11—C14—H14A109.5
C7—N2—C4107.19 (18)C11—C14—H14B109.5
C2—C1—H1118.9C11—C14—H14C109.5
C2i—C1—H1118.9H14A—C14—H14B109.5
C2i—C1—C2122.2 (3)H14A—C14—H14C109.5
C1—C2—H2120.7H14B—C14—H14C109.5
C1—C2—C3118.6 (2)C16—C15—C7120.5 (2)
C3—C2—H2120.7C20—C15—C7121.4 (2)
N1—C3—C2118.2 (2)C20—C15—C16118.1 (2)
N1—C3—C4110.88 (19)C15—C16—H16119.7
C2—C3—C4130.9 (2)C17—C16—C15120.6 (2)
N2—C4—C3112.82 (19)C17—C16—H16119.7
N2—C4—C5109.72 (19)C16—C17—H17119.4
C5—C4—C3137.4 (2)C16—C17—C18121.2 (2)
C4—C5—C6105.6 (2)C18—C17—H17119.4
C4—C5—C8129.0 (2)C17—C18—C21121.4 (2)
C6—C5—C8125.5 (2)C19—C18—C17118.1 (2)
C5—C6—H6125.8C19—C18—C21120.5 (2)
C7—C6—C5108.4 (2)C18—C19—H19119.4
C7—C6—H6125.8C18—C19—C20121.1 (2)
N2—C7—C6109.10 (19)C20—C19—H19119.4
N2—C7—C15122.3 (2)C15—C20—H20119.6
C6—C7—C15128.5 (2)C19—C20—C15120.9 (2)
C9—C8—C5122.2 (2)C19—C20—H20119.6
C9—C8—C13117.6 (2)C18—C21—H21A109.5
C13—C8—C5120.2 (2)C18—C21—H21B109.5
C8—C9—H9119.5C18—C21—H21C109.5
C10—C9—C8121.0 (2)H21A—C21—H21B109.5
C10—C9—H9119.5H21A—C21—H21C109.5
C9—C10—H10119.2H21B—C21—H21C109.5
C11—C10—C9121.5 (2)O—C22—Ni166.1 (3)
Ni—N1—C3—C2174.47 (18)C4—C5—C8—C945.6 (4)
Ni—N1—C3—C44.0 (3)C4—C5—C8—C13135.3 (3)
Ni—N2—C4—C37.8 (2)C5—C6—C7—N21.1 (3)
Ni—N2—C4—C5173.14 (15)C5—C6—C7—C15178.8 (2)
Ni—N2—C7—C6170.94 (18)C5—C8—C9—C10177.0 (2)
Ni—N2—C7—C1511.1 (4)C5—C8—C13—C12177.7 (2)
N1—Ni—N2—C47.95 (17)C6—C5—C8—C9135.8 (2)
N1—Ni—N2—C7177.3 (2)C6—C5—C8—C1343.2 (3)
N1—Ni—C22—O0.000 (5)C6—C7—C15—C1648.5 (3)
N1—C3—C4—N22.5 (3)C6—C7—C15—C20131.3 (3)
N1—C3—C4—C5178.9 (3)C7—N2—C4—C3179.68 (18)
N2i—Ni—N1—C3i6.7 (2)C7—N2—C4—C50.7 (3)
N2i—Ni—N1—C3179.2 (2)C7—C15—C16—C17178.8 (2)
N2—Ni—N1—C36.7 (2)C7—C15—C20—C19178.7 (2)
N2—Ni—N1—C3i179.2 (2)C8—C5—C6—C7179.5 (2)
N2i—Ni—N2—C431.5 (6)C8—C9—C10—C111.4 (4)
N2i—Ni—N2—C7159.1 (3)C9—C8—C13—C123.2 (3)
N2—Ni—C22—O90.49 (6)C9—C10—C11—C121.8 (4)
N2i—Ni—C22—O90.49 (6)C9—C10—C11—C14178.5 (2)
N2—C4—C5—C60.0 (3)C10—C11—C12—C132.4 (4)
N2—C4—C5—C8178.8 (2)C11—C12—C13—C80.1 (4)
N2—C7—C15—C16134.0 (2)C13—C8—C9—C103.9 (3)
N2—C7—C15—C2046.2 (3)C14—C11—C12—C13177.8 (2)
C1—C2—C3—N11.2 (4)C15—C16—C17—C180.3 (4)
C1—C2—C3—C4176.9 (3)C16—C15—C20—C191.5 (3)
C2i—C1—C2—C30.1 (5)C16—C17—C18—C190.8 (4)
C2—C3—C4—N2179.3 (2)C16—C17—C18—C21179.4 (2)
C2—C3—C4—C50.6 (5)C17—C18—C19—C200.8 (4)
C3i—N1—C3—C22.6 (4)C18—C19—C20—C150.4 (4)
C3i—N1—C3—C4175.9 (2)C20—C15—C16—C171.4 (3)
C3—C4—C5—C6178.7 (3)C21—C18—C19—C20179.5 (2)
C3—C4—C5—C80.1 (5)C22—Ni—N1—C3i86.2 (2)
C4—N2—C7—C61.1 (3)C22—Ni—N1—C386.2 (2)
C4—N2—C7—C15179.0 (2)C22—Ni—N2—C4152.32 (18)
C4—C5—C6—C70.7 (3)C22—Ni—N2—C717.0 (3)
Symmetry code: (i) x, y+3/2, z.
Ammine{2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiNH3) top
Crystal data top
[Ni(C41H33N3)(NH3)]F(000) = 1352
Mr = 643.45Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.9773 (6) ÅCell parameters from 9841 reflections
b = 14.9441 (5) Åθ = 3.0–39.4°
c = 14.3238 (5) ŵ = 0.63 mm1
β = 107.8140 (8)°T = 100 K
V = 3256.1 (2) Å3Plates, red
Z = 40.46 × 0.41 × 0.14 mm
Data collection top
Bruker D8 Quest with a Photon 100 CMOS detector
diffractometer
8502 reflections with I > 2σ(I)
Curved-graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 2222
Tmin = 0.858, Tmax = 0.967k = 2121
48278 measured reflectionsl = 2020
9931 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0562P)2 + 1.1192P]
where P = (Fo2 + 2Fc2)/3
9931 reflections(Δ/σ)max = 0.002
431 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.10799 (2)0.41253 (2)0.93990 (2)0.01428 (5)
N10.21118 (7)0.43570 (7)0.90627 (7)0.01684 (19)
N20.05856 (7)0.39854 (7)0.80601 (7)0.01515 (19)
N30.00188 (7)0.36827 (7)0.94266 (7)0.01631 (19)
N40.14688 (8)0.46458 (8)1.06929 (8)0.0179 (2)
H4A0.1037 (17)0.4707 (17)1.0960 (18)0.060 (7)*
H4B0.1871 (18)0.4399 (19)1.1142 (19)0.063 (7)*
H4C0.1692 (16)0.5156 (18)1.0630 (17)0.056 (7)*
C10.29896 (8)0.45061 (9)0.94997 (9)0.0190 (2)
C20.33888 (8)0.47073 (10)0.87809 (10)0.0227 (3)
H20.3992400.4843620.8893190.027*
C30.27366 (8)0.46719 (9)0.78618 (9)0.0188 (2)
C40.19592 (8)0.44495 (9)0.80609 (9)0.0171 (2)
C50.10722 (8)0.42434 (8)0.74805 (9)0.0162 (2)
C60.06831 (9)0.42720 (9)0.64636 (9)0.0185 (2)
H60.1016050.4432520.6041620.022*
C70.02032 (9)0.40596 (9)0.60869 (9)0.0200 (2)
H70.0479030.4080380.5398160.024*
C80.06959 (8)0.38168 (9)0.66984 (9)0.0190 (2)
H80.1304170.3683530.6433580.023*
C90.02792 (8)0.37728 (8)0.77075 (9)0.0159 (2)
C100.06230 (8)0.35450 (8)0.85048 (9)0.0162 (2)
C110.14162 (8)0.32195 (8)0.86028 (9)0.0170 (2)
C120.12798 (8)0.31616 (9)0.96247 (9)0.0186 (2)
H120.1698880.2969520.9930710.022*
C130.04184 (8)0.34373 (8)1.01047 (9)0.0172 (2)
C140.34369 (8)0.43631 (9)1.05496 (9)0.0196 (2)
C150.32402 (9)0.36205 (10)1.10428 (10)0.0225 (3)
H150.2786670.3220551.0704160.027*
C160.37015 (10)0.34625 (10)1.20222 (10)0.0264 (3)
H160.3546310.2965481.2348510.032*
C170.43869 (9)0.40205 (11)1.25325 (10)0.0273 (3)
C180.45818 (9)0.47588 (11)1.20459 (11)0.0274 (3)
H180.5042180.5151651.2384300.033*
C190.41132 (9)0.49320 (10)1.10702 (10)0.0233 (3)
H190.4255070.5443401.0754660.028*
C200.49213 (12)0.38050 (14)1.35736 (12)0.0393 (4)
H20A0.4589820.3393791.3860630.059*
H20B0.5045000.4357751.3959780.059*
H20C0.5476120.3523611.3576530.059*
C210.28514 (8)0.48099 (9)0.68838 (9)0.0186 (2)
C220.32480 (11)0.41602 (10)0.64649 (11)0.0266 (3)
H220.3460650.3625880.6817070.032*
C230.33372 (12)0.42831 (11)0.55354 (11)0.0308 (3)
H230.3609850.3830060.5264330.037*
C240.30348 (10)0.50564 (10)0.49969 (10)0.0245 (3)
C250.26657 (10)0.57145 (10)0.54301 (10)0.0235 (3)
H250.2472960.6257740.5087250.028*
C260.25718 (9)0.55955 (10)0.63571 (10)0.0231 (3)
H260.2313420.6056430.6634100.028*
C270.31087 (14)0.51780 (13)0.39833 (12)0.0414 (4)
H27A0.3628590.4859130.3931380.062*
H27B0.3164020.5816510.3857610.062*
H27C0.2581670.4937720.3500140.062*
C280.00284 (8)0.34193 (8)1.11671 (9)0.0179 (2)
C290.03979 (9)0.37551 (9)1.18122 (10)0.0215 (2)
H290.0961290.4023301.1559030.026*
C300.00052 (11)0.37002 (9)1.28201 (10)0.0257 (3)
H300.0310620.3919571.3247190.031*
C310.08258 (10)0.33305 (9)1.32141 (10)0.0254 (3)
C320.12548 (10)0.29963 (9)1.25727 (10)0.0238 (3)
H320.1824680.2743001.2828710.029*
C330.08576 (9)0.30297 (9)1.15627 (9)0.0202 (2)
H330.1152690.2785201.1137480.024*
C340.12424 (13)0.32882 (12)1.43072 (11)0.0371 (4)
H34A0.1487440.3875171.4549910.056*
H34B0.1713450.2840841.4465310.056*
H34C0.0797700.3120951.4618790.056*
C350.22326 (8)0.29502 (8)0.78474 (9)0.0181 (2)
C360.22213 (8)0.24553 (9)0.70235 (10)0.0205 (2)
H360.1673730.2302970.6933740.025*
C370.29980 (9)0.21818 (10)0.63324 (10)0.0235 (3)
H370.2972100.1844500.5779760.028*
C380.38148 (9)0.23948 (10)0.64380 (11)0.0250 (3)
C390.38268 (9)0.28783 (10)0.72610 (11)0.0263 (3)
H390.4375510.3024750.7351300.032*
C400.30516 (9)0.31540 (10)0.79584 (10)0.0232 (3)
H400.3079940.3483780.8514960.028*
C410.46521 (10)0.20943 (12)0.56827 (12)0.0343 (3)
H41A0.4809680.1495360.5851620.051*
H41B0.4563950.2078200.5035250.051*
H41C0.5126420.2514160.5670710.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01402 (8)0.01717 (8)0.01271 (8)0.00050 (5)0.00565 (6)0.00038 (5)
N10.0149 (5)0.0218 (5)0.0145 (4)0.0004 (4)0.0055 (4)0.0009 (4)
N20.0152 (4)0.0168 (5)0.0146 (4)0.0003 (4)0.0063 (4)0.0006 (3)
N30.0164 (5)0.0190 (5)0.0145 (4)0.0014 (4)0.0062 (4)0.0005 (4)
N40.0192 (5)0.0189 (5)0.0165 (5)0.0006 (4)0.0070 (4)0.0003 (4)
C10.0156 (5)0.0250 (6)0.0168 (5)0.0010 (4)0.0055 (4)0.0006 (5)
C20.0157 (5)0.0339 (7)0.0198 (6)0.0026 (5)0.0074 (5)0.0014 (5)
C30.0178 (5)0.0237 (6)0.0167 (5)0.0007 (4)0.0079 (4)0.0011 (4)
C40.0168 (5)0.0205 (6)0.0151 (5)0.0002 (4)0.0064 (4)0.0011 (4)
C50.0169 (5)0.0171 (5)0.0161 (5)0.0006 (4)0.0071 (4)0.0001 (4)
C60.0214 (6)0.0206 (6)0.0151 (5)0.0011 (4)0.0080 (4)0.0001 (4)
C70.0216 (6)0.0235 (6)0.0144 (5)0.0015 (5)0.0049 (5)0.0003 (4)
C80.0172 (5)0.0227 (6)0.0166 (5)0.0015 (4)0.0045 (4)0.0003 (4)
C90.0161 (5)0.0158 (5)0.0167 (5)0.0002 (4)0.0065 (4)0.0004 (4)
C100.0161 (5)0.0179 (5)0.0154 (5)0.0003 (4)0.0061 (4)0.0003 (4)
C110.0165 (5)0.0162 (5)0.0195 (5)0.0009 (4)0.0072 (4)0.0010 (4)
C120.0196 (6)0.0191 (6)0.0198 (5)0.0020 (4)0.0099 (5)0.0007 (4)
C130.0202 (5)0.0169 (5)0.0168 (5)0.0004 (4)0.0089 (4)0.0006 (4)
C140.0145 (5)0.0274 (6)0.0175 (5)0.0028 (5)0.0057 (4)0.0004 (5)
C150.0199 (6)0.0261 (7)0.0210 (6)0.0009 (5)0.0056 (5)0.0010 (5)
C160.0259 (7)0.0308 (7)0.0224 (6)0.0046 (5)0.0074 (5)0.0052 (5)
C170.0211 (6)0.0423 (9)0.0177 (6)0.0060 (6)0.0047 (5)0.0007 (5)
C180.0181 (6)0.0398 (8)0.0230 (6)0.0020 (5)0.0044 (5)0.0058 (6)
C190.0179 (6)0.0303 (7)0.0222 (6)0.0013 (5)0.0071 (5)0.0014 (5)
C200.0319 (8)0.0580 (11)0.0229 (7)0.0069 (8)0.0007 (6)0.0023 (7)
C210.0162 (5)0.0238 (6)0.0173 (5)0.0025 (4)0.0075 (4)0.0002 (4)
C220.0366 (8)0.0233 (7)0.0228 (6)0.0056 (5)0.0137 (6)0.0039 (5)
C230.0443 (9)0.0289 (7)0.0246 (7)0.0100 (6)0.0186 (6)0.0018 (5)
C240.0297 (7)0.0277 (7)0.0194 (6)0.0019 (5)0.0122 (5)0.0017 (5)
C250.0269 (7)0.0246 (6)0.0199 (6)0.0028 (5)0.0082 (5)0.0038 (5)
C260.0253 (6)0.0255 (6)0.0211 (6)0.0049 (5)0.0107 (5)0.0012 (5)
C270.0639 (12)0.0437 (10)0.0251 (7)0.0160 (9)0.0263 (8)0.0079 (7)
C280.0229 (6)0.0163 (5)0.0165 (5)0.0031 (4)0.0089 (5)0.0011 (4)
C290.0277 (6)0.0182 (6)0.0220 (6)0.0020 (5)0.0126 (5)0.0005 (5)
C300.0409 (8)0.0204 (6)0.0208 (6)0.0034 (5)0.0169 (6)0.0027 (5)
C310.0396 (8)0.0198 (6)0.0168 (6)0.0074 (5)0.0085 (5)0.0002 (5)
C320.0269 (6)0.0232 (6)0.0193 (6)0.0029 (5)0.0042 (5)0.0026 (5)
C330.0246 (6)0.0194 (6)0.0182 (5)0.0022 (5)0.0091 (5)0.0015 (4)
C340.0552 (10)0.0357 (8)0.0172 (6)0.0063 (7)0.0062 (7)0.0004 (6)
C350.0162 (5)0.0183 (6)0.0210 (6)0.0011 (4)0.0074 (4)0.0016 (4)
C360.0172 (5)0.0216 (6)0.0239 (6)0.0020 (4)0.0080 (5)0.0016 (5)
C370.0227 (6)0.0250 (6)0.0228 (6)0.0056 (5)0.0070 (5)0.0015 (5)
C380.0183 (6)0.0282 (7)0.0270 (6)0.0067 (5)0.0049 (5)0.0054 (5)
C390.0160 (6)0.0327 (7)0.0319 (7)0.0012 (5)0.0099 (5)0.0030 (6)
C400.0192 (6)0.0274 (7)0.0264 (6)0.0011 (5)0.0120 (5)0.0003 (5)
C410.0215 (7)0.0433 (9)0.0332 (8)0.0101 (6)0.0011 (6)0.0045 (7)
Geometric parameters (Å, º) top
Ni—N11.8858 (10)C20—H20A0.9800
Ni—N21.8490 (10)C20—H20B0.9800
Ni—N31.8876 (10)C20—H20C0.9800
Ni—N41.9291 (11)C21—C221.3917 (19)
N1—C11.3679 (16)C21—C261.3932 (19)
N1—C41.3871 (15)C22—H220.9500
N2—C51.3554 (15)C22—C231.394 (2)
N2—C91.3558 (16)C23—H230.9500
N3—C101.3920 (15)C23—C241.391 (2)
N3—C131.3655 (15)C24—C251.3871 (19)
N4—H4A0.89 (3)C24—C271.5033 (19)
N4—H4B0.84 (3)C25—H250.9500
N4—H4C0.86 (3)C25—C261.3925 (18)
C1—C21.3996 (17)C26—H260.9500
C1—C141.4699 (17)C27—H27A0.9800
C2—H20.9500C27—H27B0.9800
C2—C31.4080 (18)C27—H27C0.9800
C3—C41.3968 (17)C28—C291.3981 (17)
C3—C211.4818 (17)C28—C331.3986 (19)
C4—C51.4400 (17)C29—H290.9500
C5—C61.3986 (17)C29—C301.3894 (19)
C6—H60.9500C30—H300.9500
C6—C71.3891 (18)C30—C311.389 (2)
C7—H70.9500C31—C321.396 (2)
C7—C81.3930 (18)C31—C341.5036 (19)
C8—H80.9500C32—H320.9500
C8—C91.3957 (17)C32—C331.3915 (18)
C9—C101.4511 (16)C33—H330.9500
C10—C111.4040 (16)C34—H34A0.9800
C11—C121.4151 (17)C34—H34B0.9800
C11—C351.4733 (17)C34—H34C0.9800
C12—H120.9500C35—C361.3976 (18)
C12—C131.3992 (17)C35—C401.3993 (17)
C13—C281.4702 (17)C36—H360.9500
C14—C151.4020 (19)C36—C371.3912 (18)
C14—C191.3976 (19)C37—H370.9500
C15—H150.9500C37—C381.396 (2)
C15—C161.3907 (19)C38—C391.388 (2)
C16—H160.9500C38—C411.509 (2)
C16—C171.393 (2)C39—H390.9500
C17—C181.390 (2)C39—C401.3945 (19)
C17—C201.509 (2)C40—H400.9500
C18—H180.9500C41—H41A0.9800
C18—C191.3929 (19)C41—H41B0.9800
C19—H190.9500C41—H41C0.9800
N1—Ni—N3163.95 (5)C17—C20—H20A109.5
N1—Ni—N496.98 (5)C17—C20—H20B109.5
N2—Ni—N183.41 (4)C17—C20—H20C109.5
N2—Ni—N382.95 (4)H20A—C20—H20B109.5
N2—Ni—N4162.16 (5)H20A—C20—H20C109.5
N3—Ni—N498.59 (5)H20B—C20—H20C109.5
C1—N1—Ni140.10 (9)C22—C21—C3120.99 (12)
C1—N1—C4106.75 (10)C22—C21—C26117.86 (12)
C4—N1—Ni113.07 (8)C26—C21—C3121.15 (12)
C5—N2—Ni117.40 (8)C21—C22—H22119.6
C5—N2—C9123.28 (11)C21—C22—C23120.86 (13)
C9—N2—Ni118.43 (8)C23—C22—H22119.6
C10—N3—Ni114.29 (8)C22—C23—H23119.4
C13—N3—Ni138.51 (9)C24—C23—C22121.30 (13)
C13—N3—C10107.19 (10)C24—C23—H23119.4
Ni—N4—H4A113.0 (16)C23—C24—C27121.29 (13)
Ni—N4—H4B120.3 (18)C25—C24—C23117.64 (12)
Ni—N4—H4C106.2 (16)C25—C24—C27121.07 (13)
H4A—N4—H4B103 (2)C24—C25—H25119.3
H4A—N4—H4C111 (2)C24—C25—C26121.37 (13)
H4B—N4—H4C103 (2)C26—C25—H25119.3
N1—C1—C2109.43 (11)C21—C26—H26119.5
N1—C1—C14123.64 (11)C25—C26—C21120.91 (13)
C2—C1—C14126.55 (11)C25—C26—H26119.5
C1—C2—H2126.1C24—C27—H27A109.5
C1—C2—C3107.83 (11)C24—C27—H27B109.5
C3—C2—H2126.1C24—C27—H27C109.5
C2—C3—C21127.47 (11)H27A—C27—H27B109.5
C4—C3—C2105.55 (11)H27A—C27—H27C109.5
C4—C3—C21126.95 (11)H27B—C27—H27C109.5
N1—C4—C3110.43 (11)C29—C28—C13119.81 (12)
N1—C4—C5113.98 (10)C29—C28—C33118.31 (12)
C3—C4—C5135.45 (11)C33—C28—C13121.79 (11)
N2—C5—C4110.79 (11)C28—C29—H29119.7
N2—C5—C6119.41 (11)C30—C29—C28120.60 (13)
C6—C5—C4129.80 (11)C30—C29—H29119.7
C5—C6—H6120.9C29—C30—H30119.4
C7—C6—C5118.23 (11)C31—C30—C29121.17 (13)
C7—C6—H6120.9C31—C30—H30119.4
C6—C7—H7119.3C30—C31—C32118.41 (12)
C6—C7—C8121.36 (12)C30—C31—C34120.24 (14)
C8—C7—H7119.3C32—C31—C34121.35 (15)
C7—C8—H8120.6C31—C32—H32119.6
C7—C8—C9118.76 (12)C33—C32—C31120.78 (13)
C9—C8—H8120.6C33—C32—H32119.6
N2—C9—C8118.92 (11)C28—C33—H33119.7
N2—C9—C10110.48 (10)C32—C33—C28120.69 (12)
C8—C9—C10130.58 (11)C32—C33—H33119.7
N3—C10—C9113.09 (10)C31—C34—H34A109.5
N3—C10—C11109.98 (10)C31—C34—H34B109.5
C11—C10—C9136.93 (11)C31—C34—H34C109.5
C10—C11—C12105.46 (11)H34A—C34—H34B109.5
C10—C11—C35130.14 (11)H34A—C34—H34C109.5
C12—C11—C35124.37 (11)H34B—C34—H34C109.5
C11—C12—H12126.1C36—C35—C11121.84 (11)
C13—C12—C11107.90 (11)C36—C35—C40117.73 (12)
C13—C12—H12126.1C40—C35—C11120.38 (12)
N3—C13—C12109.47 (11)C35—C36—H36119.4
N3—C13—C28123.82 (11)C37—C36—C35121.14 (12)
C12—C13—C28126.61 (11)C37—C36—H36119.4
C15—C14—C1121.12 (12)C36—C37—H37119.5
C19—C14—C1120.80 (12)C36—C37—C38121.07 (13)
C19—C14—C15117.94 (12)C38—C37—H37119.5
C14—C15—H15119.6C37—C38—C41120.51 (14)
C16—C15—C14120.76 (13)C39—C38—C37117.85 (13)
C16—C15—H15119.6C39—C38—C41121.63 (14)
C15—C16—H16119.4C38—C39—H39119.3
C15—C16—C17121.11 (14)C38—C39—C40121.48 (13)
C17—C16—H16119.4C40—C39—H39119.3
C16—C17—C20120.48 (15)C35—C40—H40119.6
C18—C17—C16118.22 (13)C39—C40—C35120.72 (13)
C18—C17—C20121.26 (15)C39—C40—H40119.6
C17—C18—H18119.5C38—C41—H41A109.5
C17—C18—C19121.09 (14)C38—C41—H41B109.5
C19—C18—H18119.5C38—C41—H41C109.5
C14—C19—H19119.6H41A—C41—H41B109.5
C18—C19—C14120.85 (14)H41A—C41—H41C109.5
C18—C19—H19119.6H41B—C41—H41C109.5
Ni—N1—C1—C2175.37 (11)C5—N2—C9—C10178.59 (11)
Ni—N1—C1—C1411.3 (2)C5—C6—C7—C80.50 (19)
Ni—N1—C4—C3176.50 (9)C6—C7—C8—C91.2 (2)
Ni—N1—C4—C57.17 (14)C7—C8—C9—N21.34 (18)
Ni—N2—C5—C49.41 (13)C7—C8—C9—C10179.84 (13)
Ni—N2—C5—C6170.85 (9)C8—C9—C10—N3172.66 (13)
Ni—N2—C9—C8169.03 (9)C8—C9—C10—C117.1 (3)
Ni—N2—C9—C109.75 (14)C9—N2—C5—C4178.36 (11)
Ni—N3—C10—C90.02 (13)C9—N2—C5—C61.90 (18)
Ni—N3—C10—C11179.83 (8)C9—C10—C11—C12179.68 (14)
Ni—N3—C13—C12179.52 (10)C9—C10—C11—C352.3 (2)
Ni—N3—C13—C284.1 (2)C10—N3—C13—C121.25 (14)
N1—Ni—N2—C510.93 (9)C10—N3—C13—C28175.14 (11)
N1—Ni—N2—C9179.57 (10)C10—C11—C12—C130.82 (14)
N1—Ni—N3—C1036.0 (2)C10—C11—C35—C3641.5 (2)
N1—Ni—N3—C13143.17 (16)C10—C11—C35—C40141.21 (14)
N1—C1—C2—C30.70 (16)C11—C12—C13—N31.30 (15)
N1—C1—C14—C1540.6 (2)C11—C12—C13—C28174.95 (12)
N1—C1—C14—C19143.73 (13)C11—C35—C36—C37177.93 (12)
N1—C4—C5—N21.13 (15)C11—C35—C40—C39178.08 (13)
N1—C4—C5—C6179.17 (12)C12—C11—C35—C36136.15 (14)
N2—Ni—N1—C1174.10 (15)C12—C11—C35—C4041.12 (19)
N2—Ni—N1—C49.65 (9)C12—C13—C28—C2947.47 (19)
N2—Ni—N3—C104.08 (9)C12—C13—C28—C33129.04 (14)
N2—Ni—N3—C13175.12 (14)C13—N3—C10—C9179.46 (10)
N2—C5—C6—C72.00 (18)C13—N3—C10—C110.73 (14)
N2—C9—C10—N35.93 (15)C13—C28—C29—C30176.54 (12)
N2—C9—C10—C11174.33 (14)C13—C28—C33—C32177.98 (12)
N3—Ni—N1—C1142.19 (16)C14—C1—C2—C3172.34 (13)
N3—Ni—N1—C441.6 (2)C14—C15—C16—C171.9 (2)
N3—Ni—N2—C5177.54 (10)C15—C14—C19—C180.7 (2)
N3—Ni—N2—C98.03 (9)C15—C16—C17—C182.0 (2)
N3—C10—C11—C120.07 (14)C15—C16—C17—C20175.81 (14)
N3—C10—C11—C35177.94 (12)C16—C17—C18—C190.8 (2)
N3—C13—C28—C29136.78 (13)C17—C18—C19—C140.5 (2)
N3—C13—C28—C3346.72 (18)C19—C14—C15—C160.5 (2)
N4—Ni—N1—C123.86 (15)C20—C17—C18—C19176.98 (14)
N4—Ni—N1—C4152.39 (9)C21—C3—C4—N1178.67 (12)
N4—Ni—N2—C581.38 (18)C21—C3—C4—C53.5 (3)
N4—Ni—N2—C988.12 (18)C21—C22—C23—C240.0 (3)
N4—Ni—N3—C10157.98 (9)C22—C21—C26—C251.7 (2)
N4—Ni—N3—C1322.82 (14)C22—C23—C24—C252.0 (2)
C1—N1—C4—C30.98 (15)C22—C23—C24—C27178.30 (17)
C1—N1—C4—C5175.35 (11)C23—C24—C25—C262.2 (2)
C1—C2—C3—C40.08 (16)C24—C25—C26—C210.4 (2)
C1—C2—C3—C21178.02 (13)C26—C21—C22—C231.9 (2)
C1—C14—C15—C16176.31 (13)C27—C24—C25—C26178.10 (16)
C1—C14—C19—C18175.15 (13)C28—C29—C30—C311.4 (2)
C2—C1—C14—C15131.52 (15)C29—C28—C33—C321.42 (19)
C2—C1—C14—C1944.2 (2)C29—C30—C31—C321.3 (2)
C2—C3—C4—N10.55 (15)C29—C30—C31—C34179.26 (13)
C2—C3—C4—C5174.66 (15)C30—C31—C32—C330.3 (2)
C2—C3—C21—C2273.9 (2)C31—C32—C33—C281.6 (2)
C2—C3—C21—C26105.63 (17)C33—C28—C29—C300.08 (19)
C3—C4—C5—N2173.97 (14)C34—C31—C32—C33179.22 (13)
C3—C4—C5—C65.7 (3)C35—C11—C12—C13177.34 (12)
C3—C21—C22—C23178.53 (14)C35—C36—C37—C380.2 (2)
C3—C21—C26—C25178.73 (13)C36—C35—C40—C390.7 (2)
C4—N1—C1—C21.02 (15)C36—C37—C38—C390.8 (2)
C4—N1—C1—C14172.26 (12)C36—C37—C38—C41179.97 (14)
C4—C3—C21—C22103.77 (17)C37—C38—C39—C400.7 (2)
C4—C3—C21—C2676.66 (19)C38—C39—C40—C350.1 (2)
C4—C5—C6—C7178.31 (13)C40—C35—C36—C370.6 (2)
C5—N2—C9—C80.19 (18)C41—C38—C39—C40179.91 (14)
(Acetonitrile-κN){2,2'-(pyridine-2,6-diyl)bis[3,5-bis(4-methylphenyl)pyrrolido-κN]}nickel(II) (pyrr2PyNiCNMe) top
Crystal data top
[Ni(C41H33N3)(C2H3N)]Z = 2
Mr = 753.64F(000) = 800
Triclinic, P1Dx = 1.240 Mg m3
a = 11.2735 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.1802 (19) ÅCell parameters from 8799 reflections
c = 14.688 (2) Åθ = 2.5–32.8°
α = 67.162 (2)°µ = 0.52 mm1
β = 68.881 (2)°T = 100 K
γ = 80.665 (2)°Prism, colourless
V = 2018.0 (5) Å30.20 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
7327 reflections with I > 2σ(I)
Curved-graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1515
Tmin = 0.686, Tmax = 0.899k = 1818
21869 measured reflectionsl = 1919
9994 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1214P)2]
where P = (Fo2 + 2Fc2)/3
9994 reflections(Δ/σ)max = 0.002
551 parametersΔρmax = 1.75 e Å3
178 restraintsΔρmin = 0.93 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.71466 (3)1.00913 (3)0.03328 (2)0.02033 (13)
N10.7942 (2)1.03447 (17)0.11157 (17)0.0212 (5)
N20.6207 (2)0.91916 (17)0.02538 (17)0.0210 (5)
N30.6076 (2)0.96688 (17)0.17567 (17)0.0224 (5)
N40.8317 (2)1.07621 (18)0.04797 (16)0.0229 (5)
C10.9005 (2)1.0819 (2)0.19073 (19)0.0223 (5)
C20.9285 (3)1.0467 (2)0.2735 (2)0.0247 (6)
H20.9986621.0660230.3364410.030*
C30.8342 (3)0.9777 (2)0.2468 (2)0.0226 (5)
C40.7529 (3)0.9711 (2)0.1464 (2)0.0222 (5)
C50.9676 (3)1.1629 (2)0.19148 (19)0.0226 (5)
C60.9035 (3)1.2478 (2)0.1678 (2)0.0276 (6)
H60.8135061.2537800.1501890.033*
C70.9693 (3)1.3232 (2)0.1696 (2)0.0333 (7)
H70.9237841.3797860.1524410.040*
C81.1014 (3)1.3173 (2)0.1963 (2)0.0343 (7)
C91.1657 (3)1.2342 (2)0.2225 (2)0.0311 (7)
H91.2558441.2294020.2423260.037*
C101.0997 (3)1.1583 (2)0.2200 (2)0.0266 (6)
H101.1455251.1021230.2380190.032*
C111.1735 (4)1.3984 (3)0.1962 (3)0.0535 (10)
H11A1.2172411.4416550.2683740.080*
H11B1.2361591.3653740.1605910.080*
H11C1.1137911.4405970.1594930.080*
C120.8259 (3)0.9241 (2)0.31327 (19)0.0241 (6)
C130.9345 (3)0.8812 (2)0.3679 (2)0.0290 (6)
H131.0148270.8880360.3640890.035*
C140.9268 (3)0.8288 (2)0.4276 (2)0.0332 (7)
H141.0021800.8003550.4642510.040*
C150.8110 (3)0.8167 (2)0.4353 (2)0.0298 (6)
C160.7029 (3)0.8629 (2)0.3836 (2)0.0296 (6)
H160.6229870.8574610.3890790.036*
C170.7102 (3)0.9167 (2)0.3242 (2)0.0273 (6)
H170.6357180.9486680.2908770.033*
C180.8019 (4)0.7559 (3)0.4967 (3)0.0419 (8)
H18A0.7831060.6847180.4502950.063*
H18B0.8828190.7582440.5528700.063*
H18C0.7337040.7852810.5270280.063*
C190.6536 (3)0.9030 (2)0.0665 (2)0.0229 (6)
C200.5975 (3)0.8240 (2)0.0690 (2)0.0272 (6)
H200.6183190.8118560.1323120.033*
C210.5111 (3)0.7634 (2)0.0217 (2)0.0296 (6)
H210.4716060.7101480.0199400.035*
C220.4807 (3)0.7788 (2)0.1153 (2)0.0278 (6)
H220.4213380.7366370.1773260.033*
C230.5394 (2)0.8577 (2)0.1162 (2)0.0220 (5)
C240.5332 (3)0.8847 (2)0.2030 (2)0.0222 (5)
C250.4838 (3)0.8383 (2)0.3115 (2)0.0231 (6)
C260.5283 (3)0.8943 (2)0.3523 (2)0.0244 (6)
H260.5119370.8808440.4243320.029*
C270.6013 (3)0.9739 (2)0.2682 (2)0.0223 (5)
C280.3986 (3)0.7499 (2)0.3716 (2)0.0224 (5)
C290.2832 (3)0.7518 (2)0.3561 (2)0.0275 (6)
H290.2580540.8113610.3076000.033*
C300.2044 (3)0.6683 (2)0.4102 (2)0.0280 (6)
H300.1268300.6712600.3973590.034*
C310.2374 (3)0.5802 (2)0.4830 (2)0.0290 (6)
C320.3523 (3)0.5792 (2)0.4990 (2)0.0331 (7)
H320.3767890.5201000.5484450.040*
C330.4316 (3)0.6622 (2)0.4446 (2)0.0290 (6)
H330.5093440.6592410.4572190.035*
C340.1504 (3)0.4896 (3)0.5423 (3)0.0412 (8)
H34A0.1982950.4283870.5720260.062*
H34B0.1167480.4783870.4944910.062*
H34C0.0797490.5035730.5987150.062*
C350.6484 (3)1.0604 (2)0.2766 (2)0.0263 (6)
C360.6888 (3)1.0435 (3)0.3615 (2)0.0336 (7)
H360.6894730.9760190.4107640.040*
C370.7279 (3)1.1237 (3)0.3746 (3)0.0408 (8)
H370.7528371.1108830.4336800.049*
C380.7310 (3)1.2221 (3)0.3028 (3)0.0434 (9)
C390.6875 (3)1.2401 (3)0.2198 (3)0.0410 (8)
H390.6864751.3077690.1711570.049*
C400.6455 (3)1.1603 (2)0.2071 (2)0.0306 (6)
H400.6146831.1740970.1508040.037*
C410.7823 (4)1.3079 (4)0.3137 (4)0.0701 (14)
H41A0.7728111.2911980.3872420.105*
H41B0.7348051.3715890.2894280.105*
H41C0.8724891.3164740.2715410.105*
C420.9054 (3)1.1128 (2)0.0596 (2)0.0229 (6)
C430.9938 (3)1.1640 (2)0.0752 (2)0.0301 (6)
H43A0.9622211.2338430.0699030.045*
H43B1.0771681.1663750.0215470.045*
H43C1.0018931.1263150.1445270.045*
C1A0.5344 (10)0.5285 (8)0.2757 (10)0.090 (3)0.779 (5)
H1AA0.5577650.4929900.3254690.136*0.779 (5)
H1AB0.5244810.6020940.3124230.136*0.779 (5)
H1AC0.4539460.5023050.2208210.136*0.779 (5)
C1B0.6389 (7)0.5100 (5)0.2266 (5)0.0786 (19)0.779 (5)
H1BA0.6487830.4358290.1887730.094*0.779 (5)
H1BB0.7209630.5346070.2818650.094*0.779 (5)
C1C0.6032 (7)0.5668 (6)0.1514 (6)0.0899 (19)0.779 (5)
H1CA0.5949610.6407800.1907160.108*0.779 (5)
H1CB0.5189350.5438450.0989650.108*0.779 (5)
C1D0.6971 (6)0.5521 (5)0.0944 (5)0.0818 (18)0.779 (5)
H1DA0.7157690.4779240.0644000.098*0.779 (5)
H1DB0.6564020.5768850.0354860.098*0.779 (5)
C1E0.8225 (6)0.6066 (5)0.1616 (5)0.0698 (17)0.779 (5)
H1EA0.8068940.6792860.2009320.084*0.779 (5)
H1EB0.8743850.5733260.2119280.084*0.779 (5)
C1F0.8895 (11)0.5976 (8)0.0849 (8)0.114 (3)0.779 (5)
H1FA0.9769780.6209150.1237130.170*0.779 (5)
H1FB0.8908560.5260340.0384340.170*0.779 (5)
H1FC0.8438810.6400800.0432580.170*0.779 (5)
C1G0.519 (4)0.501 (2)0.269 (3)0.063 (5)0.221 (5)
H1GA0.5086820.5496440.3351070.095*0.221 (5)
H1GB0.4385160.4668340.2236340.095*0.221 (5)
H1GC0.5852050.4496550.2840420.095*0.221 (5)
C1H0.5578 (19)0.558 (2)0.215 (2)0.084 (4)0.221 (5)
H1HA0.5045300.5348710.1407640.100*0.221 (5)
H1HB0.5394310.6320290.2469830.100*0.221 (5)
C1I0.6978 (19)0.543 (2)0.222 (2)0.085 (4)0.221 (5)
H1IA0.7158500.4699310.1870970.102*0.221 (5)
H1IB0.7518510.5636990.2965230.102*0.221 (5)
C1J0.732 (2)0.6058 (17)0.172 (2)0.090 (4)0.221 (5)
H1JA0.6513400.6364420.1376390.108*0.221 (5)
H1JB0.7831650.6632310.2296210.108*0.221 (5)
C1K0.802 (3)0.5613 (16)0.092 (2)0.094 (4)0.221 (5)
H1KA0.8569790.5019150.1032970.113*0.221 (5)
H1KB0.7411660.5383880.0201750.113*0.221 (5)
C1L0.884 (4)0.647 (2)0.108 (3)0.078 (5)0.221 (5)
H1LA0.9412340.6709510.1807770.116*0.221 (5)
H1LB0.9341410.6203610.0608300.116*0.221 (5)
H1LC0.8285340.7036240.0937590.116*0.221 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0217 (2)0.0251 (2)0.01235 (18)0.00525 (13)0.00082 (13)0.00728 (14)
N10.0227 (11)0.0236 (11)0.0153 (10)0.0031 (9)0.0035 (9)0.0066 (9)
N20.0209 (11)0.0276 (12)0.0133 (10)0.0047 (9)0.0018 (8)0.0079 (9)
N30.0225 (11)0.0271 (12)0.0163 (10)0.0034 (9)0.0016 (9)0.0095 (9)
N40.0243 (11)0.0282 (12)0.0111 (10)0.0064 (9)0.0010 (8)0.0058 (9)
C10.0210 (13)0.0272 (14)0.0125 (11)0.0021 (11)0.0009 (10)0.0043 (10)
C20.0250 (13)0.0289 (14)0.0151 (12)0.0008 (11)0.0017 (10)0.0070 (11)
C30.0247 (13)0.0273 (14)0.0135 (12)0.0010 (11)0.0042 (10)0.0075 (10)
C40.0250 (13)0.0261 (14)0.0148 (12)0.0011 (11)0.0054 (10)0.0075 (10)
C50.0245 (13)0.0260 (13)0.0115 (11)0.0038 (11)0.0018 (10)0.0030 (10)
C60.0301 (15)0.0299 (15)0.0190 (13)0.0029 (12)0.0058 (11)0.0060 (11)
C70.0455 (18)0.0264 (15)0.0245 (15)0.0033 (13)0.0066 (13)0.0090 (12)
C80.0450 (18)0.0346 (16)0.0188 (14)0.0156 (14)0.0057 (13)0.0036 (12)
C90.0283 (15)0.0400 (17)0.0195 (13)0.0083 (13)0.0047 (11)0.0050 (12)
C100.0281 (14)0.0294 (15)0.0156 (12)0.0033 (11)0.0024 (11)0.0047 (11)
C110.065 (3)0.053 (2)0.045 (2)0.028 (2)0.0103 (19)0.0168 (18)
C120.0298 (14)0.0270 (14)0.0106 (11)0.0032 (11)0.0002 (10)0.0066 (10)
C130.0274 (14)0.0364 (16)0.0198 (13)0.0018 (12)0.0016 (11)0.0119 (12)
C140.0363 (17)0.0378 (17)0.0204 (14)0.0005 (13)0.0010 (12)0.0153 (13)
C150.0395 (17)0.0325 (15)0.0142 (12)0.0067 (13)0.0008 (11)0.0100 (11)
C160.0325 (15)0.0398 (16)0.0179 (13)0.0049 (13)0.0063 (11)0.0120 (12)
C170.0304 (15)0.0353 (15)0.0142 (12)0.0002 (12)0.0030 (11)0.0111 (11)
C180.055 (2)0.0460 (19)0.0255 (16)0.0127 (16)0.0008 (15)0.0210 (15)
C190.0243 (13)0.0290 (14)0.0132 (12)0.0002 (11)0.0030 (10)0.0085 (10)
C200.0299 (15)0.0353 (15)0.0169 (13)0.0067 (12)0.0039 (11)0.0110 (12)
C210.0316 (15)0.0347 (16)0.0232 (14)0.0116 (12)0.0042 (12)0.0114 (12)
C220.0270 (14)0.0328 (15)0.0189 (13)0.0110 (12)0.0000 (11)0.0073 (12)
C230.0208 (13)0.0268 (13)0.0137 (12)0.0027 (10)0.0004 (10)0.0065 (10)
C240.0217 (13)0.0260 (13)0.0165 (12)0.0038 (10)0.0019 (10)0.0079 (10)
C250.0204 (13)0.0289 (14)0.0165 (12)0.0021 (11)0.0014 (10)0.0081 (11)
C260.0238 (13)0.0330 (15)0.0148 (12)0.0027 (11)0.0016 (10)0.0105 (11)
C270.0222 (13)0.0282 (14)0.0146 (12)0.0020 (11)0.0024 (10)0.0085 (10)
C280.0241 (13)0.0243 (13)0.0144 (12)0.0039 (11)0.0001 (10)0.0069 (10)
C290.0290 (14)0.0274 (14)0.0186 (13)0.0016 (11)0.0043 (11)0.0033 (11)
C300.0250 (14)0.0346 (15)0.0223 (14)0.0048 (12)0.0035 (11)0.0104 (12)
C310.0340 (16)0.0301 (15)0.0202 (13)0.0075 (12)0.0019 (12)0.0101 (12)
C320.0402 (17)0.0275 (15)0.0252 (15)0.0031 (13)0.0100 (13)0.0024 (12)
C330.0275 (14)0.0333 (15)0.0241 (14)0.0036 (12)0.0077 (12)0.0074 (12)
C340.045 (2)0.0354 (17)0.0371 (18)0.0169 (15)0.0078 (15)0.0053 (14)
C350.0221 (13)0.0374 (16)0.0189 (13)0.0037 (12)0.0020 (10)0.0164 (12)
C360.0269 (15)0.054 (2)0.0222 (14)0.0069 (14)0.0008 (11)0.0220 (14)
C370.0291 (16)0.066 (2)0.0367 (18)0.0086 (15)0.0001 (13)0.0357 (18)
C380.0357 (18)0.055 (2)0.047 (2)0.0112 (15)0.0054 (15)0.0389 (18)
C390.0355 (17)0.0375 (18)0.046 (2)0.0045 (14)0.0027 (15)0.0235 (16)
C400.0254 (14)0.0332 (16)0.0290 (15)0.0041 (12)0.0008 (12)0.0145 (13)
C410.064 (3)0.081 (3)0.084 (3)0.019 (2)0.000 (2)0.064 (3)
C420.0268 (14)0.0238 (13)0.0143 (12)0.0032 (11)0.0034 (10)0.0049 (10)
C430.0299 (15)0.0332 (16)0.0292 (15)0.0073 (12)0.0112 (12)0.0095 (13)
C1A0.094 (6)0.093 (6)0.098 (5)0.016 (5)0.010 (5)0.061 (5)
C1B0.092 (4)0.070 (4)0.068 (3)0.007 (3)0.014 (3)0.027 (3)
C1C0.104 (4)0.080 (4)0.082 (4)0.008 (3)0.023 (3)0.030 (3)
C1D0.087 (4)0.070 (3)0.082 (4)0.006 (3)0.020 (3)0.027 (3)
C1E0.078 (4)0.059 (3)0.063 (3)0.012 (3)0.010 (3)0.020 (3)
C1F0.121 (6)0.121 (7)0.107 (7)0.036 (7)0.012 (6)0.060 (6)
C1G0.084 (10)0.062 (10)0.076 (9)0.002 (9)0.048 (8)0.038 (8)
C1H0.098 (6)0.085 (6)0.076 (6)0.003 (6)0.026 (6)0.038 (5)
C1I0.095 (5)0.080 (5)0.077 (5)0.008 (5)0.023 (5)0.028 (5)
C1J0.094 (5)0.081 (5)0.079 (5)0.006 (5)0.017 (5)0.020 (5)
C1K0.097 (6)0.084 (6)0.087 (6)0.008 (6)0.017 (6)0.025 (6)
C1L0.097 (10)0.072 (11)0.078 (10)0.033 (10)0.028 (9)0.031 (9)
Geometric parameters (Å, º) top
Ni—N11.896 (2)C30—C311.394 (4)
Ni—N21.846 (2)C31—C321.394 (4)
Ni—N31.906 (2)C31—C341.515 (4)
Ni—N41.861 (2)C32—H320.9500
N1—C11.375 (3)C32—C331.386 (4)
N1—C41.397 (3)C33—H330.9500
N2—C191.365 (3)C34—H34A0.9800
N2—C231.362 (3)C34—H34B0.9800
N3—C241.390 (3)C34—H34C0.9800
N3—C271.376 (3)C35—C361.401 (4)
N4—C421.140 (3)C35—C401.391 (4)
C1—C21.404 (4)C36—H360.9500
C1—C51.469 (4)C36—C371.385 (4)
C2—H20.9500C37—H370.9500
C2—C31.407 (4)C37—C381.381 (5)
C3—C41.403 (4)C38—C391.393 (5)
C3—C121.485 (4)C38—C411.512 (5)
C4—C191.445 (4)C39—H390.9500
C5—C61.398 (4)C39—C401.393 (4)
C5—C101.392 (4)C40—H400.9500
C6—H60.9500C41—H41A0.9800
C6—C71.384 (4)C41—H41B0.9800
C7—H70.9500C41—H41C0.9800
C7—C81.394 (5)C42—C431.449 (4)
C8—C91.391 (5)C43—H43A0.9800
C8—C111.512 (4)C43—H43B0.9800
C9—H90.9500C43—H43C0.9800
C9—C101.386 (4)C1A—H1AA0.9800
C10—H100.9500C1A—H1AB0.9800
C11—H11A0.9800C1A—H1AC0.9800
C11—H11B0.9800C1A—C1B1.532 (6)
C11—H11C0.9800C1B—H1BA0.9900
C12—C131.394 (4)C1B—H1BB0.9900
C12—C171.395 (4)C1B—C1C1.515 (5)
C13—H130.9500C1C—H1CA0.9900
C13—C141.382 (4)C1C—H1CB0.9900
C14—H140.9500C1C—C1D1.515 (5)
C14—C151.393 (4)C1D—H1DA0.9900
C15—C161.397 (4)C1D—H1DB0.9900
C15—C181.506 (4)C1D—C1E1.525 (5)
C16—H160.9500C1E—H1EA0.9900
C16—C171.393 (4)C1E—H1EB0.9900
C17—H170.9500C1E—C1F1.526 (5)
C18—H18A0.9800C1F—H1FA0.9800
C18—H18B0.9800C1F—H1FB0.9800
C18—H18C0.9800C1F—H1FC0.9800
C19—C201.391 (4)C1G—H1GA0.9800
C20—H200.9500C1G—H1GB0.9800
C20—C211.382 (4)C1G—H1GC0.9800
C21—H210.9500C1G—C1H1.529 (6)
C21—C221.387 (4)C1H—H1HA0.9900
C22—H220.9500C1H—H1HB0.9900
C22—C231.395 (4)C1H—C1I1.530 (6)
C23—C241.443 (4)C1I—H1IA0.9900
C24—C251.396 (4)C1I—H1IB0.9900
C25—C261.399 (4)C1I—C1J1.519 (6)
C25—C281.481 (4)C1J—H1JA0.9900
C26—H260.9500C1J—H1JB0.9900
C26—C271.401 (4)C1J—C1K1.526 (6)
C27—C351.476 (4)C1K—H1KA0.9900
C28—C291.393 (4)C1K—H1KB0.9900
C28—C331.392 (4)C1K—C1L1.533 (6)
C29—H290.9500C1L—H1LA0.9800
C29—C301.387 (4)C1L—H1LB0.9800
C30—H300.9500C1L—H1LC0.9800
N1—Ni—N3166.68 (9)C31—C32—H32119.2
N2—Ni—N183.38 (9)C33—C32—C31121.6 (3)
N2—Ni—N383.52 (9)C33—C32—H32119.2
N2—Ni—N4168.06 (10)C28—C33—H33119.7
N4—Ni—N196.77 (9)C32—C33—C28120.6 (3)
N4—Ni—N396.54 (10)C32—C33—H33119.7
C1—N1—Ni138.26 (19)C31—C34—H34A109.5
C1—N1—C4106.5 (2)C31—C34—H34B109.5
C4—N1—Ni113.43 (17)C31—C34—H34C109.5
C19—N2—Ni118.35 (18)H34A—C34—H34B109.5
C23—N2—Ni117.87 (18)H34A—C34—H34C109.5
C23—N2—C19122.5 (2)H34B—C34—H34C109.5
C24—N3—Ni112.48 (17)C36—C35—C27119.3 (3)
C27—N3—Ni138.85 (19)C40—C35—C27122.2 (3)
C27—N3—C24106.1 (2)C40—C35—C36118.3 (3)
C42—N4—Ni176.7 (2)C35—C36—H36119.6
N1—C1—C2109.5 (2)C37—C36—C35120.9 (3)
N1—C1—C5124.8 (2)C37—C36—H36119.6
C2—C1—C5125.5 (2)C36—C37—H37119.6
C1—C2—H2126.0C38—C37—C36120.8 (3)
C1—C2—C3107.9 (2)C38—C37—H37119.6
C3—C2—H2126.0C37—C38—C39118.6 (3)
C2—C3—C12125.8 (2)C37—C38—C41120.4 (4)
C4—C3—C2105.8 (2)C39—C38—C41120.9 (4)
C4—C3—C12128.4 (3)C38—C39—H39119.5
N1—C4—C3110.2 (2)C38—C39—C40121.0 (3)
N1—C4—C19113.8 (2)C40—C39—H39119.5
C3—C4—C19134.9 (3)C35—C40—C39120.3 (3)
C6—C5—C1122.1 (2)C35—C40—H40119.9
C10—C5—C1119.9 (3)C39—C40—H40119.9
C10—C5—C6117.9 (3)C38—C41—H41A109.5
C5—C6—H6119.6C38—C41—H41B109.5
C7—C6—C5120.8 (3)C38—C41—H41C109.5
C7—C6—H6119.6H41A—C41—H41B109.5
C6—C7—H7119.5H41A—C41—H41C109.5
C6—C7—C8121.1 (3)H41B—C41—H41C109.5
C8—C7—H7119.5N4—C42—C43176.7 (3)
C7—C8—C11121.2 (3)C42—C43—H43A109.5
C9—C8—C7118.2 (3)C42—C43—H43B109.5
C9—C8—C11120.6 (3)C42—C43—H43C109.5
C8—C9—H9119.6H43A—C43—H43B109.5
C10—C9—C8120.8 (3)H43A—C43—H43C109.5
C10—C9—H9119.6H43B—C43—H43C109.5
C5—C10—H10119.4H1AA—C1A—H1AB109.5
C9—C10—C5121.2 (3)H1AA—C1A—H1AC109.5
C9—C10—H10119.4H1AB—C1A—H1AC109.5
C8—C11—H11A109.5C1B—C1A—H1AA109.5
C8—C11—H11B109.5C1B—C1A—H1AB109.5
C8—C11—H11C109.5C1B—C1A—H1AC109.5
H11A—C11—H11B109.5C1A—C1B—H1BA109.9
H11A—C11—H11C109.5C1A—C1B—H1BB109.9
H11B—C11—H11C109.5H1BA—C1B—H1BB108.3
C13—C12—C3120.6 (3)C1C—C1B—C1A109.1 (7)
C13—C12—C17118.2 (3)C1C—C1B—H1BA109.9
C17—C12—C3121.2 (3)C1C—C1B—H1BB109.9
C12—C13—H13119.6C1B—C1C—H1CA108.6
C14—C13—C12120.8 (3)C1B—C1C—H1CB108.6
C14—C13—H13119.6H1CA—C1C—H1CB107.6
C13—C14—H14119.2C1D—C1C—C1B114.6 (6)
C13—C14—C15121.5 (3)C1D—C1C—H1CA108.6
C15—C14—H14119.2C1D—C1C—H1CB108.6
C14—C15—C16117.6 (3)C1C—C1D—H1DA108.5
C14—C15—C18121.5 (3)C1C—C1D—H1DB108.5
C16—C15—C18120.9 (3)C1C—C1D—C1E114.9 (6)
C15—C16—H16119.4H1DA—C1D—H1DB107.5
C17—C16—C15121.1 (3)C1E—C1D—H1DA108.5
C17—C16—H16119.4C1E—C1D—H1DB108.5
C12—C17—H17119.7C1D—C1E—H1EA110.7
C16—C17—C12120.6 (3)C1D—C1E—H1EB110.7
C16—C17—H17119.7C1D—C1E—C1F105.3 (6)
C15—C18—H18A109.5H1EA—C1E—H1EB108.8
C15—C18—H18B109.5C1F—C1E—H1EA110.7
C15—C18—H18C109.5C1F—C1E—H1EB110.7
H18A—C18—H18B109.5C1E—C1F—H1FA109.5
H18A—C18—H18C109.5C1E—C1F—H1FB109.5
H18B—C18—H18C109.5C1E—C1F—H1FC109.5
N2—C19—C4110.6 (2)H1FA—C1F—H1FB109.5
N2—C19—C20119.0 (2)H1FA—C1F—H1FC109.5
C20—C19—C4130.2 (2)H1FB—C1F—H1FC109.5
C19—C20—H20120.4H1GA—C1G—H1GB109.5
C21—C20—C19119.1 (3)H1GA—C1G—H1GC109.5
C21—C20—H20120.4H1GB—C1G—H1GC109.5
C20—C21—H21119.3C1H—C1G—H1GA109.5
C20—C21—C22121.4 (3)C1H—C1G—H1GB109.5
C22—C21—H21119.3C1H—C1G—H1GC109.5
C21—C22—H22120.8C1G—C1H—H1HA108.6
C21—C22—C23118.4 (2)C1G—C1H—H1HB108.6
C23—C22—H22120.8C1G—C1H—C1I114.6 (17)
N2—C23—C22119.5 (2)H1HA—C1H—H1HB107.6
N2—C23—C24110.7 (2)C1I—C1H—H1HA108.6
C22—C23—C24129.7 (2)C1I—C1H—H1HB108.6
N3—C24—C23114.4 (2)C1H—C1I—H1IA109.2
N3—C24—C25110.6 (2)C1H—C1I—H1IB109.2
C25—C24—C23134.3 (3)H1IA—C1I—H1IB107.9
C24—C25—C26105.9 (2)C1J—C1I—C1H112.2 (15)
C24—C25—C28127.3 (3)C1J—C1I—H1IA109.2
C26—C25—C28126.8 (2)C1J—C1I—H1IB109.2
C25—C26—H26126.1C1I—C1J—H1JA106.4
C25—C26—C27107.9 (2)C1I—C1J—H1JB106.4
C27—C26—H26126.1C1I—C1J—C1K123.6 (18)
N3—C27—C26109.5 (2)H1JA—C1J—H1JB106.5
N3—C27—C35124.7 (2)C1K—C1J—H1JA106.4
C26—C27—C35125.3 (2)C1K—C1J—H1JB106.4
C29—C28—C25120.9 (2)C1J—C1K—H1KA110.4
C33—C28—C25121.1 (3)C1J—C1K—H1KB110.4
C33—C28—C29118.0 (2)C1J—C1K—C1L106.8 (15)
C28—C29—H29119.4H1KA—C1K—H1KB108.6
C30—C29—C28121.3 (3)C1L—C1K—H1KA110.4
C30—C29—H29119.4C1L—C1K—H1KB110.4
C29—C30—H30119.5C1K—C1L—H1LA109.5
C29—C30—C31120.9 (3)C1K—C1L—H1LB109.5
C31—C30—H30119.5C1K—C1L—H1LC109.5
C30—C31—C34120.6 (3)H1LA—C1L—H1LB109.5
C32—C31—C30117.6 (3)H1LA—C1L—H1LC109.5
C32—C31—C34121.8 (3)H1LB—C1L—H1LC109.5
Ni—N1—C1—C2161.2 (2)C10—C5—C6—C71.9 (4)
Ni—N1—C1—C523.5 (4)C11—C8—C9—C10178.2 (3)
Ni—N1—C4—C3166.90 (18)C12—C3—C4—N1179.7 (3)
Ni—N1—C4—C193.1 (3)C12—C3—C4—C1913.3 (5)
Ni—N2—C19—C46.0 (3)C12—C13—C14—C150.1 (5)
Ni—N2—C19—C20169.9 (2)C13—C12—C17—C163.5 (4)
Ni—N2—C23—C22170.8 (2)C13—C14—C15—C162.4 (4)
Ni—N2—C23—C246.5 (3)C13—C14—C15—C18177.4 (3)
Ni—N3—C24—C237.9 (3)C14—C15—C16—C171.7 (4)
Ni—N3—C24—C25163.61 (19)C15—C16—C17—C121.3 (4)
Ni—N3—C27—C26156.8 (2)C17—C12—C13—C142.8 (4)
Ni—N3—C27—C3531.3 (5)C18—C15—C16—C17178.1 (3)
N1—Ni—N2—C196.3 (2)C19—N2—C23—C224.1 (4)
N1—Ni—N2—C23173.5 (2)C19—N2—C23—C24173.1 (2)
N1—C1—C2—C32.0 (3)C19—C20—C21—C221.0 (5)
N1—C1—C5—C648.1 (4)C20—C21—C22—C230.2 (5)
N1—C1—C5—C10134.1 (3)C21—C22—C23—N22.3 (4)
N1—C4—C19—N21.7 (3)C21—C22—C23—C24174.3 (3)
N1—C4—C19—C20173.7 (3)C22—C23—C24—N3178.1 (3)
N2—Ni—N1—C1167.0 (3)C22—C23—C24—C259.2 (5)
N2—Ni—N1—C44.96 (19)C23—N2—C19—C4172.6 (2)
N2—C19—C20—C210.7 (4)C23—N2—C19—C203.3 (4)
N2—C23—C24—N31.3 (3)C23—C24—C25—C26169.7 (3)
N2—C23—C24—C25167.6 (3)C23—C24—C25—C2811.9 (5)
N3—Ni—N1—C1177.4 (4)C24—N3—C27—C262.5 (3)
N3—Ni—N1—C415.3 (5)C24—N3—C27—C35169.4 (3)
N3—Ni—N2—C19176.1 (2)C24—C25—C26—C271.1 (3)
N3—Ni—N2—C238.8 (2)C24—C25—C28—C2955.6 (4)
N3—C24—C25—C260.5 (3)C24—C25—C28—C33123.9 (3)
N3—C24—C25—C28178.9 (3)C25—C26—C27—N32.2 (3)
N3—C27—C35—C36152.3 (3)C25—C26—C27—C35169.6 (3)
N3—C27—C35—C4032.6 (4)C25—C28—C29—C30178.4 (3)
N4—Ni—N1—C11.0 (3)C25—C28—C33—C32178.8 (3)
N4—Ni—N1—C4163.01 (19)C26—C25—C28—C29122.5 (3)
N4—Ni—N2—C1985.1 (5)C26—C25—C28—C3358.0 (4)
N4—Ni—N2—C2382.1 (5)C26—C27—C35—C3637.1 (4)
C1—N1—C4—C30.7 (3)C26—C27—C35—C40138.0 (3)
C1—N1—C4—C19170.7 (2)C27—N3—C24—C23173.4 (2)
C1—C2—C3—C41.5 (3)C27—N3—C24—C251.8 (3)
C1—C2—C3—C12178.7 (3)C27—C35—C36—C37176.9 (3)
C1—C5—C6—C7179.7 (3)C27—C35—C40—C39178.1 (3)
C1—C5—C10—C9179.3 (2)C28—C25—C26—C27177.3 (3)
C2—C1—C5—C6126.5 (3)C28—C29—C30—C310.9 (4)
C2—C1—C5—C1051.2 (4)C29—C28—C33—C320.7 (4)
C2—C3—C4—N10.5 (3)C29—C30—C31—C320.2 (4)
C2—C3—C4—C19166.5 (3)C29—C30—C31—C34179.5 (3)
C2—C3—C12—C1343.0 (4)C30—C31—C32—C330.3 (5)
C2—C3—C12—C17135.9 (3)C31—C32—C33—C280.0 (5)
C3—C4—C19—N2168.3 (3)C33—C28—C29—C301.1 (4)
C3—C4—C19—C207.0 (5)C34—C31—C32—C33180.0 (3)
C3—C12—C13—C14178.2 (3)C35—C36—C37—C381.6 (5)
C3—C12—C17—C16177.5 (3)C36—C35—C40—C392.9 (4)
C4—N1—C1—C21.7 (3)C36—C37—C38—C393.4 (5)
C4—N1—C1—C5173.7 (2)C36—C37—C38—C41175.8 (3)
C4—C3—C12—C13136.8 (3)C37—C38—C39—C402.0 (5)
C4—C3—C12—C1744.3 (4)C38—C39—C40—C351.1 (5)
C4—C19—C20—C21174.3 (3)C40—C35—C36—C371.6 (4)
C5—C1—C2—C3173.3 (3)C41—C38—C39—C40177.1 (3)
C5—C6—C7—C80.8 (4)C1A—C1B—C1C—C1D178.1 (7)
C6—C5—C10—C91.5 (4)C1B—C1C—C1D—C1E72.3 (8)
C6—C7—C8—C90.8 (4)C1C—C1D—C1E—C1F169.8 (7)
C6—C7—C8—C11178.7 (3)C1G—C1H—C1I—C1J177 (2)
C7—C8—C9—C101.3 (4)C1H—C1I—C1J—C1K130 (3)
C8—C9—C10—C50.1 (4)C1I—C1J—C1K—C1L148 (3)
 

Acknowledgements

We thank Dr Muhammed Yousufuddin for the collection of data for some of the mol­ecules presented in the manuscript.

Funding information

Funding for this research was provided by the Welch Foundation (grant No. Y-1289).

References

First citationAbubekerov, M., Eymann, L. Y. M., Gianetti, T. L. & Arnold, J. (2016). Dalton Trans. 45, 14581–14590.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAdiraju, V. A. K., Jin, W., Yousufuddin, M. & Dias, H. V. R. (2020). Z. Anorg. Allg. Chem. 646, 215–219.  Web of Science CSD CrossRef CAS Google Scholar
First citationAlbrecht, M. & van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750–3781.  Web of Science CrossRef CAS Google Scholar
First citationAlig, L., Fritz, M. & Schneider, S. (2019). Chem. Rev. 119, 2681–2751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDias, H. V. R., Huai, L., Jin, W. & Bott, S. G. (1995). Inorg. Chem. 34, 1973–1974.  CSD CrossRef CAS Web of Science Google Scholar
First citationDias, H. V. R., Jin, W., Kim, H.-J. & Lu, H.-L. (1996). Inorg. Chem. 35, 2317–2328.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDias, H. V. R. & Lovely, C. J. (2008). Chem. Rev. 108, 3223–3238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDias, H. V. R. & Lu, H.-L. (1995). Inorg. Chem. 34, 5380–5382.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, A. S., Petersen, J. L. & Milsmann, C. (2018). Inorg. Chem. 57, 1919–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGrant, L. N., Carroll, M. E., Carroll, P. J. & Mindiola, D. J. (2016). Inorg. Chem. 55, 7997–8002.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHakey, B. M., Darmon, J. M., Zhang, Y., Petersen, J. L. & Milsmann, C. (2019). Inorg. Chem. 58, 1252–1266.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKomine, N., Buell, R. W., Chen, C.-H., Hui, A. K., Pink, M. & Caulton, K. G. (2014). Inorg. Chem. 53, 1361–1369.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.  CrossRef Web of Science Google Scholar
First citationPeris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239–2246.  Web of Science CrossRef CAS Google Scholar
First citationPeris, E. & Crabtree, R. H. (2018). Chem. Soc. Rev. 47, 1959–1968.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPiccirilli, L., Pinheiro, D. L. J. & Nielsen, M. (2020). Catalysts 10, 773.  CrossRef Google Scholar
First citationPramanik, A. (2015). MS thesis, The University of Texas at Arlington, Arlington, Texas, USA.  Google Scholar
First citationPramanik, A., Das, A., Yousufuddin, M. & Dias, H. V. R. (2014). Abstracts of Papers, 247th ACS National Meeting & Exposition, Dallas, TX, United States, March 16–20, 2014, INOR-266.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSorsche, D., Miehlich, M., Searles, K., Gouget, G., Zolnhofer, E. M., Fortier, S., Chen, C.-H., Gau, M. R., Carroll, P. J., Murray, C. B., Caulton, K. G., Khusniyarov, M. M., Meyer, K. & Mindiola, D. J. (2020). J. Am. Chem. Soc. 142, 8147–8159.  Web of Science CSD CrossRef PubMed Google Scholar
First citationTapper, A. E., Billo, E. J. & Golen, J. A. (1993). Inorg. Chim. Acta, 210, 71–75.  CAS Google Scholar
First citationYadav, S., Singh, A., Rashid, N., Ghotia, M., Roy, T. K., Ingole, P. P., Ray, S., Mobin, S. M. & Dash, C. (2018). ChemistrySelect 3, 9469–9475.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Lee, T. S., Favale, J. M., Leary, D. C., Petersen, J. L., Scholes, G. D., Castellano, F. N. & Milsmann, C. (2020). Nat. Chem. 12, 345–352.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Petersen, J. L. & Milsmann, C. (2016). J. Am. Chem. Soc. 138, 13115–13118.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds