research communications
Crystal, molecular structure and Hirshheld surface analysis of 5-hydroxy-3,6,7,8-tetramethoxyflavone
aKey Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China, bInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan, and cInstitute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
*Correspondence e-mail: li_izotova@mail.ru
The title compound (systematic name: 5-hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one), C19H18O7, is a flavone that was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. The flavone molecule is almost planar, with a dihedral angle between the planes of the benzopyran-4-one group and the attached phenyl ring of 6.4 (4)°. The 5-hydroxy group forms a strong intramolecular hydrogen bond with the carbonyl group, resulting in a six-membered hydrogen-bonded ring. The has triclinic (P) symmetry. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) interactions.
Keywords: crystal structure; flavones; Hirshfeld surface analysis; hydrogen bonding.
CCDC reference: 2036551
1. Chemical context
Scutellaria L. are widespread in Europe, North America, East Asia and are extensively used in traditional Chinese medicine (Shang et al., 2010). isolated from plants of the genus Scutellaria L. exhibit antitumor (Yu et al., 2007), hepatoprotective (Jang et al., 2003), antioxidant (Sauvage et al., 2010), anti-inflammatory (Dai et al., 2013), anticonvulsant (Park et al., 2007), antimicrobial (Arituluk et al., 2019) and antiviral activity (Leonova et al., 2020). The creation of drugs based on is based on the establishment of the `chemical structure–pharmacological properties' relationship, and the determination of the structure of a new flavonoid may become a key starting point.
are the most numerous class of natural phenolic compounds, which are characterized by structural diversity, high and versatile activity and low toxicity. Plants of the genus2. Structural commentary
The molecular structure of the title compound is presented in Fig. 1. The benzopyran moieties are practically planar, with r.m.s. deviations of 0.01 Å. The molecular conformation is restricted by the relative positions of the benzopyran unit and the phenyl ring, the dihedral angle between them being 6.4 (4)°. Atoms C3, C6, C7 and C8 of the methoxy substituent have an out-of-plane conformation with the methoxy groups at atoms C3 and C6 pointing in the same direction [C16—O2—C3—C2 = 109.3 (2) and C17—O5—C6—C5 = 66. 7(4)°], while the methoxy groups at atoms C7 and C8 point in opposite direction [C18—O6—C7—C6 = −56.3 (3) and C19—O7—C8—C7 = −91.4 (3)°]. The conformation of the molecule is fixed because of the intramolecular O4—H4⋯O3 hydrogen bond [2.599 (2) Å, 147°], which closes a six-membered ring with graph-set notation S(6) (Etter, 1990).
3. Supramolecular features
In the crystal, the molecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. A perspective view of the crystal packing in the is depicted in Fig. 2 and numerical details of the hydrogen bonds are presented in Table 1.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surface mapped over dnorm (Fig. 3) shows the expected bright-red spots near atoms O3, O7, H16B, which are involved in the C—H⋯O hydrogen-bonding interactions. Fingerprint plots (Fig. 4) reveal that H⋯H and H⋯O/O⋯H interactions make the greatest contributions to the surface contacts, while H⋯C/C⋯H, O⋯C/C⋯O, C⋯C and O⋯O contacts are less significant.
5. Database survey
A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) found 311 hits for the term `flavones'. Among these, nine are tetramethoxyflavones: 3,4′,6,7 (DAVREN; Geng et al., 2011), 6,2′3′,4′- (JEMGIN; Wallet et al., 1990a) and 2′,4′,5,7- (KEPLEW; Wallet et al., 1990b), 3,4′,6,7- (MENSII; Meng et al., 2006), 3′,4′,5,7- (PIQPEK; Shoja, 1997), 3,4′5,7- (PUGKEI; Aree et al., 2009), 3′,5,5′,6- (TMOFLV10; Ting et al., 1972), 3,7,4′,5′- (YASCIF; Etti et al., 2005). The compound FATZOR (Vijayalakshmi et al., 1986) is also a 3,6,7,8 tetramethylflavone, but with two hydroxy substituents at the 5,4′-positions.
6. Synthesis and crystallization
Air-dried whole plants (1.1 kg) of Scutellaria nepetoides M. Pop. were extracted three times (each 3 h) with butanol (5 l) at 353 K. The butanol filtrates were collected and concentrated under reduced pressure to provide 10.2 g of butanol extract. The butanol extract (1 g) was subjected to silica gel (60–100 mesh) column (gradient of butanol:water = 0:1, 2:8, 1:1, 8:2, 1:0) as and five fractions were collected according to TLC analysis. All fractions were concentrated under reduced pressure. A crystallization procedure with different solvents at high temperature was used to obtain the pure compounds. Fraction 5 (0.23 g) was eluted with butanol (100%) at 353 K and with ethanol (95%) at 343 K. The obtained polycrystals were removed from the butanol solution by filtration. Yellow prismatic single crystals were prepared by slow evaporation of butanol solution at room temperature.
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned geometrically and were included in the in the riding-model approximation, with C—H = 0.96 Å (CH3), 0.93 Å (aryl H) and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) (aryl H) and 1.5Ueq(C-methyl, O).
details are summarized in Table 2Supporting information
CCDC reference: 2036551
https://doi.org/10.1107/S2056989020013596/zn2001sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020013596/zn2001Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020013596/zn2001Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994).C19H18O7 | Z = 2 |
Mr = 358.33 | F(000) = 376 |
Triclinic, P1 | Dx = 1.396 Mg m−3 |
a = 5.0789 (4) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.0801 (6) Å | Cell parameters from 1498 reflections |
c = 20.8682 (19) Å | θ = 5.5–75.0° |
α = 92.481 (7)° | µ = 0.90 mm−1 |
β = 91.984 (7)° | T = 293 K |
γ = 94.253 (6)° | Prism, yellow |
V = 852.62 (12) Å3 | 0.03 × 0.02 × 0.01 mm |
Agilent Xcalibur, Ruby diffractometer | Rint = 0.023 |
Radiation source: Enhance (Cu) X-ray Source | θmax = 76.1°, θmin = 4.2° |
/ω scans | h = −6→4 |
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) | k = −10→9 |
Tmin = 0.818, Tmax = 1.000 | l = −25→25 |
6484 measured reflections | 3 standard reflections every 100 reflections |
3458 independent reflections | intensity decay: 2.6% |
2408 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.174 | w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0534P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3458 reflections | Δρmax = 0.22 e Å−3 |
240 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4105 (3) | 0.28804 (17) | 0.27044 (7) | 0.0575 (4) | |
O2 | 0.3672 (3) | 0.59876 (19) | 0.39973 (8) | 0.0659 (4) | |
O7 | 0.3450 (3) | 0.10219 (19) | 0.16067 (8) | 0.0685 (4) | |
O3 | 0.0122 (3) | 0.69625 (19) | 0.30889 (9) | 0.0714 (5) | |
O4 | −0.2527 (4) | 0.6406 (2) | 0.20033 (9) | 0.0740 (5) | |
H4 | −0.209283 | 0.687910 | 0.235051 | 0.111* | |
O6 | 0.0019 (3) | 0.1855 (2) | 0.06667 (8) | 0.0725 (5) | |
O5 | −0.3071 (4) | 0.4564 (2) | 0.08488 (9) | 0.0792 (5) | |
C9 | 0.2302 (4) | 0.3341 (2) | 0.22626 (10) | 0.0532 (5) | |
C2 | 0.4615 (4) | 0.3764 (2) | 0.32748 (10) | 0.0531 (5) | |
C1 | 0.6627 (4) | 0.3000 (2) | 0.36663 (10) | 0.0547 (5) | |
C3 | 0.3289 (4) | 0.5145 (2) | 0.34102 (10) | 0.0559 (5) | |
C10 | 0.0862 (4) | 0.4721 (2) | 0.23720 (11) | 0.0549 (5) | |
C8 | 0.1951 (4) | 0.2349 (3) | 0.17031 (11) | 0.0570 (5) | |
C4 | 0.1327 (4) | 0.5696 (3) | 0.29666 (11) | 0.0576 (5) | |
C5 | −0.1022 (4) | 0.5106 (3) | 0.19027 (12) | 0.0598 (5) | |
C7 | 0.0153 (4) | 0.2777 (3) | 0.12324 (11) | 0.0591 (5) | |
C11 | 0.7909 (5) | 0.1680 (3) | 0.33913 (12) | 0.0621 (5) | |
H11 | 0.747162 | 0.131003 | 0.297010 | 0.074* | |
C6 | −0.1322 (4) | 0.4180 (3) | 0.13258 (12) | 0.0620 (5) | |
C13 | 1.0487 (5) | 0.1457 (3) | 0.43582 (13) | 0.0693 (6) | |
H13 | 1.178385 | 0.095483 | 0.458888 | 0.083* | |
C12 | 0.9801 (5) | 0.0925 (3) | 0.37353 (13) | 0.0690 (6) | |
H12 | 1.062501 | 0.004788 | 0.354580 | 0.083* | |
C15 | 0.7318 (5) | 0.3509 (3) | 0.42988 (11) | 0.0676 (6) | |
H15 | 0.648243 | 0.437172 | 0.449493 | 0.081* | |
C14 | 0.9221 (5) | 0.2750 (3) | 0.46366 (13) | 0.0735 (7) | |
H14 | 0.966483 | 0.310908 | 0.505855 | 0.088* | |
C16 | 0.5102 (5) | 0.7581 (3) | 0.39759 (14) | 0.0755 (7) | |
H16A | 0.429300 | 0.821692 | 0.365563 | 0.113* | |
H16B | 0.689782 | 0.743522 | 0.387050 | 0.113* | |
H16C | 0.507312 | 0.815778 | 0.438727 | 0.113* | |
C18 | −0.2471 (6) | 0.1157 (4) | 0.04230 (15) | 0.0884 (9) | |
H18A | −0.223724 | 0.046870 | 0.004568 | 0.133* | |
H18B | −0.356737 | 0.203034 | 0.031583 | 0.133* | |
H18C | −0.329956 | 0.049683 | 0.074221 | 0.133* | |
C19 | 0.2318 (8) | −0.0502 (3) | 0.1815 (2) | 0.1081 (11) | |
H19A | 0.058829 | −0.073200 | 0.161721 | 0.162* | |
H19B | 0.218626 | −0.043294 | 0.227342 | 0.162* | |
H19C | 0.341133 | −0.137746 | 0.169734 | 0.162* | |
C17 | −0.2436 (9) | 0.6092 (4) | 0.05619 (19) | 0.1199 (14) | |
H17A | −0.331407 | 0.608230 | 0.014676 | 0.180* | |
H17B | −0.056050 | 0.624212 | 0.051646 | 0.180* | |
H17C | −0.300412 | 0.698631 | 0.082812 | 0.180* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0628 (8) | 0.0517 (7) | 0.0575 (8) | 0.0094 (6) | −0.0003 (7) | −0.0097 (6) |
O2 | 0.0782 (10) | 0.0584 (8) | 0.0601 (9) | 0.0080 (7) | 0.0036 (8) | −0.0145 (7) |
O7 | 0.0779 (10) | 0.0586 (9) | 0.0692 (10) | 0.0145 (7) | 0.0065 (8) | −0.0124 (7) |
O3 | 0.0744 (10) | 0.0578 (9) | 0.0823 (11) | 0.0181 (7) | 0.0011 (8) | −0.0153 (8) |
O4 | 0.0755 (10) | 0.0626 (9) | 0.0847 (12) | 0.0200 (8) | −0.0046 (9) | −0.0056 (8) |
O6 | 0.0745 (10) | 0.0820 (11) | 0.0589 (9) | 0.0029 (8) | 0.0009 (8) | −0.0155 (8) |
O5 | 0.0868 (11) | 0.0719 (10) | 0.0773 (12) | 0.0038 (9) | −0.0178 (9) | 0.0043 (9) |
C9 | 0.0550 (10) | 0.0496 (10) | 0.0547 (11) | 0.0038 (8) | 0.0037 (9) | −0.0023 (8) |
C2 | 0.0550 (10) | 0.0492 (10) | 0.0541 (11) | 0.0013 (8) | 0.0058 (9) | −0.0070 (8) |
C1 | 0.0545 (10) | 0.0497 (10) | 0.0591 (12) | 0.0011 (8) | 0.0036 (9) | −0.0022 (9) |
C3 | 0.0616 (11) | 0.0486 (10) | 0.0565 (12) | 0.0016 (9) | 0.0064 (9) | −0.0079 (8) |
C10 | 0.0585 (11) | 0.0474 (10) | 0.0583 (12) | 0.0025 (8) | 0.0050 (9) | −0.0016 (9) |
C8 | 0.0612 (11) | 0.0510 (10) | 0.0585 (12) | 0.0047 (9) | 0.0063 (9) | −0.0053 (9) |
C4 | 0.0595 (11) | 0.0472 (10) | 0.0657 (13) | 0.0040 (9) | 0.0096 (10) | −0.0058 (9) |
C5 | 0.0591 (11) | 0.0503 (11) | 0.0702 (14) | 0.0062 (9) | 0.0036 (10) | −0.0006 (10) |
C7 | 0.0628 (12) | 0.0570 (11) | 0.0560 (12) | −0.0022 (9) | 0.0039 (10) | −0.0046 (9) |
C11 | 0.0675 (12) | 0.0539 (11) | 0.0639 (13) | 0.0065 (10) | −0.0025 (10) | −0.0081 (9) |
C6 | 0.0617 (12) | 0.0585 (12) | 0.0651 (13) | 0.0012 (10) | −0.0036 (10) | 0.0039 (10) |
C13 | 0.0669 (13) | 0.0645 (13) | 0.0766 (16) | 0.0085 (11) | −0.0065 (12) | 0.0067 (11) |
C12 | 0.0695 (13) | 0.0565 (12) | 0.0816 (16) | 0.0148 (10) | −0.0023 (12) | −0.0039 (11) |
C15 | 0.0737 (14) | 0.0685 (13) | 0.0608 (13) | 0.0133 (11) | 0.0015 (11) | −0.0085 (11) |
C14 | 0.0782 (15) | 0.0806 (16) | 0.0610 (14) | 0.0112 (13) | −0.0066 (12) | −0.0056 (12) |
C16 | 0.0753 (15) | 0.0613 (13) | 0.0871 (17) | 0.0041 (11) | −0.0025 (13) | −0.0212 (12) |
C18 | 0.0800 (16) | 0.0908 (19) | 0.090 (2) | −0.0031 (14) | −0.0024 (14) | −0.0297 (15) |
C19 | 0.129 (3) | 0.0560 (15) | 0.142 (3) | 0.0176 (16) | 0.020 (2) | 0.0052 (17) |
C17 | 0.164 (4) | 0.085 (2) | 0.107 (3) | −0.005 (2) | −0.047 (3) | 0.0312 (19) |
O1—C9 | 1.360 (3) | C5—C6 | 1.387 (3) |
O1—C2 | 1.368 (2) | C7—C6 | 1.414 (3) |
O2—C3 | 1.376 (2) | C11—C12 | 1.374 (3) |
O2—C16 | 1.434 (3) | C11—H11 | 0.9300 |
O7—C8 | 1.373 (3) | C13—C12 | 1.376 (4) |
O7—C19 | 1.413 (3) | C13—C14 | 1.384 (4) |
O3—C4 | 1.252 (3) | C13—H13 | 0.9300 |
O4—C5 | 1.357 (3) | C12—H12 | 0.9300 |
O4—H4 | 0.8200 | C15—C14 | 1.373 (4) |
O6—C7 | 1.365 (3) | C15—H15 | 0.9300 |
O6—C18 | 1.415 (3) | C14—H14 | 0.9300 |
O5—C6 | 1.372 (3) | C16—H16A | 0.9600 |
O5—C17 | 1.416 (4) | C16—H16B | 0.9600 |
C9—C8 | 1.386 (3) | C16—H16C | 0.9600 |
C9—C10 | 1.393 (3) | C18—H18A | 0.9600 |
C2—C3 | 1.370 (3) | C18—H18B | 0.9600 |
C2—C1 | 1.474 (3) | C18—H18C | 0.9600 |
C1—C15 | 1.391 (3) | C19—H19A | 0.9600 |
C1—C11 | 1.403 (3) | C19—H19B | 0.9600 |
C3—C4 | 1.444 (3) | C19—H19C | 0.9600 |
C10—C5 | 1.406 (3) | C17—H17A | 0.9600 |
C10—C4 | 1.443 (3) | C17—H17B | 0.9600 |
C8—C7 | 1.390 (3) | C17—H17C | 0.9600 |
C9—O1—C2 | 121.52 (16) | C5—C6—C7 | 119.4 (2) |
C3—O2—C16 | 114.26 (18) | C12—C13—C14 | 119.1 (2) |
C8—O7—C19 | 114.8 (2) | C12—C13—H13 | 120.4 |
C5—O4—H4 | 109.5 | C14—C13—H13 | 120.4 |
C7—O6—C18 | 119.0 (2) | C11—C12—C13 | 120.5 (2) |
C6—O5—C17 | 115.0 (2) | C11—C12—H12 | 119.7 |
O1—C9—C8 | 116.32 (18) | C13—C12—H12 | 119.7 |
O1—C9—C10 | 121.69 (19) | C14—C15—C1 | 120.7 (2) |
C8—C9—C10 | 122.0 (2) | C14—C15—H15 | 119.7 |
O1—C2—C3 | 119.82 (19) | C1—C15—H15 | 119.7 |
O1—C2—C1 | 110.68 (17) | C15—C14—C13 | 120.9 (2) |
C3—C2—C1 | 129.50 (19) | C15—C14—H14 | 119.5 |
C15—C1—C11 | 117.9 (2) | C13—C14—H14 | 119.5 |
C15—C1—C2 | 123.54 (19) | O2—C16—H16A | 109.5 |
C11—C1—C2 | 118.60 (19) | O2—C16—H16B | 109.5 |
C2—C3—O2 | 120.3 (2) | H16A—C16—H16B | 109.5 |
C2—C3—C4 | 121.67 (19) | O2—C16—H16C | 109.5 |
O2—C3—C4 | 117.84 (18) | H16A—C16—H16C | 109.5 |
C9—C10—C5 | 118.9 (2) | H16B—C16—H16C | 109.5 |
C9—C10—C4 | 119.0 (2) | O6—C18—H18A | 109.5 |
C5—C10—C4 | 122.2 (2) | O6—C18—H18B | 109.5 |
O7—C8—C9 | 120.3 (2) | H18A—C18—H18B | 109.5 |
O7—C8—C7 | 121.05 (19) | O6—C18—H18C | 109.5 |
C9—C8—C7 | 118.6 (2) | H18A—C18—H18C | 109.5 |
O3—C4—C10 | 121.9 (2) | H18B—C18—H18C | 109.5 |
O3—C4—C3 | 121.7 (2) | O7—C19—H19A | 109.5 |
C10—C4—C3 | 116.34 (18) | O7—C19—H19B | 109.5 |
O4—C5—C6 | 119.3 (2) | H19A—C19—H19B | 109.5 |
O4—C5—C10 | 120.4 (2) | O7—C19—H19C | 109.5 |
C6—C5—C10 | 120.2 (2) | H19A—C19—H19C | 109.5 |
O6—C7—C8 | 117.0 (2) | H19B—C19—H19C | 109.5 |
O6—C7—C6 | 122.1 (2) | O5—C17—H17A | 109.5 |
C8—C7—C6 | 120.8 (2) | O5—C17—H17B | 109.5 |
C12—C11—C1 | 120.9 (2) | H17A—C17—H17B | 109.5 |
C12—C11—H11 | 119.5 | O5—C17—H17C | 109.5 |
C1—C11—H11 | 119.5 | H17A—C17—H17C | 109.5 |
O5—C6—C5 | 121.6 (2) | H17B—C17—H17C | 109.5 |
O5—C6—C7 | 119.0 (2) | ||
C2—O1—C9—C8 | −179.93 (18) | C2—C3—C4—C10 | −0.5 (3) |
C2—O1—C9—C10 | −0.8 (3) | O2—C3—C4—C10 | −176.28 (18) |
C9—O1—C2—C3 | 0.1 (3) | C9—C10—C5—O4 | 177.6 (2) |
C9—O1—C2—C1 | 179.66 (17) | C4—C10—C5—O4 | −1.6 (3) |
O1—C2—C1—C15 | −172.2 (2) | C9—C10—C5—C6 | −3.7 (3) |
C3—C2—C1—C15 | 7.3 (4) | C4—C10—C5—C6 | 177.1 (2) |
O1—C2—C1—C11 | 7.3 (3) | C18—O6—C7—C8 | 128.1 (3) |
C3—C2—C1—C11 | −173.2 (2) | C18—O6—C7—C6 | −56.3 (3) |
O1—C2—C3—O2 | 176.21 (17) | O7—C8—C7—O6 | −2.2 (3) |
C1—C2—C3—O2 | −3.2 (3) | C9—C8—C7—O6 | 174.70 (19) |
O1—C2—C3—C4 | 0.6 (3) | O7—C8—C7—C6 | −177.85 (19) |
C1—C2—C3—C4 | −178.9 (2) | C9—C8—C7—C6 | −1.0 (3) |
C16—O2—C3—C2 | 109.3 (2) | C15—C1—C11—C12 | −0.5 (3) |
C16—O2—C3—C4 | −74.9 (2) | C2—C1—C11—C12 | 180.0 (2) |
O1—C9—C10—C5 | −178.38 (18) | C17—O5—C6—C5 | 66.7 (4) |
C8—C9—C10—C5 | 0.7 (3) | C17—O5—C6—C7 | −115.1 (3) |
O1—C9—C10—C4 | 0.8 (3) | O4—C5—C6—O5 | 1.2 (4) |
C8—C9—C10—C4 | 179.88 (19) | C10—C5—C6—O5 | −177.50 (19) |
C19—O7—C8—C9 | 91.8 (3) | O4—C5—C6—C7 | −177.0 (2) |
C19—O7—C8—C7 | −91.4 (3) | C10—C5—C6—C7 | 4.4 (3) |
O1—C9—C8—O7 | −2.4 (3) | O6—C7—C6—O5 | 4.3 (3) |
C10—C9—C8—O7 | 178.53 (19) | C8—C7—C6—O5 | 179.8 (2) |
O1—C9—C8—C7 | −179.25 (18) | O6—C7—C6—C5 | −177.5 (2) |
C10—C9—C8—C7 | 1.7 (3) | C8—C7—C6—C5 | −2.0 (3) |
C9—C10—C4—O3 | 179.0 (2) | C1—C11—C12—C13 | −0.3 (4) |
C5—C10—C4—O3 | −1.8 (3) | C14—C13—C12—C11 | 0.8 (4) |
C9—C10—C4—C3 | −0.2 (3) | C11—C1—C15—C14 | 0.8 (4) |
C5—C10—C4—C3 | 179.03 (19) | C2—C1—C15—C14 | −179.7 (2) |
C2—C3—C4—O3 | −179.7 (2) | C1—C15—C14—C13 | −0.3 (4) |
O2—C3—C4—O3 | 4.6 (3) | C12—C13—C14—C15 | −0.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.82 | 1.87 | 2.599 (2) | 147 |
C16—H16A···O3 | 0.96 | 2.51 | 3.079 (3) | 118 |
C16—H16B···O3i | 0.96 | 2.39 | 3.258 (3) | 150 |
C18—H18B···O5 | 0.96 | 2.28 | 2.897 (4) | 121 |
C18—H18C···O7ii | 0.96 | 2.53 | 3.278 (4) | 135 |
C17—H17C···O4 | 0.96 | 2.52 | 3.010 (4) | 111 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
We are especially grateful to Jamshid Ashurov DSc for help in discussing the results.
Funding information
Funding for this research was provided by: Chinese Academy of Sciences Center of Drag Discovery and Development Center of Central Asia (grant No. CAM 201907).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Aree, T. & Sawasdee, P. (2009). Acta Cryst. E65, o2706. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arituluk, Z., Kocak, C., Renda, G., Ekizoglu, M. & Ezer, N. (2019). J Res Pharm. Pract. 23(3), 552–558. Google Scholar
Dai, Z. J., Lu, W. F., Gao, J., Kang, H. F., Ma, Y. G., Zhang, S. Q., Diao, Y., Lin, S., Wang, X. J. & Wu, W. Y. (2013). BMC Complement. Altern. Med. 13, 240–248. Web of Science CrossRef PubMed Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etti, S., Shanmugam, G., Ponnuswamy, M. N., Balakrishna, K. & Vasanth, S. (2005). Acta Cryst. E61, o846–o848. Web of Science CSD CrossRef IUCr Journals Google Scholar
Geng, H.-W., Wang, G.-C., Li, G.-Q., Jiang, R.-W. & Li, Y.-L. (2011). Acta Cryst. E67, o2733. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. & Kim, Y. C. (2003). Immunopharmacol. Immunotoxicol. 25, 585–594. Web of Science CrossRef PubMed CAS Google Scholar
Leonova, G. N., Shutikova, A. L., Lubova, V. A. & Maistrovskaya, O. S. (2020). Bull. Exp. Biol. Med. 168, 665–668. Web of Science CrossRef CAS PubMed Google Scholar
Meng, Z.-L., Qi, Y.-Y., Liu, R.-M., Sun, A.-L. & Wang, D.-Q. (2006). Acta Cryst. E62, o3831–o3832. Web of Science CSD CrossRef IUCr Journals Google Scholar
Park, H. G., Yoon, S. Y., Choi, J. Y., Lee, G. S., Choi, J. H., Shin, C. Y., Son, K. H., Lee, Y. S., Kim, W. K., Ryu, J. H., Ko, K. H. & Cheong, J. H. (2007). Eur. J. Pharmacol. 574, 112–119. Web of Science CrossRef PubMed CAS Google Scholar
Sauvage, S., Granger, M., Samson, E., Majumdar, A., Nigam, P. & Nahar, L. (2010). Oriental Pharmacy Experimental Medicine. 10, 304–309. Google Scholar
Shang, X. F., He, X. R., He, X. Y., Li, M. X., Zhang, R. X., Fan, P. P., Zhang, Q. L. & Jia, Z. P. (2010). J. Ethnopharmacol. 128, 279–313. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoja, M. (1997). Z. Kristallogr. New Cryst. Struct. 212, 385–386. Web of Science CrossRef CAS Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc.,Madison, Wisconsin, USA. Google Scholar
Ting, H.-Y., Watson, W. H. & Domínguez, X. A. (1972). Acta Cryst. B28, 1046–1051. CSD CrossRef IUCr Journals Web of Science Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsuface.net Google Scholar
Vijayalakshmi, J., Rajan, S. S., Srinivasan, R. & Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752–1754. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wallet, J.-C., Gaydou, E., Tinant, B., Declercq, J.-P., Baldy, A. & Bonifassi, P. (1990a). Acta Cryst. C46, 1131–1133. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990b). Acta Cryst. C46, 1536–1540. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Yu, J., Liu, H., Lei, J., Tan, W., Hu, X. & Zou, G. (2007). Phytother. Res. 21, 817–822. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.