research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal, mol­ecular structure and Hirshheld surface analysis of 5-hy­dr­oxy-3,6,7,8-tetra­meth­­oxy­flavone

CROSSMARK_Color_square_no_text.svg

aKey Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, People's Republic of China, bInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125,Tashkent, Uzbekistan, and cInstitute of the Chemistry of Plant Substances, UzAS, M. Ulugbek Str., 77, 100170, Tashkent, Uzbekistan
*Correspondence e-mail: li_izotova@mail.ru

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 17 September 2020; accepted 12 October 2020; online 13 October 2020)

The title compound (systematic name: 5-hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one), C19H18O7, is a flavone that was isolated from a butanol extract of the herb Scutellaria nepetoides M. Pop. The flavone mol­ecule is almost planar, with a dihedral angle between the planes of the benzo­pyran-4-one group and the attached phenyl ring of 6.4 (4)°. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered hydrogen-bonded ring. The crystal structure has triclinic (P[\overline{1}]) symmetry. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter­actions.

1. Chemical context

Flavonoids are the most numerous class of natural phenolic compounds, which are characterized by structural diversity, high and versatile activity and low toxicity. Plants of the genus Scutellaria L. are widespread in Europe, North America, East Asia and are extensively used in traditional Chinese medicine (Shang et al., 2010[Shang, X. F., He, X. R., He, X. Y., Li, M. X., Zhang, R. X., Fan, P. P., Zhang, Q. L. & Jia, Z. P. (2010). J. Ethnopharmacol. 128, 279-313.]). Flavonoids isolated from plants of the genus Scutellaria L. exhibit anti­tumor (Yu et al., 2007[Yu, J., Liu, H., Lei, J., Tan, W., Hu, X. & Zou, G. (2007). Phytother. Res. 21, 817-822.]), hepatoprotective (Jang et al., 2003[Jang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. & Kim, Y. C. (2003). Immunopharmacol. Immunotoxicol. 25, 585-594.]), anti­oxidant (Sauvage et al., 2010[Sauvage, S., Granger, M., Samson, E., Majumdar, A., Nigam, P. & Nahar, L. (2010). Oriental Pharmacy Experimental Medicine. 10, 304-309.]), anti-inflammatory (Dai et al., 2013[Dai, Z. J., Lu, W. F., Gao, J., Kang, H. F., Ma, Y. G., Zhang, S. Q., Diao, Y., Lin, S., Wang, X. J. & Wu, W. Y. (2013). BMC Complement. Altern. Med. 13, 240-248.]), anti­convulsant (Park et al., 2007[Park, H. G., Yoon, S. Y., Choi, J. Y., Lee, G. S., Choi, J. H., Shin, C. Y., Son, K. H., Lee, Y. S., Kim, W. K., Ryu, J. H., Ko, K. H. & Cheong, J. H. (2007). Eur. J. Pharmacol. 574, 112-119.]), anti­microbial (Arituluk et al., 2019[Arituluk, Z., Kocak, C., Renda, G., Ekizoglu, M. & Ezer, N. (2019). J Res Pharm. Pract. 23(3), 552-558.]) and anti­viral activity (Leonova et al., 2020[Leonova, G. N., Shutikova, A. L., Lubova, V. A. & Maistrovskaya, O. S. (2020). Bull. Exp. Biol. Med. 168, 665-668.]). The creation of drugs based on flavonoids is based on the establishment of the `chemical structure–pharmacological properties' relationship, and the determination of the structure of a new flavonoid may become a key starting point.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is presented in Fig. 1[link]. The benzo­pyran moieties are practically planar, with r.m.s. deviations of 0.01 Å. The mol­ecular conformation is restricted by the relative positions of the benzo­pyran unit and the phenyl ring, the dihedral angle between them being 6.4 (4)°. Atoms C3, C6, C7 and C8 of the meth­oxy substituent have an out-of-plane conformation with the meth­oxy groups at atoms C3 and C6 pointing in the same direction [C16—O2—C3—C2 = 109.3 (2) and C17—O5—C6—C5 = 66. 7(4)°], while the meth­oxy groups at atoms C7 and C8 point in opposite direction [C18—O6—C7—C6 = −56.3 (3) and C19—O7—C8—C7 = −91.4 (3)°]. The conformation of the mol­ecule is fixed because of the intra­molecular O4—H4⋯O3 hydrogen bond [2.599 (2) Å, 147°], which closes a six-membered ring with graph-set notation S(6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds into a two dimensional network parallel to the ab plane. A perspective view of the crystal packing in the unit cell is depicted in Fig. 2[link] and numerical details of the hydrogen bonds are presented in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.87 2.599 (2) 147
C16—H16A⋯O3 0.96 2.51 3.079 (3) 118
C16—H16B⋯O3i 0.96 2.39 3.258 (3) 150
C18—H18B⋯O5 0.96 2.28 2.897 (4) 121
C18—H18C⋯O7ii 0.96 2.53 3.278 (4) 135
C17—H17C⋯O4 0.96 2.52 3.010 (4) 111
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 2]
Figure 2
Crystal structure of the title compound in projection on the ac plane. Hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystals of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsuface.net]). The Hirshfeld surface mapped over dnorm (Fig. 3[link]) shows the expected bright-red spots near atoms O3, O7, H16B, which are involved in the C—H⋯O hydrogen-bonding inter­actions. Fingerprint plots (Fig. 4[link]) reveal that H⋯H and H⋯O/O⋯H inter­actions make the greatest contributions to the surface contacts, while H⋯C/C⋯H, O⋯C/C⋯O, C⋯C and O⋯O contacts are less significant.

[Figure 3]
Figure 3
The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (53.9%) and H⋯O/O⋯H (20.9%) inter­actions.
[Figure 4]
Figure 4
Full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a), and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) O⋯C/C⋯O, (f) C⋯C and (g) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 311 hits for the term `flavones'. Among these, nine are tetra­meth­oxy­flavones: 3,4′,6,7 (DAVREN; Geng et al., 2011[Geng, H.-W., Wang, G.-C., Li, G.-Q., Jiang, R.-W. & Li, Y.-L. (2011). Acta Cryst. E67, o2733.]), 6,2′3′,4′- (JEMGIN; Wallet et al., 1990a[Wallet, J.-C., Gaydou, E., Tinant, B., Declercq, J.-P., Baldy, A. & Bonifassi, P. (1990a). Acta Cryst. C46, 1131-1133.]) and 2′,4′,5,7- (KEPLEW; Wallet et al., 1990b[Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990b). Acta Cryst. C46, 1536-1540.]), 3,4′,6,7- (MENSII; Meng et al., 2006[Meng, Z.-L., Qi, Y.-Y., Liu, R.-M., Sun, A.-L. & Wang, D.-Q. (2006). Acta Cryst. E62, o3831-o3832.]), 3′,4′,5,7- (PIQPEK; Shoja, 1997[Shoja, M. (1997). Z. Kristallogr. New Cryst. Struct. 212, 385-386.]), 3,4′5,7- (PUGKEI; Aree et al., 2009[Aree, T. & Sawasdee, P. (2009). Acta Cryst. E65, o2706.]), 3′,5,5′,6- (TMOFLV10; Ting et al., 1972[Ting, H.-Y., Watson, W. H. & Domínguez, X. A. (1972). Acta Cryst. B28, 1046-1051.]), 3,7,4′,5′- (YASCIF; Etti et al., 2005[Etti, S., Shanmugam, G., Ponnuswamy, M. N., Balakrishna, K. & Vasanth, S. (2005). Acta Cryst. E61, o846-o848.]). The compound FATZOR (Vijayalakshmi et al., 1986[Vijayalakshmi, J., Rajan, S. S., Srinivasan, R. & Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752-1754.]) is also a 3,6,7,8 tetra­methyl­flavone, but with two hy­droxy substituents at the 5,4′-positions.

6. Synthesis and crystallization

Air-dried whole plants (1.1 kg) of Scutellaria nepetoides M. Pop. were extracted three times (each 3 h) with butanol (5 l) at 353 K. The butanol filtrates were collected and concentrated under reduced pressure to provide 10.2 g of butanol extract. The butanol extract (1 g) was subjected to silica gel (60–100 mesh) column (gradient of butanol:water = 0:1, 2:8, 1:1, 8:2, 1:0) as eluent, and five fractions were collected according to TLC analysis. All fractions were concentrated under reduced pressure. A crystallization procedure with different solvents at high temperature was used to obtain the pure compounds. Fraction 5 (0.23 g) was eluted with butanol (100%) at 353 K and with ethanol (95%) at 343 K. The obtained polycrystals were removed from the butanol solution by filtration. Yellow prismatic single crystals were prepared by slow evaporation of butanol solution at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH3), 0.93 Å (aryl H) and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) (aryl H) and 1.5Ueq(C-methyl, O).

Table 2
Experimental details

Crystal data
Chemical formula C19H18O7
Mr 358.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 5.0789 (4), 8.0801 (6), 20.8682 (19)
α, β, γ (°) 92.481 (7), 91.984 (7), 94.253 (6)
V3) 852.62 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.90
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Agilent Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.818, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6484, 3458, 2408
Rint 0.023
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.03
No. of reflections 3458
No. of parameters 240
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.18
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc.,Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994).

5-Hydroxy-3,6,7,8-tetramethoxy-2-phenyl-4H-chromen-4-one top
Crystal data top
C19H18O7Z = 2
Mr = 358.33F(000) = 376
Triclinic, P1Dx = 1.396 Mg m3
a = 5.0789 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.0801 (6) ÅCell parameters from 1498 reflections
c = 20.8682 (19) Åθ = 5.5–75.0°
α = 92.481 (7)°µ = 0.90 mm1
β = 91.984 (7)°T = 293 K
γ = 94.253 (6)°Prism, yellow
V = 852.62 (12) Å30.03 × 0.02 × 0.01 mm
Data collection top
Agilent Xcalibur, Ruby
diffractometer
Rint = 0.023
Radiation source: Enhance (Cu) X-ray Sourceθmax = 76.1°, θmin = 4.2°
/ω scansh = 64
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
k = 109
Tmin = 0.818, Tmax = 1.000l = 2525
6484 measured reflections3 standard reflections every 100 reflections
3458 independent reflections intensity decay: 2.6%
2408 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.0534P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3458 reflectionsΔρmax = 0.22 e Å3
240 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4105 (3)0.28804 (17)0.27044 (7)0.0575 (4)
O20.3672 (3)0.59876 (19)0.39973 (8)0.0659 (4)
O70.3450 (3)0.10219 (19)0.16067 (8)0.0685 (4)
O30.0122 (3)0.69625 (19)0.30889 (9)0.0714 (5)
O40.2527 (4)0.6406 (2)0.20033 (9)0.0740 (5)
H40.2092830.6879100.2350510.111*
O60.0019 (3)0.1855 (2)0.06667 (8)0.0725 (5)
O50.3071 (4)0.4564 (2)0.08488 (9)0.0792 (5)
C90.2302 (4)0.3341 (2)0.22626 (10)0.0532 (5)
C20.4615 (4)0.3764 (2)0.32748 (10)0.0531 (5)
C10.6627 (4)0.3000 (2)0.36663 (10)0.0547 (5)
C30.3289 (4)0.5145 (2)0.34102 (10)0.0559 (5)
C100.0862 (4)0.4721 (2)0.23720 (11)0.0549 (5)
C80.1951 (4)0.2349 (3)0.17031 (11)0.0570 (5)
C40.1327 (4)0.5696 (3)0.29666 (11)0.0576 (5)
C50.1022 (4)0.5106 (3)0.19027 (12)0.0598 (5)
C70.0153 (4)0.2777 (3)0.12324 (11)0.0591 (5)
C110.7909 (5)0.1680 (3)0.33913 (12)0.0621 (5)
H110.7471620.1310030.2970100.074*
C60.1322 (4)0.4180 (3)0.13258 (12)0.0620 (5)
C131.0487 (5)0.1457 (3)0.43582 (13)0.0693 (6)
H131.1783850.0954830.4588880.083*
C120.9801 (5)0.0925 (3)0.37353 (13)0.0690 (6)
H121.0625010.0047880.3545800.083*
C150.7318 (5)0.3509 (3)0.42988 (11)0.0676 (6)
H150.6482430.4371720.4494930.081*
C140.9221 (5)0.2750 (3)0.46366 (13)0.0735 (7)
H140.9664830.3109080.5058550.088*
C160.5102 (5)0.7581 (3)0.39759 (14)0.0755 (7)
H16A0.4293000.8216920.3655630.113*
H16B0.6897820.7435220.3870500.113*
H16C0.5073120.8157780.4387270.113*
C180.2471 (6)0.1157 (4)0.04230 (15)0.0884 (9)
H18A0.2237240.0468700.0045680.133*
H18B0.3567370.2030340.0315830.133*
H18C0.3299560.0496830.0742210.133*
C190.2318 (8)0.0502 (3)0.1815 (2)0.1081 (11)
H19A0.0588290.0732000.1617210.162*
H19B0.2186260.0432940.2273420.162*
H19C0.3411330.1377460.1697340.162*
C170.2436 (9)0.6092 (4)0.05619 (19)0.1199 (14)
H17A0.3314070.6082300.0146760.180*
H17B0.0560500.6242120.0516460.180*
H17C0.3004120.6986310.0828120.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0628 (8)0.0517 (7)0.0575 (8)0.0094 (6)0.0003 (7)0.0097 (6)
O20.0782 (10)0.0584 (8)0.0601 (9)0.0080 (7)0.0036 (8)0.0145 (7)
O70.0779 (10)0.0586 (9)0.0692 (10)0.0145 (7)0.0065 (8)0.0124 (7)
O30.0744 (10)0.0578 (9)0.0823 (11)0.0181 (7)0.0011 (8)0.0153 (8)
O40.0755 (10)0.0626 (9)0.0847 (12)0.0200 (8)0.0046 (9)0.0056 (8)
O60.0745 (10)0.0820 (11)0.0589 (9)0.0029 (8)0.0009 (8)0.0155 (8)
O50.0868 (11)0.0719 (10)0.0773 (12)0.0038 (9)0.0178 (9)0.0043 (9)
C90.0550 (10)0.0496 (10)0.0547 (11)0.0038 (8)0.0037 (9)0.0023 (8)
C20.0550 (10)0.0492 (10)0.0541 (11)0.0013 (8)0.0058 (9)0.0070 (8)
C10.0545 (10)0.0497 (10)0.0591 (12)0.0011 (8)0.0036 (9)0.0022 (9)
C30.0616 (11)0.0486 (10)0.0565 (12)0.0016 (9)0.0064 (9)0.0079 (8)
C100.0585 (11)0.0474 (10)0.0583 (12)0.0025 (8)0.0050 (9)0.0016 (9)
C80.0612 (11)0.0510 (10)0.0585 (12)0.0047 (9)0.0063 (9)0.0053 (9)
C40.0595 (11)0.0472 (10)0.0657 (13)0.0040 (9)0.0096 (10)0.0058 (9)
C50.0591 (11)0.0503 (11)0.0702 (14)0.0062 (9)0.0036 (10)0.0006 (10)
C70.0628 (12)0.0570 (11)0.0560 (12)0.0022 (9)0.0039 (10)0.0046 (9)
C110.0675 (12)0.0539 (11)0.0639 (13)0.0065 (10)0.0025 (10)0.0081 (9)
C60.0617 (12)0.0585 (12)0.0651 (13)0.0012 (10)0.0036 (10)0.0039 (10)
C130.0669 (13)0.0645 (13)0.0766 (16)0.0085 (11)0.0065 (12)0.0067 (11)
C120.0695 (13)0.0565 (12)0.0816 (16)0.0148 (10)0.0023 (12)0.0039 (11)
C150.0737 (14)0.0685 (13)0.0608 (13)0.0133 (11)0.0015 (11)0.0085 (11)
C140.0782 (15)0.0806 (16)0.0610 (14)0.0112 (13)0.0066 (12)0.0056 (12)
C160.0753 (15)0.0613 (13)0.0871 (17)0.0041 (11)0.0025 (13)0.0212 (12)
C180.0800 (16)0.0908 (19)0.090 (2)0.0031 (14)0.0024 (14)0.0297 (15)
C190.129 (3)0.0560 (15)0.142 (3)0.0176 (16)0.020 (2)0.0052 (17)
C170.164 (4)0.085 (2)0.107 (3)0.005 (2)0.047 (3)0.0312 (19)
Geometric parameters (Å, º) top
O1—C91.360 (3)C5—C61.387 (3)
O1—C21.368 (2)C7—C61.414 (3)
O2—C31.376 (2)C11—C121.374 (3)
O2—C161.434 (3)C11—H110.9300
O7—C81.373 (3)C13—C121.376 (4)
O7—C191.413 (3)C13—C141.384 (4)
O3—C41.252 (3)C13—H130.9300
O4—C51.357 (3)C12—H120.9300
O4—H40.8200C15—C141.373 (4)
O6—C71.365 (3)C15—H150.9300
O6—C181.415 (3)C14—H140.9300
O5—C61.372 (3)C16—H16A0.9600
O5—C171.416 (4)C16—H16B0.9600
C9—C81.386 (3)C16—H16C0.9600
C9—C101.393 (3)C18—H18A0.9600
C2—C31.370 (3)C18—H18B0.9600
C2—C11.474 (3)C18—H18C0.9600
C1—C151.391 (3)C19—H19A0.9600
C1—C111.403 (3)C19—H19B0.9600
C3—C41.444 (3)C19—H19C0.9600
C10—C51.406 (3)C17—H17A0.9600
C10—C41.443 (3)C17—H17B0.9600
C8—C71.390 (3)C17—H17C0.9600
C9—O1—C2121.52 (16)C5—C6—C7119.4 (2)
C3—O2—C16114.26 (18)C12—C13—C14119.1 (2)
C8—O7—C19114.8 (2)C12—C13—H13120.4
C5—O4—H4109.5C14—C13—H13120.4
C7—O6—C18119.0 (2)C11—C12—C13120.5 (2)
C6—O5—C17115.0 (2)C11—C12—H12119.7
O1—C9—C8116.32 (18)C13—C12—H12119.7
O1—C9—C10121.69 (19)C14—C15—C1120.7 (2)
C8—C9—C10122.0 (2)C14—C15—H15119.7
O1—C2—C3119.82 (19)C1—C15—H15119.7
O1—C2—C1110.68 (17)C15—C14—C13120.9 (2)
C3—C2—C1129.50 (19)C15—C14—H14119.5
C15—C1—C11117.9 (2)C13—C14—H14119.5
C15—C1—C2123.54 (19)O2—C16—H16A109.5
C11—C1—C2118.60 (19)O2—C16—H16B109.5
C2—C3—O2120.3 (2)H16A—C16—H16B109.5
C2—C3—C4121.67 (19)O2—C16—H16C109.5
O2—C3—C4117.84 (18)H16A—C16—H16C109.5
C9—C10—C5118.9 (2)H16B—C16—H16C109.5
C9—C10—C4119.0 (2)O6—C18—H18A109.5
C5—C10—C4122.2 (2)O6—C18—H18B109.5
O7—C8—C9120.3 (2)H18A—C18—H18B109.5
O7—C8—C7121.05 (19)O6—C18—H18C109.5
C9—C8—C7118.6 (2)H18A—C18—H18C109.5
O3—C4—C10121.9 (2)H18B—C18—H18C109.5
O3—C4—C3121.7 (2)O7—C19—H19A109.5
C10—C4—C3116.34 (18)O7—C19—H19B109.5
O4—C5—C6119.3 (2)H19A—C19—H19B109.5
O4—C5—C10120.4 (2)O7—C19—H19C109.5
C6—C5—C10120.2 (2)H19A—C19—H19C109.5
O6—C7—C8117.0 (2)H19B—C19—H19C109.5
O6—C7—C6122.1 (2)O5—C17—H17A109.5
C8—C7—C6120.8 (2)O5—C17—H17B109.5
C12—C11—C1120.9 (2)H17A—C17—H17B109.5
C12—C11—H11119.5O5—C17—H17C109.5
C1—C11—H11119.5H17A—C17—H17C109.5
O5—C6—C5121.6 (2)H17B—C17—H17C109.5
O5—C6—C7119.0 (2)
C2—O1—C9—C8179.93 (18)C2—C3—C4—C100.5 (3)
C2—O1—C9—C100.8 (3)O2—C3—C4—C10176.28 (18)
C9—O1—C2—C30.1 (3)C9—C10—C5—O4177.6 (2)
C9—O1—C2—C1179.66 (17)C4—C10—C5—O41.6 (3)
O1—C2—C1—C15172.2 (2)C9—C10—C5—C63.7 (3)
C3—C2—C1—C157.3 (4)C4—C10—C5—C6177.1 (2)
O1—C2—C1—C117.3 (3)C18—O6—C7—C8128.1 (3)
C3—C2—C1—C11173.2 (2)C18—O6—C7—C656.3 (3)
O1—C2—C3—O2176.21 (17)O7—C8—C7—O62.2 (3)
C1—C2—C3—O23.2 (3)C9—C8—C7—O6174.70 (19)
O1—C2—C3—C40.6 (3)O7—C8—C7—C6177.85 (19)
C1—C2—C3—C4178.9 (2)C9—C8—C7—C61.0 (3)
C16—O2—C3—C2109.3 (2)C15—C1—C11—C120.5 (3)
C16—O2—C3—C474.9 (2)C2—C1—C11—C12180.0 (2)
O1—C9—C10—C5178.38 (18)C17—O5—C6—C566.7 (4)
C8—C9—C10—C50.7 (3)C17—O5—C6—C7115.1 (3)
O1—C9—C10—C40.8 (3)O4—C5—C6—O51.2 (4)
C8—C9—C10—C4179.88 (19)C10—C5—C6—O5177.50 (19)
C19—O7—C8—C991.8 (3)O4—C5—C6—C7177.0 (2)
C19—O7—C8—C791.4 (3)C10—C5—C6—C74.4 (3)
O1—C9—C8—O72.4 (3)O6—C7—C6—O54.3 (3)
C10—C9—C8—O7178.53 (19)C8—C7—C6—O5179.8 (2)
O1—C9—C8—C7179.25 (18)O6—C7—C6—C5177.5 (2)
C10—C9—C8—C71.7 (3)C8—C7—C6—C52.0 (3)
C9—C10—C4—O3179.0 (2)C1—C11—C12—C130.3 (4)
C5—C10—C4—O31.8 (3)C14—C13—C12—C110.8 (4)
C9—C10—C4—C30.2 (3)C11—C1—C15—C140.8 (4)
C5—C10—C4—C3179.03 (19)C2—C1—C15—C14179.7 (2)
C2—C3—C4—O3179.7 (2)C1—C15—C14—C130.3 (4)
O2—C3—C4—O34.6 (3)C12—C13—C14—C150.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.872.599 (2)147
C16—H16A···O30.962.513.079 (3)118
C16—H16B···O3i0.962.393.258 (3)150
C18—H18B···O50.962.282.897 (4)121
C18—H18C···O7ii0.962.533.278 (4)135
C17—H17C···O40.962.523.010 (4)111
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

We are especially grateful to Jamshid Ashurov DSc for help in discussing the results.

Funding information

Funding for this research was provided by: Chinese Academy of Sciences Center of Drag Discovery and Development Center of Central Asia (grant No. CAM 201907).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAree, T. & Sawasdee, P. (2009). Acta Cryst. E65, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArituluk, Z., Kocak, C., Renda, G., Ekizoglu, M. & Ezer, N. (2019). J Res Pharm. Pract. 23(3), 552–558.  Google Scholar
First citationDai, Z. J., Lu, W. F., Gao, J., Kang, H. F., Ma, Y. G., Zhang, S. Q., Diao, Y., Lin, S., Wang, X. J. & Wu, W. Y. (2013). BMC Complement. Altern. Med. 13, 240–248.  Web of Science CrossRef PubMed Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtti, S., Shanmugam, G., Ponnuswamy, M. N., Balakrishna, K. & Vasanth, S. (2005). Acta Cryst. E61, o846–o848.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeng, H.-W., Wang, G.-C., Li, G.-Q., Jiang, R.-W. & Li, Y.-L. (2011). Acta Cryst. E67, o2733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. & Kim, Y. C. (2003). Immunopharmacol. Immunotoxicol. 25, 585–594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeonova, G. N., Shutikova, A. L., Lubova, V. A. & Maistrovskaya, O. S. (2020). Bull. Exp. Biol. Med. 168, 665–668.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeng, Z.-L., Qi, Y.-Y., Liu, R.-M., Sun, A.-L. & Wang, D.-Q. (2006). Acta Cryst. E62, o3831–o3832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, H. G., Yoon, S. Y., Choi, J. Y., Lee, G. S., Choi, J. H., Shin, C. Y., Son, K. H., Lee, Y. S., Kim, W. K., Ryu, J. H., Ko, K. H. & Cheong, J. H. (2007). Eur. J. Pharmacol. 574, 112–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSauvage, S., Granger, M., Samson, E., Majumdar, A., Nigam, P. & Nahar, L. (2010). Oriental Pharmacy Experimental Medicine. 10, 304–309.  Google Scholar
First citationShang, X. F., He, X. R., He, X. Y., Li, M. X., Zhang, R. X., Fan, P. P., Zhang, Q. L. & Jia, Z. P. (2010). J. Ethnopharmacol. 128, 279–313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoja, M. (1997). Z. Kristallogr. New Cryst. Struct. 212, 385–386.  Web of Science CrossRef CAS Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationTing, H.-Y., Watson, W. H. & Domínguez, X. A. (1972). Acta Cryst. B28, 1046–1051.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsuface.net  Google Scholar
First citationVijayalakshmi, J., Rajan, S. S., Srinivasan, R. & Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 1752–1754.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWallet, J.-C., Gaydou, E., Tinant, B., Declercq, J.-P., Baldy, A. & Bonifassi, P. (1990a). Acta Cryst. C46, 1131–1133.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990b). Acta Cryst. C46, 1536–1540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYu, J., Liu, H., Lei, J., Tan, W., Hu, X. & Zou, G. (2007). Phytother. Res. 21, 817–822.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds