research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

X-ray crystal structure of trans-bis­­(pyridin-3-yl)ethyl­ene: comparing the supra­molecular structural features among the symmetrical bis­­(n-pyrid­yl)ethyl­enes (n = 2, 3, or 4) constitutional isomers

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, IA 52242-1290, USA, and bRigaku Oxford Diffraction, 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: len-macgillivray@uiowa.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 13 October 2020; accepted 16 November 2020; online 24 November 2020)

The mol­ecular structure of trans-bis­(pyridin-3-yl)ethyl­ene (3,3′-bpe), C12H10N2, as determined by single-crystal X-ray diffraction is reported. The mol­ecule self-assembles into two dimensional arrays by a combination of C—H⋯N hydrogen bonds and edge-to-face C—H⋯π inter­actions that stack in a herringbone arrangement perpendicular to the crystallographic c-axis. The supra­molecular forces that direct the packing of 3,3′-bpe as well as its packing assembly within the crystal are also compared to those observed within the structures of the other symmetrical isomers trans-1,2-bis­(n-pyrid­yl)ethyl­ene (n,n′-bpe, where n = n′ = 2 or 4).

1. Chemical context

Bis(pyrid­yl)ethyl­enes have arisen as somewhat of a natural extension of cinnamic acid as a series of mol­ecules capable of undergoing [2+2] photodimerization in the solid state to generate cyclo­butanes. Foundational work by Schmidt and coworkers on trans-cinnamic acids led to the formation of the `Topochemical Postulate', which dictated that olefins within 4.2 Å of one another are capable of undergoing the photodimerization process. Unlike cinnamic acid, which crystallizes in such a way that the olefins are rendered photoactive (olefins within 4.2 Å of one another), the native crystalline forms of bis­(pyrid­yl)ethyl­enes are photostable (olefins separated by distances > 4.2 Å in the crystal). To achieve photoreactivity of these olefins, it often becomes necessary to use a `mol­ecular template' that can inter­act with the olefin-containing bi­pyridine via supra­molecular inter­actions such as hydrogen bonding, halogen bonding, argento- and aurophilic inter­actions, and dative N→B inter­actions. Analyses of the crystal structures of symmetric bis­(pyrid­yl)ethyl­enes derivatives such as the trans-bis­(n-pyrid­yl)ethyl­enes series of isomers (n = 2, 3 or 4) is necessary to understand the forces that govern their crystallization, why they are photostable, and why use templates to achieve photoreactivity (Campillo-Alvarado et al., 2019[Campillo-Alvarado, G., Li, C., Swenson, D. C. & MacGillivray, L. R. (2019). Cryst. Growth Des. 19, 2511-2518.]; Chanthapally et al., 2014[Chanthapally, A., Oh, W. T. & Vittal, J. J. (2014). Chem. Commun. 50, 451-453.]; MacGillivray et al., 2008[MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280-291.]; Pahari et al., 2019[Pahari, G., Bhattacharya, B., Reddy, C. M. & Ghoshal, D. (2019). Chem. Commun. 55, 12515-12518.]; Sezer et al., 2017[Sezer, G. G., Yeşilel, O. Z. & Büyükgüngör, O. (2017). J. Mol. Struct. 1137, 562-568.]; Volodin et al., 2018[Volodin, A. D., Korlyukov, A. A., Zorina-Tikhonova, E. N., Chistyakov, A. S., Sidorov, A. A., Eremenko, I. L. & Vologzhanina, A. V. (2018). Chem. Commun. 54, 13861-13864.]).

[Scheme 1]

2. Structural commentary

The alkene 3,3′-bpe crystallizes in the centrosymmetric monoclinic space group P21/n (Fig. 1[link]). The asymmetric unit consists of one-half mol­ecule of 3,3′-bpe with the C=C bond sitting on a crystallographic center of inversion. The pyridyl rings adopt an anti-conformation with respect to each other (Fig. 1[link]).

[Figure 1]
Figure 1
Single crystal structure for trans-bis­(pyridin-3-yl)ethyl­ene (3,3′-bpe) with anisotropic displacement ellipsoids at 50% probability.

3. Supra­molecular features

Adjacent 3,3′-bpe mol­ecules inter­act primarily via edge-to-face C—H⋯π[d(C6⋯pyr) 3.58 Å; Θ(C6—H6⋯pyr) 131.8°] forces between pyridyl rings (Fig. 2[link]). Those rings also participate in C—H⋯N [d(C4⋯N1) 3.59 Å; Θ(C4—H4⋯N1) 139.5°] hydrogen bonds (Fig. 2[link]). The forces generate nearly planar sheets (Fig. 3[link]), which aggregate into a herringbone arrangement of adjacent sheets (Fig. 4[link]). Nearest-neighbor alkene C=C bonds of 3,3′-bpe between adjacent sheets reveals a parallel, but offset orientation of the neighboring alkenes relative to one another at a distance of 5.50 Å. The distance exceeds the inter-alkene separation of Schmidt for photodimerizarion and suggests that 3,3′-bpe is photostable (Schmidt, 1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]).

[Figure 2]
Figure 2
C—H⋯N and edge-to-face C—H⋯π inter­molecular inter­actions (both yellow dotted lines) highlighting nearest-neighbor alkene separations (red dashed arrow) (view along a).
[Figure 3]
Figure 3
Edge-on view of sheets encompassing neighboring mol­ecules of 3,3′-bpe supported by C—H⋯N and C—H⋯π inter­molecular inter­actions.
[Figure 4]
Figure 4
Herringbone arrangement of neighboring sheets of 3,3′-bpe mol­ecules.

4. Database survey

For the n,n′-bpe (where: n = n′ = 2, 3, or 4) series of symmetric alkenes, all three adopt nearly planar conformations (Table 1[link]), with the pyridyl rings of 3,3′-bpe and 2,2′-bpe adopting anti-conformations with respect to each other. The packings of the symmetric alkenes are defined by combinations of C—H⋯π and/or C—H⋯N hydrogen bonds (Table 1[link]) to form either one-dimensional chain (2,2′-bpe, Fig. 5[link]) or two-dimensional sheet (3,3′-bpe and 4,4′-bpe) structures (Fig. 6[link]). Similar to 3,3′-bpe, the alkene C=C bonds of 2,2′-bpe (6.09 Å; Vansant et al., 1980[Vansant, J., Smets, G., Declercq, J. P., Germain, G. & Van Meerssche, M. (1980). J. Org. Chem. 45, 1557-1565.]) and 4,4′-bpe (5.72 Å; Tinnemans et al., 2018[Tinnemans, P. & Brugman, S. (2018). Private communication (deposition number CCDC 1843770. CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1zwlgx.]) (Table 1[link]) are beyond the separation distance of Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647-678.]).

Table 1
Structural features of the n,n′-bpe series of constitutional isomers

The twist angle is defined as the angle between the plane defined by the four alkene atoms and the plane defined by either pyridine ring.

Compound 2,2′-bpe 3,3′-bpe 4,4′-bpe
Twist angle φ (°) 7.43 5.17 9.14
Solid-state packing assembly corrugated chains approximately planar sheets planar sheets
Assembly forces edge-to-face C—H⋯π edge-to-face C—H⋯π, C—H⋯N C—H⋯N, face-to-face ππ
Nearest-neighbor alkene separation (Å) 6.09 5.50 5.72
[Figure 5]
Figure 5
Corrugated, one-dimensional chains of 2,2′-bpe.
[Figure 6]
Figure 6
Planar, two-dimensional sheets of 4,4′-bpe.

5. Synthesis and crystallization

The alkene 3,3′-bpe was prepared as described (Quentin et al., 2020[Quentin, J. & MacGillivray, L. R. (2020). ChemPhysChem, 21, 154-163.]; Gordillo et al., 2007[Gordillo, A., de Jesús, E. & López-Mardomingo, C. (2007). Chem. Commun. 4056-4058.], 2013[Gordillo, A., Ortuño, M. A., López-Mardomingo, C., Lledós, A., Ujaque, G. & de Jesús, E. (2013). J. Am. Chem. Soc. 135, 13749-13763.]) via a one-pot, aqueous Pd-catalyzed Hiyama-Heck cross-coupling between 3-bromo­pyridine and tri­eth­oxy­vinyl­silane (2:1 molar ratio) (Fig. 7[link]). Flash chromatography (SiO2, 10% MeOH/CH2Cl2) furnished 3,3′-bpe as yellow crystals: 222.3 mg (23%). A portion of 3,3′-bpe was dissolved in CHCl3 and allowed to slowly evaporate at room temperature. Single crystals in the form of colorless plates suitable for single crystal X-ray diffraction formed within seven days.

[Figure 7]
Figure 7
Synthesis of 3,3′-bpe via Pd-catalyzed Hiyama–Heck cross-coupling.

6. Refinement

Crystal data, data collection and structure refinement details for 3,3′-bpe are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were located in the difference-Fourier map and freely refined with 0.93 < C—H < 0.99 Å. Refinement of the hydrogen atoms led to a data-to-parameter ratio of ∼10. The single-crystal data were collected at room temperature to best reflect conditions under which photochemical reactions are typically conducted. Room-temperature data can also lead to fewer reflections and/or scaling anomalies.

Table 2
Experimental details

Crystal data
Chemical formula C12H10N2
Mr 182.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.4591 (7), 5.5045 (6), 11.7803 (12)
β (°) 99.638 (5)
V3) 476.86 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.989, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 2410, 836, 587
Rint 0.034
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.07
No. of reflections 836
No. of parameters 84
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.13, −0.16
Computer programs: COLLECT (Nonius, 1988[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: HKL SCALEPACK (Otwinowski & Minor, 1997); cell refinement: COLLECT (Nonius, 1998); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-1,2-Bis(pyridin-3-yl)ethene top
Crystal data top
C12H10N2F(000) = 192
Mr = 182.22Dx = 1.269 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4591 (7) ÅCell parameters from 1169 reflections
b = 5.5045 (6) Åθ = 1.0–26.7°
c = 11.7803 (12) ŵ = 0.08 mm1
β = 99.638 (5)°T = 296 K
V = 476.86 (8) Å3Plate, colourless
Z = 20.18 × 0.12 × 0.06 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
CCD phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.989, Tmax = 0.995k = 66
2410 measured reflectionsl = 1313
836 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.056P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
836 reflectionsΔρmax = 0.13 e Å3
84 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5400 (2)0.7577 (3)0.63093 (15)0.0609 (6)
C20.2479 (2)0.5639 (3)0.57302 (15)0.0459 (5)
C30.3752 (3)0.7464 (4)0.56601 (17)0.0537 (6)
C60.2998 (3)0.3821 (4)0.65272 (17)0.0529 (6)
C40.5835 (3)0.5788 (4)0.70678 (19)0.0564 (6)
C10.0695 (3)0.5737 (4)0.49890 (16)0.0509 (6)
C50.4688 (3)0.3894 (4)0.71993 (19)0.0556 (6)
H40.705 (3)0.590 (3)0.7528 (19)0.062 (6)*
H30.345 (3)0.875 (4)0.507 (2)0.068 (6)*
H50.504 (3)0.265 (4)0.7803 (18)0.063 (6)*
H60.215 (3)0.250 (4)0.6607 (17)0.066 (6)*
H10.051 (3)0.706 (4)0.4498 (19)0.071 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (11)0.0569 (11)0.0674 (11)0.0077 (8)0.0048 (9)0.0012 (9)
C20.0493 (11)0.0476 (11)0.0416 (10)0.0010 (9)0.0103 (8)0.0024 (8)
C30.0562 (13)0.0522 (13)0.0519 (12)0.0045 (9)0.0068 (10)0.0027 (10)
C60.0491 (12)0.0522 (13)0.0585 (13)0.0029 (9)0.0120 (10)0.0048 (10)
C40.0465 (12)0.0671 (14)0.0551 (12)0.0010 (10)0.0069 (10)0.0019 (11)
C10.0553 (12)0.0526 (12)0.0448 (11)0.0034 (8)0.0085 (9)0.0020 (10)
C50.0517 (12)0.0591 (13)0.0570 (12)0.0067 (9)0.0117 (10)0.0095 (10)
Geometric parameters (Å, º) top
N1—C31.336 (3)C6—H60.98 (2)
N1—C41.333 (3)C4—C51.374 (3)
C2—C31.395 (3)C4—H40.98 (2)
C2—C61.382 (3)C1—C1i1.320 (4)
C2—C11.465 (3)C1—H10.93 (2)
C3—H30.99 (2)C5—H50.99 (2)
C6—C51.372 (3)
C4—N1—C3116.54 (18)N1—C4—C5123.4 (2)
C3—C2—C1119.85 (19)N1—C4—H4115.2 (11)
C6—C2—C3116.44 (19)C5—C4—H4121.4 (11)
C6—C2—C1123.71 (18)C2—C1—H1115.3 (13)
N1—C3—C2124.8 (2)C1i—C1—C2127.1 (3)
N1—C3—H3116.6 (12)C1i—C1—H1117.4 (13)
C2—C3—H3118.6 (12)C6—C5—C4119.1 (2)
C2—C6—H6119.4 (12)C6—C5—H5120.0 (11)
C5—C6—C2119.80 (19)C4—C5—H5120.8 (11)
C5—C6—H6120.8 (12)
N1—C4—C5—C60.5 (3)C6—C2—C3—N10.7 (3)
C2—C6—C5—C40.2 (3)C6—C2—C1—C1i4.7 (4)
C3—N1—C4—C50.1 (3)C4—N1—C3—C20.5 (3)
C3—C2—C6—C50.3 (3)C1—C2—C3—N1178.62 (17)
C3—C2—C1—C1i174.6 (2)C1—C2—C6—C5178.96 (17)
Symmetry code: (i) x, y+1, z+1.
Structural features of the n,n'-bpe series of constitutional isomers. top
The twist angle is defined as the angle between the plane defined by the four alkene atoms and the plane defined by either pyridine ring.
Compound2,2'-bpe3,3'-bpe4,4'-bpe
Twist angle φ (°)7.435.179.14
Solid-state packing assemblycorrugated chainsapproximately planar sheetsplanar sheets
Assembly forcesedge-to-face C-H···πedge-to-face C—H···π, C—H···NC—H···N, face-to-face ππ
Nearest-neighbor alkene separation (Å)6.095.505.72
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-1708673 to L. R. MacGillivray).

References

First citationCampillo-Alvarado, G., Li, C., Swenson, D. C. & MacGillivray, L. R. (2019). Cryst. Growth Des. 19, 2511–2518.  CAS Google Scholar
First citationChanthapally, A., Oh, W. T. & Vittal, J. J. (2014). Chem. Commun. 50, 451–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGordillo, A., de Jesús, E. & López-Mardomingo, C. (2007). Chem. Commun. 4056–4058.  Google Scholar
First citationGordillo, A., Ortuño, M. A., López-Mardomingo, C., Lledós, A., Ujaque, G. & de Jesús, E. (2013). J. Am. Chem. Soc. 135, 13749–13763.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPahari, G., Bhattacharya, B., Reddy, C. M. & Ghoshal, D. (2019). Chem. Commun. 55, 12515–12518.  CSD CrossRef CAS Google Scholar
First citationQuentin, J. & MacGillivray, L. R. (2020). ChemPhysChem, 21, 154–163.  CrossRef CAS PubMed Google Scholar
First citationSchmidt, G. M. J. (1971). Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSezer, G. G., Yeşilel, O. Z. & Büyükgüngör, O. (2017). J. Mol. Struct. 1137, 562–568.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTinnemans, P. & Brugman, S. (2018). Private communication (deposition number CCDC 1843770. CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc1zwlgx.  Google Scholar
First citationVansant, J., Smets, G., Declercq, J. P., Germain, G. & Van Meerssche, M. (1980). J. Org. Chem. 45, 1557–1565.  CSD CrossRef CAS Web of Science Google Scholar
First citationVolodin, A. D., Korlyukov, A. A., Zorina-Tikhonova, E. N., Chistyakov, A. S., Sidorov, A. A., Eremenko, I. L. & Vologzhanina, A. V. (2018). Chem. Commun. 54, 13861–13864.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds