research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two acyclic imides: 3-bromo-N-(3-bromo­benzo­yl)-N-(pyridin-2-yl)benzamide and 3-bromo-N-(3-bromo­benzo­yl)-N-(pyrimidin-2-yl)benzamide

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland
*Correspondence e-mail: john.gallagher@dcu.ie

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 October 2020; accepted 29 October 2020; online 3 November 2020)

The title compounds, C19H12Br2N2O2 and C18H11Br2N3O2, were synthesized in good yields from condensation reactions of 3-bromo­benzoyl chloride with 2-amino­pyridine or 2-amino­pyrimidine using standard condensation reaction conditions and subsequent column chromatography.

1. Chemical context

Acyclic imide chemistry, as RCON(R′)COR, (where R,R′ are aryl or alkyl groups) has developed over the past 130 years from condensation reactions of benzoyl chlorides with amino-aromatics such as 2-amino­pyridines or 2-amino­pyrimidines (Marckwald, 1894[Marckwald, W. (1894). Ber. Dtsch. Chem. Ges. 27, 1317-1339.]; Tschitschibabin & Bylinkin, 1922[Tschitschibabin, A. E. & Bylinkin, J. G. (1922). Ber. Dtsch. Chem. Ges. A/B, 55, 998-1002.]; Huntress & Walter, 1948[Huntress, E. W. & Walter, H. C. (1948). J. Org. Chem. 13, 735-737.]). From these reactions, a mixture of the benzamide and acyclic imide is usually obtained, with the relative yields of each component dependent on the starting materials and reaction conditions. The imides can also be synthesized directly from a benzamide starting material. The presence of an ortho-N in the benzamide heteroaromatic ring is an important feature needed to obtain the imide derivative in good yields (Mocilac et al., 2010[Mocilac, P., Tallon, M., Lough, A. J. & Gallagher, J. F. (2010). CrystEngComm, 12, 3080-3090.], 2012[Mocilac, P., Donnelly, K. & Gallagher, J. F. (2012). Acta Cryst. B68, 189-203.]; Khavasi & Tehrani, 2013[Khavasi, H. R. & Tehrani, A. A. (2013). CrystEngComm, 15, 3222-3235.]).

[Scheme 1]

Several RCON(R′)COR structures have been reported (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and derive mostly from either R′ = benzene (Baell et al., 2001[Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. & Mulder, R. J. (2001). J. Comput. Aided Mol. Des. 15, 1119-1136.]) or R′ = pyridine or pyrimidine groups (Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.],b[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486-o487.]; Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]). Related imide structures include the halo­imide N-(2,4-di­chloro­phen­yl)-2-methyl-N-(2-nitro­benzo­yl)benzamide (Saeed et al., 2010[Saeed, A., Hussain, S., Abbas, N. & Bolte, M. (2010). J. Chem. Crystallogr. 40, 919-923.]) or CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode LAKXIG. LAKXIG adopts an open imide or anti conformation with respect to the benzoyl rings and is notable for having three different ortho-benzene substituents. QADPER or N-(3-meth­oxy­phen­yl)-N-(3-meth­oxy­benzo­yl)benzamide, a meth­oxy­imide derivative has been studied in the design and synthesis of type-III mimetics of the ω-conotoxin GVIA polypeptide (Baell et al., 2001[Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. & Mulder, R. J. (2001). J. Comput. Aided Mol. Des. 15, 1119-1136.]) and is similar in structure to several haloaromatic imides (Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.],b[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486-o487.]; Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]; Shukla et al., 2018[Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280-288.]). Kohmoto et al., (2001[Kohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. & Yamamoto, M. (2001). Org. Lett. 3, 4153-4155.]) have described a series of 9-anthryl-N-(naphthyl­carbon­yl)carboxamides having the syn-type structure and has been used in photo­cyclo­addition reactions. Masu et al., (2005[Masu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423-1431.]) expanded on this research into di­imides to develop foldamer chemistry with the central moiety in these imide structures usually being an alkyl aromatic group.

In recent research on macrocyclic imides, we and others have noted the role of the imide hinge in the development of macrocyclic imides (Evans & Gale, 2004[Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286-1287.]; Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.]). Both syn and anti types of acyclic imide conformation have been observed in the macrocycles. It has been noted how this affects the formation of both trezimide and tennimide macrocycles and with the syn conformation essential for trezimide formation (Mocilac & Gallagher, 2013[Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355-2361.]). Further studies are needed to demonstrate the ease with which the two distinct conformations can inter­convert in acyclic imides.

2. Structural commentary

From the condensation reaction of meta-BrC6H4COCl with 2-amino­pyridine and 2-amino­pyrimidine, the benzamide and imide products were obtained and separated by standard column chromatography for each reaction. Using 2-amino­pyridine, Brmo and Brmod, (I) were obtained and for 2-amino­pyrimidine, Brmopz and Brmopzd, (II) were isolated. Brmo and Brmopz are the (1:1) benzamide products, whereas Brmod, (I) and Brmopzd, (II) are the (2:1) acyclic imides. Both (I) and (II) (Figs. 1[link]–2[link]) adopt similar mol­ecular structures to the majority of published structures (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.],b[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486-o487.]) but they differ in their supra­molecular features (Figs. 3[link]–7[link][link][link][link]). Both mol­ecules lack strong donor groups (no amide group as in the benzamides; Donnelly et al., 2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]) but have strong acceptors such as O=C and N-heteroaromatic rings that are able to participate in many weaker inter­molecular inter­actions in their crystal structures, not to mention potential π-ring aromatic stacking and C—H⋯π inter­actions (Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]; Nishio, 2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]).

[Figure 1]
Figure 1
An ORTEP view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
An ORTEP view of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
A schematic diagram of the hydrogen- and halogen-bonding inter­actions in the crystal structure of (I).
[Figure 4]
Figure 4
A schematic diagram of the main inter­molecular inter­actions in the crystal structure of (II).
[Figure 5]
Figure 5
The inter­molecular inter­actions in (I) (C19 H12 Br2 N2 O2′a) with displacement ellipsoids at the 30% level.
[Figure 6]
Figure 6
Inter­molecular inter­actions in (I) with atoms depicted as their van der Waals spheres.
[Figure 7]
Figure 7
Inter­molecular inter­actions in (II) (shown with arrows) and with atoms depicted as their van der Waals spheres.

A comparison of acyclic imides and their key torsion angles demonstrates the range of angles observed and the key differences between the syn (carbonyl O⋯O separations of ∼4.5 Å) and anti conformations (O⋯O separations of ∼3.7 Å) in crystal structures (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In (I) the O1⋯O2 distance is 3.871 (3) Å and the O1=C1⋯C2=O2 torsion angle is −109.3 (5)° compared to an O1⋯O2 = 3.646 (5) Å distance and an O1—C1⋯C2=O2 torsion angle of −96.6 (5)° in (II). We have also previously used the cisoid and transoid terminology for the disposition of the two C=O groups; this is used to describe the orientation and direction of the C=O groups/aromatic rings with respect to one another (Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]).

3. Supra­molecular features

The prevalent anti-conformation imide structural type is demonstrated in the structures of both (I) and (II) and is similar to the mol­ecular structures of the ortho-F (SOLSUI) and meta-F (DOKXOR) imide structures (Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.],b[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486-o487.]), the chloro- and methyl-imides (Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]) and two benzene relatives (Shukla et al., 2018[Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280-288.]). This contrasts with the syn type as observed in the crystal structure of Mood, a 2-methyl­benzoyl imide (Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]) and the four recently described SEYSUN/SEYTIC/SEYTOI/SEYTUO structures (Shukla et al., 2018[Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280-288.]). A key difference between these structures is the central N-pyridine ring in Mood (Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.],b[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486-o487.]) and N-benzene rings in the SEYSUN-type structures (Shukla et al., 2018[Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280-288.]).

In (I), the Brmod mol­ecules aggregate as dimers in a cyclical arrangement using the C32—H32⋯Br33ii and C2=O2⋯Br33ii inter­actions with the R21(6) motif. Two of these combine to form the centrosymmetric R22(12) motif as formed by the flanking C=O⋯Br—C halogen-bonding inter­actions (Figs. 3[link], 5[link] and 6[link]). The hydrogen bonding as H32⋯Br33ii has NC = 0.986 (Table 1[link]) where NC is the ratio of contact distance/sum of contact radii using data from Bondi (Bondi, 1965[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The halogen-bonding geometric details are Br33⋯O2ii = 3.287 Å (symmetry code ii; Table 1[link]) or NC = 0.975 with C33—Br33⋯O2ii = 156.85 (9)° and Br33⋯(O2=C2)ii = 134.11 (19)° angles. Centrosymmetric C—H⋯O hydrogen-bonding inter­actions as R22(10) link dimers into zigzag chains along the b-axis direction, whereas weak C—H⋯N inter­actions link chains into ruffled sheets parallel with the (100) plane (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for Brmod[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.41 3.330 (4) 170
C32—H32⋯Br33ii 0.93 3.01 3.896 (3) 162
C36—H36⋯N22iii 0.93 2.68 3.363 (4) 131
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x, -y+1, -z]; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for Brmopzd[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O1i 0.93 2.65 3.369 (5) 134
C36—H36⋯O2ii 0.93 2.61 3.375 (5) 140
C12—H12⋯C25iii 0.93 2.76 3.677 (5) 168
Symmetry codes: (i) [-x+1, -y+1, -z+2]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

In (II), the Brmopzd mol­ecules aggregate by weak inter­molecular inter­actions, as two C—H⋯O, two C—H⋯π(arene) and a C—Br⋯π(arene) contact per mol­ecule, to generate a 3D structure (Figs. 4[link] and 7[link]). The C36—H36⋯O2ii and C25⋯(H12—C25)ii inter­actions combine together in the aggregation of a pair of tightly bound mol­ecules with graph-set R22(15), while the remaining C23—H23⋯O1i hydrogen bond results in the formation of centrosymmetric dimers in tandem with ππ stacking between the pyrimidyl rings, with shortest contact distances for N22⋯C23i = 3.429 (6) Å and N22⋯C24i = 3.464 (7) Å. The C13—Br13⋯π(arene)iv contact [symmetry code: (iv) [{1\over 2}] + x, [{5\over 2}] − y, z] has a Br13⋯C15iv distance of 3.550 (6) Å and C13—Br13⋯C15iv = 149.44 (16)°, where C15iv represents the closest Br⋯C contact on the arene ring. The N atoms (two pyrimidyl or tertiary amine N) do not participate in inter­molecular inter­actions and the shortest contact is N26⋯H24v = 2.76 Å [symmetry code: (v) [{1\over 2}] − x, [{1\over 2}] + y, 2 − z) (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

4. Database survey

A literature search for acyclic imides provides several 2-amino­pyridine structures of which DOKXOR a meta-F benzene derivative (Gallagher et al., 2009a[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102-o103.]) and CIJPET a meta-Cl derivative (Mocilac et al., 2018[Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153-1164.]), are similar to (I) and (II). MEYYUK, an N-anthracene-9-carboxamide derivative (Kohmoto et al., 2001[Kohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. & Yamamoto, M. (2001). Org. Lett. 3, 4153-4155.]) and MOCTUT or N,N-dibenzoyl-4-chloro­aniline structures (Usman et al., 2002[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o357-o358.]) are also similar in structure and conformation.

Shukla and co-workers have detailed six halogenated N-benzoyl-N-phenyl­benzamides (imides) that adopt both syn and anti conformations in the solid state (Shukla et al., 2018[Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280-288.]). The reason why they adopt either conformation is not obvious and suggests that a transformation between either conformation as having a low activation energy barrier. Such imide behaviour (in adopting either of the syn or anti structures) has been known for decades although there does not seem to have been much investigation into possible fluxional behaviour and various influences driving towards one particular conformation or other.

5. Synthesis and crystallization:

Compound (I) is Brmod and (II) is Brmopzd. (I) and (II) were synthesized as mixtures together with the (1:1) benzamides and separated from the benzamides by standard column chromatography in good yields.

(I): Yield = 30–40% 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.10 (1H, dd, 3J = 7.5, 4J = 5, 5J = 1), 7.29 (1H, t, 3J = 7.8), 7.33 (1H, t, 3J = 7.9), 7.65 (2H, dq, 3J = 8.4, 4J = 1.8, 5J = 1), 7.78 (1H, ddd, 3J = 8, 4J = 2, 5J = 1), 7.90 (1H, dt, 3J = 8, 4J = 1), 7.98 (1H, dt, 3J = 7.8, 4J = 1), 8.17 (1H, dd, 3J = 1.7), 8.21 (2H, dd, 3J = 5.2, 4J = 1), 8.40 (1H, d, 3J = 8.5). IR (ATR): 2921 (m), 1683 (s), 1580 (m). Melting point 418–420 K.

(II): Yield = 45–55%. 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.12 (1H, t, 3J = 4.9), 7.18 (2H, t, 3J = 12), 7.56 (2H, ddd, 3J = 8.0, 4J = 2.0, 5J = 1.0), 7.60 (2H, ddd, 3J = 7.8, 4J = 1.7, 5J = 1.0), 7.88 (2H, t, 4J = 1.6), 8.59 (2H, d, 3J = 4.8). IR (ATR): 3072 (s), 2963 (s), 1719 (s), 1682 (m). Melting point 406–411 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to C atoms were treated as riding using the SHELXL14/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) defaults at 294 (1) K with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C) (aromatic).

Table 3
Experimental details

  Brmod Brmopzd
Crystal data
Chemical formula C19H12Br2N2O2 C18H11Br2N3O2
Mr 460.13 461.12
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/a
Temperature (K) 294 294
a, b, c (Å) 5.5439 (1), 16.3366 (4), 19.3701 (4) 11.1712 (4), 11.0590 (3), 14.4181 (5)
β (°) 91.459 (2) 102.756 (4)
V3) 1753.75 (6) 1737.28 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.64 4.68
Crystal size (mm) 0.43 × 0.35 × 0.18 0.22 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur, Sapphire3, Gemini Ultra Rigaku Xcalibur, Sapphire3, Gemini Ultra
Absorption correction Analytical (ABSFAC; Clark & Reid, 1998[Clark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243-257.]) Analytical (ABSFAC; Clark & Reid, 1998[Clark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243-257.])
Tmin, Tmax 0.228, 0.493 0.425, 0.801
No. of measured, independent and observed [I > 2σ(I)] reflections 16613, 4665, 3025 13616, 3865, 2219
Rint 0.037 0.047
(sin θ/λ)max−1) 0.694 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 1.01 0.052, 0.109, 1.02
No. of reflections 4665 3865
No. of parameters 226 226
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.42 0.89, −0.67
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT14/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL14/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT14/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL14/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL14/7 (Sheldrick, 2015b).

3-Bromo-N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide (Brmod) top
Crystal data top
C19H12Br2N2O2Dx = 1.743 Mg m3
Mr = 460.13Melting point: 419 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5439 (1) ÅCell parameters from 4432 reflections
b = 16.3366 (4) Åθ = 2.1–29.5°
c = 19.3701 (4) ŵ = 4.64 mm1
β = 91.459 (2)°T = 294 K
V = 1753.75 (6) Å3Block, colourless
Z = 40.43 × 0.35 × 0.18 mm
F(000) = 904
Data collection top
Rigaku Xcalibur, Sapphire3, Gemini Ultra
diffractometer
4665 independent reflections
Radiation source: Enhance (Mo) X-ray Source3025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0560 pixels mm-1θmax = 29.6°, θmin = 2.1°
ω scansh = 77
Absorption correction: analytical
(ABSFAC; Clark & Reid, 1998)
k = 2217
Tmin = 0.228, Tmax = 0.493l = 2626
16613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.9875P]
where P = (Fo2 + 2Fc2)/3
4665 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br130.12586 (8)0.01924 (3)0.22896 (2)0.07723 (16)
Br330.25059 (6)0.58666 (2)0.07841 (2)0.04753 (11)
O10.2102 (5)0.05436 (15)0.05540 (13)0.0741 (8)
C10.2745 (6)0.11718 (19)0.02838 (16)0.0432 (7)
N10.2894 (4)0.19022 (14)0.06634 (12)0.0362 (5)
O20.1237 (4)0.27325 (13)0.01771 (11)0.0513 (6)
C20.2485 (5)0.26745 (17)0.03375 (15)0.0350 (6)
C110.3581 (5)0.11967 (17)0.04341 (15)0.0393 (7)
C120.2308 (6)0.07512 (18)0.09348 (15)0.0432 (7)
H120.09520.04510.08200.052*
C130.3084 (6)0.0762 (2)0.15995 (16)0.0499 (8)
C140.5141 (7)0.1177 (3)0.17788 (19)0.0648 (10)
H140.56470.11760.22330.078*
C150.6432 (7)0.1592 (3)0.1273 (2)0.0673 (11)
H150.78510.18590.13840.081*
C160.5651 (6)0.1615 (2)0.06085 (18)0.0510 (8)
H160.65090.19120.02740.061*
C210.2667 (5)0.18650 (17)0.13984 (14)0.0366 (6)
N220.0859 (4)0.22893 (17)0.16417 (13)0.0488 (7)
C230.0675 (7)0.2294 (2)0.23268 (19)0.0626 (10)
H230.05940.25860.25130.075*
C240.2231 (7)0.1898 (2)0.27726 (18)0.0601 (9)
H240.20450.19290.32480.072*
C250.4070 (7)0.1455 (2)0.24981 (18)0.0601 (9)
H250.51450.11700.27850.072*
C260.4310 (6)0.1437 (2)0.17975 (16)0.0494 (8)
H260.55500.11440.15980.059*
C310.3759 (5)0.33794 (17)0.06655 (13)0.0321 (6)
C320.2767 (5)0.41557 (17)0.05842 (14)0.0330 (6)
H320.13090.42260.03440.040*
C330.3957 (5)0.48156 (17)0.08614 (14)0.0338 (6)
C340.6181 (5)0.47370 (19)0.11981 (15)0.0405 (7)
H340.69880.51930.13750.049*
C350.7172 (5)0.39622 (19)0.12645 (15)0.0399 (7)
H350.86680.38980.14860.048*
C360.5982 (5)0.32877 (17)0.10082 (14)0.0352 (6)
H360.66570.27700.10630.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br130.0878 (3)0.0939 (3)0.0490 (2)0.0319 (2)0.0185 (2)0.0193 (2)
Br330.0583 (2)0.03904 (17)0.04500 (18)0.00725 (15)0.00459 (14)0.00051 (14)
O10.120 (2)0.0505 (14)0.0518 (15)0.0332 (15)0.0154 (15)0.0002 (12)
C10.0492 (19)0.0393 (17)0.0412 (17)0.0064 (14)0.0016 (14)0.0031 (14)
N10.0388 (14)0.0361 (13)0.0336 (13)0.0011 (10)0.0005 (10)0.0022 (10)
O20.0563 (13)0.0443 (12)0.0518 (13)0.0085 (10)0.0264 (11)0.0012 (10)
C20.0307 (15)0.0375 (16)0.0365 (16)0.0056 (12)0.0020 (12)0.0006 (13)
C110.0455 (17)0.0330 (15)0.0396 (17)0.0059 (13)0.0039 (13)0.0023 (13)
C120.0483 (18)0.0386 (17)0.0428 (18)0.0066 (14)0.0017 (14)0.0007 (14)
C130.058 (2)0.053 (2)0.0384 (17)0.0204 (16)0.0013 (15)0.0026 (15)
C140.064 (2)0.087 (3)0.044 (2)0.019 (2)0.0157 (18)0.005 (2)
C150.052 (2)0.087 (3)0.063 (3)0.002 (2)0.0215 (19)0.010 (2)
C160.0432 (19)0.053 (2)0.057 (2)0.0008 (15)0.0044 (16)0.0014 (17)
C210.0359 (16)0.0377 (16)0.0362 (16)0.0010 (12)0.0007 (12)0.0025 (13)
N220.0435 (15)0.0615 (18)0.0418 (15)0.0131 (13)0.0082 (12)0.0034 (13)
C230.064 (2)0.071 (3)0.054 (2)0.0150 (19)0.0177 (19)0.0005 (19)
C240.079 (3)0.066 (2)0.0359 (18)0.006 (2)0.0035 (18)0.0029 (17)
C250.064 (2)0.072 (2)0.0439 (19)0.0064 (19)0.0087 (17)0.0174 (18)
C260.0498 (19)0.054 (2)0.0446 (18)0.0146 (16)0.0012 (15)0.0084 (16)
C310.0269 (14)0.0395 (15)0.0299 (14)0.0024 (12)0.0010 (11)0.0031 (12)
C320.0270 (13)0.0423 (16)0.0295 (13)0.0029 (12)0.0021 (11)0.0027 (12)
C330.0362 (16)0.0372 (15)0.0282 (14)0.0031 (12)0.0043 (12)0.0022 (12)
C340.0346 (16)0.0499 (18)0.0368 (16)0.0065 (14)0.0015 (12)0.0045 (14)
C350.0251 (14)0.057 (2)0.0373 (16)0.0006 (13)0.0039 (12)0.0020 (14)
C360.0287 (14)0.0418 (16)0.0352 (15)0.0047 (12)0.0019 (12)0.0038 (13)
Geometric parameters (Å, º) top
Br13—C131.900 (3)C21—C261.371 (4)
Br33—C331.900 (3)N22—C231.334 (4)
O1—C11.210 (4)C23—C241.368 (5)
C1—N11.403 (4)C23—H230.9300
C1—C111.478 (4)C24—C251.368 (5)
N1—C21.426 (3)C24—H240.9300
N1—C211.434 (3)C25—C261.367 (4)
O2—C21.203 (3)C25—H250.9300
C2—C311.485 (4)C26—H260.9300
C11—C161.385 (4)C31—C321.390 (4)
C11—C121.390 (4)C31—C361.393 (4)
C12—C131.368 (4)C32—C331.367 (4)
C12—H120.9300C32—H320.9300
C13—C141.378 (5)C33—C341.386 (4)
C14—C151.377 (5)C34—C351.384 (4)
C14—H140.9300C34—H340.9300
C15—C161.369 (5)C35—C361.371 (4)
C15—H150.9300C35—H350.9300
C16—H160.9300C36—H360.9300
C21—N221.316 (4)
O1—C1—N1120.6 (3)N22—C23—C24124.2 (3)
O1—C1—C11122.2 (3)N22—C23—H23117.9
N1—C1—C11117.0 (3)C24—C23—H23117.9
C1—N1—C2120.9 (2)C23—C24—C25118.0 (3)
C1—N1—C21118.6 (2)C23—C24—H24121.0
C2—N1—C21117.4 (2)C25—C24—H24121.0
O2—C2—N1121.2 (3)C26—C25—C24119.3 (3)
O2—C2—C31123.4 (3)C26—C25—H25120.3
N1—C2—C31115.3 (2)C24—C25—H25120.3
C16—C11—C12119.8 (3)C25—C26—C21117.9 (3)
C16—C11—C1121.7 (3)C25—C26—H26121.0
C12—C11—C1118.4 (3)C21—C26—H26121.0
C13—C12—C11118.9 (3)C32—C31—C36119.7 (3)
C13—C12—H12120.6C32—C31—C2118.5 (2)
C11—C12—H12120.6C36—C31—C2121.7 (2)
C12—C13—C14121.7 (3)C33—C32—C31119.3 (2)
C12—C13—Br13118.8 (3)C33—C32—H32120.3
C14—C13—Br13119.5 (3)C31—C32—H32120.3
C15—C14—C13118.8 (3)C32—C33—C34121.8 (3)
C15—C14—H14120.6C32—C33—Br33118.8 (2)
C13—C14—H14120.6C34—C33—Br33119.4 (2)
C16—C15—C14120.7 (3)C35—C34—C33118.3 (3)
C16—C15—H15119.6C35—C34—H34120.8
C14—C15—H15119.6C33—C34—H34120.8
C15—C16—C11120.0 (3)C36—C35—C34121.0 (3)
C15—C16—H16120.0C36—C35—H35119.5
C11—C16—H16120.0C34—C35—H35119.5
N22—C21—C26124.6 (3)C35—C36—C31119.9 (3)
N22—C21—N1114.9 (2)C35—C36—H36120.1
C26—C21—N1120.5 (3)C31—C36—H36120.1
C21—N22—C23116.0 (3)
O1—C1—N1—C2149.3 (3)C1—N1—C21—C2662.3 (4)
C11—C1—N1—C235.3 (4)C2—N1—C21—C26137.4 (3)
O1—C1—N1—C2110.3 (4)C26—C21—N22—C230.4 (5)
C11—C1—N1—C21165.1 (2)N1—C21—N22—C23177.1 (3)
C1—N1—C2—O226.1 (4)C21—N22—C23—C240.5 (5)
C21—N1—C2—O2133.7 (3)N22—C23—C24—C251.3 (6)
C1—N1—C2—C31152.0 (3)C23—C24—C25—C261.2 (6)
C21—N1—C2—C3148.1 (3)C24—C25—C26—C210.4 (5)
O1—C1—C11—C16133.9 (3)N22—C21—C26—C250.4 (5)
N1—C1—C11—C1641.4 (4)N1—C21—C26—C25176.9 (3)
O1—C1—C11—C1242.8 (4)O2—C2—C31—C3228.3 (4)
N1—C1—C11—C12141.9 (3)N1—C2—C31—C32153.6 (2)
C16—C11—C12—C132.5 (4)O2—C2—C31—C36147.3 (3)
C1—C11—C12—C13179.2 (3)N1—C2—C31—C3630.8 (4)
C11—C12—C13—C142.5 (5)C36—C31—C32—C332.0 (4)
C11—C12—C13—Br13177.3 (2)C2—C31—C32—C33177.7 (2)
C12—C13—C14—C150.3 (5)C31—C32—C33—C342.7 (4)
Br13—C13—C14—C15179.5 (3)C31—C32—C33—Br33177.05 (19)
C13—C14—C15—C162.1 (6)C32—C33—C34—C351.5 (4)
C14—C15—C16—C112.1 (6)Br33—C33—C34—C35178.3 (2)
C12—C11—C16—C150.2 (5)C33—C34—C35—C360.4 (4)
C1—C11—C16—C15176.9 (3)C34—C35—C36—C311.0 (4)
C1—N1—C21—N22120.1 (3)C32—C31—C36—C350.2 (4)
C2—N1—C21—N2240.3 (3)C2—C31—C36—C35175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.413.330 (4)170
C32—H32···Br33ii0.933.013.896 (3)162
C36—H36···N22iii0.932.683.363 (4)131
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y, z.
3-Bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide (Brmopzd) top
Crystal data top
C18H11Br2N3O2Dx = 1.763 Mg m3
Mr = 461.12Melting point: 408 K
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 11.1712 (4) ÅCell parameters from 3165 reflections
b = 11.0590 (3) Åθ = 3.2–27.8°
c = 14.4181 (5) ŵ = 4.68 mm1
β = 102.756 (4)°T = 294 K
V = 1737.28 (10) Å3Plate, colourless
Z = 40.22 × 0.20 × 0.05 mm
F(000) = 904
Data collection top
Rigaku Xcalibur, Sapphire3, Gemini Ultra
diffractometer
3865 independent reflections
Radiation source: Enhance (Mo) X-ray Source2219 reflections with I > 2σ(I)
Detector resolution: 16.056 pixels mm-1Rint = 0.047
ω scansθmax = 27.9°, θmin = 3.2°
Absorption correction: analytical
(ABSFAC; Clark & Reid, 1998)
h = 1414
Tmin = 0.425, Tmax = 0.801k = 1413
13616 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.6333P]
where P = (Fo2 + 2Fc2)/3
3865 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br130.56862 (6)1.25414 (5)0.79435 (5)0.0721 (2)
Br330.38119 (6)0.32158 (5)0.48956 (4)0.0757 (2)
O10.4800 (3)0.8188 (3)0.9503 (2)0.0537 (9)
C10.4245 (4)0.8174 (4)0.8691 (3)0.0381 (10)
N10.3759 (3)0.7061 (3)0.8250 (2)0.0371 (9)
O20.4771 (3)0.7308 (3)0.7062 (2)0.0625 (10)
C20.3990 (4)0.6770 (4)0.7352 (3)0.0408 (11)
C110.3956 (4)0.9282 (4)0.8105 (3)0.0355 (10)
C120.4786 (4)1.0231 (4)0.8278 (3)0.0392 (11)
H120.55181.01530.87300.047*
C130.4518 (4)1.1282 (4)0.7777 (3)0.0428 (11)
C140.3428 (5)1.1429 (4)0.7130 (4)0.0546 (13)
H140.32511.21560.68040.066*
C150.2597 (5)1.0492 (5)0.6966 (4)0.0601 (14)
H150.18531.05870.65310.072*
C160.2864 (4)0.9413 (4)0.7445 (3)0.0449 (12)
H160.23090.87750.73240.054*
C210.3492 (4)0.6130 (3)0.8853 (3)0.0330 (10)
N220.3981 (3)0.5060 (3)0.8759 (3)0.0434 (9)
C230.3708 (5)0.4203 (4)0.9333 (3)0.0519 (13)
H230.39870.34200.92780.062*
C240.3035 (5)0.4434 (4)0.9998 (4)0.0539 (13)
H240.28830.38371.04120.065*
C250.2596 (4)0.5580 (4)1.0027 (3)0.0507 (12)
H250.21340.57621.04730.061*
N260.2803 (3)0.6456 (3)0.9440 (3)0.0427 (9)
C310.3208 (4)0.5834 (3)0.6777 (3)0.0332 (10)
C320.3740 (4)0.5108 (4)0.6202 (3)0.0382 (10)
H320.45670.51940.61990.046*
C330.3045 (5)0.4261 (4)0.5636 (3)0.0447 (12)
C340.1809 (5)0.4155 (5)0.5591 (3)0.0563 (14)
H340.13390.35950.51860.068*
C350.1276 (5)0.4898 (5)0.6159 (4)0.0546 (13)
H350.04390.48370.61320.066*
C360.1967 (4)0.5727 (4)0.6763 (3)0.0426 (11)
H360.16060.62070.71560.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br130.0839 (4)0.0390 (3)0.0959 (5)0.0179 (3)0.0255 (4)0.0052 (3)
Br330.1132 (5)0.0612 (4)0.0532 (3)0.0186 (3)0.0194 (3)0.0170 (3)
O10.065 (2)0.0410 (18)0.049 (2)0.0105 (17)0.0011 (18)0.0076 (16)
C10.037 (3)0.034 (2)0.044 (3)0.003 (2)0.010 (2)0.001 (2)
N10.049 (2)0.0248 (17)0.041 (2)0.0025 (16)0.0176 (18)0.0013 (16)
O20.070 (2)0.054 (2)0.078 (3)0.0242 (18)0.048 (2)0.0217 (18)
C20.043 (3)0.032 (2)0.054 (3)0.001 (2)0.025 (2)0.002 (2)
C110.045 (3)0.030 (2)0.035 (2)0.004 (2)0.015 (2)0.0014 (18)
C120.042 (3)0.030 (2)0.047 (3)0.001 (2)0.011 (2)0.004 (2)
C130.053 (3)0.029 (2)0.051 (3)0.000 (2)0.021 (3)0.004 (2)
C140.069 (4)0.038 (3)0.058 (3)0.010 (3)0.016 (3)0.014 (2)
C150.053 (3)0.052 (3)0.068 (4)0.007 (3)0.002 (3)0.010 (3)
C160.049 (3)0.033 (2)0.052 (3)0.000 (2)0.010 (3)0.004 (2)
C210.037 (3)0.026 (2)0.036 (2)0.0034 (18)0.007 (2)0.0040 (18)
N220.055 (3)0.0293 (19)0.046 (2)0.0070 (17)0.0122 (19)0.0050 (17)
C230.064 (4)0.030 (2)0.055 (3)0.002 (2)0.000 (3)0.008 (2)
C240.061 (3)0.050 (3)0.050 (3)0.009 (3)0.012 (3)0.015 (2)
C250.052 (3)0.054 (3)0.049 (3)0.005 (2)0.017 (3)0.005 (2)
N260.047 (2)0.035 (2)0.050 (2)0.0034 (17)0.021 (2)0.0009 (18)
C310.036 (3)0.031 (2)0.035 (2)0.0033 (19)0.013 (2)0.0061 (18)
C320.042 (3)0.035 (2)0.040 (3)0.003 (2)0.017 (2)0.004 (2)
C330.063 (3)0.040 (3)0.029 (3)0.006 (2)0.006 (2)0.003 (2)
C340.068 (4)0.054 (3)0.041 (3)0.010 (3)0.002 (3)0.002 (2)
C350.041 (3)0.070 (4)0.049 (3)0.007 (3)0.002 (3)0.016 (3)
C360.046 (3)0.045 (3)0.040 (3)0.005 (2)0.017 (2)0.006 (2)
Geometric parameters (Å, º) top
Br13—C131.887 (4)C21—N261.314 (5)
Br33—C331.901 (4)C21—N221.323 (5)
O1—C11.199 (5)N22—C231.337 (5)
C1—N11.435 (5)C23—C241.367 (6)
C1—C111.483 (6)C23—H230.9300
N1—C21.413 (5)C24—C251.363 (6)
N1—C211.421 (5)C24—H240.9300
O2—C21.204 (5)C25—N261.340 (5)
C2—C311.483 (6)C25—H250.9300
C11—C161.379 (6)C31—C321.381 (5)
C11—C121.386 (6)C31—C361.388 (6)
C12—C131.366 (6)C32—C331.365 (6)
C12—H120.9300C32—H320.9300
C13—C141.370 (7)C33—C341.373 (7)
C14—C151.376 (7)C34—C351.384 (7)
C14—H140.9300C34—H340.9300
C15—C161.377 (6)C35—C361.378 (6)
C15—H150.9300C35—H350.9300
C16—H160.9300C36—H360.9300
O1—C1—N1120.5 (4)C21—N22—C23114.5 (4)
O1—C1—C11123.1 (4)N22—C23—C24122.5 (4)
N1—C1—C11116.3 (4)N22—C23—H23118.7
C2—N1—C21120.1 (3)C24—C23—H23118.7
C2—N1—C1118.2 (3)C25—C24—C23116.9 (4)
C21—N1—C1117.4 (3)C25—C24—H24121.5
O2—C2—N1119.9 (4)C23—C24—H24121.5
O2—C2—C31122.2 (4)N26—C25—C24122.7 (5)
N1—C2—C31117.8 (4)N26—C25—H25118.7
C16—C11—C12119.9 (4)C24—C25—H25118.7
C16—C11—C1121.9 (4)C21—N26—C25114.6 (4)
C12—C11—C1118.1 (4)C32—C31—C36120.2 (4)
C13—C12—C11119.3 (4)C32—C31—C2117.6 (4)
C13—C12—H12120.4C36—C31—C2122.1 (4)
C11—C12—H12120.4C33—C32—C31119.7 (4)
C12—C13—C14121.3 (4)C33—C32—H32120.2
C12—C13—Br13119.7 (4)C31—C32—H32120.2
C14—C13—Br13119.0 (3)C32—C33—C34121.3 (4)
C13—C14—C15119.5 (4)C32—C33—Br33119.0 (4)
C13—C14—H14120.3C34—C33—Br33119.6 (4)
C15—C14—H14120.3C33—C34—C35118.7 (5)
C14—C15—C16120.2 (5)C33—C34—H34120.6
C14—C15—H15119.9C35—C34—H34120.6
C16—C15—H15119.9C36—C35—C34121.0 (5)
C15—C16—C11119.8 (4)C36—C35—H35119.5
C15—C16—H16120.1C34—C35—H35119.5
C11—C16—H16120.1C35—C36—C31119.0 (4)
N26—C21—N22128.7 (4)C35—C36—H36120.5
N26—C21—N1115.3 (4)C31—C36—H36120.5
N22—C21—N1116.0 (4)
O1—C1—N1—C2131.1 (4)C2—N1—C21—N2228.9 (6)
C11—C1—N1—C252.3 (5)C1—N1—C21—N22127.6 (4)
O1—C1—N1—C2125.8 (6)N26—C21—N22—C231.3 (7)
C11—C1—N1—C21150.8 (4)N1—C21—N22—C23179.7 (4)
C21—N1—C2—O2141.4 (4)C21—N22—C23—C243.4 (7)
C1—N1—C2—O214.9 (6)N22—C23—C24—C252.9 (7)
C21—N1—C2—C3141.3 (6)C23—C24—C25—N260.1 (8)
C1—N1—C2—C31162.5 (4)N22—C21—N26—C251.3 (7)
O1—C1—C11—C16143.6 (5)N1—C21—N26—C25177.7 (4)
N1—C1—C11—C1632.9 (6)C24—C25—N26—C211.9 (7)
O1—C1—C11—C1232.4 (6)O2—C2—C31—C3235.6 (6)
N1—C1—C11—C12151.1 (4)N1—C2—C31—C32147.1 (4)
C16—C11—C12—C131.1 (6)O2—C2—C31—C36140.4 (5)
C1—C11—C12—C13177.2 (4)N1—C2—C31—C3636.9 (6)
C11—C12—C13—C142.1 (7)C36—C31—C32—C331.7 (6)
C11—C12—C13—Br13175.8 (3)C2—C31—C32—C33177.8 (4)
C12—C13—C14—C151.4 (7)C31—C32—C33—C343.4 (7)
Br13—C13—C14—C15176.6 (4)C31—C32—C33—Br33176.9 (3)
C13—C14—C15—C160.4 (8)C32—C33—C34—C352.3 (7)
C14—C15—C16—C111.4 (7)Br33—C33—C34—C35177.9 (3)
C12—C11—C16—C150.6 (6)C33—C34—C35—C360.3 (7)
C1—C11—C16—C15175.3 (4)C34—C35—C36—C311.8 (7)
C2—N1—C21—N26152.0 (4)C32—C31—C36—C350.8 (6)
C1—N1—C21—N2651.6 (5)C2—C31—C36—C35175.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O1i0.932.653.369 (5)134
C36—H36···O2ii0.932.613.375 (5)140
C12—H12···C25iii0.932.763.677 (5)168
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1/2, y+3/2, z; (iii) x+1/2, y+3/2, z.
 

Funding information

JFG thanks Dublin City University for grants in aid of chemical research for FD. NH thanks Meath County Council and the VEC for a studentship.

References

First citationBaell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. & Mulder, R. J. (2001). J. Comput. Aided Mol. Des. 15, 1119–1136.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243–257.  Web of Science CrossRef CAS Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286–1287.  Web of Science CSD CrossRef Google Scholar
First citationGallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102–o103.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486–o487.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuntress, E. W. & Walter, H. C. (1948). J. Org. Chem. 13, 735–737.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhavasi, H. R. & Tehrani, A. A. (2013). CrystEngComm, 15, 3222–3235.  Web of Science CSD CrossRef CAS Google Scholar
First citationKohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. & Yamamoto, M. (2001). Org. Lett. 3, 4153–4155.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarckwald, W. (1894). Ber. Dtsch. Chem. Ges. 27, 1317–1339.  CrossRef Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMasu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423–1431.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMocilac, P., Donnelly, K. & Gallagher, J. F. (2012). Acta Cryst. B68, 189–203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153–1164.  Web of Science CSD CrossRef CAS Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355–2361.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMocilac, P., Tallon, M., Lough, A. J. & Gallagher, J. F. (2010). CrystEngComm, 12, 3080–3090.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaeed, A., Hussain, S., Abbas, N. & Bolte, M. (2010). J. Chem. Crystallogr. 40, 919–923.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTschitschibabin, A. E. & Bylinkin, J. G. (1922). Ber. Dtsch. Chem. Ges. A/B, 55, 998–1002.  CrossRef Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o357–o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds