research communications
Two acyclic N-(3-bromobenzoyl)-N-(pyridin-2-yl)benzamide and 3-bromo-N-(3-bromobenzoyl)-N-(pyrimidin-2-yl)benzamide
3-bromo-aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland
*Correspondence e-mail: john.gallagher@dcu.ie
The title compounds, C19H12Br2N2O2 and C18H11Br2N3O2, were synthesized in good yields from condensation reactions of 3-bromobenzoyl chloride with 2-aminopyridine or 2-aminopyrimidine using standard condensation reaction conditions and subsequent column chromatography.
Keywords: bromine; crystal structure; imide; halogen bonding; hydrogen bonding.
1. Chemical context
Acyclic imide chemistry, as RCON(R′)COR, (where R,R′ are aryl or alkyl groups) has developed over the past 130 years from condensation reactions of benzoyl chlorides with amino-aromatics such as 2-aminopyridines or 2-aminopyrimidines (Marckwald, 1894; Tschitschibabin & Bylinkin, 1922; Huntress & Walter, 1948). From these reactions, a mixture of the benzamide and acyclic imide is usually obtained, with the relative yields of each component dependent on the starting materials and reaction conditions. The can also be synthesized directly from a benzamide starting material. The presence of an ortho-N in the benzamide heteroaromatic ring is an important feature needed to obtain the imide derivative in good yields (Mocilac et al., 2010, 2012; Khavasi & Tehrani, 2013).
Several RCON(R′)COR structures have been reported (Groom et al., 2016) and derive mostly from either R′ = benzene (Baell et al., 2001) or R′ = pyridine or pyrimidine groups (Gallagher et al., 2009a,b; Mocilac et al., 2018). Related imide structures include the haloimide N-(2,4-dichlorophenyl)-2-methyl-N-(2-nitrobenzoyl)benzamide (Saeed et al., 2010) or CSD (Groom et al., 2016) refcode LAKXIG. LAKXIG adopts an open imide or anti conformation with respect to the benzoyl rings and is notable for having three different ortho-benzene substituents. QADPER or N-(3-methoxyphenyl)-N-(3-methoxybenzoyl)benzamide, a methoxyimide derivative has been studied in the design and synthesis of type-III mimetics of the ω-conotoxin GVIA polypeptide (Baell et al., 2001) and is similar in structure to several haloaromatic (Gallagher et al., 2009a,b; Mocilac et al., 2018; Shukla et al., 2018). Kohmoto et al., (2001) have described a series of 9-anthryl-N-(naphthylcarbonyl)carboxamides having the syn-type structure and has been used in photocycloaddition reactions. Masu et al., (2005) expanded on this research into diimides to develop foldamer chemistry with the central moiety in these imide structures usually being an alkyl aromatic group.
In recent research on macrocyclic ; Mocilac & Gallagher, 2013). Both syn and anti types of acyclic imide conformation have been observed in the macrocycles. It has been noted how this affects the formation of both trezimide and tennimide macrocycles and with the syn conformation essential for trezimide formation (Mocilac & Gallagher, 2013). Further studies are needed to demonstrate the ease with which the two distinct conformations can interconvert in acyclic imides.
we and others have noted the role of the imide hinge in the development of macrocyclic (Evans & Gale, 20042. Structural commentary
From the condensation reaction of meta-BrC6H4COCl with 2-aminopyridine and 2-aminopyrimidine, the benzamide and imide products were obtained and separated by standard for each reaction. Using 2-aminopyridine, Brmo and Brmod, (I) were obtained and for 2-aminopyrimidine, Brmopz and Brmopzd, (II) were isolated. Brmo and Brmopz are the (1:1) benzamide products, whereas Brmod, (I) and Brmopzd, (II) are the (2:1) acyclic Both (I) and (II) (Figs. 1–2) adopt similar molecular structures to the majority of published structures (Groom et al., 2016; Gallagher et al., 2009a,b) but they differ in their supramolecular features (Figs. 3–7). Both molecules lack strong donor groups (no amide group as in the benzamides; Donnelly et al., 2008) but have strong acceptors such as O=C and N-heteroaromatic rings that are able to participate in many weaker intermolecular interactions in their crystal structures, not to mention potential π-ring aromatic stacking and C—H⋯π interactions (Martinez & Iverson, 2012; Nishio, 2004).
A comparison of acyclic syn (carbonyl O⋯O separations of ∼4.5 Å) and anti conformations (O⋯O separations of ∼3.7 Å) in crystal structures (Groom et al., 2016). In (I) the O1⋯O2 distance is 3.871 (3) Å and the O1=C1⋯C2=O2 torsion angle is −109.3 (5)° compared to an O1⋯O2 = 3.646 (5) Å distance and an O1—C1⋯C2=O2 torsion angle of −96.6 (5)° in (II). We have also previously used the cisoid and transoid terminology for the disposition of the two C=O groups; this is used to describe the orientation and direction of the C=O groups/aromatic rings with respect to one another (Mocilac et al., 2018).
and their key torsion angles demonstrates the range of angles observed and the key differences between the3. Supramolecular features
The prevalent anti-conformation imide structural type is demonstrated in the structures of both (I) and (II) and is similar to the molecular structures of the ortho-F (SOLSUI) and meta-F (DOKXOR) imide structures (Gallagher et al., 2009a,b), the chloro- and methyl-imides (Mocilac et al., 2018) and two benzene relatives (Shukla et al., 2018). This contrasts with the syn type as observed in the of Mood, a 2-methylbenzoyl imide (Mocilac et al., 2018) and the four recently described SEYSUN/SEYTIC/SEYTOI/SEYTUO structures (Shukla et al., 2018). A key difference between these structures is the central N-pyridine ring in Mood (Gallagher et al., 2009a,b) and N-benzene rings in the SEYSUN-type structures (Shukla et al., 2018).
In (I), the Brmod molecules aggregate as dimers in a cyclical arrangement using the C32—H32⋯Br33ii and C2=O2⋯Br33ii interactions with the R21(6) motif. Two of these combine to form the centrosymmetric R22(12) motif as formed by the flanking C=O⋯Br—C halogen-bonding interactions (Figs. 3, 5 and 6). The hydrogen bonding as H32⋯Br33ii has NC = 0.986 (Table 1) where NC is the ratio of contact distance/sum of contact radii using data from Bondi (Bondi, 1965; Spek, 2020). The halogen-bonding geometric details are Br33⋯O2ii = 3.287 Å (symmetry code ii; Table 1) or NC = 0.975 with C33—Br33⋯O2ii = 156.85 (9)° and Br33⋯(O2=C2)ii = 134.11 (19)° angles. Centrosymmetric C—H⋯O hydrogen-bonding interactions as R22(10) link dimers into zigzag chains along the b-axis direction, whereas weak C—H⋯N interactions link chains into ruffled sheets parallel with the (100) plane (Table 2).
|
|
In (II), the Brmopzd molecules aggregate by weak intermolecular interactions, as two C—H⋯O, two C—H⋯π(arene) and a C—Br⋯π(arene) contact per molecule, to generate a 3D structure (Figs. 4 and 7). The C36—H36⋯O2ii and C25⋯(H12—C25)ii interactions combine together in the aggregation of a pair of tightly bound molecules with graph-set R22(15), while the remaining C23—H23⋯O1i hydrogen bond results in the formation of centrosymmetric dimers in tandem with π–π stacking between the pyrimidyl rings, with shortest contact distances for N22⋯C23i = 3.429 (6) Å and N22⋯C24i = 3.464 (7) Å. The C13—Br13⋯π(arene)iv contact [symmetry code: (iv) + x, − y, z] has a Br13⋯C15iv distance of 3.550 (6) Å and C13—Br13⋯C15iv = 149.44 (16)°, where C15iv represents the closest Br⋯C contact on the arene ring. The N atoms (two pyrimidyl or tertiary amine N) do not participate in intermolecular interactions and the shortest contact is N26⋯H24v = 2.76 Å [symmetry code: (v) − x, + y, 2 − z) (Spek, 2020).
4. Database survey
A literature search for acyclic meta-F benzene derivative (Gallagher et al., 2009a) and CIJPET a meta-Cl derivative (Mocilac et al., 2018), are similar to (I) and (II). MEYYUK, an N-anthracene-9-carboxamide derivative (Kohmoto et al., 2001) and MOCTUT or N,N-dibenzoyl-4-chloroaniline structures (Usman et al., 2002) are also similar in structure and conformation.
provides several 2-aminopyridine structures of which DOKXOR aShukla and co-workers have detailed six halogenated N-benzoyl-N-phenylbenzamides (imides) that adopt both syn and anti conformations in the solid state (Shukla et al., 2018). The reason why they adopt either conformation is not obvious and suggests that a transformation between either conformation as having a low activation energy barrier. Such imide behaviour (in adopting either of the syn or anti structures) has been known for decades although there does not seem to have been much investigation into possible fluxional behaviour and various influences driving towards one particular conformation or other.
5. Synthesis and crystallization:
Compound (I) is Brmod and (II) is Brmopzd. (I) and (II) were synthesized as mixtures together with the (1:1) benzamides and separated from the benzamides by standard in good yields.
(I): Yield = 30–40% 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.10 (1H, dd, 3J = 7.5, 4J = 5, 5J = 1), 7.29 (1H, t, 3J = 7.8), 7.33 (1H, t, 3J = 7.9), 7.65 (2H, dq, 3J = 8.4, 4J = 1.8, 5J = 1), 7.78 (1H, ddd, 3J = 8, 4J = 2, 5J = 1), 7.90 (1H, dt, 3J = 8, 4J = 1), 7.98 (1H, dt, 3J = 7.8, 4J = 1), 8.17 (1H, dd, 3J = 1.7), 8.21 (2H, dd, 3J = 5.2, 4J = 1), 8.40 (1H, d, 3J = 8.5). IR (ATR): 2921 (m), 1683 (s), 1580 (m). Melting point 418–420 K.
(II): Yield = 45–55%. 1H NMR (CDCl3) for (I) with J values in Hz: δ 7.12 (1H, t, 3J = 4.9), 7.18 (2H, t, 3J = 12), 7.56 (2H, ddd, 3J = 8.0, 4J = 2.0, 5J = 1.0), 7.60 (2H, ddd, 3J = 7.8, 4J = 1.7, 5J = 1.0), 7.88 (2H, t, 4J = 1.6), 8.59 (2H, d, 3J = 4.8). IR (ATR): 3072 (s), 2963 (s), 1719 (s), 1682 (m). Melting point 406–411 K.
6. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were treated as riding using the SHELXL14/7 (Sheldrick, 2015b) defaults at 294 (1) K with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C) (aromatic).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020014413/ex2039sup1.cif
contains datablocks global, Brmod, Brmopzd. DOI:Structure factors: contains datablock Brmod. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmodsup2.hkl
Structure factors: contains datablock Brmopzd. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmopzdsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmodsup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmopzdsup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmodsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014413/ex2039Brmopzdsup7.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT14/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL14/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL14/7 (Sheldrick, 2015b).C19H12Br2N2O2 | Dx = 1.743 Mg m−3 |
Mr = 460.13 | Melting point: 419 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5439 (1) Å | Cell parameters from 4432 reflections |
b = 16.3366 (4) Å | θ = 2.1–29.5° |
c = 19.3701 (4) Å | µ = 4.64 mm−1 |
β = 91.459 (2)° | T = 294 K |
V = 1753.75 (6) Å3 | Block, colourless |
Z = 4 | 0.43 × 0.35 × 0.18 mm |
F(000) = 904 |
Rigaku Xcalibur, Sapphire3, Gemini Ultra diffractometer | 4665 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3025 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.0560 pixels mm-1 | θmax = 29.6°, θmin = 2.1° |
ω scans | h = −7→7 |
Absorption correction: analytical (ABSFAC; Clark & Reid, 1998) | k = −22→17 |
Tmin = 0.228, Tmax = 0.493 | l = −26→26 |
16613 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0295P)2 + 0.9875P] where P = (Fo2 + 2Fc2)/3 |
4665 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br13 | 0.12586 (8) | 0.01924 (3) | −0.22896 (2) | 0.07723 (16) | |
Br33 | 0.25059 (6) | 0.58666 (2) | 0.07841 (2) | 0.04753 (11) | |
O1 | 0.2102 (5) | 0.05436 (15) | 0.05540 (13) | 0.0741 (8) | |
C1 | 0.2745 (6) | 0.11718 (19) | 0.02838 (16) | 0.0432 (7) | |
N1 | 0.2894 (4) | 0.19022 (14) | 0.06634 (12) | 0.0362 (5) | |
O2 | 0.1237 (4) | 0.27325 (13) | −0.01771 (11) | 0.0513 (6) | |
C2 | 0.2485 (5) | 0.26745 (17) | 0.03375 (15) | 0.0350 (6) | |
C11 | 0.3581 (5) | 0.11967 (17) | −0.04341 (15) | 0.0393 (7) | |
C12 | 0.2308 (6) | 0.07512 (18) | −0.09348 (15) | 0.0432 (7) | |
H12 | 0.0952 | 0.0451 | −0.0820 | 0.052* | |
C13 | 0.3084 (6) | 0.0762 (2) | −0.15995 (16) | 0.0499 (8) | |
C14 | 0.5141 (7) | 0.1177 (3) | −0.17788 (19) | 0.0648 (10) | |
H14 | 0.5647 | 0.1176 | −0.2233 | 0.078* | |
C15 | 0.6432 (7) | 0.1592 (3) | −0.1273 (2) | 0.0673 (11) | |
H15 | 0.7851 | 0.1859 | −0.1384 | 0.081* | |
C16 | 0.5651 (6) | 0.1615 (2) | −0.06085 (18) | 0.0510 (8) | |
H16 | 0.6509 | 0.1912 | −0.0274 | 0.061* | |
C21 | 0.2667 (5) | 0.18650 (17) | 0.13984 (14) | 0.0366 (6) | |
N22 | 0.0859 (4) | 0.22893 (17) | 0.16417 (13) | 0.0488 (7) | |
C23 | 0.0675 (7) | 0.2294 (2) | 0.23268 (19) | 0.0626 (10) | |
H23 | −0.0594 | 0.2586 | 0.2513 | 0.075* | |
C24 | 0.2231 (7) | 0.1898 (2) | 0.27726 (18) | 0.0601 (9) | |
H24 | 0.2045 | 0.1929 | 0.3248 | 0.072* | |
C25 | 0.4070 (7) | 0.1455 (2) | 0.24981 (18) | 0.0601 (9) | |
H25 | 0.5145 | 0.1170 | 0.2785 | 0.072* | |
C26 | 0.4310 (6) | 0.1437 (2) | 0.17975 (16) | 0.0494 (8) | |
H26 | 0.5550 | 0.1144 | 0.1598 | 0.059* | |
C31 | 0.3759 (5) | 0.33794 (17) | 0.06655 (13) | 0.0321 (6) | |
C32 | 0.2767 (5) | 0.41557 (17) | 0.05842 (14) | 0.0330 (6) | |
H32 | 0.1309 | 0.4226 | 0.0344 | 0.040* | |
C33 | 0.3957 (5) | 0.48156 (17) | 0.08614 (14) | 0.0338 (6) | |
C34 | 0.6181 (5) | 0.47370 (19) | 0.11981 (15) | 0.0405 (7) | |
H34 | 0.6988 | 0.5193 | 0.1375 | 0.049* | |
C35 | 0.7172 (5) | 0.39622 (19) | 0.12645 (15) | 0.0399 (7) | |
H35 | 0.8668 | 0.3898 | 0.1486 | 0.048* | |
C36 | 0.5982 (5) | 0.32877 (17) | 0.10082 (14) | 0.0352 (6) | |
H36 | 0.6657 | 0.2770 | 0.1063 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br13 | 0.0878 (3) | 0.0939 (3) | 0.0490 (2) | 0.0319 (2) | −0.0185 (2) | −0.0193 (2) |
Br33 | 0.0583 (2) | 0.03904 (17) | 0.04500 (18) | 0.00725 (15) | −0.00459 (14) | −0.00051 (14) |
O1 | 0.120 (2) | 0.0505 (14) | 0.0518 (15) | −0.0332 (15) | 0.0154 (15) | 0.0002 (12) |
C1 | 0.0492 (19) | 0.0393 (17) | 0.0412 (17) | −0.0064 (14) | 0.0016 (14) | 0.0031 (14) |
N1 | 0.0388 (14) | 0.0361 (13) | 0.0336 (13) | 0.0011 (10) | 0.0005 (10) | 0.0022 (10) |
O2 | 0.0563 (13) | 0.0443 (12) | 0.0518 (13) | 0.0085 (10) | −0.0264 (11) | −0.0012 (10) |
C2 | 0.0307 (15) | 0.0375 (16) | 0.0365 (16) | 0.0056 (12) | −0.0020 (12) | 0.0006 (13) |
C11 | 0.0455 (17) | 0.0330 (15) | 0.0396 (17) | 0.0059 (13) | 0.0039 (13) | 0.0023 (13) |
C12 | 0.0483 (18) | 0.0386 (17) | 0.0428 (18) | 0.0066 (14) | 0.0017 (14) | −0.0007 (14) |
C13 | 0.058 (2) | 0.053 (2) | 0.0384 (17) | 0.0204 (16) | −0.0013 (15) | −0.0026 (15) |
C14 | 0.064 (2) | 0.087 (3) | 0.044 (2) | 0.019 (2) | 0.0157 (18) | 0.005 (2) |
C15 | 0.052 (2) | 0.087 (3) | 0.063 (3) | 0.002 (2) | 0.0215 (19) | 0.010 (2) |
C16 | 0.0432 (19) | 0.053 (2) | 0.057 (2) | 0.0008 (15) | 0.0044 (16) | 0.0014 (17) |
C21 | 0.0359 (16) | 0.0377 (16) | 0.0362 (16) | −0.0010 (12) | −0.0007 (12) | 0.0025 (13) |
N22 | 0.0435 (15) | 0.0615 (18) | 0.0418 (15) | 0.0131 (13) | 0.0082 (12) | 0.0034 (13) |
C23 | 0.064 (2) | 0.071 (3) | 0.054 (2) | 0.0150 (19) | 0.0177 (19) | −0.0005 (19) |
C24 | 0.079 (3) | 0.066 (2) | 0.0359 (18) | −0.006 (2) | 0.0035 (18) | 0.0029 (17) |
C25 | 0.064 (2) | 0.072 (2) | 0.0439 (19) | 0.0064 (19) | −0.0087 (17) | 0.0174 (18) |
C26 | 0.0498 (19) | 0.054 (2) | 0.0446 (18) | 0.0146 (16) | 0.0012 (15) | 0.0084 (16) |
C31 | 0.0269 (14) | 0.0395 (15) | 0.0299 (14) | 0.0024 (12) | 0.0010 (11) | 0.0031 (12) |
C32 | 0.0270 (13) | 0.0423 (16) | 0.0295 (13) | 0.0029 (12) | −0.0021 (11) | 0.0027 (12) |
C33 | 0.0362 (16) | 0.0372 (15) | 0.0282 (14) | 0.0031 (12) | 0.0043 (12) | 0.0022 (12) |
C34 | 0.0346 (16) | 0.0499 (18) | 0.0368 (16) | −0.0065 (14) | −0.0015 (12) | −0.0045 (14) |
C35 | 0.0251 (14) | 0.057 (2) | 0.0373 (16) | 0.0006 (13) | −0.0039 (12) | 0.0020 (14) |
C36 | 0.0287 (14) | 0.0418 (16) | 0.0352 (15) | 0.0047 (12) | 0.0019 (12) | 0.0038 (13) |
Br13—C13 | 1.900 (3) | C21—C26 | 1.371 (4) |
Br33—C33 | 1.900 (3) | N22—C23 | 1.334 (4) |
O1—C1 | 1.210 (4) | C23—C24 | 1.368 (5) |
C1—N1 | 1.403 (4) | C23—H23 | 0.9300 |
C1—C11 | 1.478 (4) | C24—C25 | 1.368 (5) |
N1—C2 | 1.426 (3) | C24—H24 | 0.9300 |
N1—C21 | 1.434 (3) | C25—C26 | 1.367 (4) |
O2—C2 | 1.203 (3) | C25—H25 | 0.9300 |
C2—C31 | 1.485 (4) | C26—H26 | 0.9300 |
C11—C16 | 1.385 (4) | C31—C32 | 1.390 (4) |
C11—C12 | 1.390 (4) | C31—C36 | 1.393 (4) |
C12—C13 | 1.368 (4) | C32—C33 | 1.367 (4) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C13—C14 | 1.378 (5) | C33—C34 | 1.386 (4) |
C14—C15 | 1.377 (5) | C34—C35 | 1.384 (4) |
C14—H14 | 0.9300 | C34—H34 | 0.9300 |
C15—C16 | 1.369 (5) | C35—C36 | 1.371 (4) |
C15—H15 | 0.9300 | C35—H35 | 0.9300 |
C16—H16 | 0.9300 | C36—H36 | 0.9300 |
C21—N22 | 1.316 (4) | ||
O1—C1—N1 | 120.6 (3) | N22—C23—C24 | 124.2 (3) |
O1—C1—C11 | 122.2 (3) | N22—C23—H23 | 117.9 |
N1—C1—C11 | 117.0 (3) | C24—C23—H23 | 117.9 |
C1—N1—C2 | 120.9 (2) | C23—C24—C25 | 118.0 (3) |
C1—N1—C21 | 118.6 (2) | C23—C24—H24 | 121.0 |
C2—N1—C21 | 117.4 (2) | C25—C24—H24 | 121.0 |
O2—C2—N1 | 121.2 (3) | C26—C25—C24 | 119.3 (3) |
O2—C2—C31 | 123.4 (3) | C26—C25—H25 | 120.3 |
N1—C2—C31 | 115.3 (2) | C24—C25—H25 | 120.3 |
C16—C11—C12 | 119.8 (3) | C25—C26—C21 | 117.9 (3) |
C16—C11—C1 | 121.7 (3) | C25—C26—H26 | 121.0 |
C12—C11—C1 | 118.4 (3) | C21—C26—H26 | 121.0 |
C13—C12—C11 | 118.9 (3) | C32—C31—C36 | 119.7 (3) |
C13—C12—H12 | 120.6 | C32—C31—C2 | 118.5 (2) |
C11—C12—H12 | 120.6 | C36—C31—C2 | 121.7 (2) |
C12—C13—C14 | 121.7 (3) | C33—C32—C31 | 119.3 (2) |
C12—C13—Br13 | 118.8 (3) | C33—C32—H32 | 120.3 |
C14—C13—Br13 | 119.5 (3) | C31—C32—H32 | 120.3 |
C15—C14—C13 | 118.8 (3) | C32—C33—C34 | 121.8 (3) |
C15—C14—H14 | 120.6 | C32—C33—Br33 | 118.8 (2) |
C13—C14—H14 | 120.6 | C34—C33—Br33 | 119.4 (2) |
C16—C15—C14 | 120.7 (3) | C35—C34—C33 | 118.3 (3) |
C16—C15—H15 | 119.6 | C35—C34—H34 | 120.8 |
C14—C15—H15 | 119.6 | C33—C34—H34 | 120.8 |
C15—C16—C11 | 120.0 (3) | C36—C35—C34 | 121.0 (3) |
C15—C16—H16 | 120.0 | C36—C35—H35 | 119.5 |
C11—C16—H16 | 120.0 | C34—C35—H35 | 119.5 |
N22—C21—C26 | 124.6 (3) | C35—C36—C31 | 119.9 (3) |
N22—C21—N1 | 114.9 (2) | C35—C36—H36 | 120.1 |
C26—C21—N1 | 120.5 (3) | C31—C36—H36 | 120.1 |
C21—N22—C23 | 116.0 (3) | ||
O1—C1—N1—C2 | −149.3 (3) | C1—N1—C21—C26 | 62.3 (4) |
C11—C1—N1—C2 | 35.3 (4) | C2—N1—C21—C26 | −137.4 (3) |
O1—C1—N1—C21 | 10.3 (4) | C26—C21—N22—C23 | 0.4 (5) |
C11—C1—N1—C21 | −165.1 (2) | N1—C21—N22—C23 | −177.1 (3) |
C1—N1—C2—O2 | 26.1 (4) | C21—N22—C23—C24 | 0.5 (5) |
C21—N1—C2—O2 | −133.7 (3) | N22—C23—C24—C25 | −1.3 (6) |
C1—N1—C2—C31 | −152.0 (3) | C23—C24—C25—C26 | 1.2 (6) |
C21—N1—C2—C31 | 48.1 (3) | C24—C25—C26—C21 | −0.4 (5) |
O1—C1—C11—C16 | −133.9 (3) | N22—C21—C26—C25 | −0.4 (5) |
N1—C1—C11—C16 | 41.4 (4) | N1—C21—C26—C25 | 176.9 (3) |
O1—C1—C11—C12 | 42.8 (4) | O2—C2—C31—C32 | 28.3 (4) |
N1—C1—C11—C12 | −141.9 (3) | N1—C2—C31—C32 | −153.6 (2) |
C16—C11—C12—C13 | −2.5 (4) | O2—C2—C31—C36 | −147.3 (3) |
C1—C11—C12—C13 | −179.2 (3) | N1—C2—C31—C36 | 30.8 (4) |
C11—C12—C13—C14 | 2.5 (5) | C36—C31—C32—C33 | −2.0 (4) |
C11—C12—C13—Br13 | −177.3 (2) | C2—C31—C32—C33 | −177.7 (2) |
C12—C13—C14—C15 | −0.3 (5) | C31—C32—C33—C34 | 2.7 (4) |
Br13—C13—C14—C15 | 179.5 (3) | C31—C32—C33—Br33 | −177.05 (19) |
C13—C14—C15—C16 | −2.1 (6) | C32—C33—C34—C35 | −1.5 (4) |
C14—C15—C16—C11 | 2.1 (6) | Br33—C33—C34—C35 | 178.3 (2) |
C12—C11—C16—C15 | 0.2 (5) | C33—C34—C35—C36 | −0.4 (4) |
C1—C11—C16—C15 | 176.9 (3) | C34—C35—C36—C31 | 1.0 (4) |
C1—N1—C21—N22 | −120.1 (3) | C32—C31—C36—C35 | 0.2 (4) |
C2—N1—C21—N22 | 40.3 (3) | C2—C31—C36—C35 | 175.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1i | 0.93 | 2.41 | 3.330 (4) | 170 |
C32—H32···Br33ii | 0.93 | 3.01 | 3.896 (3) | 162 |
C36—H36···N22iii | 0.93 | 2.68 | 3.363 (4) | 131 |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z; (iii) x+1, y, z. |
C18H11Br2N3O2 | Dx = 1.763 Mg m−3 |
Mr = 461.12 | Melting point: 408 K |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
a = 11.1712 (4) Å | Cell parameters from 3165 reflections |
b = 11.0590 (3) Å | θ = 3.2–27.8° |
c = 14.4181 (5) Å | µ = 4.68 mm−1 |
β = 102.756 (4)° | T = 294 K |
V = 1737.28 (10) Å3 | Plate, colourless |
Z = 4 | 0.22 × 0.20 × 0.05 mm |
F(000) = 904 |
Rigaku Xcalibur, Sapphire3, Gemini Ultra diffractometer | 3865 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2219 reflections with I > 2σ(I) |
Detector resolution: 16.056 pixels mm-1 | Rint = 0.047 |
ω scans | θmax = 27.9°, θmin = 3.2° |
Absorption correction: analytical (ABSFAC; Clark & Reid, 1998) | h = −14→14 |
Tmin = 0.425, Tmax = 0.801 | k = −14→13 |
13616 measured reflections | l = −18→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0345P)2 + 1.6333P] where P = (Fo2 + 2Fc2)/3 |
3865 reflections | (Δ/σ)max < 0.001 |
226 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.67 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br13 | 0.56862 (6) | 1.25414 (5) | 0.79435 (5) | 0.0721 (2) | |
Br33 | 0.38119 (6) | 0.32158 (5) | 0.48956 (4) | 0.0757 (2) | |
O1 | 0.4800 (3) | 0.8188 (3) | 0.9503 (2) | 0.0537 (9) | |
C1 | 0.4245 (4) | 0.8174 (4) | 0.8691 (3) | 0.0381 (10) | |
N1 | 0.3759 (3) | 0.7061 (3) | 0.8250 (2) | 0.0371 (9) | |
O2 | 0.4771 (3) | 0.7308 (3) | 0.7062 (2) | 0.0625 (10) | |
C2 | 0.3990 (4) | 0.6770 (4) | 0.7352 (3) | 0.0408 (11) | |
C11 | 0.3956 (4) | 0.9282 (4) | 0.8105 (3) | 0.0355 (10) | |
C12 | 0.4786 (4) | 1.0231 (4) | 0.8278 (3) | 0.0392 (11) | |
H12 | 0.5518 | 1.0153 | 0.8730 | 0.047* | |
C13 | 0.4518 (4) | 1.1282 (4) | 0.7777 (3) | 0.0428 (11) | |
C14 | 0.3428 (5) | 1.1429 (4) | 0.7130 (4) | 0.0546 (13) | |
H14 | 0.3251 | 1.2156 | 0.6804 | 0.066* | |
C15 | 0.2597 (5) | 1.0492 (5) | 0.6966 (4) | 0.0601 (14) | |
H15 | 0.1853 | 1.0587 | 0.6531 | 0.072* | |
C16 | 0.2864 (4) | 0.9413 (4) | 0.7445 (3) | 0.0449 (12) | |
H16 | 0.2309 | 0.8775 | 0.7324 | 0.054* | |
C21 | 0.3492 (4) | 0.6130 (3) | 0.8853 (3) | 0.0330 (10) | |
N22 | 0.3981 (3) | 0.5060 (3) | 0.8759 (3) | 0.0434 (9) | |
C23 | 0.3708 (5) | 0.4203 (4) | 0.9333 (3) | 0.0519 (13) | |
H23 | 0.3987 | 0.3420 | 0.9278 | 0.062* | |
C24 | 0.3035 (5) | 0.4434 (4) | 0.9998 (4) | 0.0539 (13) | |
H24 | 0.2883 | 0.3837 | 1.0412 | 0.065* | |
C25 | 0.2596 (4) | 0.5580 (4) | 1.0027 (3) | 0.0507 (12) | |
H25 | 0.2134 | 0.5762 | 1.0473 | 0.061* | |
N26 | 0.2803 (3) | 0.6456 (3) | 0.9440 (3) | 0.0427 (9) | |
C31 | 0.3208 (4) | 0.5834 (3) | 0.6777 (3) | 0.0332 (10) | |
C32 | 0.3740 (4) | 0.5108 (4) | 0.6202 (3) | 0.0382 (10) | |
H32 | 0.4567 | 0.5194 | 0.6199 | 0.046* | |
C33 | 0.3045 (5) | 0.4261 (4) | 0.5636 (3) | 0.0447 (12) | |
C34 | 0.1809 (5) | 0.4155 (5) | 0.5591 (3) | 0.0563 (14) | |
H34 | 0.1339 | 0.3595 | 0.5186 | 0.068* | |
C35 | 0.1276 (5) | 0.4898 (5) | 0.6159 (4) | 0.0546 (13) | |
H35 | 0.0439 | 0.4837 | 0.6132 | 0.066* | |
C36 | 0.1967 (4) | 0.5727 (4) | 0.6763 (3) | 0.0426 (11) | |
H36 | 0.1606 | 0.6207 | 0.7156 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br13 | 0.0839 (4) | 0.0390 (3) | 0.0959 (5) | −0.0179 (3) | 0.0255 (4) | 0.0052 (3) |
Br33 | 0.1132 (5) | 0.0612 (4) | 0.0532 (3) | 0.0186 (3) | 0.0194 (3) | −0.0170 (3) |
O1 | 0.065 (2) | 0.0410 (18) | 0.049 (2) | −0.0105 (17) | −0.0011 (18) | 0.0076 (16) |
C1 | 0.037 (3) | 0.034 (2) | 0.044 (3) | −0.003 (2) | 0.010 (2) | 0.001 (2) |
N1 | 0.049 (2) | 0.0248 (17) | 0.041 (2) | −0.0025 (16) | 0.0176 (18) | −0.0013 (16) |
O2 | 0.070 (2) | 0.054 (2) | 0.078 (3) | −0.0242 (18) | 0.048 (2) | −0.0217 (18) |
C2 | 0.043 (3) | 0.032 (2) | 0.054 (3) | −0.001 (2) | 0.025 (2) | −0.002 (2) |
C11 | 0.045 (3) | 0.030 (2) | 0.035 (2) | 0.004 (2) | 0.015 (2) | 0.0014 (18) |
C12 | 0.042 (3) | 0.030 (2) | 0.047 (3) | −0.001 (2) | 0.011 (2) | −0.004 (2) |
C13 | 0.053 (3) | 0.029 (2) | 0.051 (3) | 0.000 (2) | 0.021 (3) | 0.004 (2) |
C14 | 0.069 (4) | 0.038 (3) | 0.058 (3) | 0.010 (3) | 0.016 (3) | 0.014 (2) |
C15 | 0.053 (3) | 0.052 (3) | 0.068 (4) | 0.007 (3) | −0.002 (3) | 0.010 (3) |
C16 | 0.049 (3) | 0.033 (2) | 0.052 (3) | 0.000 (2) | 0.010 (3) | 0.004 (2) |
C21 | 0.037 (3) | 0.026 (2) | 0.036 (2) | −0.0034 (18) | 0.007 (2) | 0.0040 (18) |
N22 | 0.055 (3) | 0.0293 (19) | 0.046 (2) | 0.0070 (17) | 0.0122 (19) | 0.0050 (17) |
C23 | 0.064 (4) | 0.030 (2) | 0.055 (3) | 0.002 (2) | 0.000 (3) | 0.008 (2) |
C24 | 0.061 (3) | 0.050 (3) | 0.050 (3) | −0.009 (3) | 0.012 (3) | 0.015 (2) |
C25 | 0.052 (3) | 0.054 (3) | 0.049 (3) | −0.005 (2) | 0.017 (3) | 0.005 (2) |
N26 | 0.047 (2) | 0.035 (2) | 0.050 (2) | −0.0034 (17) | 0.021 (2) | −0.0009 (18) |
C31 | 0.036 (3) | 0.031 (2) | 0.035 (2) | 0.0033 (19) | 0.013 (2) | 0.0061 (18) |
C32 | 0.042 (3) | 0.035 (2) | 0.040 (3) | 0.003 (2) | 0.017 (2) | 0.004 (2) |
C33 | 0.063 (3) | 0.040 (3) | 0.029 (3) | 0.006 (2) | 0.006 (2) | 0.003 (2) |
C34 | 0.068 (4) | 0.054 (3) | 0.041 (3) | −0.010 (3) | −0.002 (3) | 0.002 (2) |
C35 | 0.041 (3) | 0.070 (4) | 0.049 (3) | −0.007 (3) | 0.002 (3) | 0.016 (3) |
C36 | 0.046 (3) | 0.045 (3) | 0.040 (3) | 0.005 (2) | 0.017 (2) | 0.006 (2) |
Br13—C13 | 1.887 (4) | C21—N26 | 1.314 (5) |
Br33—C33 | 1.901 (4) | C21—N22 | 1.323 (5) |
O1—C1 | 1.199 (5) | N22—C23 | 1.337 (5) |
C1—N1 | 1.435 (5) | C23—C24 | 1.367 (6) |
C1—C11 | 1.483 (6) | C23—H23 | 0.9300 |
N1—C2 | 1.413 (5) | C24—C25 | 1.363 (6) |
N1—C21 | 1.421 (5) | C24—H24 | 0.9300 |
O2—C2 | 1.204 (5) | C25—N26 | 1.340 (5) |
C2—C31 | 1.483 (6) | C25—H25 | 0.9300 |
C11—C16 | 1.379 (6) | C31—C32 | 1.381 (5) |
C11—C12 | 1.386 (6) | C31—C36 | 1.388 (6) |
C12—C13 | 1.366 (6) | C32—C33 | 1.365 (6) |
C12—H12 | 0.9300 | C32—H32 | 0.9300 |
C13—C14 | 1.370 (7) | C33—C34 | 1.373 (7) |
C14—C15 | 1.376 (7) | C34—C35 | 1.384 (7) |
C14—H14 | 0.9300 | C34—H34 | 0.9300 |
C15—C16 | 1.377 (6) | C35—C36 | 1.378 (6) |
C15—H15 | 0.9300 | C35—H35 | 0.9300 |
C16—H16 | 0.9300 | C36—H36 | 0.9300 |
O1—C1—N1 | 120.5 (4) | C21—N22—C23 | 114.5 (4) |
O1—C1—C11 | 123.1 (4) | N22—C23—C24 | 122.5 (4) |
N1—C1—C11 | 116.3 (4) | N22—C23—H23 | 118.7 |
C2—N1—C21 | 120.1 (3) | C24—C23—H23 | 118.7 |
C2—N1—C1 | 118.2 (3) | C25—C24—C23 | 116.9 (4) |
C21—N1—C1 | 117.4 (3) | C25—C24—H24 | 121.5 |
O2—C2—N1 | 119.9 (4) | C23—C24—H24 | 121.5 |
O2—C2—C31 | 122.2 (4) | N26—C25—C24 | 122.7 (5) |
N1—C2—C31 | 117.8 (4) | N26—C25—H25 | 118.7 |
C16—C11—C12 | 119.9 (4) | C24—C25—H25 | 118.7 |
C16—C11—C1 | 121.9 (4) | C21—N26—C25 | 114.6 (4) |
C12—C11—C1 | 118.1 (4) | C32—C31—C36 | 120.2 (4) |
C13—C12—C11 | 119.3 (4) | C32—C31—C2 | 117.6 (4) |
C13—C12—H12 | 120.4 | C36—C31—C2 | 122.1 (4) |
C11—C12—H12 | 120.4 | C33—C32—C31 | 119.7 (4) |
C12—C13—C14 | 121.3 (4) | C33—C32—H32 | 120.2 |
C12—C13—Br13 | 119.7 (4) | C31—C32—H32 | 120.2 |
C14—C13—Br13 | 119.0 (3) | C32—C33—C34 | 121.3 (4) |
C13—C14—C15 | 119.5 (4) | C32—C33—Br33 | 119.0 (4) |
C13—C14—H14 | 120.3 | C34—C33—Br33 | 119.6 (4) |
C15—C14—H14 | 120.3 | C33—C34—C35 | 118.7 (5) |
C14—C15—C16 | 120.2 (5) | C33—C34—H34 | 120.6 |
C14—C15—H15 | 119.9 | C35—C34—H34 | 120.6 |
C16—C15—H15 | 119.9 | C36—C35—C34 | 121.0 (5) |
C15—C16—C11 | 119.8 (4) | C36—C35—H35 | 119.5 |
C15—C16—H16 | 120.1 | C34—C35—H35 | 119.5 |
C11—C16—H16 | 120.1 | C35—C36—C31 | 119.0 (4) |
N26—C21—N22 | 128.7 (4) | C35—C36—H36 | 120.5 |
N26—C21—N1 | 115.3 (4) | C31—C36—H36 | 120.5 |
N22—C21—N1 | 116.0 (4) | ||
O1—C1—N1—C2 | −131.1 (4) | C2—N1—C21—N22 | 28.9 (6) |
C11—C1—N1—C2 | 52.3 (5) | C1—N1—C21—N22 | −127.6 (4) |
O1—C1—N1—C21 | 25.8 (6) | N26—C21—N22—C23 | 1.3 (7) |
C11—C1—N1—C21 | −150.8 (4) | N1—C21—N22—C23 | −179.7 (4) |
C21—N1—C2—O2 | −141.4 (4) | C21—N22—C23—C24 | −3.4 (7) |
C1—N1—C2—O2 | 14.9 (6) | N22—C23—C24—C25 | 2.9 (7) |
C21—N1—C2—C31 | 41.3 (6) | C23—C24—C25—N26 | −0.1 (8) |
C1—N1—C2—C31 | −162.5 (4) | N22—C21—N26—C25 | 1.3 (7) |
O1—C1—C11—C16 | −143.6 (5) | N1—C21—N26—C25 | −177.7 (4) |
N1—C1—C11—C16 | 32.9 (6) | C24—C25—N26—C21 | −1.9 (7) |
O1—C1—C11—C12 | 32.4 (6) | O2—C2—C31—C32 | 35.6 (6) |
N1—C1—C11—C12 | −151.1 (4) | N1—C2—C31—C32 | −147.1 (4) |
C16—C11—C12—C13 | −1.1 (6) | O2—C2—C31—C36 | −140.4 (5) |
C1—C11—C12—C13 | −177.2 (4) | N1—C2—C31—C36 | 36.9 (6) |
C11—C12—C13—C14 | 2.1 (7) | C36—C31—C32—C33 | −1.7 (6) |
C11—C12—C13—Br13 | −175.8 (3) | C2—C31—C32—C33 | −177.8 (4) |
C12—C13—C14—C15 | −1.4 (7) | C31—C32—C33—C34 | 3.4 (7) |
Br13—C13—C14—C15 | 176.6 (4) | C31—C32—C33—Br33 | −176.9 (3) |
C13—C14—C15—C16 | −0.4 (8) | C32—C33—C34—C35 | −2.3 (7) |
C14—C15—C16—C11 | 1.4 (7) | Br33—C33—C34—C35 | 177.9 (3) |
C12—C11—C16—C15 | −0.6 (6) | C33—C34—C35—C36 | −0.3 (7) |
C1—C11—C16—C15 | 175.3 (4) | C34—C35—C36—C31 | 1.8 (7) |
C2—N1—C21—N26 | −152.0 (4) | C32—C31—C36—C35 | −0.8 (6) |
C1—N1—C21—N26 | 51.6 (5) | C2—C31—C36—C35 | 175.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C23—H23···O1i | 0.93 | 2.65 | 3.369 (5) | 134 |
C36—H36···O2ii | 0.93 | 2.61 | 3.375 (5) | 140 |
C12—H12···C25iii | 0.93 | 2.76 | 3.677 (5) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1/2, −y+3/2, z; (iii) x+1/2, −y+3/2, z. |
Funding information
JFG thanks Dublin City University for grants in aid of chemical research for FD. NH thanks Meath County Council and the VEC for a studentship.
References
Baell, J. B., Forsyth, S. A., Gable, R. W., Norton, R. S. & Mulder, R. J. (2001). J. Comput. Aided Mol. Des. 15, 1119–1136. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1998). Comput. Phys. Commun. 111, 243–257. Web of Science CrossRef CAS Google Scholar
Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. Web of Science CSD CrossRef IUCr Journals Google Scholar
Evans, L. S. & Gale, P. A. (2004). Chem. Commun. pp. 1286–1287. Web of Science CSD CrossRef Google Scholar
Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009a). Acta Cryst. E65, o102–o103. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009b). Acta Cryst. E65, o486–o487. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huntress, E. W. & Walter, H. C. (1948). J. Org. Chem. 13, 735–737. CrossRef PubMed CAS Web of Science Google Scholar
Khavasi, H. R. & Tehrani, A. A. (2013). CrystEngComm, 15, 3222–3235. Web of Science CSD CrossRef CAS Google Scholar
Kohmoto, S., Ono, Y., Masu, H., Yamaguchi, K., Kishikawa, K. & Yamamoto, M. (2001). Org. Lett. 3, 4153–4155. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marckwald, W. (1894). Ber. Dtsch. Chem. Ges. 27, 1317–1339. CrossRef Google Scholar
Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201. Web of Science CrossRef CAS Google Scholar
Masu, H., Sakai, M., Kishikawa, K., Yamamoto, M., Yamaguchi, K. & Kohmoto, S. (2005). J. Org. Chem. 70, 1423–1431. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mocilac, P., Donnelly, K. & Gallagher, J. F. (2012). Acta Cryst. B68, 189–203. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mocilac, P., Farrell, M., Lough, A. J., Jelsch, C. & Gallagher, J. F. (2018). Struct. Chem. 29, 1153–1164. Web of Science CSD CrossRef CAS Google Scholar
Mocilac, P. & Gallagher, J. F. (2013). J. Org. Chem. 78, 2355–2361. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mocilac, P., Tallon, M., Lough, A. J. & Gallagher, J. F. (2010). CrystEngComm, 12, 3080–3090. Web of Science CSD CrossRef CAS Google Scholar
Nishio, M. (2004). CrystEngComm, 6, 130–158. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saeed, A., Hussain, S., Abbas, N. & Bolte, M. (2010). J. Chem. Crystallogr. 40, 919–923. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, R., Nayak, S. K., Chopra, D., Reddy, M. K. & Guru Row, T. N. (2018). J. Mol. Struct. 1164, 280–288. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Tschitschibabin, A. E. & Bylinkin, J. G. (1922). Ber. Dtsch. Chem. Ges. A/B, 55, 998–1002. CrossRef Google Scholar
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o357–o358. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.