research communications
Synthesis and structure of a 1:1
of hexamethylenetetramine carboxyborane and acetaminophenaDepartment of Chemistry, University of Texas Permian Basin, Odessa, Texas, USA, and bDepartment of Chemistry, State University of New York at Oswego, Oswego, New York, USA
*Correspondence e-mail: dingra_n@utpb.edu
Hexamethylenetetramine carboacetaminophenborane, a molecule with two pharmacophores attached to a central carboxyborate moiety, was synthesized and crystals were grown with an acetaminophen 15H22BN5O3·C8H9NO2. In the first of these molecules, both the borate-ester and acetylamino groups are considerably twisted away from the plane of the intervening benzene ring [dihedral angles = 76.89 (9) and 65.42 (9)°, respectively]. The extended structure of this features N—H⋯O and O—H⋯O hydrogen bonds, which link the components into (100) sheets and weak C—H⋯O hydrogen bonds help to consolidate the structure.
former to result in the title 1:1 [hexamethylenetetramine 4-acetamidophenyl 2-boranylacetate–4-acetamidophenol (1/1)], CKeywords: co-crystal structure; amine carboxyborane; acetaminophen; CORCB.
CCDC reference: 1828957
1. Chemical context
Crystal structures of pure drugs are of great interest in the pharmaceutical industry since these structures provide an understanding of the intermolecular interactions that explain the physical and chemical properties of the solid (Desiraju, 2007). Modifications made to the active pharmaceutical ingredients to enhance the biological availability often include crystal engineering. For instance, the recrystallization of acetaminophen, C8H9NO2 (also known as paracetamol), gives crystal form II, which displays better solubility and compressibility than form I (Naumov et al., 1998; Agnew et al., 2016). Another approach that has been brought into attention is using crystal formers or co-formers to improve the physicochemical characteristics of the solids. Recent developments in co-crystallization show potential advantages of drug–coformer co-crystals as well as drug–drug co-crystals (Kaur et al., 2017; Cheney et al., 2011; Nugrahani et al., 2007; Dalpiaz et al., 2018).
A group of organo–boron compounds, namely amine carboxyboranes, have been studied extensively for their diverse biological effects such as anti-inflammatory, anti-neoplastic and anti-osteoporotic activities (Hall et al., 1995, 1990; Murphy et al., 1996). Their fundamental structure contains tetravalent connected to a boron atom of the carboxyborane moiety with an N—B coordinate (Spielvogel et al., 1976). As a result of the ease of structural transformability, this group is very amenable to modification such as exchanging various amine groups and esterification on the carboxyborate. Our interest in amine carboxyboranes stemmed from their innate structure that undergoes decarbonylation to produce CO, H2, and the amine group when placed in aqueous solution. We have shown amine carboxyboranes to be a group of molecules that can be used as carbon monoxide releasers (Ayudhya et al., 2017). Moreover, we have recently reported that this process is accelerated by reactive oxygen species (ROS) increasing the rate at which CO and the amine group is released (Ayudhya et al., 2018). Considering the amine compounds are drug molecules, carboxyboranes can be used as a system to deliver drugs that contain amino groups. Since we started our endeavor with drug-conjugated carboxyboranes (Ayudhya et al., 2018), we speculated that carboxyboranes may be able to carry more than one drug. In addition to the amine group on the boron atom, ester and amide derivatives at the carboxyborate end have been shown previously (Das et al., 1990).
As part of this work, we now describe the 15H22BN5O3·C8H9NO2, (I), which resulted from the synthetic concept that conjugating two different pharmacophores to the carboxyborate moiety may make a molecule that has multiple biological effects.
of the title C2. Structural commentary
The P21/c) contains one C15H22BN5O3 ester (CORCB-1-APAP) and one C8H9NO2 acetaminophen molecule (Fig. 1). The hexamethylenetetraamine (hmta) moiety of the ester is syn to the C9=O3 carboxy carbonyl group and the aromatic C3–C8 ring is approximately perpendicular to the plane of the B1/C9/O2/O3 ester carboxylate group [dihedral angle = 76.89 (9)°] while the C1/C2/N1/O1 acetylamino group is twisted out of plane of the ring by 65.42 (9)°; the dihedral angle between the pendant groups is 11.70 (10)°.
of the resulting monoclinic crystal (space groupBased on the observed geometry, we may assume that the bonding in this difunctionalized carboxyborate is very similar to that in the previously reported 7H15BN4O2 or CORCB-1 [Ayudhya et al., 2017; Cambridge Structural Database (Groom et al., 2016) refcode UDAQOI]. The only significant difference is in the slightly longer C9—O2 single bond, 1.399 (2) Å in the difunctionalized title compound compared to 1.353 (3) Å in CORCB-1. This lengthening is expected to be due to the weak ester bond, which is confirmed by rapid hydrolysis. There are only small differences in B—N and B—C bond lengths between the two materials with some lengthening seen in the difunctionalized compound. In the co-crystallized acetaminophen molecule in (I), the dihedral angle between the C18–C23 benzene ring and the acetylamino C16/C17/N6/O5 grouping is 54.61 (10)°.
of C3. Supramolecular features
During crystallization, the new difunctionalized molecule, CORCB-1-APAP, forms a ) between them (Figs. 2 and 3). In comparison to the CORCB-1 crystal reported previously, which features hydrogen bonds between the amino and carboxylic acid groups (Ayudhya et al., 2017), this new structure cannot form hydrogen bonds in the CORCB-1 region due to the replacement of carboxylic acid with an ester As a result, a former such as acetaminophen is needed for crystal formation to provide stable hydrogen bonds: with acetaminophen molecules flanking CORCB-1-APAP; no interactions are observed between these difunctionalized compounds. The shows three classical hydrogen bonds. The first is an N6—H6N⋯O1 hydrogen bond (H⋯O = 2.00 Å) found between the N—H group of acetaminophen and the C=O acceptor from CORCB-1-APAP. This type of bond has been previously reported in the acetaminophen with citric acid (Elbagerma et al., 2011). Pure acetaminophen crystals typically only form hydrogen bonds between N—H⋯O—H and O—H⋯O=C. The second interaction N1—H1N⋯O4—H4O is between CORCB-1-APAP and another acetaminophen molecule. The bond length (2.18 Å) of this hydrogen bond is similar to the N—H⋯O—H bond (2.09 Å) from the known acetaminophen crystal form II (Agnew et al., 2016; Thomas et al., 2011). The third hydrogen bond does not involve CORCB-1-APAP: it is exclusively formed between two acetaminophen molecules and this O4—H4O⋯O5=C17 bond (1.85 Å) is identical in length to that of acetaminophen crystal form II (1.85 Å). Several weak C—H⋯O hydrogen bonds may help to consolidate the structure.
with acetaminophen at a 1:1 ratio with hydrogen-bonding interactions (Table 1A molecular packing projection of (I) is shown in Fig. 4 for clear representation of each pair of CORCB-1-APAP and its co-former, acetaminophen. As noted, the observed hydrogen-bond lengths in this are similar to those from acetaminophen form II packing while the overall packing looks similar to form I (Naumov et al., 1998).
4. Database survey
The crystal structures of amine carboxyborane have been reported as dimers (Spielvogel et al., 1980; Rana et al., 2002; Vyakaranam et al., 2002). The CORCB-1 does not show typical hydrogen bonding from carboxylic acid groups and does not show dimer formation (Ayudhya et al., 2017). Acetaminophen co-crystallized structures to name a few are with ibuprofen (Stone et al., 2009), citric acid (Elbagerma et al., 2011), theophylline (Childs et al., 2007) and morpholine (Oswald et al., 2002).
5. Synthesis and crystallization
The synthesis of amine carboxyborane derivatives such as methyl ester of various amine carboxyborates have been described previously. Several esterification methods of amine carboxyboranes with et al., 1986) and using a catalytic amount of hydrogen bromide, which provides nearly quantitative yields (Győri et al., 1995). In our process, esterification is completed before the amine exchange reaction and not vice versa. The synthesis of hexamethylenetetramine carboacetaminophenborane (CORCB-1-APAP) involves several steps using trimethylamine carboxyborane (CORCB-3) as the starting material. Trimethylamine carboxyborane, synthesized by the previously reported method (Spielvogel et al., 1976) is first esterified at the carboxyborate moiety with acetaminophen (APAP). The esterification was carried out in a mixed solvent system of chloroform and THF (1:1) at 313 to 318 K for five days and the crude product was purified by a series of recrystallizations. CORCB-1-APAP and acetaminophen co-crystals for X-ray data collection were grown in mixed solvents of hexane/chloroform using the solution crystallization method.
include using DCC to make 98% yield (Spielvogel6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were treated as riding atoms in geometrically idealized positions [N—H = 0.86, O—H = 0.82 and C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(N,O,C) or 1.2Ueq(Cmethyl)].
details are summarized in Table 2
|
Supporting information
CCDC reference: 1828957
https://doi.org/10.1107/S2056989020015327/hb7947sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015327/hb7947Isup2.hkl
CheckCIF. DOI: https://doi.org/10.1107/S2056989020015327/hb7947sup4.pdf
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C15H22BN5O3·C8H9NO2 | F(000) = 1024 |
Mr = 482.35 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.760 (4) Å | Cell parameters from 7373 reflections |
b = 9.5527 (19) Å | θ = 5.8–54.1° |
c = 12.045 (2) Å | µ = 0.10 mm−1 |
β = 91.929 (4)° | T = 293 K |
V = 2387.2 (8) Å3 | Needle, colorless |
Z = 4 | 0.23 × 0.06 × 0.05 mm |
Bruker APEXII CCD diffractometer | Rint = 0.091 |
Radiation source: sealed tube | θmax = 26.4°, θmin = 2.0° |
phi and ω scans | h = −25→25 |
29824 measured reflections | k = −11→11 |
4870 independent reflections | l = −15→15 |
3044 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.018P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
4870 reflections | Δρmax = 0.24 e Å−3 |
319 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.05099 (9) | 1.08726 (18) | 0.86077 (16) | 0.0285 (5) | |
H1A | 0.0175 | 1.1125 | 0.8076 | 0.043* | |
H1B | 0.0732 | 1.1701 | 0.8859 | 0.043* | |
H1C | 0.0324 | 1.0413 | 0.9229 | 0.043* | |
C2 | 0.09783 (9) | 0.98985 (19) | 0.80733 (15) | 0.0227 (4) | |
O1 | 0.07872 (6) | 0.88651 (12) | 0.75419 (10) | 0.0260 (3) | |
N1 | 0.16095 (7) | 1.02002 (14) | 0.82219 (12) | 0.0228 (4) | |
H1N | 0.1715 | 1.0898 | 0.8640 | 0.027* | |
C3 | 0.21163 (8) | 0.94201 (17) | 0.77195 (15) | 0.0194 (4) | |
C4 | 0.25773 (9) | 0.87339 (17) | 0.83793 (16) | 0.0221 (4) | |
H4 | 0.2543 | 0.8727 | 0.9147 | 0.026* | |
C5 | 0.30902 (9) | 0.80567 (17) | 0.78963 (15) | 0.0217 (5) | |
H5 | 0.3401 | 0.7601 | 0.8337 | 0.026* | |
C6 | 0.31331 (8) | 0.80687 (17) | 0.67507 (16) | 0.0186 (4) | |
C7 | 0.26699 (8) | 0.87268 (17) | 0.60850 (15) | 0.0209 (4) | |
H7 | 0.2700 | 0.8718 | 0.5316 | 0.025* | |
C8 | 0.21585 (9) | 0.94021 (17) | 0.65765 (15) | 0.0214 (4) | |
H8 | 0.1844 | 0.9843 | 0.6134 | 0.026* | |
O2 | 0.36389 (6) | 0.73601 (11) | 0.62473 (10) | 0.0221 (3) | |
C9 | 0.42431 (8) | 0.80105 (18) | 0.63013 (15) | 0.0189 (4) | |
O3 | 0.42901 (6) | 0.91608 (12) | 0.67315 (10) | 0.0242 (3) | |
B1 | 0.47824 (10) | 0.7044 (2) | 0.57512 (19) | 0.0210 (5) | |
H1B1 | 0.4721 | 0.6078 | 0.5971 | 0.025* | |
H1B2 | 0.4735 | 0.7095 | 0.4948 | 0.025* | |
N2 | 0.54897 (7) | 0.75441 (14) | 0.61337 (11) | 0.0164 (3) | |
C10 | 0.55901 (8) | 0.75507 (18) | 0.73918 (14) | 0.0191 (4) | |
H10A | 0.5288 | 0.8198 | 0.7712 | 0.023* | |
H10B | 0.5502 | 0.6624 | 0.7679 | 0.023* | |
N3 | 0.62411 (7) | 0.79543 (14) | 0.77251 (12) | 0.0206 (4) | |
C11 | 0.63675 (9) | 0.93610 (17) | 0.72684 (15) | 0.0236 (5) | |
H11A | 0.6065 | 1.0022 | 0.7571 | 0.028* | |
H11B | 0.6799 | 0.9653 | 0.7502 | 0.028* | |
N4 | 0.63096 (7) | 0.93989 (14) | 0.60505 (12) | 0.0197 (4) | |
C12 | 0.56578 (8) | 0.89959 (17) | 0.57118 (15) | 0.0191 (4) | |
H12A | 0.5615 | 0.9008 | 0.4907 | 0.023* | |
H12B | 0.5356 | 0.9672 | 0.5997 | 0.023* | |
C13 | 0.59876 (8) | 0.65314 (17) | 0.56842 (15) | 0.0209 (4) | |
H13A | 0.5903 | 0.5597 | 0.5958 | 0.025* | |
H13B | 0.5947 | 0.6509 | 0.4880 | 0.025* | |
N5 | 0.66398 (7) | 0.69366 (14) | 0.60153 (12) | 0.0202 (4) | |
C14 | 0.66971 (9) | 0.69583 (18) | 0.72354 (15) | 0.0234 (5) | |
H14A | 0.7134 | 0.7217 | 0.7462 | 0.028* | |
H14B | 0.6615 | 0.6026 | 0.7518 | 0.028* | |
C15 | 0.67633 (9) | 0.83683 (18) | 0.56036 (16) | 0.0244 (5) | |
H15A | 0.7201 | 0.8639 | 0.5816 | 0.029* | |
H15B | 0.6725 | 0.8372 | 0.4799 | 0.029* | |
C16 | 0.06429 (10) | 0.69737 (19) | 0.99581 (16) | 0.0331 (5) | |
H16A | 0.0271 | 0.6676 | 1.0348 | 0.050* | |
H16B | 0.0528 | 0.7742 | 0.9477 | 0.050* | |
H16C | 0.0974 | 0.7267 | 1.0484 | 0.050* | |
C17 | 0.08889 (9) | 0.57733 (19) | 0.92747 (16) | 0.0244 (5) | |
O5 | 0.09247 (6) | 0.45723 (12) | 0.96712 (10) | 0.0300 (3) | |
N6 | 0.10633 (7) | 0.60827 (14) | 0.82433 (12) | 0.0243 (4) | |
H6N | 0.1048 | 0.6947 | 0.8043 | 0.029* | |
C18 | 0.12735 (9) | 0.50769 (17) | 0.74469 (15) | 0.0211 (4) | |
C19 | 0.08895 (9) | 0.39203 (18) | 0.71821 (15) | 0.0227 (4) | |
H19 | 0.0513 | 0.3762 | 0.7559 | 0.027* | |
C20 | 0.10712 (9) | 0.30031 (18) | 0.63528 (15) | 0.0232 (5) | |
H20 | 0.0820 | 0.2221 | 0.6183 | 0.028* | |
C21 | 0.16282 (9) | 0.32553 (18) | 0.57793 (15) | 0.0213 (4) | |
O4 | 0.17995 (6) | 0.24556 (12) | 0.48852 (11) | 0.0272 (3) | |
H4O | 0.1529 | 0.1843 | 0.4771 | 0.033* | |
C22 | 0.20183 (9) | 0.43896 (18) | 0.60524 (15) | 0.0242 (5) | |
H22 | 0.2398 | 0.4542 | 0.5681 | 0.029* | |
C23 | 0.18357 (9) | 0.53024 (18) | 0.68920 (15) | 0.0238 (5) | |
H23 | 0.2095 | 0.6067 | 0.7078 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0260 (12) | 0.0238 (10) | 0.0363 (13) | 0.0017 (9) | 0.0109 (10) | −0.0002 (9) |
C2 | 0.0258 (12) | 0.0189 (10) | 0.0237 (12) | 0.0016 (9) | 0.0041 (9) | 0.0036 (9) |
O1 | 0.0257 (8) | 0.0202 (7) | 0.0320 (8) | −0.0011 (6) | 0.0027 (6) | −0.0018 (6) |
N1 | 0.0211 (9) | 0.0188 (8) | 0.0286 (10) | 0.0010 (7) | 0.0035 (8) | −0.0056 (7) |
C3 | 0.0181 (11) | 0.0149 (10) | 0.0254 (12) | −0.0012 (8) | 0.0047 (9) | −0.0010 (8) |
C4 | 0.0274 (12) | 0.0188 (10) | 0.0203 (11) | −0.0021 (9) | 0.0053 (9) | 0.0014 (8) |
C5 | 0.0230 (11) | 0.0159 (10) | 0.0262 (12) | 0.0018 (8) | 0.0005 (9) | 0.0032 (8) |
C6 | 0.0155 (10) | 0.0115 (9) | 0.0292 (12) | −0.0014 (8) | 0.0069 (9) | −0.0016 (8) |
C7 | 0.0259 (11) | 0.0175 (10) | 0.0195 (11) | −0.0039 (8) | 0.0032 (9) | −0.0016 (8) |
C8 | 0.0201 (11) | 0.0178 (10) | 0.0260 (12) | 0.0014 (8) | −0.0029 (9) | 0.0015 (8) |
O2 | 0.0177 (7) | 0.0171 (7) | 0.0316 (8) | −0.0019 (5) | 0.0048 (6) | −0.0060 (6) |
C9 | 0.0174 (10) | 0.0182 (10) | 0.0213 (11) | −0.0004 (8) | 0.0017 (9) | 0.0033 (8) |
O3 | 0.0208 (7) | 0.0172 (7) | 0.0349 (8) | −0.0014 (6) | 0.0043 (6) | −0.0062 (6) |
B1 | 0.0214 (13) | 0.0172 (11) | 0.0246 (13) | −0.0034 (9) | 0.0028 (10) | −0.0016 (9) |
N2 | 0.0197 (9) | 0.0131 (7) | 0.0168 (9) | 0.0019 (6) | 0.0044 (7) | −0.0007 (6) |
C10 | 0.0231 (11) | 0.0170 (9) | 0.0174 (11) | 0.0035 (8) | 0.0043 (9) | 0.0020 (8) |
N3 | 0.0205 (9) | 0.0206 (8) | 0.0209 (9) | 0.0048 (7) | 0.0004 (7) | 0.0010 (7) |
C11 | 0.0201 (11) | 0.0193 (10) | 0.0312 (12) | 0.0006 (8) | −0.0001 (9) | −0.0042 (9) |
N4 | 0.0167 (9) | 0.0174 (8) | 0.0252 (10) | 0.0010 (7) | 0.0034 (7) | 0.0032 (7) |
C12 | 0.0212 (11) | 0.0157 (9) | 0.0206 (11) | 0.0002 (8) | 0.0025 (9) | 0.0053 (8) |
C13 | 0.0221 (11) | 0.0180 (10) | 0.0231 (11) | 0.0035 (8) | 0.0071 (9) | −0.0027 (8) |
N5 | 0.0171 (9) | 0.0197 (8) | 0.0239 (10) | 0.0017 (7) | 0.0047 (7) | 0.0013 (7) |
C14 | 0.0212 (11) | 0.0215 (10) | 0.0274 (12) | 0.0041 (8) | 0.0001 (9) | 0.0030 (9) |
C15 | 0.0192 (11) | 0.0244 (11) | 0.0298 (12) | 0.0004 (8) | 0.0061 (9) | 0.0042 (9) |
C16 | 0.0420 (14) | 0.0275 (11) | 0.0299 (13) | 0.0095 (10) | 0.0036 (11) | 0.0009 (9) |
C17 | 0.0259 (12) | 0.0228 (11) | 0.0245 (12) | 0.0017 (9) | −0.0014 (10) | 0.0003 (9) |
O5 | 0.0389 (9) | 0.0225 (7) | 0.0287 (8) | 0.0038 (6) | 0.0033 (7) | 0.0040 (6) |
N6 | 0.0338 (10) | 0.0145 (8) | 0.0247 (10) | 0.0014 (7) | 0.0018 (8) | 0.0004 (7) |
C18 | 0.0241 (11) | 0.0176 (10) | 0.0216 (11) | 0.0022 (9) | −0.0009 (9) | 0.0010 (8) |
C19 | 0.0205 (11) | 0.0209 (10) | 0.0270 (12) | 0.0009 (8) | 0.0037 (9) | 0.0024 (9) |
C20 | 0.0230 (11) | 0.0171 (10) | 0.0296 (12) | −0.0026 (8) | 0.0035 (10) | 0.0000 (9) |
C21 | 0.0239 (11) | 0.0166 (10) | 0.0236 (12) | 0.0047 (8) | 0.0013 (9) | 0.0018 (8) |
O4 | 0.0275 (8) | 0.0218 (7) | 0.0326 (8) | −0.0007 (6) | 0.0080 (7) | −0.0037 (6) |
C22 | 0.0203 (11) | 0.0249 (11) | 0.0275 (12) | −0.0018 (9) | 0.0013 (9) | 0.0047 (9) |
C23 | 0.0241 (12) | 0.0199 (10) | 0.0271 (12) | −0.0044 (8) | −0.0028 (10) | 0.0020 (9) |
C1—C2 | 1.506 (2) | C11—H11B | 0.9700 |
C1—H1A | 0.9600 | N4—C12 | 1.452 (2) |
C1—H1B | 0.9600 | N4—C15 | 1.477 (2) |
C1—H1C | 0.9600 | C12—H12A | 0.9700 |
C2—O1 | 1.235 (2) | C12—H12B | 0.9700 |
C2—N1 | 1.348 (2) | C13—N5 | 1.451 (2) |
N1—C3 | 1.439 (2) | C13—H13A | 0.9700 |
N1—H1N | 0.8600 | C13—H13B | 0.9700 |
C3—C8 | 1.383 (2) | N5—C14 | 1.471 (2) |
C3—C4 | 1.388 (2) | N5—C15 | 1.480 (2) |
C4—C5 | 1.390 (2) | C14—H14A | 0.9700 |
C4—H4 | 0.9300 | C14—H14B | 0.9700 |
C5—C6 | 1.386 (2) | C15—H15A | 0.9700 |
C5—H5 | 0.9300 | C15—H15B | 0.9700 |
C6—C7 | 1.382 (2) | C16—C17 | 1.511 (2) |
C6—O2 | 1.404 (2) | C16—H16A | 0.9600 |
C7—C8 | 1.391 (2) | C16—H16B | 0.9600 |
C7—H7 | 0.9300 | C16—H16C | 0.9600 |
C8—H8 | 0.9300 | C17—O5 | 1.244 (2) |
O2—C9 | 1.399 (2) | C17—N6 | 1.339 (2) |
C9—O3 | 1.2174 (19) | N6—C18 | 1.436 (2) |
C9—B1 | 1.611 (3) | N6—H6N | 0.8600 |
B1—N2 | 1.597 (2) | C18—C23 | 1.381 (2) |
B1—H1B1 | 0.9700 | C18—C19 | 1.393 (2) |
B1—H1B2 | 0.9700 | C19—C20 | 1.390 (2) |
N2—C10 | 1.523 (2) | C19—H19 | 0.9300 |
N2—C12 | 1.522 (2) | C20—C21 | 1.388 (2) |
N2—C13 | 1.528 (2) | C20—H20 | 0.9300 |
C10—N3 | 1.449 (2) | C21—O4 | 1.377 (2) |
C10—H10A | 0.9700 | C21—C22 | 1.386 (2) |
C10—H10B | 0.9700 | O4—H4O | 0.8200 |
N3—C11 | 1.479 (2) | C22—C23 | 1.397 (2) |
N3—C14 | 1.479 (2) | C22—H22 | 0.9300 |
C11—N4 | 1.468 (2) | C23—H23 | 0.9300 |
C11—H11A | 0.9700 | ||
C2—C1—H1A | 109.5 | C12—N4—C11 | 108.57 (14) |
C2—C1—H1B | 109.5 | C12—N4—C15 | 108.70 (14) |
H1A—C1—H1B | 109.5 | C11—N4—C15 | 108.42 (14) |
C2—C1—H1C | 109.5 | N4—C12—N2 | 111.71 (13) |
H1A—C1—H1C | 109.5 | N4—C12—H12A | 109.3 |
H1B—C1—H1C | 109.5 | N2—C12—H12A | 109.3 |
O1—C2—N1 | 122.26 (17) | N4—C12—H12B | 109.3 |
O1—C2—C1 | 120.98 (17) | N2—C12—H12B | 109.3 |
N1—C2—C1 | 116.74 (16) | H12A—C12—H12B | 107.9 |
C2—N1—C3 | 123.69 (15) | N5—C13—N2 | 111.70 (13) |
C2—N1—H1N | 118.2 | N5—C13—H13A | 109.3 |
C3—N1—H1N | 118.2 | N2—C13—H13A | 109.3 |
C8—C3—C4 | 119.91 (17) | N5—C13—H13B | 109.3 |
C8—C3—N1 | 119.80 (16) | N2—C13—H13B | 109.3 |
C4—C3—N1 | 120.24 (16) | H13A—C13—H13B | 107.9 |
C5—C4—C3 | 120.23 (17) | C13—N5—C14 | 108.77 (14) |
C5—C4—H4 | 119.9 | C13—N5—C15 | 108.97 (13) |
C3—C4—H4 | 119.9 | C14—N5—C15 | 108.22 (14) |
C6—C5—C4 | 119.25 (17) | N5—C14—N3 | 112.10 (14) |
C6—C5—H5 | 120.4 | N5—C14—H14A | 109.2 |
C4—C5—H5 | 120.4 | N3—C14—H14A | 109.2 |
C7—C6—C5 | 120.97 (17) | N5—C14—H14B | 109.2 |
C7—C6—O2 | 118.98 (16) | N3—C14—H14B | 109.2 |
C5—C6—O2 | 120.00 (16) | H14A—C14—H14B | 107.9 |
C6—C7—C8 | 119.33 (17) | N4—C15—N5 | 111.96 (14) |
C6—C7—H7 | 120.3 | N4—C15—H15A | 109.2 |
C8—C7—H7 | 120.3 | N5—C15—H15A | 109.2 |
C3—C8—C7 | 120.29 (17) | N4—C15—H15B | 109.2 |
C3—C8—H8 | 119.9 | N5—C15—H15B | 109.2 |
C7—C8—H8 | 119.9 | H15A—C15—H15B | 107.9 |
C9—O2—C6 | 116.62 (13) | C17—C16—H16A | 109.5 |
O3—C9—O2 | 118.65 (16) | C17—C16—H16B | 109.5 |
O3—C9—B1 | 130.19 (16) | H16A—C16—H16B | 109.5 |
O2—C9—B1 | 111.15 (14) | C17—C16—H16C | 109.5 |
N2—B1—C9 | 110.79 (14) | H16A—C16—H16C | 109.5 |
N2—B1—H1B1 | 109.5 | H16B—C16—H16C | 109.5 |
C9—B1—H1B1 | 109.5 | O5—C17—N6 | 123.05 (17) |
N2—B1—H1B2 | 109.5 | O5—C17—C16 | 120.52 (17) |
C9—B1—H1B2 | 109.5 | N6—C17—C16 | 116.43 (16) |
H1B1—B1—H1B2 | 108.1 | C17—N6—C18 | 124.75 (15) |
C10—N2—C12 | 107.66 (13) | C17—N6—H6N | 117.6 |
C10—N2—C13 | 106.47 (13) | C18—N6—H6N | 117.6 |
C12—N2—C13 | 107.04 (13) | C23—C18—C19 | 119.95 (17) |
C10—N2—B1 | 112.47 (14) | C23—C18—N6 | 119.97 (16) |
C12—N2—B1 | 113.27 (13) | C19—C18—N6 | 119.95 (16) |
C13—N2—B1 | 109.56 (13) | C20—C19—C18 | 119.82 (18) |
N3—C10—N2 | 111.84 (14) | C20—C19—H19 | 120.1 |
N3—C10—H10A | 109.2 | C18—C19—H19 | 120.1 |
N2—C10—H10A | 109.2 | C21—C20—C19 | 119.93 (17) |
N3—C10—H10B | 109.2 | C21—C20—H20 | 120.0 |
N2—C10—H10B | 109.2 | C19—C20—H20 | 120.0 |
H10A—C10—H10B | 107.9 | O4—C21—C20 | 122.30 (16) |
C10—N3—C11 | 108.32 (13) | O4—C21—C22 | 117.09 (16) |
C10—N3—C14 | 108.77 (14) | C20—C21—C22 | 120.50 (17) |
C11—N3—C14 | 108.20 (14) | C21—O4—H4O | 109.5 |
N4—C11—N3 | 112.61 (14) | C21—C22—C23 | 119.29 (17) |
N4—C11—H11A | 109.1 | C21—C22—H22 | 120.4 |
N3—C11—H11A | 109.1 | C23—C22—H22 | 120.4 |
N4—C11—H11B | 109.1 | C18—C23—C22 | 120.47 (17) |
N3—C11—H11B | 109.1 | C18—C23—H23 | 119.8 |
H11A—C11—H11B | 107.8 | C22—C23—H23 | 119.8 |
O1—C2—N1—C3 | 4.5 (3) | C11—N4—C12—N2 | −58.36 (17) |
C1—C2—N1—C3 | −176.59 (16) | C15—N4—C12—N2 | 59.38 (18) |
C2—N1—C3—C8 | 64.0 (2) | C10—N2—C12—N4 | 56.54 (17) |
C2—N1—C3—C4 | −118.63 (19) | C13—N2—C12—N4 | −57.59 (18) |
C8—C3—C4—C5 | 1.6 (3) | B1—N2—C12—N4 | −178.46 (14) |
N1—C3—C4—C5 | −175.82 (15) | C10—N2—C13—N5 | −57.80 (17) |
C3—C4—C5—C6 | −0.4 (3) | C12—N2—C13—N5 | 57.13 (18) |
C4—C5—C6—C7 | −0.9 (3) | B1—N2—C13—N5 | −179.67 (14) |
C4—C5—C6—O2 | −178.39 (15) | N2—C13—N5—C14 | 59.31 (18) |
C5—C6—C7—C8 | 0.9 (2) | N2—C13—N5—C15 | −58.47 (18) |
O2—C6—C7—C8 | 178.43 (15) | C13—N5—C14—N3 | −59.61 (18) |
C4—C3—C8—C7 | −1.5 (3) | C15—N5—C14—N3 | 58.64 (18) |
N1—C3—C8—C7 | 175.85 (15) | C10—N3—C14—N5 | 59.51 (19) |
C6—C7—C8—C3 | 0.3 (3) | C11—N3—C14—N5 | −57.96 (18) |
C7—C6—O2—C9 | 105.80 (17) | C12—N4—C15—N5 | −59.85 (19) |
C5—C6—O2—C9 | −76.6 (2) | C11—N4—C15—N5 | 57.99 (18) |
C6—O2—C9—O3 | −3.1 (2) | C13—N5—C15—N4 | 59.57 (19) |
C6—O2—C9—B1 | 176.90 (15) | C14—N5—C15—N4 | −58.56 (18) |
O3—C9—B1—N2 | 17.3 (3) | O5—C17—N6—C18 | 4.0 (3) |
O2—C9—B1—N2 | −162.61 (14) | C16—C17—N6—C18 | −176.28 (16) |
C9—B1—N2—C10 | 56.76 (19) | C17—N6—C18—C23 | −130.07 (19) |
C9—B1—N2—C12 | −65.61 (19) | C17—N6—C18—C19 | 54.1 (2) |
C9—B1—N2—C13 | 174.96 (14) | C23—C18—C19—C20 | −0.5 (3) |
C12—N2—C10—N3 | −56.73 (17) | N6—C18—C19—C20 | 175.33 (16) |
C13—N2—C10—N3 | 57.78 (17) | C18—C19—C20—C21 | −1.1 (3) |
B1—N2—C10—N3 | 177.79 (13) | C19—C20—C21—O4 | −173.96 (16) |
N2—C10—N3—C11 | 58.28 (17) | C19—C20—C21—C22 | 2.3 (3) |
N2—C10—N3—C14 | −59.11 (17) | O4—C21—C22—C23 | 174.61 (15) |
C10—N3—C11—N4 | −60.21 (18) | C20—C21—C22—C23 | −1.8 (3) |
C14—N3—C11—N4 | 57.55 (18) | C19—C18—C23—C22 | 1.0 (3) |
N3—C11—N4—C12 | 60.24 (18) | N6—C18—C23—C22 | −174.86 (16) |
N3—C11—N4—C15 | −57.68 (18) | C21—C22—C23—C18 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O3 | 0.97 | 2.52 | 3.184 (2) | 125 |
C12—H12B···O3 | 0.97 | 2.46 | 3.135 (2) | 126 |
N1—H1N···O4i | 0.86 | 2.18 | 3.0217 (19) | 168 |
O4—H4O···O5ii | 0.82 | 1.85 | 2.6619 (18) | 174 |
N6—H6N···O1 | 0.86 | 2.00 | 2.8415 (19) | 166 |
C10—H10B···O3iii | 0.97 | 2.49 | 3.413 (2) | 159 |
C15—H15A···O4iv | 0.97 | 2.50 | 3.160 (2) | 125 |
C20—H20···O5ii | 0.93 | 2.51 | 3.195 (2) | 130 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank M. Zeller for the X-ray data collection and the NSF for funding the diffractometer (DMR-1337296) at Youngstown State University.
References
Agnew, L. R., Cruickshank, D. L., McGlone, T. & Wilson, C. C. (2016). Chem. Commun. 52, 7368–7371. CrossRef CAS Google Scholar
Ayudhya, T. I., Pellechia, P. J. & Dingra, N. N. (2018). Dalton Trans. 47, 538–543. Web of Science CrossRef CAS PubMed Google Scholar
Ayudhya, T. I., Raymond, C. C. & Dingra, N. N. (2017). Dalton Trans. 46, 882–889. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L. & Zaworotko, M. J. (2011). J. Pharm. Sci. 100, 2172–2181. CSD CrossRef CAS PubMed Google Scholar
Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dalpiaz, A., Ferretti, V., Bertolasi, V., Pavan, B., Monari, A. & Pastore, M. (2018). Mol. Pharm. 15, 268–278. CSD CrossRef CAS PubMed Google Scholar
Das, M. K., Mukherjee, P. & Roy, S. (1990). Bull. Chem. Soc. Jpn, 63, 3658–3660. CrossRef CAS Google Scholar
Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. Web of Science CrossRef CAS Google Scholar
Elbagerma, M. A., Edwards, H. G. M., Munshi, T. & Scowen, I. J. (2011). CrystEngComm, 13, 1877–1884. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Győri, B., Berente, Z., Emri, J. & Lázár, I. (1995). Synthesis, 1995, 191–194. Google Scholar
Hall, I. H., Rajendran, K. G., Chen, S. Y., Wong, O. T., Sood, A. & Spielvogel, B. F. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 39–44. CrossRef CAS Google Scholar
Hall, I. H., Spielvogel, B. F. & Sood, A. (1990). Anticancer Drugs, 1, 133–142. CrossRef CAS PubMed Google Scholar
Kaur, R., Cavanagh, K. L., Rodríguez-Hornedo, N. & Matzger, A. J. (2017). Cryst. Growth Des. 17, 5012–5016. Web of Science CSD CrossRef CAS PubMed Google Scholar
Murphy, M. E., Elkins, A. L., Shrewsbury, R. P., Sood, A., Spielvogel, B. F. & Hall, I. H. (1996). Met.-Based Drugs, 3, 31–47. CrossRef CAS Google Scholar
Naumov, D. Yu., Vasilchenko, M. A. & Howard, J. A. K. (1998). Acta Cryst. C54, 653–655. CSD CrossRef CAS IUCr Journals Google Scholar
Nugrahani, I., Asyarie, S., Soewandhi, S. N. & Ibrahim, S. (2007). Int. J. Pharm. 3, 475–481. CAS Google Scholar
Oswald, I. D. H., Allan, D. R., McGregor, P. A., Motherwell, W. D. S., Parsons, S. & Pulham, C. R. (2002). Acta Cryst. B58, 1057–1066. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rana, G., Vyakaranam, K., Zheng, C., Li, S., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 179–180. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spielvogel, B. F., Ahmed, F. U. & Mcphail, A. T. (1986). Synthesis, 1986, 833–835. CrossRef Google Scholar
Spielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343–6344. CSD CrossRef CAS Web of Science Google Scholar
Spielvogel, B. F., Wojnowich, L., Das, M. K., McPhail, A. T. & Hargrave, K. D. (1976). J. Am. Chem. Soc. 98, 5702–5703. CSD CrossRef CAS PubMed Web of Science Google Scholar
Stone, K. H., Lapidus, S. H. & Stephens, P. W. (2009). J. Appl. Cryst. 42, 385–391. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Thomas, L. H., Wales, C., Zhao, L. & Wilson, C. C. (2011). Cryst. Growth Des. 11, 1450–1452. Web of Science CSD CrossRef CAS Google Scholar
Vyakaranam, K., Rana, G., Chong, G., Zheng, S. L., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 181–182. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.