research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-methyl-3-[11-(pyridin-2-yl)-6,11-di­hydro-6,11-ep­­oxy­dibenzo[b,e]oxepin-6-yl]isoxazole-4-carboxylate: a bicyclic acetal from the rearrangement of an anthracenyl isoxazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA, and bDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA
*Correspondence e-mail: nicholas.natale@mso.umt.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 October 2020; accepted 28 October 2020; online 6 November 2020)

The title compound, C26H20N2O5, is a rearrangement product of an o-pyridinyl anthracenyl isoxazole ester. It features a bicyclic acetal structure, which has two extended almost co-planar ring systems, which subtend a fold angle of 102.17 (5)°. In the crystal, the mol­ecules are closely knitted together through C—H⋯N and C—H⋯O hydrogen bonds and form chains of alternating enanti­omers propagating along the c-axis direction.

1. Chemical context

We have reported on 3-aryl isoxazole amides (AIMs) with anti­tumor activity (Han et al., 2009[Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680.]; Weaver et al., 2015[Weaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765-1770.]) and recently described 10-substituted anthracenes with N-heterocyclic substituents in this series, which possessed robust anti­tumor activity against both breast and brain tumor cell lines (Weaver et al., 2020[Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.]). In the course of that study, we attempted to obtain crystals of the 10-o-pyridyl example II by slow evaporation (see Fig. 1[link]). After numerous attempts, suitable crystals were obtained but were found to have undergone oxygen addition and rearrangement to the title compound, C26H20N2O5, I. This is unprecedented in this series of compounds.

[Scheme 1]
[Figure 1]
Figure 1
Rearrangement of o-pyridyl ester II. The title compound I was observed on slow evaporation during recrystallization at room temperature.

In the case of the o-pyridyl ester, slow evaporation from solution was observed to produce a bicyclic acetal (BA). This requires the formation of a di­oxy­gen adduct commonly found in the anthracene literature (Klaper et al., 2016[Klaper, M., Wessig, P. & Linker, T. (2016). Chem. Commun. 52, 1210-1213.]), as shown in Fig. 1[link]. This di­oxy­gen adduct III is most often observed as a [4 + 2] cyclo­adduct with singlet oxygen (Lauer et al., 2011[Lauer, A., Dobryakov, A. L., Kovalenko, S. A., Fidder, H. & Heyne, K. (2011). Phys. Chem. Chem. Phys. 13, 8723-8732.]), and in some cases where a donor–acceptor pair sensitizes the formation of singlet oxygen. It should be noted, however, that the endo peroxide can be formed from the ground-state diradical oxygen in a one-electron process.

The bicyclic acetal (BA) I can be formed directly via a Criegee-like rearrangement through inter­mediate IV, or alternatively stepwise via the inter­mediacy of one electron reorganization to an inter­mediate diepoxide V (Filatov et al., 2017[Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Savoie, H., Flanagan, K. J., Sy, C., Sitte, E., Telitchko, M., Laquai, F., Boyle, R. W. & Senge, M. O. (2017). J. Am. Chem. Soc. 139, 6282-6285.]). Of the ten previous crystal structures of anthryl isoxazoles published by our group (Mosher et al., 1996[Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513-2515.]; Han et al., 2002[Han, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673-7677.], 2003[Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539-545.]; Li et al., 2006[Li, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854-o856.], 2008[Li, C., Twamley, B. & Natale, N. R. (2008). J. Heterocycl. Chem. 45, 259-264.]; Li et al., 2013[Li, C., Campbell, M. J., Weaver, M. J., Duncan, N. S., Hunting, J. L. & Natale, N. R. (2013). Acta Cryst. E69, o1804-o1805.]; Duncan et al., 2014[Duncan, N. S., Beall, H. D., Kearns, A. K., Li, C. & Natale, N. R. (2014). Acta Cryst. E70, o315-o316.]; Weaver et al., 2015[Weaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765-1770.]), and the three N-heterocyclic structures solved and disclosed (Weaver et al., 2020[Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.]), this is the first example we have observed of this rearrangement. Given the observation of this rearrangement it is advisable that the o-pyridyl AIM (II) be stored under an argon atmosphere at low temperature (233 K or below).

Conditions within tumors are notoriously anoxic. As an example, the transition to the Warberg phenotype (Vander Heiden et al., 2009[Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. (2009). Science, 324, 1029-1033.]) is heavily influenced by the transcription factor hypoxia inducing factor (HIF). Therefore, the physiological relevance and therapeutic practicality of this process appears questionable, particularly considering that the endo peroxide (III) or the diepoxide (V) would not be expected to exert significant selectivity. Therefore, the probability of a useful therapeutic index would appear low. However, the prospects for exploiting this tactic will be considered, even if they constitute only negative controls, in our ongoing studies of anti­tumor theranostics, and will be reported in due course.

2. Structural commentary

The title compound crystallizes as a racemate in the monoclinic space group, P21/c, with one independent mol­ecule in the asymmetric unit (Fig. 2[link]). In the arbitrarily chosen asymmetric mol­ecule, atoms C7 and C14 both have R configurations. The insertion of two oxygen atoms in the central ring of anthracene forms a bicyclic system with one oxygen atom (O1) in the middle shared by both dioxane and furan rings. The remainder of the dioxane and furan ring atoms are co-planar with the C1–C6 and C8–C13 benzene rings on either side, respectively. The pyridine group is attached at the ortho position to one of the shared carbon atoms on the bicyclic system, while the isoxazole ester is attached to the other shared carbon atom. The overall effect of the bonding gives the whole mol­ecule a dragon-like appearance.

[Figure 2]
Figure 2
The mol­ecular structure of I showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intra­molecular hydrogen bonds.

The planarity of each wing is indicated by the r.m.s.d. of 0.028 Å for both planes formed by C1–C7/C14/O2 and C7–C14. These two wings are flapping downwards with a fold angle between them of 102.17 (5)°. The pyridine group is the head of the dragon with the nitro­gen atom being exo to the oxygen atom (O1) in the backbone. A potential hydrogen bond between C23—H23 and O1 may contribute to the small torsion angle of 2.2 (3)° for O1—C7—C22—C23. Both the nitro­gen and oxygen atoms in the isoxazole ring are exo to the oxygen atoms (O1 and O2) in the dioxane ring, resulting in the ethyl ester tail swinging to the dioxane side and coming to rest between the two oxygen atoms. There is a σπ inter­action between the tip of the tail (methyl group) and the benzene ring, which is also reflected by the upfield shift of CH3 protons in the NMR spectrum.

3. Supra­molecular features

In the crystal, chains of alternating enanti­omers are formed running along the c-axis direction through the inter­molecular hydrogen bonds C23—H23⋯N1i, C12—H12⋯O1ii and C18—H18B⋯O4ii (Table 1[link], Fig. 3[link]). This chain is highly knitted, which may contribute to the formation of needle-shaped crystals.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N2 0.96 (2) 2.42 (2) 3.085 (3) 125.8 (18)
C23—H23⋯N1i 1.00 (3) 2.70 (3) 3.669 (3) 163 (2)
C12—H12⋯O1ii 0.94 (3) 2.56 (3) 3.469 (2) 162 (2)
C18—H18A⋯O4ii 0.94 (4) 2.71 (4) 3.297 (3) 121 (3)
C18—H18B⋯O4 0.99 (4) 2.38 (4) 3.040 (3) 123 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The packing of I. A closely knitted chain of alternating enanti­omers is formed through several inter­molecular hydrogen bonds. For clarity, H atoms not participating in inter­molecular bonds are omitted. Atoms participating in inter­molecular hydrogen bonds are labeled once.

4. Hirshfeld surface analysis

The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm. 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The calculations and visualization were performed using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surface of the title compound is mapped over dnorm in a fixed color scale of −0.1374 (red) to +1.3125 (blue) arbitrary units (Fig. 4[link]), where the red spots indicate the inter­molecular contacts shorter than the van der Waals separations. The delineated two-dimensional fingerprint plots are shown in Fig. 5[link], and demonstrate that the main contribution to the overall Hirshfeld surface area arises from H⋯H contacts (50.5%, Fig. 5[link]a). The C⋯H/H⋯C contacts (24.7%, Fig. 5[link]b), which indicate C—H⋯π inter­actions, are identifiable from the Hirshfeld surface mapped over the shape-index property (Fig. 6[link]). Conventional hydrogen-bonding inter­actions, H⋯O/O⋯H and N⋯H/H⋯N, only comprise 12.9% and 4.2% of the inter­molecular inter­actions, respectively (Fig. 5[link]b and 5c).

[Figure 4]
Figure 4
Hirshfeld surface of I mapped over dnorm. Short contacts between carbonyl C19=O3 and isoxazole O3—C17 are shown in dashed red lines. Inter­molecular hydrogen bonds O1⋯H12 and N1⋯H23 are shown as dashed green lines.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots for I delineated into (a) H⋯H/H⋯H contacts, (b) C⋯H/H⋯C contacts, (c) O⋯H/H⋯O contacts, and (d) N⋯H/H⋯N contacts.
[Figure 6]
Figure 6
Hirshfeld surface of I mapped over the shape-index property. C—H⋯π inter­actions (C24—H24 to aromatic ring C1–C6 and C4—H4 to aromatic ring N22/C22–C26) are shown as dashed lines.

5. Database survey

A search for the 6,11-di­hydro-6,11-ep­oxy­dibenzo[b,e]oxepin fragment in the Cambridge Structural Database (CSD version 5.40, August 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) resulted in five hits, namely refcodes LIPZEP (Walker et al., 1999[Walker, M., Pohl, E., Herbst-Irmer, R., Gerlitz, M., Rohr, J. & Sheldrick, G. M. (1999). Acta Cryst. B55, 607-616.]), NEJLOG (Filatov et al., 2017[Filatov, M. A., Karuthedath, S., Polestshuk, P. M., Savoie, H., Flanagan, K. J., Sy, C., Sitte, E., Telitchko, M., Laquai, F., Boyle, R. W. & Senge, M. O. (2017). J. Am. Chem. Soc. 139, 6282-6285.]), VAZDEI, VAZDIM (Ando et al., 2017[Ando, Y., Hanaki, A., Sasaki, R., Ohmori, K. & Suzuki, K. (2017). Angew. Chem. Int. Ed. 56, 11460-11465.]), and WOPGAM (Ando et al., 2019[Ando, Y., Tanaka, D., Sasaki, R., Ohmori, K. & Suzuki, K. (2019). Angew. Chem. Int. Ed. 58, 12507-12513.]). These five structures, despite their different substitution groups and positions, all exhibit a similar a structural configuration, that with shared oxygen atom pointing up, and the remainder of the five- and seven-membered rings on the bicyclic system are co-planar to their respective benzene rings.

6. Synthesis and crystallization

The title compound was synthesized from the o-pyridyl-anthracenyl isoxazole ester (II) (Weaver et al., 2020[Weaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.]). Colorless needles were obtained by slow evaporation in the presence of atmospheric oxygen over a period of several months. 1H NMR (CDCl3) δppm 8.895 (d, 1H, J = 5Hz); 8.13 (dd, 1H, J = 6 Hz); 7.8 (d, 2H, J = 4 Hz); 7.57 (dt, 1H); 7.34 (m, 4H); 7.16 (m, 1H); 6.85 (d, 1H, 8 Hz); 6.79 (t, 1H, J = 8 Hz); 3.975 (q, 1H, J = 7 Hz); 3.845 (q, 1H, J = 7 Hz); 2.79 (s, 3H); 0.63 (t, 3H, J = 7 Hz). 13C NMR (CDCl3) δppm 176.69, 161.73 158.05, 156.86, 150.24, 148.55, 146.15, 135.98, 136.88, 129.35, 128.44, 128.17, 123.27, 123.09, 122.16, 121.46, 121.35, 120.46, 117.01, 60.91, 13.14. 13.08. The proton–proton correlation is provided in the supporting information. Positive electrospray ionization (ESI) mass spectrometry, calc. for [C26H20N2O3+H]+ 441.44, observed m/z 441.2 ([M + H]+, 100% rel. intensity).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were found in difference-Fourier maps and their positions were freely refined with the constraint Uiso(H) = 1.2 or 1.5Ueq(parent). Seven reflections were omitted because of poor agreement between the observed and calculated intensities.

Table 2
Experimental details

Crystal data
Chemical formula C26H20N2O5
Mr 440.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 19.0586 (7), 13.9627 (5), 8.1459 (3)
β (°) 101.7800 (11)
V3) 2122.05 (13)
Z 4
Radiation type Synchrotron, λ = 0.7288 Å
μ (mm−1) 0.10
Crystal size (mm) 0.11 × 0.01 × 0.01
 
Data collection
Diffractometer Bruker PHOTON-II
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 71254, 5275, 3947
Rint 0.067
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.05
No. of reflections 5275
No. of parameters 378
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 5-methyl-3-[11-(pyridin-2-yl)-6,11-dihydro-6,11-epoxydibenzo[b,e]oxepin-6-yl]isoxazole-4-carboxylate top
Crystal data top
C26H20N2O5F(000) = 920
Mr = 440.44Dx = 1.379 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.7288 Å
a = 19.0586 (7) ÅCell parameters from 9997 reflections
b = 13.9627 (5) Åθ = 2.7–29.0°
c = 8.1459 (3) ŵ = 0.10 mm1
β = 101.7800 (11)°T = 150 K
V = 2122.05 (13) Å3Needle, colourless
Z = 40.11 × 0.01 × 0.01 mm
Data collection top
Bruker PHOTON-II
diffractometer
5275 independent reflections
Radiation source: synchrotron3947 reflections with I > 2σ(I)
Si-<111> channnel cut crystal monochromatorRint = 0.067
ω–phi scansθmax = 29.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2525
k = 1818
71254 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052All H-atom parameters refined
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0476P)2 + 2.6861P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5275 reflectionsΔρmax = 0.28 e Å3
378 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24461 (7)0.07865 (10)0.35674 (16)0.0202 (3)
O20.29900 (8)0.07367 (10)0.64004 (17)0.0223 (3)
O30.34820 (8)0.35999 (10)0.50102 (19)0.0261 (3)
O40.47276 (9)0.15114 (12)0.3200 (2)0.0361 (4)
O50.39223 (8)0.05030 (11)0.3916 (2)0.0296 (4)
N10.29207 (9)0.29999 (12)0.5258 (2)0.0238 (4)
N20.09144 (10)0.07696 (14)0.2123 (2)0.0292 (4)
C10.27403 (12)0.01948 (14)0.6403 (3)0.0232 (4)
C20.30636 (13)0.07614 (16)0.7747 (3)0.0287 (5)
C30.28365 (14)0.17036 (16)0.7839 (3)0.0344 (5)
C40.22965 (14)0.20738 (16)0.6600 (3)0.0326 (5)
C50.19750 (13)0.14975 (15)0.5254 (3)0.0266 (5)
C60.21931 (11)0.05535 (14)0.5141 (2)0.0211 (4)
C70.18559 (10)0.01676 (13)0.3788 (2)0.0193 (4)
C80.14033 (11)0.08444 (13)0.4614 (2)0.0193 (4)
C90.06981 (11)0.07996 (15)0.4768 (3)0.0228 (4)
C100.04475 (12)0.15003 (16)0.5736 (3)0.0263 (4)
C110.09066 (12)0.22102 (16)0.6540 (3)0.0272 (5)
C120.16221 (11)0.22441 (15)0.6391 (2)0.0226 (4)
C130.18632 (11)0.15600 (14)0.5409 (2)0.0197 (4)
C140.26003 (11)0.13279 (14)0.5063 (2)0.0201 (4)
C150.31029 (11)0.21370 (14)0.4879 (2)0.0202 (4)
C160.37804 (11)0.21339 (15)0.4366 (2)0.0227 (4)
C170.39812 (12)0.30763 (15)0.4467 (3)0.0249 (4)
C180.46053 (15)0.3608 (2)0.4110 (4)0.0355 (5)
C190.41961 (11)0.13631 (16)0.3764 (3)0.0254 (4)
C200.42398 (14)0.02839 (17)0.3144 (3)0.0330 (5)
C210.38260 (19)0.1163 (2)0.3364 (5)0.0555 (9)
C220.14987 (11)0.02307 (14)0.2102 (2)0.0214 (4)
C230.17449 (13)0.00322 (17)0.0645 (3)0.0285 (5)
C240.13755 (14)0.04157 (19)0.0852 (3)0.0344 (5)
C250.07809 (14)0.09848 (18)0.0845 (3)0.0347 (5)
C260.05705 (14)0.11353 (18)0.0655 (3)0.0343 (5)
H50.1576 (13)0.1717 (17)0.441 (3)0.023 (6)*
H40.2093 (14)0.276 (2)0.662 (3)0.037 (7)*
H240.1525 (15)0.028 (2)0.187 (4)0.038 (7)*
H30.3064 (15)0.214 (2)0.884 (4)0.042 (8)*
H250.0550 (15)0.128 (2)0.186 (4)0.042 (8)*
H230.2149 (15)0.043 (2)0.067 (3)0.037 (7)*
H20A0.4748 (15)0.0340 (19)0.366 (3)0.034 (7)*
H90.0375 (14)0.0326 (19)0.423 (3)0.029 (6)*
H20B0.4242 (18)0.013 (2)0.194 (4)0.060 (9)*
H20.3400 (15)0.053 (2)0.861 (4)0.036 (7)*
H100.0068 (16)0.148 (2)0.583 (4)0.045 (8)*
H260.0124 (16)0.152 (2)0.070 (3)0.043 (8)*
H110.0758 (14)0.269 (2)0.723 (3)0.036 (7)*
H120.1939 (14)0.272 (2)0.692 (3)0.037 (7)*
H18A0.492 (2)0.386 (3)0.506 (5)0.080 (12)*
H21A0.332 (2)0.108 (2)0.279 (4)0.062 (10)*
H18B0.495 (2)0.317 (3)0.373 (5)0.079 (12)*
H21B0.403 (2)0.175 (3)0.273 (5)0.097 (14)*
H18C0.451 (2)0.395 (3)0.322 (6)0.095 (15)*
H21C0.385 (2)0.129 (3)0.471 (5)0.080 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (7)0.0169 (6)0.0200 (6)0.0032 (5)0.0065 (5)0.0011 (5)
O20.0264 (7)0.0168 (7)0.0225 (7)0.0009 (6)0.0024 (6)0.0027 (5)
O30.0292 (8)0.0186 (7)0.0320 (8)0.0061 (6)0.0096 (6)0.0011 (6)
O40.0313 (9)0.0360 (9)0.0452 (10)0.0020 (7)0.0176 (8)0.0050 (8)
O50.0284 (8)0.0203 (7)0.0424 (9)0.0007 (6)0.0124 (7)0.0039 (6)
N10.0246 (9)0.0199 (8)0.0274 (9)0.0048 (7)0.0065 (7)0.0007 (7)
N20.0326 (10)0.0281 (9)0.0279 (9)0.0085 (8)0.0084 (8)0.0047 (7)
C10.0294 (11)0.0172 (9)0.0246 (10)0.0018 (8)0.0094 (8)0.0012 (7)
C20.0367 (12)0.0226 (10)0.0264 (11)0.0027 (9)0.0053 (9)0.0019 (8)
C30.0497 (15)0.0225 (11)0.0317 (12)0.0083 (10)0.0097 (11)0.0078 (9)
C40.0482 (14)0.0171 (10)0.0339 (12)0.0009 (10)0.0120 (10)0.0030 (9)
C50.0367 (12)0.0173 (10)0.0276 (10)0.0015 (8)0.0110 (9)0.0017 (8)
C60.0266 (10)0.0168 (9)0.0218 (9)0.0017 (8)0.0093 (8)0.0006 (7)
C70.0226 (10)0.0148 (9)0.0220 (9)0.0017 (7)0.0078 (7)0.0004 (7)
C80.0254 (10)0.0138 (8)0.0196 (9)0.0005 (7)0.0067 (7)0.0007 (7)
C90.0244 (10)0.0200 (10)0.0246 (10)0.0038 (8)0.0068 (8)0.0001 (8)
C100.0250 (11)0.0265 (11)0.0293 (11)0.0000 (8)0.0104 (9)0.0008 (8)
C110.0319 (12)0.0235 (10)0.0289 (10)0.0021 (9)0.0122 (9)0.0045 (8)
C120.0273 (11)0.0185 (9)0.0219 (9)0.0018 (8)0.0046 (8)0.0029 (7)
C130.0231 (10)0.0174 (9)0.0190 (9)0.0011 (7)0.0049 (7)0.0015 (7)
C140.0251 (10)0.0167 (9)0.0184 (9)0.0003 (8)0.0040 (7)0.0007 (7)
C150.0238 (10)0.0176 (9)0.0188 (9)0.0009 (7)0.0033 (7)0.0001 (7)
C160.0245 (10)0.0224 (10)0.0211 (9)0.0012 (8)0.0049 (8)0.0009 (8)
C170.0277 (11)0.0232 (10)0.0239 (10)0.0024 (8)0.0057 (8)0.0003 (8)
C180.0354 (13)0.0327 (13)0.0409 (14)0.0113 (11)0.0136 (11)0.0006 (11)
C190.0249 (11)0.0271 (11)0.0242 (10)0.0006 (8)0.0052 (8)0.0016 (8)
C200.0318 (13)0.0261 (11)0.0424 (13)0.0051 (9)0.0106 (10)0.0080 (10)
C210.055 (2)0.0274 (13)0.093 (3)0.0047 (13)0.0343 (19)0.0172 (15)
C220.0266 (10)0.0152 (9)0.0230 (9)0.0007 (7)0.0060 (8)0.0010 (7)
C230.0332 (12)0.0287 (11)0.0244 (10)0.0029 (9)0.0078 (9)0.0019 (8)
C240.0412 (14)0.0411 (14)0.0219 (10)0.0040 (11)0.0089 (10)0.0041 (9)
C250.0369 (13)0.0380 (13)0.0270 (11)0.0046 (10)0.0012 (10)0.0094 (10)
C260.0344 (13)0.0339 (12)0.0339 (12)0.0100 (10)0.0052 (10)0.0083 (10)
Geometric parameters (Å, º) top
O1—C71.458 (2)C10—C111.394 (3)
O1—C141.413 (2)C10—H101.00 (3)
O2—C11.385 (2)C11—C121.394 (3)
O2—C141.446 (2)C11—H110.95 (3)
O3—N11.405 (2)C12—C131.383 (3)
O3—C171.344 (3)C12—H120.94 (3)
O4—C191.212 (3)C13—C141.523 (3)
O5—C191.325 (3)C14—C151.508 (3)
O5—C201.457 (3)C15—C161.436 (3)
N1—C151.308 (3)C16—C171.368 (3)
N2—C221.347 (3)C16—C191.478 (3)
N2—C261.342 (3)C17—C181.480 (3)
C1—C21.389 (3)C18—H18A0.94 (4)
C1—C61.399 (3)C18—H18B0.99 (4)
C2—C31.392 (3)C18—H18C0.86 (5)
C2—H20.91 (3)C20—C211.489 (4)
C3—C41.386 (4)C20—H20A0.98 (3)
C3—H31.04 (3)C20—H20B1.00 (3)
C4—C51.397 (3)C21—H21A1.00 (4)
C4—H41.03 (3)C21—H21B1.08 (4)
C5—C61.391 (3)C21—H21C1.11 (4)
C5—H50.96 (2)C22—C231.391 (3)
C6—C71.534 (3)C23—C241.385 (3)
C7—C81.525 (3)C23—H231.00 (3)
C7—C221.509 (3)C24—C251.385 (4)
C8—C91.377 (3)C24—H240.95 (3)
C8—C131.398 (3)C25—C261.378 (3)
C9—C101.400 (3)C25—H250.94 (3)
C9—H90.95 (3)C26—H261.02 (3)
C14—O1—C7103.92 (14)O1—C14—C15109.84 (15)
C1—O2—C14114.43 (15)O2—C14—C13109.49 (15)
C17—O3—N1109.49 (15)O2—C14—C15105.29 (15)
C19—O5—C20115.89 (17)C15—C14—C13119.18 (16)
C15—N1—O3105.57 (16)N1—C15—C14117.49 (17)
C26—N2—C22117.14 (19)N1—C15—C16111.68 (18)
O2—C1—C2116.04 (19)C16—C15—C14130.82 (18)
O2—C1—C6122.66 (18)C15—C16—C19132.33 (19)
C2—C1—C6121.30 (19)C17—C16—C15103.68 (18)
C1—C2—C3119.2 (2)C17—C16—C19123.92 (19)
C1—C2—H2122.2 (18)O3—C17—C16109.57 (18)
C3—C2—H2118.5 (17)O3—C17—C18116.29 (19)
C2—C3—H3120.6 (16)C16—C17—C18134.1 (2)
C4—C3—C2120.4 (2)C17—C18—H18A115 (2)
C4—C3—H3119.0 (16)C17—C18—H18B112 (2)
C3—C4—C5119.9 (2)C17—C18—H18C114 (3)
C3—C4—H4124.1 (15)H18A—C18—H18B98 (3)
C5—C4—H4115.9 (15)H18A—C18—H18C118 (4)
C4—C5—H5122.1 (14)H18B—C18—H18C97 (3)
C6—C5—C4120.6 (2)O4—C19—O5124.4 (2)
C6—C5—H5117.2 (14)O4—C19—C16123.2 (2)
C1—C6—C7115.67 (17)O5—C19—C16112.39 (18)
C5—C6—C1118.60 (19)O5—C20—C21107.0 (2)
C5—C6—C7125.64 (19)O5—C20—H20A109.8 (16)
O1—C7—C6104.89 (15)O5—C20—H20B110.4 (19)
O1—C7—C8101.96 (14)C21—C20—H20A112.7 (16)
O1—C7—C22108.79 (15)C21—C20—H20B113.4 (19)
C8—C7—C6106.35 (15)H20A—C20—H20B104 (2)
C22—C7—C6117.20 (16)C20—C21—H21A110 (2)
C22—C7—C8116.05 (17)C20—C21—H21B109 (2)
C9—C8—C7131.50 (18)C20—C21—H21C110 (2)
C9—C8—C13121.45 (18)H21A—C21—H21B106 (3)
C13—C8—C7106.83 (17)H21A—C21—H21C109 (3)
C8—C9—C10118.11 (19)H21B—C21—H21C114 (3)
C8—C9—H9123.0 (15)N2—C22—C7114.51 (17)
C10—C9—H9118.8 (15)N2—C22—C23123.09 (19)
C9—C10—H10118.4 (17)C23—C22—C7122.37 (18)
C11—C10—C9120.5 (2)C22—C23—H23120.0 (16)
C11—C10—H10121.1 (17)C24—C23—C22118.4 (2)
C10—C11—C12120.95 (19)C24—C23—H23121.4 (16)
C10—C11—H11122.8 (16)C23—C24—H24120.2 (17)
C12—C11—H11116.2 (16)C25—C24—C23119.2 (2)
C11—C12—H12122.3 (16)C25—C24—H24120.7 (17)
C13—C12—C11118.25 (19)C24—C25—H25118.6 (17)
C13—C12—H12119.5 (16)C26—C25—C24118.5 (2)
C8—C13—C14106.09 (16)C26—C25—H25122.8 (17)
C12—C13—C8120.70 (19)N2—C26—C25123.7 (2)
C12—C13—C14132.98 (18)N2—C26—H26115.5 (16)
O1—C14—O2109.19 (15)C25—C26—H26120.8 (16)
O1—C14—C13103.65 (15)
O1—C7—C8—C9161.0 (2)C8—C7—C22—N261.9 (2)
O1—C7—C8—C1324.38 (19)C8—C7—C22—C23116.4 (2)
O1—C7—C22—N2176.09 (17)C8—C9—C10—C111.1 (3)
O1—C7—C22—C232.2 (3)C8—C13—C14—O124.79 (19)
O1—C14—C15—N1128.66 (18)C8—C13—C14—O291.61 (18)
O1—C14—C15—C1652.5 (3)C8—C13—C14—C15147.19 (17)
O2—C1—C2—C3179.6 (2)C9—C8—C13—C120.5 (3)
O2—C1—C6—C5179.70 (18)C9—C8—C13—C14175.61 (18)
O2—C1—C6—C73.1 (3)C9—C10—C11—C120.5 (3)
O2—C14—C15—N1113.89 (19)C10—C11—C12—C130.6 (3)
O2—C14—C15—C1665.0 (2)C11—C12—C13—C81.1 (3)
O3—N1—C15—C14178.80 (15)C11—C12—C13—C14174.7 (2)
O3—N1—C15—C160.3 (2)C12—C13—C14—O1161.0 (2)
N1—O3—C17—C161.0 (2)C12—C13—C14—O282.6 (3)
N1—O3—C17—C18178.76 (19)C12—C13—C14—C1538.6 (3)
N1—C15—C16—C170.3 (2)C13—C8—C9—C100.6 (3)
N1—C15—C16—C19177.3 (2)C13—C14—C15—N19.4 (3)
N2—C22—C23—C240.7 (3)C13—C14—C15—C16171.76 (19)
C1—O2—C14—O141.1 (2)C14—O1—C7—C670.50 (17)
C1—O2—C14—C1371.8 (2)C14—O1—C7—C840.23 (17)
C1—O2—C14—C15158.98 (16)C14—O1—C7—C22163.34 (15)
C1—C2—C3—C40.3 (4)C14—O2—C1—C2174.96 (18)
C1—C6—C7—O135.3 (2)C14—O2—C1—C64.8 (3)
C1—C6—C7—C872.2 (2)C14—C15—C16—C17179.22 (19)
C1—C6—C7—C22156.07 (18)C14—C15—C16—C193.8 (4)
C2—C1—C6—C50.0 (3)C15—C16—C17—O30.8 (2)
C2—C1—C6—C7176.65 (19)C15—C16—C17—C18178.9 (3)
C2—C3—C4—C50.3 (4)C15—C16—C19—O4171.3 (2)
C3—C4—C5—C60.1 (3)C15—C16—C19—O58.8 (3)
C4—C5—C6—C10.0 (3)C17—O3—N1—C150.8 (2)
C4—C5—C6—C7176.3 (2)C17—C16—C19—O45.2 (3)
C5—C6—C7—O1148.31 (19)C17—C16—C19—O5174.7 (2)
C5—C6—C7—C8104.1 (2)C19—O5—C20—C21176.4 (2)
C5—C6—C7—C2227.6 (3)C19—C16—C17—O3178.15 (18)
C6—C1—C2—C30.2 (3)C19—C16—C17—C181.6 (4)
C6—C7—C8—C989.3 (2)C20—O5—C19—O48.2 (3)
C6—C7—C8—C1385.24 (18)C20—O5—C19—C16171.90 (18)
C6—C7—C22—N265.2 (2)C22—N2—C26—C250.3 (4)
C6—C7—C22—C23116.5 (2)C22—C7—C8—C943.0 (3)
C7—O1—C14—O276.13 (17)C22—C7—C8—C13142.41 (17)
C7—O1—C14—C1340.49 (17)C22—C23—C24—C250.4 (4)
C7—O1—C14—C15168.89 (15)C23—C24—C25—C261.1 (4)
C7—C8—C9—C10174.6 (2)C24—C25—C26—N20.8 (4)
C7—C8—C13—C12174.74 (17)C26—N2—C22—C7179.4 (2)
C7—C8—C13—C140.4 (2)C26—N2—C22—C231.1 (3)
C7—C22—C23—C24178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N20.96 (2)2.42 (2)3.085 (3)125.8 (18)
C23—H23···N1i1.00 (3)2.70 (3)3.669 (3)163 (2)
C12—H12···O1ii0.94 (3)2.56 (3)3.469 (2)162 (2)
C18—H18A···O4ii0.94 (4)2.71 (4)3.297 (3)121 (3)
C18—H18B···O40.99 (4)2.38 (4)3.040 (3)123 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Current address: Elite One Source, Nutritional Services, 1001 South 3rd West, Missoula, MT 59801 USA.

Acknowledgements

The authors thank the ALSAM Foundation for support of this work. The authors thank Dr Allen G. Oliver (University of Notre Dame) and Dr Jeanette A. Krause (University of Cincinnati) for the synchrotron data collected through the SCrALS (Service Crystallography at the Advanced Light Source) program at Beamline 12.2.1, Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The Advanced Light Source, is a DOE Office of Science User Facility under contract No. DE-AC02–05CH11231. CL is grateful for both Dr Krause's guidance in processing synchrotron data and her helpful comments that improved the manuscript.

Funding information

Funding for this research was provided by: ALSAM Foundation Skaggs Scholar Grant (grant No. #1000233768 to Nicholas R. Natale); University of Montana (grant No. 325490 to Nicholas R. Natale).

References

First citationAndo, Y., Hanaki, A., Sasaki, R., Ohmori, K. & Suzuki, K. (2017). Angew. Chem. Int. Ed. 56, 11460–11465.  Web of Science CSD CrossRef CAS Google Scholar
First citationAndo, Y., Tanaka, D., Sasaki, R., Ohmori, K. & Suzuki, K. (2019). Angew. Chem. Int. Ed. 58, 12507–12513.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuncan, N. S., Beall, H. D., Kearns, A. K., Li, C. & Natale, N. R. (2014). Acta Cryst. E70, o315–o316.  CSD CrossRef IUCr Journals Google Scholar
First citationFilatov, M. A., Karuthedath, S., Polestshuk, P. M., Savoie, H., Flanagan, K. J., Sy, C., Sitte, E., Telitchko, M., Laquai, F., Boyle, R. W. & Senge, M. O. (2017). J. Am. Chem. Soc. 139, 6282–6285.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673–7677.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlaper, M., Wessig, P. & Linker, T. (2016). Chem. Commun. 52, 1210–1213.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLauer, A., Dobryakov, A. L., Kovalenko, S. A., Fidder, H. & Heyne, K. (2011). Phys. Chem. Chem. Phys. 13, 8723–8732.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, C., Campbell, M. J., Weaver, M. J., Duncan, N. S., Hunting, J. L. & Natale, N. R. (2013). Acta Cryst. E69, o1804–o1805.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854–o856.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, C., Twamley, B. & Natale, N. R. (2008). J. Heterocycl. Chem. 45, 259–264.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513–2515.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm. 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVander Heiden, M. G., Cantley, L. C. & Thompson, C. B. (2009). Science, 324, 1029–1033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWalker, M., Pohl, E., Herbst-Irmer, R., Gerlitz, M., Rohr, J. & Sheldrick, G. M. (1999). Acta Cryst. B55, 607–616.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWeaver, M. J., Kearns, A. K., Stump, S., Li, C., Gajewski, M. P., Rider, K. C., Backos, D. S., Reigan, P. R., Beall, H. D. & Natale, N. R. (2015). Bioorg. Med. Chem. Lett. 25, 1765–1770.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWeaver, M. J., Stump, S., Campbell, M. J., Backos, D. S., Li, C., Reigan, P., Adams, E., Beall, H. D. & Natale, N. R. (2020). Bioorg. Med. Chem. 28, 115781.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds