research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a third polymorph of 2,6-di­meth­­oxy­benzoic acid

CROSSMARK_Color_square_no_text.svg

aChemistry Department, "Sapienza" University of Rome, P. le A. Moro 5, I-00185 Rome, Italy
*Correspondence e-mail: gustavo.portalone@uniroma1.it

Edited by H. Ishida, Okayama University, Japan (Received 7 July 2020; accepted 3 November 2020; online 6 November 2020)

A third crystalline form of the title compound, C9H10O4, crystallizing in the centrosymmetric monoclinic space group P21/c, has been identified during screening for co-crystals. The asymmetric unit comprises a non-planar independent mol­ecule with a synplanar conformation of the OH group. The sterically bulky o-meth­oxy substituents force the carb­oxy group to be twisted away from the plane of the benzene ring by 74.10 (6)°. The carb­oxy group exhibits the acidic H atom disordered over two sites between two O atoms. A similar situation has been found for the second tetra­gonal polymorph reported [Portalone (2011[Portalone, G. (2011). Acta Cryst. E67, o3394-o3395.]). Acta Cryst. E67, o3394–o3395], in which mol­ecules with the OH group in a synplanar conformation form dimeric units via strong O—H⋯O hydrogen bonds. In contrast, in the first ortho­rhom­bic form reported [Swaminathan et al. (1976[Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897-1900.]). Acta Cryst. B32, 1897–1900; Bryan & White (1982[Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014-1016.]). Acta Cryst. B38, 1014–1016; Portalone (2009[Portalone, G. (2009). Acta Cryst. E65, o327-o328.]). Acta Cryst. E65, o327–o328], the mol­ecular components do not form conventional dimeric units, as an anti­planar conformation adopted by the OH group favors the association of mol­ecules in chains stabilized by linear O—H⋯O hydrogen bonds.

1. Chemical context

Until now, two polymorphs are known for 2,6-di­meth­oxy­benzoic acid. Polymorph (Iα) crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Swaminathan et al., 1976[Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897-1900.]; Bryan & White, 1982[Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014-1016.]; Portalone, 2009[Portalone, G. (2009). Acta Cryst. E65, o327-o328.]). As a result of the anti­planar conformation adopted by the OH group, the mol­ecular components are associated in the crystal in chains stabilized by linear O—H⋯O hydrogen bonds. Polymorph (Iβ) crystallizes in the tetra­gonal space group P41212 with one mol­ecule in the asymmetric unit (Portalone, 2011[Portalone, G. (2011). Acta Cryst. E67, o3394-o3395.]). In the crystal of the second polymorph, the synplanar conformation of the OH group favours the formation of dimers through O—H⋯O hydrogen bonds. In this article, it is reported the crystal structure of a third polymorph, (Iγ), of 2,6-di­meth­oxy­benzoic acid produced unexpectedly during an attempt to synthesize co-crystals of 5-fluoro­uracil with the title compound.

[Scheme 1]

2. Structural commentary

The title compound (Iγ) crystallizes in the monoclinic centrosymmetric space group P21/c, and the asymmetric unit comprises a non-planar independent mol­ecule. The carb­oxy group is twisted away from the plane of the benzene ring by 74.10 (6)° because of a significant steric hindrance of the two o-meth­oxy substituents (Fig. 1[link]). The above angle between the planes is comparable with that found for the ortho­rhom­bic form, 56.12 (9)°, and for the tetra­gonal form, 65.72 (15)°. The carb­oxy group, in which OH adopts a synplanar conformation similar to that observed for the tetra­gonal form, exhibits the carb­oxy H atom disordered over two sites between two O atoms. The pattern of bond lengths and bond angles of the phenyl ring is consistent with that reported in the structure determination of the two previously determined polymorphs, and a comparison of the present results with those obtained for similar benzene derivatives (Colapietro et al., 1984[Colapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1984). Z. Naturforsch. Teil B, 39, 1361-1367.]; Irrera et al., 2012[Irrera, S., Ortaggi, G. & Portalone, G. (2012). Acta Cryst. C68, o447-o451.]; Portalone, 2012[Portalone, G. (2012). Acta Cryst. E68, o268-o269.]) shows no appreciable effects of the crystal environment on the ring deformation induced by substituents.

[Figure 1]
Figure 1
The mol­ecular structure of (Iγ), showing the atom-labeling scheme. Displacement ellipsoids are at the 50% probability level.

3. Supra­molecular features

Analysis of the crystal packing of (Iγ), (Fig. 2[link]), shows that the mol­ecular components form the conventional dimeric units observed in benzoic acids (Leiserowitz, 1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]; Kanters et al., 1991[Kanters, J. A., Kroon, J., Hooft, R., Schouten, A., van Scijndel, J. A. M. & Brandsen, J. (1991). Croat. Chem. Acta, 64, 353-370.]; Moorthy et al., 2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.]). Indeed, the crystal structure is stabilized by strong inter­molecular O—H⋯O hydrogen bonds, which link inversion-related mol­ecules into homodimers (Table 1[link]). These homodimers are then joined by weak C—H⋯O inter­molecular inter­actions of graph-set motif R22(6) between the meth­oxy and the carb­oxy groups of adjacent mol­ecules to form a two-dimensional network parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (6) 1.79 (6) 2.6411 (15) 174 (4)
O2—H2⋯O1i 0.81 (6) 1.84 (6) 2.6411 (15) 167 (5)
C9—H9A⋯O2ii 0.97 2.60 3.571 (3) 178
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing diagram for (Iγ) viewed approximately down the a axis. All atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by red dashed lines.

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. https://hirshfeldsurface.net.]). The surface enables the visualization of inter­molecular contacts over the surface by different colors and color intensity, and shorter and longer contacts are indicated as red and blue spots, respectively. In Fig. 3[link] are shown the 3D Hirshfeld surface, modeled by choosing one of the two equally disordered components and mapped over dnorm, and the two-dimensional fingerprint plots, which give the contribution of the inter­atomic contacts to the Hirshfeld surface. The most prominent inter­actions, due to strong O—H⋯O hydrogen bonds, are shown by large and deep red spots on the surface. Small red spots on the surface indicate the areas where close-contact inter­actions due to weak C—H⋯O hydrogen bonds take place. The H⋯H contacts, representing van der Waals inter­actions, and the O⋯H/H⋯O contacts, representing inter­molecular hydrogen bonds, are the most populated contacts and contribute 39.2 and 39.1% of the total inter­molecular contacts, respectively. Other important contacts, such as C⋯H/H⋯C (19.1%), also supplement the overall crystal packing. The contributions of the O⋯C/C⋯O (2.5%) contacts are less significant.

[Figure 3]
Figure 3
(a) A view of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm with a fixed color scale of −0.742 (red) to 1.283 (blue) a.u. (b), (c), (d), (e) and (f): decomposed two-dimensional fingerprint plots for the title compound showing various close contacts and their proportional contributions.

4. Database survey

A search of crystal structure of 2,6-dimeth­oxy benzoic acid alone in the Cambridge Crystallographic Database (CSD version 5.41, May 2020 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded four hits as crystalline polymorphs. Three were for the ortho­rhom­bic polymorph: DMOXBA (Swaminathan et al., 1976[Swaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897-1900.]), DMOXBA01 (Bryan & White, 1982[Bryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014-1016.]) and DMOXBA02 (Portalone, 2009[Portalone, G. (2009). Acta Cryst. E65, o327-o328.]); the fourth one was for the tetra­gonal polymorph: DMOXBA03 (Portalone, 2011[Portalone, G. (2011). Acta Cryst. E67, o3394-o3395.]).

5. Synthesis and crystallization

Polymorph (Iγ) was formed from an unsuccessful co-crystallization between 2,6-di­meth­oxy­benzoic acid and 5-fluoro­uracil. Colorless plate-like crystals were formed by the slow evaporation of an aqueous solution of 2,6-di­meth­oxy­benzoic acid (1 mmol, Sigma Aldrich at 99% purity) and 5-fluoro­uracil (1 mmol, Sigma Aldrich at 99% purity) in a 1:1 molar ratio.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were identified in difference-Fourier maps, but in the refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.97 Å, and refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq(Cphen­yl) or 1.5Ueq(Cmeth­yl). A rotating group model was applied to the methyl groups. The remaining two halves of the disordered O-bound H atom, H1 and H2, were refined freely and their Uiso values were kept equal to 1.2Ueq(O). Site-occupation factors of H1 and H2 refined to 0.53 (3) and 0.47 (3), respectively.

Table 2
Experimental details

Crystal data
Chemical formula C9H10O4
Mr 182.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 7.7574 (10), 8.4763 (10), 14.3322 (19)
β (°) 97.526 (12)
V3) 934.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.14 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur S CCD
Absorption correction Multi-scan (CrysAlis RED; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO and CrysAlis RED. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.970, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 9067, 2708, 1420
Rint 0.040
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.02
No. of reflections 2708
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.12
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO and CrysAlis RED. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,6-Dimethoxybenzic acid. top
Crystal data top
C9H10O4F(000) = 384
Mr = 182.17Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.710689 Å
a = 7.7574 (10) ÅCell parameters from 1806 reflections
b = 8.4763 (10) Åθ = 2.9–32.6°
c = 14.3322 (19) ŵ = 0.10 mm1
β = 97.526 (12)°T = 298 K
V = 934.3 (2) Å3Tablets, colourless
Z = 40.20 × 0.14 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
2708 independent reflections
Radiation source: Enhance (Mo) X-ray source1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.0696 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω and φ scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Rigaku OD, 2018)
k = 116
Tmin = 0.970, Tmax = 0.999l = 1920
9067 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0492P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.14 e Å3
2708 reflectionsΔρmin = 0.12 e Å3
134 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015\bbr000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.031 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.50254 (16)0.32576 (15)0.56267 (9)0.0726 (4)
H10.446 (6)0.372 (5)0.515 (3)0.087*0.53 (3)
O20.68711 (16)0.52450 (15)0.57631 (9)0.0776 (5)
H20.643 (7)0.571 (6)0.530 (4)0.093*0.47 (3)
O30.94633 (16)0.24939 (16)0.59823 (10)0.0827 (4)
O40.50328 (18)0.39851 (17)0.76761 (9)0.0900 (5)
C10.73003 (19)0.31878 (17)0.68819 (11)0.0531 (4)
C20.8886 (2)0.24603 (19)0.68370 (13)0.0622 (5)
C30.9743 (2)0.1717 (2)0.76309 (15)0.0767 (6)
H31.08520.11990.76100.092*
C40.8991 (3)0.1731 (2)0.84415 (15)0.0836 (7)
H40.95820.12010.89920.100*
C50.7430 (3)0.2467 (2)0.85095 (13)0.0782 (6)
H50.69400.24740.90990.094*
C60.6574 (2)0.3199 (2)0.77134 (12)0.0648 (5)
C70.63417 (19)0.39559 (18)0.60344 (10)0.0508 (4)
C81.1123 (3)0.1829 (4)0.5897 (2)0.1261 (10)
H8A1.20120.23850.63100.158 (12)*
H8B1.13580.19250.52510.152 (12)*
H8C1.11290.07230.60720.169 (13)*
C90.4198 (3)0.4098 (3)0.84841 (17)0.0986 (7)
H9A0.39440.30480.86980.139 (10)*
H9B0.31220.46840.83370.129 (9)*
H9C0.49500.46410.89760.155 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0660 (8)0.0702 (8)0.0718 (8)0.0169 (6)0.0278 (6)0.0167 (6)
O20.0747 (8)0.0651 (8)0.0823 (9)0.0180 (6)0.0302 (7)0.0257 (7)
O30.0585 (8)0.1008 (10)0.0873 (10)0.0180 (7)0.0041 (6)0.0170 (8)
O40.0984 (10)0.1059 (11)0.0659 (9)0.0408 (8)0.0118 (7)0.0165 (7)
C10.0513 (8)0.0503 (8)0.0525 (9)0.0003 (7)0.0128 (7)0.0062 (7)
C20.0512 (9)0.0611 (10)0.0693 (12)0.0009 (7)0.0108 (8)0.0098 (8)
C30.0579 (10)0.0739 (12)0.0904 (14)0.0082 (9)0.0199 (10)0.0192 (10)
C40.0835 (14)0.0788 (13)0.0775 (14)0.0018 (11)0.0309 (11)0.0234 (10)
C50.0925 (15)0.0788 (12)0.0580 (11)0.0040 (11)0.0103 (9)0.0152 (9)
C60.0712 (11)0.0584 (10)0.0599 (11)0.0086 (8)0.0104 (9)0.0068 (8)
C70.0461 (8)0.0509 (8)0.0522 (9)0.0012 (7)0.0057 (6)0.0047 (7)
C80.0704 (16)0.173 (3)0.138 (3)0.0443 (17)0.0250 (17)0.037 (2)
C90.1151 (19)0.0953 (17)0.0891 (16)0.0249 (15)0.0273 (15)0.0135 (14)
Geometric parameters (Å, º) top
O1—C71.2563 (17)C3—C41.367 (3)
O1—H10.86 (6)C3—H30.9700
O2—C71.2472 (18)C4—C51.377 (3)
O2—H20.81 (6)C4—H40.9700
O3—C21.359 (2)C5—C61.389 (2)
O3—C81.425 (2)C5—H50.9700
O4—C61.363 (2)C8—H8A0.9701
O4—C91.402 (2)C8—H8B0.9701
C1—C61.383 (2)C8—H8C0.9701
C1—C21.385 (2)C9—H9A0.9701
C1—C71.4885 (19)C9—H9B0.9701
C2—C31.391 (2)C9—H9C0.9701
C7—O1—H1117 (3)O4—C6—C1115.07 (14)
C7—O2—H2124 (3)O4—C6—C5124.95 (19)
C2—O3—C8118.50 (17)C1—C6—C5119.97 (17)
C6—O4—C9119.91 (16)O2—C7—O1123.27 (13)
C6—C1—C2120.51 (14)O2—C7—C1119.20 (13)
C6—C1—C7118.92 (14)O1—C7—C1117.53 (14)
C2—C1—C7120.57 (16)O3—C8—H8A109.5
O3—C2—C1115.62 (14)O3—C8—H8B109.5
O3—C2—C3124.61 (17)H8A—C8—H8B109.5
C1—C2—C3119.74 (18)O3—C8—H8C109.5
C4—C3—C2118.64 (18)H8A—C8—H8C109.5
C4—C3—H3120.7H8B—C8—H8C109.5
C2—C3—H3120.7O4—C9—H9A109.5
C3—C4—C5122.81 (16)O4—C9—H9B109.5
C3—C4—H4118.6H9A—C9—H9B109.5
C5—C4—H4118.6O4—C9—H9C109.5
C4—C5—C6118.33 (19)H9A—C9—H9C109.5
C4—C5—H5120.8H9B—C9—H9C109.5
C6—C5—H5120.8
C8—O3—C2—C1177.2 (2)C9—O4—C6—C50.1 (3)
C8—O3—C2—C34.9 (3)C2—C1—C6—O4178.43 (14)
C6—C1—C2—O3178.84 (15)C7—C1—C6—O42.2 (2)
C7—C1—C2—O30.5 (2)C2—C1—C6—C50.5 (3)
C6—C1—C2—C30.9 (2)C7—C1—C6—C5178.92 (15)
C7—C1—C2—C3178.51 (14)C4—C5—C6—O4179.32 (17)
O3—C2—C3—C4178.01 (17)C4—C5—C6—C10.5 (3)
C1—C2—C3—C40.2 (3)C6—C1—C7—O2106.30 (19)
C2—C3—C4—C50.8 (3)C2—C1—C7—O274.3 (2)
C3—C4—C5—C61.2 (3)C6—C1—C7—O173.7 (2)
C9—O4—C6—C1178.74 (18)C2—C1—C7—O1105.66 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (6)1.79 (6)2.6411 (15)174 (4)
O2—H2···O1i0.81 (6)1.84 (6)2.6411 (15)167 (5)
C9—H9A···O2ii0.972.603.571 (3)178
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2.
 

References

First citationBryan, R. F. & White, D. H. (1982). Acta Cryst. B38, 1014–1016.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationColapietro, M., Domenicano, A., Marciante, C. & Portalone, G. (1984). Z. Naturforsch. Teil B, 39, 1361–1367.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIrrera, S., Ortaggi, G. & Portalone, G. (2012). Acta Cryst. C68, o447–o451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKanters, J. A., Kroon, J., Hooft, R., Schouten, A., van Scijndel, J. A. M. & Brandsen, J. (1991). Croat. Chem. Acta, 64, 353–370.  CAS Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPortalone, G. (2009). Acta Cryst. E65, o327–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2011). Acta Cryst. E67, o3394–o3395.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2012). Acta Cryst. E68, o268–o269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO and CrysAlis RED. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSwaminathan, S., Vimala, T. M. & Lotter, H. (1976). Acta Cryst. B32, 1897–1900.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds