research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new hydrate form of the NSAID sodium diclofenac

CROSSMARK_Color_square_no_text.svg

aInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by J. Reibenspies, Texas A & M University, USA (Received 21 October 2020; accepted 12 November 2020; online 20 November 2020)

The crystal structure is reported of sodium 2-[2-(2,6-di­chloro­anilino)phen­yl]acetate 3.5-hydrate or tetra-μ-aqua-κ8O:O-deca­aqua­bis­{μ3-2-[2-(2,6-di­chloro­anilino)phen­yl]acetato-κ3O:O:O}tetra­sodium(I) bis­{2-[2-(2,6-di­chloro­anil­ino)phen­yl]acetate}, {[Na4(C14H10Cl2NO2)2(H2O)14](C14H10Cl2NO2)2}n, which re­presents a new hydrate form of the NSAID sodium diclofenac (SD). The triclinic unit cell contains one ionic compound with formula Na4(C14H10Cl2NO2)4(H2O)14, in which two symmetry-related carboxyl­ate anions C14H10Cl2NO2 are bonded to a centrosymmetric [Na4]4+ core cationic cluster, while the others are only hydrogen bonded to the cationic cluster. The conformation for the anions is similar to that found in other diclofenac compounds, and the [Na4(Ocarbox)2(H2O)14]4+ cluster displays an unprecedented geometry, which can be described as an incomplete dicubane cluster formed by face-sharing incomplete cubes. A complex framework of O—H⋯O hydrogen bonds stabilizes the crystal structure. The herein reported crystal structure for SD·3.5H2O in space group P[\overline{1}] is different from those previously reported for other hydrates, namely SD·4.75H2O (P21) and SD·5H2O (P21/m).

1. Chemical context

Diclofenac (IUPAC name: 2-[2-(2,6-di­chloro­anilino)phen­yl]acetic acid, C14H11Cl2NO2), sold under the brand names Voltaren and Ecofenac, among others, is a non-steroidal anti-inflammatory drug (NSAID), with anti­pyretic and analgesic properties. It is prescribed for pain management in chronic inflammatory disorders, like arthritis, rheumatoid arthritis, and osteoarthritis (Sallmann, 1986[Sallmann, A. R. (1986). Am. J. Med. 80, 29-33.]). It is available as sodium diclofenac (SD hereafter) or potassium diclofenac, and generated global retail sales of over USD 440 million in 2018.

Diclofenac acid is a polymorphous compound, for which crystal structures have been reported in space groups C2/c (Moser et al., 1990[Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358-2368.]; Kovala-Demertzi et al., 1993[Kovala-Demertzi, D., Mentzafos, D. & Terzis, A. (1993). Polyhedron, 12, 1361-1370.]; Muangsin et al., 2004[Muangsin, N., Prajuabsook, M., Chimsook, P., Chantarasiri, N., Siraleartmukul, K., Chaichit, N. & Hannongbua, S. (2004). J. Appl. Cryst. 37, 288-294.]; Niranjana Devi et al., 2019[Niranjana Devi, R., Stephen, A. D., Justin, P., Saravanan, K., Macchi, P. & Jelsch, C. (2019). J. Mol. Struct. 1196, 42-53.]), P21/c (Castellari & Ottani, 1997[Castellari, C. & Ottani, S. (1997). Acta Cryst. C53, 794-797.]; Perlovich et al., 2007[Perlovich, G. L., Surov, A. O., Hansen, L. K. & Bauer-Brandl, A. (2007). J. Pharm. Sci. 96, 1031-1042.]; King et al., 2011[King, M. D., Buchanan, W. D. & Korter, T. M. (2011). Anal. Chem. 83, 3786-3792.]) and Pcan (Jaiboon et al., 2001[Jaiboon, N., Yos-In, K., Ruangchaithaweesuk, S., Chaichit, N., Thutivoranath, R., Siritaedmukul, K. & Hannongbua, S. (2001). Anal. Sci. 17, 1465-1466.]). This acid can also be co-crystallized with small aromatic compounds (e.g. Báthori et al., 2011[Báthori, N. B., Lemmerer, A., Venter, G. A., Bourne, S. A. & Caira, M. R. (2011). Cryst. Growth Des. 11, 75-87.]; Zheng et al., 2019[Zheng, Q., Rood, S. L., Unruh, D. K. & Hutchins, K. M. (2019). Chem. Commun. 55, 7639-7642.]). Regarding the carboxyl­ate anion, C14H10Cl2NO2, it has been extensively used as a ligand for coordination chemistry with transition metals (e.g. Sayen & Guillon, 2012[Sayen, S. & Guillon, E. (2012). Acta Cryst. E68, m474-m475.]; Bera et al., 2020[Bera, S., Chowdhury, A., Sarkar, K. & Dastidar, P. (2020). Chem. Asian J. 15, 503-510.]). Finally, crystal structures for hydrated alkali salts of diclofenac were established, with Na+ (Muangsin et al., 2002[Muangsin, N., Prajaubsook, M., Chaichit, N., Siritaedmukul, K. & Hannongbua, S. (2002). Anal. Sci. 18, 967-968.]; Llinàs et al., 2007[Llinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979-983.]), K+ (Chu & Cheng, 2007[Chu, G.-H. & Cheng, J. (2007). Acta Cryst. E63, m1008-m1009.]), Ca2+ (Duan & Li, 2018[Duan, Y. & Li, S.-H. (2018). Z. Kristallogr. New Cryst. Struct. 233, 169-171.]) and Mg2+ (Castellari et al., 1999[Castellari, C., Comelli, F. & Ottani, S. (1999). Acta Cryst. C55, 1054-1056.]).

The exact water content of the SD salt used by manufacturers as medicine-grade API remains unclear. Vendors generally refer to the CAS-referenced compound CAS-15307-79-6, and describe the raw material as `slightly hygroscopic'. The aforementioned X-ray structures correspond to the penta­hydrate salt, SD·5H2O (Muangsin et al., 2002[Muangsin, N., Prajaubsook, M., Chaichit, N., Siritaedmukul, K. & Hannongbua, S. (2002). Anal. Sci. 18, 967-968.]) and to a slightly less hydrated phase, SD·4.75H2O (Llinàs et al., 2007[Llinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979-983.]). In the former study, crystals were obtained by slow evaporation of a mixture of chitosan and SD dissolved in ethyl acetate and aqueous acetic acid. The space group is reported as P21/m, with two independent diclofenac anions and partially disordered Na+ cations and water mol­ecules. In the latter study, single crystals were obtained by recrystallization from ethanol of commercially available anhydrous SD, affording crystals with cell parameters very close to those of the previous study. However, the structure was refined in space group P21, with four independent diclofenac anions, and 4.75 water mol­ecules per diclofenac. All sites are fully occupied, and the Na positions are different in both structures.

[Scheme 1]

With these results, Llinàs et al. (2007[Llinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979-983.]) concluded that in the solid state, the formula of the stable hydrated form of sodium diclofenac should be close to SD·5H2O. We now report that a less hydrated form with formula SD·3.5H2O can be crystallized in space group P[\overline{1}], when SD is recrystallized from acetone.

2. Structural commentary

The asymmetric unit of the triclinic cell contains two diclofenac anions, balanced with two Na+ cations. One diclofenac is hydrogen bonded to water mol­ecules, while the other is bridging the Na+ cations, with bond lengths Na1—O2 = 2.535 (3) and Na2—O2 = 2.401 (3) Å. The bridge is close to an inversion centre, and then a third Na—O bond is formed, with Na1i—O2 = 2.542 (3) Å [symmetry code: (i) 2 − x, −y, 1 − z]. The resulting μ3 bridging mode of the diclofenac anion is very uncommon. The triply bridging O-atom mode is well known in metal alkoxides, but very rare for carboxyl­ates (Wu & Mak, 1996[Wu, D.-D. & Mak, T. C. W. (1996). Struct. Chem. 7, 91-101.]), and found almost exclusively in polymeric compounds. This bridging mode was not observed in the previously reported SD hydrates. The asymmetric unit is completed with seven water mol­ecules bonded to the Na+ cations at distances ranging from 2.387 (3) to 2.608 (4) Å. One water mol­ecule, O6, bridges the Na+ cations, while all others are in terminal positions on their carrier sites. Once the crystallographic inversion centre operates to form the complete structure, the unit-cell content is Na4(C14H10Cl2NO2)4(H2O)14 (Fig. 1[link]). The compound formula may be reduced to the minimal chemical formula SD·3.5H2O. There is no evidence of disorder in the mol­ecular structure.

[Figure 1]
Figure 1
Structure of Na4(C14H10Cl2NO2)4(H2O)14 (one triclinic unit cell) with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labelled atoms are generated by symmetry code 2 − x, −y, 1 − z.

Although numerous Na/O/H2O clusters are reported in the literature, the Na-based framework that holds together the four diclofenac ions in the unit cell is only found as a sub-framework in a few structures with higher complexity, such as dicubanes (Song et al., 2007[Song, S.-Y., Ma, J.-F., Yang, J., Gao, L.-L. & Su, Z.-M. (2007). Organometallics, 26, 2125-2128.]). The [Na4(Ocarbox)2(H2O)14]4+ cluster, which includes two carboxyl­ate O atoms from the coordinated diclofenac anions, can be described as an incomplete dicubane cluster formed by face-sharing incomplete cubes. All Na centres are six-coordinate, with distorted octa­hedral geometry and cis O—Na—O angles in the range 79.41 (10) to 115.21 (10)°.

The two independent diclofenac ions display similar conformations, characterized by the dihedral angle formed by the benzene rings, 54.2 (1) and 58.9 (1)°. This conformation falls within the expected range of dihedral angles: for 151 structures retrieved from the CSD including the diclofenac anion, the benzene–benzene dihedral angles span the range 54.3 to 89.0° (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). This bent conformation results from the rotational barrier imposed by the Cl atoms, and is not influenced by the presence of the core [Na4(Ocarbox)2(H2O)14]4+ cluster. This conformation is also stabilized via intra­molecular N—H⋯O hydrogen bonds of moderate strength, between the amine and carboxyl­ate groups (Table 1[link], entries 1 and 2). The torsion between the aromatic rings is indeed recognized as a factor related to the biological properties of diclofenac (Menassé et al., 1978[Menassé, R., Hedwall, P. R., Kraetz, J., Pericin, C., Riesterer, L., Sallmann, A., Ziel, R. & Jaques, R. (1978). Scand. J. Rheumatol. 7, 5-16.]; Sallmann, 1986[Sallmann, A. R. (1986). Am. J. Med. 80, 29-33.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.95 (3) 1.91 (3) 2.794 (4) 154 (3)
N2—H2⋯O10 0.87 (4) 2.04 (4) 2.821 (4) 149 (3)
O3—H31⋯O11i 0.91 1.89 2.700 (3) 147
O3—H32⋯O7 0.92 2.17 2.907 (3) 137
O4—H41⋯O9i 0.99 2.05 2.951 (3) 151
O4—H42⋯O1 0.99 1.91 2.726 (3) 138
O5—H52⋯O8i 0.85 1.96 2.741 (4) 153
O6—H61⋯O1ii 0.97 1.93 2.754 (4) 142
O7—H71⋯O10 0.98 1.86 2.751 (4) 148
O7—H72⋯O3iii 0.99 1.91 2.894 (4) 177
O8—H81⋯O11iv 0.88 1.89 2.760 (4) 170
O8—H82⋯O11 0.88 1.94 2.816 (4) 172
O9—H91⋯O5ii 0.89 1.98 2.850 (4) 165
O5—H51⋯Cl20iii 0.85 2.63 3.339 (3) 142
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, -y, -z+1]; (iii) [-x+2, -y+1, -z+1]; (iv) [-x+1, -y+1, -z+1].

3. Supra­molecular features

The crystal packing is quite efficient, with a high Kitaigorodskii packing index of 0.72, even in the absence of ππ inter­actions (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The [Na4(H2O)14(C14H10Cl2NO2)2]2+ cations are well separated in the crystal by uncoord­inated anions (C14H10Cl2NO2), leaving no room for free water mol­ecules (Fig. 2[link]). All water mol­ecules are linked to the central Na4 cluster and participate broadly in the stabilization of the crystal structure, via classical O—H⋯O hydrogen bonds (Table 1[link]), clearly visible on the Hirshfeld map build-up on the [Na4(H2O)14]4+ framework (Fig. 3[link]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net.]). The contribution of O⋯H/H⋯O contacts is predominant (39.3%) for crystal cohesion, and the sharp spikes in the fingerprint plot at di + de ≃ 2.1 Å are typical of effective water⋯water and water⋯carboxyl­ate inter­actions. A secondary inter­action is observed, accounting for 8.8% of the Hirshfeld map, which corresponds to inter­molecular O—H⋯Cl bonds involving one terminal water mol­ecule in the [Na4(Ocarbox)2(H2O)14]4+ cluster (Table 1[link], last entry). As a consequence of the high density of water mol­ecules in the [Na4(Ocarbox)2(H2O)14]4+ cluster, two water H atoms do not form any hydrogen bonds (H62 and H92). However, it is difficult to assess if all water mol­ecules are correctly oriented in our model, since the refinement is based on room-temperature data limited to dmin = 0.80 Å.

[Figure 2]
Figure 2
Part of the crystal structure of SD·3.5H2O viewed along the crystallographic b axis. Green anions are those which are not coordinated to the [Na4(Ocarbox)2(H2O)14]4+ cluster.
[Figure 3]
Figure 3
Hirshfeld surface (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net.]) calculated for the [Na4(H2O)14]4+ framework. The surface is mapped over dnorm (−0.66 to 1.41 Å) and the four diclofenac anions completing the unit cell are also represented. Each labelled bright-red patch on the surface is associated with an O atom (water or carboxyl­ate group) involved in hydrogen bonds. In the de vs di fingerprint plot, coloured pixels are for O⋯H and H⋯O contacts.

The complete 3D hydrogen-bonding scheme for the whole structure is complex, and obviously very different from supra­molecular structures observed in the previously reported SD hydrates (Muangsin et al., 2002[Muangsin, N., Prajaubsook, M., Chaichit, N., Siritaedmukul, K. & Hannongbua, S. (2002). Anal. Sci. 18, 967-968.]; Llinàs et al., 2007[Llinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979-983.]). These differences, resulting from the arrangement of water mol­ecules in the crystal, could be relevant regarding the actual bioavailability of SD in vivo (Llinàs et al., 2007[Llinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979-983.]). On the other hand, the actual formula of the API used by manufacturers remains unclear, at least with respect to the hydration status. Even some variability of the API formula from one brand to another cannot be excluded. Moreover, we believe that other stable hydrates could be crystallized from commercial SD. Indeed, we did not evaluate the influence of the excipients extracted with SD nor purity of the acetone used for extraction, on the crystallization of the new hydrate.

4. Synthesis and crystallization

Commercial Volfenac Retard was used (Productos farma­céuticos Collins, Mexico). Each tablet weighs ca 433 mg and includes 100 mg of the API. Main excipients are sucrose, and a small amount of magnesium stearate. One tablet was crushed in a mortar, the resulting fine powder was dispersed in acetone (40 mL) at room temperature, and then filtered over a Büchner funnel. The yellow solution was left at room temperature for slow evaporation of solvent, affording yellow prismatic single crystals suitable for X-ray diffraction.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Apparently, all studied single crystals were twinned by rotation around reciprocal axis b*. As a consequence, the unit-cell parameters emulate a monoclinic symmetry, with αγ ≃ 90° (Table 2[link]). However, diffraction intensities are not consistent with the 2/m Laue group. The structure was then refined with the twin matrix [−1 0 0, 0 1 0, 0 0 −1], and the batch scale factor converged to 0.168 (1). Almost all H atoms bonded to N or O atoms were found in difference maps. Amine H atoms (H1, H2) were refined with free coordinates. Water H atoms were allowed to ride on their O sites, while the water mol­ecules were allowed to rotate about the Na—O bonds (command AFIX 7, Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Other H atoms were refined using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Na4(C14H10Cl2NO2)2(H2O)14](C14H10Cl2NO2)2
Mr 1524.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 9.4370 (4), 9.5675 (5), 19.1526 (10)
α, β, γ (°) 90.331 (4), 99.828 (4), 90.436 (4)
V3) 1703.79 (15)
Z 1
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.23
Crystal size (mm) 0.18 × 0.18 × 0.06
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.328, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51408, 6930, 3920
Rint 0.101
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 0.84
No. of reflections 6930
No. of parameters 438
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.23
Computer programs: X-AREA (Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2019); cell refinement: X-AREA (Stoe & Cie, 2019); data reduction: X-AREA (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetra-µ-aqua-κ8O:O-decaaquabis{µ3-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ3O:O:O}tetrasodium(I) bis{2-[2-(2,6-dichloroanilino)phenyl]acetate} top
Crystal data top
[Na4(C14H10Cl2NO2)2(H2O)14](C14H10Cl2NO2)2Z = 1
Mr = 1524.70F(000) = 788
Triclinic, P1Dx = 1.486 Mg m3
a = 9.4370 (4) ÅAg Kα radiation, λ = 0.56083 Å
b = 9.5675 (5) ÅCell parameters from 29092 reflections
c = 19.1526 (10) Åθ = 2.4–22.6°
α = 90.331 (4)°µ = 0.23 mm1
β = 99.828 (4)°T = 295 K
γ = 90.436 (4)°Prism, yellow
V = 1703.79 (15) Å30.18 × 0.18 × 0.06 mm
Data collection top
Stoe Stadivari
diffractometer
6930 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source3920 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.101
Detector resolution: 5.81 pixels mm-1θmax = 20.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2019)
k = 1111
Tmin = 0.328, Tmax = 1.000l = 2323
51408 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
6930 reflections(Δ/σ)max = 0.001
438 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.2170 (3)0.0047 (3)0.80000 (15)0.0406 (7)
H11.198 (3)0.029 (4)0.7524 (18)0.049*
C11.3072 (3)0.0732 (3)0.84998 (18)0.0385 (8)
C21.3117 (3)0.0611 (3)0.92322 (18)0.0397 (8)
Cl21.19687 (9)0.05130 (10)0.95770 (5)0.0492 (2)
C31.4023 (3)0.1411 (4)0.97186 (19)0.0469 (9)
H31.4060050.1269401.0202210.056*
C41.4868 (4)0.2418 (4)0.9479 (2)0.0528 (10)
H41.5489030.2949170.9799870.063*
C51.4785 (4)0.2631 (4)0.8764 (2)0.0504 (9)
H51.5322160.3334660.8600940.060*
C61.3918 (3)0.1814 (4)0.82915 (18)0.0444 (8)
Cl61.38649 (11)0.21441 (11)0.73852 (5)0.0592 (3)
C71.2078 (3)0.1532 (3)0.80037 (17)0.0369 (8)
C81.3044 (3)0.2359 (4)0.84662 (18)0.0417 (8)
H81.3784830.1937390.8773620.050*
C91.2913 (4)0.3793 (4)0.84734 (19)0.0467 (9)
H91.3546600.4330640.8794020.056*
C101.1843 (4)0.4432 (4)0.8005 (2)0.0507 (9)
H101.1746800.5398620.8006130.061*
C111.0915 (4)0.3608 (4)0.75336 (19)0.0461 (9)
H111.0209680.4040660.7210330.055*
C121.0996 (3)0.2164 (4)0.75243 (17)0.0385 (8)
C130.9862 (3)0.1324 (4)0.70255 (17)0.0444 (8)
H13A0.9490190.0599270.7298630.053*
H13B0.9071380.1940790.6851140.053*
C141.0357 (4)0.0637 (4)0.63902 (19)0.0437 (8)
O11.1477 (3)0.0085 (3)0.65231 (13)0.0615 (7)
O20.9652 (2)0.0778 (3)0.57822 (12)0.0497 (6)
N20.7304 (3)0.4820 (3)0.80106 (16)0.0480 (8)
H20.725 (4)0.506 (4)0.757 (2)0.058*
C150.8157 (3)0.5640 (4)0.85260 (18)0.0398 (8)
C160.8131 (3)0.5537 (4)0.92522 (18)0.0406 (8)
Cl160.69399 (9)0.43983 (10)0.95609 (5)0.0521 (2)
C170.8980 (4)0.6382 (4)0.9748 (2)0.0497 (9)
H170.8951580.6267481.0227200.060*
C180.9863 (4)0.7386 (4)0.9539 (2)0.0517 (10)
H181.0458620.7926920.9874090.062*
C190.9856 (4)0.7586 (4)0.8823 (2)0.0500 (9)
H191.0406960.8298670.8673550.060*
C200.9031 (3)0.6725 (4)0.83345 (18)0.0413 (8)
Cl200.90705 (11)0.70100 (11)0.74380 (5)0.0598 (3)
C210.7186 (3)0.3338 (4)0.80349 (17)0.0398 (8)
C220.8201 (4)0.2535 (4)0.84606 (18)0.0445 (9)
H220.9005690.2962600.8727150.053*
C230.8025 (4)0.1105 (4)0.8491 (2)0.0507 (9)
H230.8699220.0573500.8783640.061*
C240.6841 (4)0.0462 (4)0.8084 (2)0.0579 (10)
H240.6719200.0501700.8103660.069*
C250.5850 (4)0.1249 (4)0.7652 (2)0.0495 (9)
H250.5065770.0806950.7376430.059*
C260.5992 (3)0.2699 (4)0.76160 (17)0.0423 (8)
C270.4867 (3)0.3546 (4)0.71529 (18)0.0510 (9)
H27A0.4569730.4291120.7440420.061*
H27B0.4034640.2948660.7002750.061*
C280.5293 (4)0.4200 (4)0.6495 (2)0.0546 (10)
O100.6558 (3)0.4628 (4)0.65228 (14)0.0942 (12)
O110.4341 (3)0.4346 (3)0.59671 (13)0.0631 (7)
Na11.11754 (13)0.14829 (16)0.48702 (8)0.0547 (4)
Na20.75703 (14)0.20206 (16)0.52183 (8)0.0586 (4)
O31.1555 (3)0.3696 (3)0.54845 (13)0.0649 (7)
H311.2409450.3715060.5790900.097*
H321.0918200.3848780.5788750.097*
O41.3116 (2)0.0135 (3)0.54862 (13)0.0589 (7)
H411.4047680.0642340.5561230.088*
H421.2921290.0235430.5941550.088*
O51.2920 (3)0.2037 (3)0.40943 (14)0.0739 (8)
H511.2767240.2068900.3643170.111*
H521.3807800.2242660.4213790.111*
O60.8992 (3)0.2519 (3)0.42599 (14)0.0678 (8)
H610.8507810.1939780.3872030.102*
H620.9140500.3456650.4093670.102*
O70.8675 (3)0.4414 (3)0.57032 (15)0.0765 (9)
H710.8146650.4773810.6066790.115*
H720.8596820.5082550.5309470.115*
O80.5406 (2)0.3249 (3)0.47928 (14)0.0605 (7)
H810.5578480.4038450.4585580.091*
H820.5003680.3535510.5149750.091*
O90.6181 (2)0.0786 (3)0.59983 (14)0.0684 (8)
H910.6445280.0102650.6050260.103*
H920.6377110.1118900.6438270.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0489 (16)0.0334 (17)0.0375 (16)0.0050 (13)0.0014 (14)0.0027 (13)
C10.0402 (18)0.0306 (19)0.044 (2)0.0023 (15)0.0047 (16)0.0029 (16)
C20.0412 (17)0.0313 (19)0.046 (2)0.0029 (15)0.0057 (16)0.0027 (16)
Cl20.0563 (5)0.0463 (5)0.0466 (5)0.0033 (4)0.0130 (4)0.0025 (4)
C30.052 (2)0.044 (2)0.043 (2)0.0045 (18)0.0009 (17)0.0047 (17)
C40.051 (2)0.043 (2)0.061 (3)0.0057 (18)0.0010 (19)0.0123 (19)
C50.046 (2)0.036 (2)0.070 (3)0.0038 (17)0.010 (2)0.0042 (19)
C60.0450 (18)0.040 (2)0.049 (2)0.0005 (17)0.0099 (17)0.0005 (17)
Cl60.0717 (6)0.0536 (6)0.0534 (6)0.0122 (5)0.0130 (5)0.0079 (5)
C70.0409 (17)0.035 (2)0.0363 (18)0.0006 (15)0.0114 (15)0.0011 (15)
C80.0411 (18)0.043 (2)0.041 (2)0.0004 (16)0.0062 (16)0.0046 (16)
C90.050 (2)0.041 (2)0.051 (2)0.0078 (17)0.0117 (18)0.0069 (18)
C100.057 (2)0.034 (2)0.063 (3)0.0026 (18)0.016 (2)0.0019 (19)
C110.0482 (19)0.044 (2)0.047 (2)0.0093 (17)0.0096 (17)0.0008 (17)
C120.0397 (17)0.039 (2)0.0368 (19)0.0054 (16)0.0082 (15)0.0020 (16)
C130.0408 (18)0.051 (2)0.040 (2)0.0062 (16)0.0037 (15)0.0036 (17)
C140.0466 (19)0.046 (2)0.040 (2)0.0004 (17)0.0106 (17)0.0045 (17)
O10.0640 (15)0.078 (2)0.0394 (14)0.0325 (15)0.0005 (12)0.0085 (13)
O20.0500 (13)0.0588 (16)0.0368 (14)0.0058 (12)0.0031 (11)0.0031 (12)
N20.0561 (17)0.047 (2)0.0383 (17)0.0033 (15)0.0005 (15)0.0054 (15)
C150.0392 (17)0.0317 (19)0.048 (2)0.0065 (15)0.0044 (16)0.0028 (16)
C160.0459 (18)0.0329 (19)0.043 (2)0.0042 (16)0.0079 (16)0.0039 (16)
Cl160.0584 (5)0.0468 (6)0.0538 (6)0.0013 (4)0.0171 (4)0.0056 (4)
C170.055 (2)0.045 (2)0.048 (2)0.0077 (19)0.0072 (18)0.0026 (18)
C180.049 (2)0.044 (2)0.059 (3)0.0000 (18)0.0006 (19)0.0097 (19)
C190.0457 (19)0.042 (2)0.063 (3)0.0033 (17)0.0125 (19)0.0000 (19)
C200.0430 (18)0.038 (2)0.044 (2)0.0077 (16)0.0095 (16)0.0072 (16)
Cl200.0672 (6)0.0614 (7)0.0522 (6)0.0018 (5)0.0133 (5)0.0150 (5)
C210.0446 (18)0.040 (2)0.0355 (19)0.0029 (16)0.0075 (16)0.0005 (16)
C220.0447 (19)0.049 (2)0.039 (2)0.0019 (17)0.0050 (16)0.0021 (17)
C230.058 (2)0.041 (2)0.055 (2)0.0121 (19)0.015 (2)0.0039 (19)
C240.070 (3)0.037 (2)0.071 (3)0.002 (2)0.026 (2)0.004 (2)
C250.048 (2)0.051 (2)0.052 (2)0.0082 (18)0.0145 (18)0.0071 (19)
C260.0397 (17)0.052 (2)0.0363 (19)0.0019 (16)0.0093 (15)0.0018 (17)
C270.0446 (19)0.069 (3)0.039 (2)0.0103 (19)0.0063 (17)0.0065 (19)
C280.049 (2)0.071 (3)0.043 (2)0.007 (2)0.0067 (19)0.005 (2)
O100.0542 (16)0.180 (4)0.0468 (17)0.030 (2)0.0038 (14)0.025 (2)
O110.0518 (14)0.085 (2)0.0482 (16)0.0089 (14)0.0026 (13)0.0148 (15)
Na10.0478 (7)0.0577 (9)0.0579 (9)0.0024 (7)0.0069 (7)0.0037 (7)
Na20.0516 (8)0.0607 (10)0.0620 (9)0.0100 (7)0.0056 (7)0.0055 (8)
O30.0508 (14)0.080 (2)0.0633 (18)0.0057 (14)0.0076 (13)0.0045 (15)
O40.0511 (13)0.0724 (19)0.0525 (16)0.0029 (13)0.0068 (12)0.0015 (14)
O50.0659 (17)0.096 (2)0.0593 (17)0.0008 (17)0.0080 (14)0.0157 (18)
O60.0749 (17)0.0581 (18)0.0662 (18)0.0027 (15)0.0004 (15)0.0042 (14)
O70.0770 (18)0.090 (2)0.0682 (19)0.0322 (17)0.0273 (16)0.0100 (17)
O80.0638 (16)0.0562 (17)0.0635 (18)0.0096 (14)0.0160 (14)0.0051 (14)
O90.0574 (15)0.086 (2)0.0624 (17)0.0021 (15)0.0130 (13)0.0121 (16)
Geometric parameters (Å, º) top
N1—C11.391 (4)C19—H190.9300
N1—C71.425 (4)C20—Cl201.747 (3)
N1—H10.95 (3)C21—C221.388 (5)
C1—C21.400 (4)C21—C261.400 (5)
C1—C61.409 (4)C22—C231.379 (5)
C2—C31.390 (5)C22—H220.9300
C2—Cl21.738 (3)C23—C241.386 (5)
C3—C41.381 (5)C23—H230.9300
C3—H30.9300C24—C251.371 (5)
C4—C51.371 (5)C24—H240.9300
C4—H40.9300C25—C261.396 (5)
C5—C61.366 (5)C25—H250.9300
C5—H50.9300C26—C271.507 (5)
C6—Cl61.755 (4)C27—C281.523 (5)
C7—C81.395 (4)C27—H27A0.9700
C7—C121.395 (4)C27—H27B0.9700
C8—C91.379 (5)C28—O111.242 (4)
C8—H80.9300C28—O101.251 (4)
C9—C101.380 (5)Na1—O42.393 (3)
C9—H90.9300Na1—O32.411 (3)
C10—C111.384 (5)Na1—O62.411 (3)
C10—H100.9300Na1—O52.455 (3)
C11—C121.384 (5)Na1—Na2i3.576 (2)
C11—H110.9300Na1—Na23.6167 (18)
C12—C131.527 (5)Na1—Na1i3.677 (3)
C13—C141.523 (4)Na2—O82.387 (3)
C13—H13A0.9700Na2—O92.452 (3)
C13—H13B0.9700Na2—O4i2.479 (3)
C14—O21.247 (4)Na2—O62.498 (3)
C14—O11.257 (4)Na2—O72.608 (4)
O2—Na22.401 (3)O3—H310.9125
O2—Na12.535 (3)O3—H320.9177
O2—Na1i2.542 (3)O4—H410.9889
N2—C151.396 (4)O4—H420.9889
N2—C211.423 (4)O5—H510.8522
N2—H20.87 (4)O5—H520.8517
C15—C161.399 (5)O6—H610.9711
C15—C201.410 (5)O6—H620.9711
C16—C171.385 (5)O7—H710.9849
C16—Cl161.736 (3)O7—H720.9851
C17—C181.373 (5)O8—H810.8821
C17—H170.9300O8—H820.8801
C18—C191.383 (5)O9—H910.8890
C18—H180.9300O9—H920.8881
C19—C201.376 (5)
C1—N1—C7124.8 (3)C28—C27—H27B108.1
C1—N1—H1118 (2)H27A—C27—H27B107.3
C7—N1—H1110 (2)O11—C28—O10123.3 (4)
N1—C1—C2123.9 (3)O11—C28—C27117.9 (3)
N1—C1—C6121.1 (3)O10—C28—C27118.8 (3)
C2—C1—C6114.7 (3)O4—Na1—O3101.57 (10)
C3—C2—C1122.6 (3)O4—Na1—O6171.04 (11)
C3—C2—Cl2116.4 (3)O3—Na1—O685.00 (10)
C1—C2—Cl2120.9 (3)O4—Na1—O583.10 (9)
C4—C3—C2119.5 (3)O3—Na1—O592.81 (10)
C4—C3—H3120.2O6—Na1—O5102.83 (10)
C2—C3—H3120.2O4—Na1—O289.51 (9)
C5—C4—C3119.6 (3)O3—Na1—O287.16 (9)
C5—C4—H4120.2O6—Na1—O284.69 (9)
C3—C4—H4120.2O5—Na1—O2172.45 (10)
C6—C5—C4120.3 (3)O4—Na1—O2i85.65 (9)
C6—C5—H5119.8O3—Na1—O2i170.80 (10)
C4—C5—H5119.8O6—Na1—O2i87.25 (9)
C5—C6—C1123.0 (3)O5—Na1—O2i93.72 (10)
C5—C6—Cl6117.9 (3)O2—Na1—O2i87.21 (9)
C1—C6—Cl6119.1 (3)O4—Na1—Na2i43.71 (7)
C8—C7—C12119.7 (3)O3—Na1—Na2i145.27 (8)
C8—C7—N1121.8 (3)O6—Na1—Na2i129.35 (9)
C12—C7—N1118.5 (3)O5—Na1—Na2i84.90 (8)
C9—C8—C7120.8 (3)O2—Na1—Na2i90.83 (7)
C9—C8—H8119.6O2i—Na1—Na2i42.11 (6)
C7—C8—H8119.6O4—Na1—Na2130.95 (8)
C8—C9—C10120.0 (3)O3—Na1—Na281.17 (7)
C8—C9—H9120.0O6—Na1—Na243.48 (7)
C10—C9—H9120.0O5—Na1—Na2145.96 (9)
C9—C10—C11118.8 (3)O2—Na1—Na241.45 (6)
C9—C10—H10120.6O2i—Na1—Na289.80 (7)
C11—C10—H10120.6Na2i—Na1—Na2118.52 (4)
C10—C11—C12122.6 (3)O4—Na1—Na1i86.65 (8)
C10—C11—H11118.7O3—Na1—Na1i130.42 (9)
C12—C11—H11118.7O6—Na1—Na1i84.43 (8)
C11—C12—C7118.0 (3)O5—Na1—Na1i136.77 (10)
C11—C12—C13119.4 (3)O2—Na1—Na1i43.68 (6)
C7—C12—C13122.6 (3)O2i—Na1—Na1i43.54 (6)
C14—C13—C12116.4 (3)Na2i—Na1—Na1i59.80 (5)
C14—C13—H13A108.2Na2—Na1—Na1i58.72 (4)
C12—C13—H13A108.2O8—Na2—O2173.08 (11)
C14—C13—H13B108.2O8—Na2—O986.20 (10)
C12—C13—H13B108.2O2—Na2—O987.99 (10)
H13A—C13—H13B107.3O8—Na2—O4i95.71 (10)
O2—C14—O1123.4 (3)O2—Na2—O4i86.90 (9)
O2—C14—C13120.5 (3)O9—Na2—O4i79.41 (10)
O1—C14—C13116.0 (3)O8—Na2—O6100.91 (10)
C14—O2—Na2138.1 (2)O2—Na2—O685.74 (9)
C14—O2—Na1113.5 (2)O9—Na2—O6161.78 (11)
Na2—O2—Na194.18 (10)O4i—Na2—O683.18 (10)
C14—O2—Na1i115.4 (2)O8—Na2—O787.19 (10)
Na2—O2—Na1i92.64 (9)O2—Na2—O791.90 (9)
Na1—O2—Na1i92.79 (9)O9—Na2—O7115.21 (10)
C15—N2—C21124.6 (3)O4i—Na2—O7165.30 (11)
C15—N2—H2118 (3)O6—Na2—O782.12 (10)
C21—N2—H2108 (3)O8—Na2—Na1i136.50 (9)
N2—C15—C16123.7 (3)O2—Na2—Na1i45.24 (7)
N2—C15—C20121.0 (3)O9—Na2—Na1i78.02 (8)
C16—C15—C20115.1 (3)O4i—Na2—Na1i41.84 (6)
C17—C16—C15122.1 (3)O6—Na2—Na1i85.46 (8)
C17—C16—Cl16117.3 (3)O7—Na2—Na1i136.20 (7)
C15—C16—Cl16120.5 (3)O8—Na2—Na1142.04 (9)
C18—C17—C16120.6 (3)O2—Na2—Na144.36 (6)
C18—C17—H17119.7O9—Na2—Na1131.19 (8)
C16—C17—H17119.7O4i—Na2—Na186.78 (7)
C17—C18—C19119.3 (4)O6—Na2—Na141.63 (7)
C17—C18—H18120.4O7—Na2—Na182.18 (7)
C19—C18—H18120.4Na1i—Na2—Na161.48 (4)
C20—C19—C18119.7 (3)Na1—O3—H31111.3
C20—C19—H19120.2Na1—O3—H32113.0
C18—C19—H19120.2H31—O3—H32101.1
C19—C20—C15123.0 (3)Na1—O4—Na2i94.44 (9)
C19—C20—Cl20118.0 (3)Na1—O4—H41113.2
C15—C20—Cl20119.1 (3)Na2i—O4—H41128.5
C22—C21—C26120.3 (3)Na1—O4—H42113.0
C22—C21—N2121.9 (3)Na2i—O4—H4296.3
C26—C21—N2117.8 (3)H41—O4—H42110.0
C23—C22—C21120.4 (3)Na1—O5—H51127.5
C23—C22—H22119.8Na1—O5—H52128.0
C21—C22—H22119.8H51—O5—H52104.5
C22—C23—C24119.9 (4)Na1—O6—Na294.89 (10)
C22—C23—H23120.0Na1—O6—H61112.7
C24—C23—H23120.0Na2—O6—H61102.3
C25—C24—C23119.9 (4)Na1—O6—H62112.9
C25—C24—H24120.1Na2—O6—H62122.9
C23—C24—H24120.1H61—O6—H62110.2
C24—C25—C26121.5 (4)Na2—O7—H71109.7
C24—C25—H25119.2Na2—O7—H72109.0
C26—C25—H25119.2H71—O7—H72109.4
C25—C26—C21118.1 (3)Na2—O8—H81111.7
C25—C26—C27120.5 (3)Na2—O8—H82110.4
C21—C26—C27121.4 (3)H81—O8—H82102.7
C26—C27—C28117.0 (3)Na2—O9—H91111.1
C26—C27—H27A108.1Na2—O9—H92111.2
C28—C27—H27A108.1H91—O9—H92102.8
C26—C27—H27B108.1
C7—N1—C1—C253.3 (4)C13—C14—O2—Na1131.2 (3)
C7—N1—C1—C6133.2 (3)O1—C14—O2—Na1i55.1 (4)
N1—C1—C2—C3179.5 (3)C13—C14—O2—Na1i123.3 (3)
C6—C1—C2—C35.6 (4)C21—N2—C15—C1650.2 (5)
N1—C1—C2—Cl22.3 (4)C21—N2—C15—C20135.1 (3)
C6—C1—C2—Cl2171.7 (2)N2—C15—C16—C17179.1 (3)
C1—C2—C3—C43.3 (5)C20—C15—C16—C174.2 (5)
Cl2—C2—C3—C4174.0 (3)N2—C15—C16—Cl162.9 (4)
C2—C3—C4—C51.0 (5)C20—C15—C16—Cl16172.0 (2)
C3—C4—C5—C62.7 (5)C15—C16—C17—C181.6 (5)
C4—C5—C6—C10.1 (5)Cl16—C16—C17—C18174.7 (3)
C4—C5—C6—Cl6180.0 (3)C16—C17—C18—C192.5 (5)
N1—C1—C6—C5178.0 (3)C17—C18—C19—C203.7 (5)
C2—C1—C6—C53.9 (5)C18—C19—C20—C151.0 (5)
N1—C1—C6—Cl61.9 (4)C18—C19—C20—Cl20179.5 (3)
C2—C1—C6—Cl6176.0 (2)N2—C15—C20—C19178.0 (3)
C1—N1—C7—C88.8 (5)C16—C15—C20—C192.9 (5)
C1—N1—C7—C12171.8 (3)N2—C15—C20—Cl201.5 (4)
C12—C7—C8—C92.3 (5)C16—C15—C20—Cl20176.6 (2)
N1—C7—C8—C9178.3 (3)C15—N2—C21—C2218.9 (5)
C7—C8—C9—C101.9 (5)C15—N2—C21—C26160.6 (3)
C8—C9—C10—C110.0 (5)C26—C21—C22—C231.8 (5)
C9—C10—C11—C121.6 (5)N2—C21—C22—C23177.6 (3)
C10—C11—C12—C71.2 (5)C21—C22—C23—C241.2 (5)
C10—C11—C12—C13175.4 (3)C22—C23—C24—C250.1 (5)
C8—C7—C12—C110.7 (4)C23—C24—C25—C260.8 (5)
N1—C7—C12—C11179.9 (3)C24—C25—C26—C210.2 (5)
C8—C7—C12—C13177.2 (3)C24—C25—C26—C27178.3 (3)
N1—C7—C12—C133.4 (4)C22—C21—C26—C251.1 (5)
C11—C12—C13—C14108.4 (4)N2—C21—C26—C25178.4 (3)
C7—C12—C13—C1475.2 (4)C22—C21—C26—C27179.5 (3)
C12—C13—C14—O2130.6 (3)N2—C21—C26—C270.1 (4)
C12—C13—C14—O150.8 (4)C25—C26—C27—C28109.9 (4)
O1—C14—O2—Na2177.5 (2)C21—C26—C27—C2871.7 (4)
C13—C14—O2—Na24.0 (5)C26—C27—C28—O11148.7 (4)
O1—C14—O2—Na150.3 (4)C26—C27—C28—O1035.0 (6)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.95 (3)1.91 (3)2.794 (4)154 (3)
N2—H2···O100.87 (4)2.04 (4)2.821 (4)149 (3)
O3—H31···O11ii0.911.892.700 (3)147
O3—H32···O70.922.172.907 (3)137
O4—H41···O9ii0.992.052.951 (3)151
O4—H42···O10.991.912.726 (3)138
O5—H52···O8ii0.851.962.741 (4)153
O6—H61···O1i0.971.932.754 (4)142
O7—H71···O100.981.862.751 (4)148
O7—H72···O3iii0.991.912.894 (4)177
O8—H81···O11iv0.881.892.760 (4)170
O8—H82···O110.881.942.816 (4)172
O9—H91···O5i0.891.982.850 (4)165
O5—H51···Cl20iii0.852.633.339 (3)142
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178; scholarship No. CVU-928228).

References

First citationBáthori, N. B., Lemmerer, A., Venter, G. A., Bourne, S. A. & Caira, M. R. (2011). Cryst. Growth Des. 11, 75–87.  Google Scholar
First citationBera, S., Chowdhury, A., Sarkar, K. & Dastidar, P. (2020). Chem. Asian J. 15, 503–510.  CSD CrossRef CAS PubMed Google Scholar
First citationCastellari, C., Comelli, F. & Ottani, S. (1999). Acta Cryst. C55, 1054–1056.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCastellari, C. & Ottani, S. (1997). Acta Cryst. C53, 794–797.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChu, G.-H. & Cheng, J. (2007). Acta Cryst. E63, m1008–m1009.  CSD CrossRef IUCr Journals Google Scholar
First citationDuan, Y. & Li, S.-H. (2018). Z. Kristallogr. New Cryst. Struct. 233, 169–171.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJaiboon, N., Yos-In, K., Ruangchaithaweesuk, S., Chaichit, N., Thutivoranath, R., Siritaedmukul, K. & Hannongbua, S. (2001). Anal. Sci. 17, 1465–1466.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKing, M. D., Buchanan, W. D. & Korter, T. M. (2011). Anal. Chem. 83, 3786–3792.  CSD CrossRef CAS PubMed Google Scholar
First citationKovala-Demertzi, D., Mentzafos, D. & Terzis, A. (1993). Polyhedron, 12, 1361–1370.  CSD CrossRef CAS Web of Science Google Scholar
First citationLlinàs, A., Burley, J. C., Box, K. J., Glen, R. C. & Goodman, J. M. (2007). J. Med. Chem. 50, 979–983.  PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMenassé, R., Hedwall, P. R., Kraetz, J., Pericin, C., Riesterer, L., Sallmann, A., Ziel, R. & Jaques, R. (1978). Scand. J. Rheumatol. 7, 5–16.  Google Scholar
First citationMoser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358–2368.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMuangsin, N., Prajaubsook, M., Chaichit, N., Siritaedmukul, K. & Hannongbua, S. (2002). Anal. Sci. 18, 967–968.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMuangsin, N., Prajuabsook, M., Chimsook, P., Chantarasiri, N., Siraleartmukul, K., Chaichit, N. & Hannongbua, S. (2004). J. Appl. Cryst. 37, 288–294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNiranjana Devi, R., Stephen, A. D., Justin, P., Saravanan, K., Macchi, P. & Jelsch, C. (2019). J. Mol. Struct. 1196, 42–53.  Google Scholar
First citationPerlovich, G. L., Surov, A. O., Hansen, L. K. & Bauer-Brandl, A. (2007). J. Pharm. Sci. 96, 1031–1042.  CSD CrossRef PubMed CAS Google Scholar
First citationSallmann, A. R. (1986). Am. J. Med. 80, 29–33.  CrossRef CAS PubMed Google Scholar
First citationSayen, S. & Guillon, E. (2012). Acta Cryst. E68, m474–m475.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S.-Y., Ma, J.-F., Yang, J., Gao, L.-L. & Su, Z.-M. (2007). Organometallics, 26, 2125–2128.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-D. & Mak, T. C. W. (1996). Struct. Chem. 7, 91–101.  CSD CrossRef CAS Google Scholar
First citationZheng, Q., Rood, S. L., Unruh, D. K. & Hutchins, K. M. (2019). Chem. Commun. 55, 7639–7642.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds