research communications
Crystal structures of 2-amino-2-oxoethyl 4-bromobenzoate, 2-amino-2-oxoethyl 4-nitrobenzoate and 2-amino-2-oxoethyl 4-aminobenzoate monohydrate
aNational University of Uzbekistan named after Mirzo Ulugbek, 100174, Massif Universitet Shakharchasi 4, Tashkent, Uzbekistan, and bS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan 100170, Mirzo Ulugbek Str., 77, Tashkent, Uzbekistan
*Correspondence e-mail: raxul@mail.ru
The title molecules were synthesized by the reaction of 4-substituted sodium benzoates with chloroacetic acid amide in the presence of dimethylformamide. The yields of 2-amino-2-oxoethyl 4-bromobenzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitrobenzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-aminobenzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the molecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring. Single crystals were obtained from the products under the same (temperature and solvent) conditions. In the case of III, the crystals formed as a monohydrate. In all three crystal structures, the same type of intermolecular N—H⋯O hydrogen bonds are observed, but the molecules differ in some torsion angles as well as in the dihedral angles between the mean planes of the benzene rings and the amide groups.
1. Chemical context
Molecules containing an aromatic ring, a carboxyl and an amino group represent an important class of organic compounds and, with several reaction centers, they are important intermediates in industry. They are often used as synthons in organic synthesis and are also widely used as ligands in the coordination chemistry of various transition metals. These ligands can form a variety of complex compounds as they possess several
sites.The new crystalline compounds 2-amino-2-oxoethyl 4-bromobenzoate (I), 2-amino-2-oxoethyl 4-nitrobenzoate (II) and 2-amino-2-oxoethyl)-4-aminobenzoate monohydrate (III) (Fig. 1) were synthesized from the reaction of 4-substituted sodium benzoates with chloroacetic acid amide in the presence of dimethylformamide. Their structures were determined by X-ray crystallographic analysis.
2. Structural commentary
All of the title structures have planar benzoate (C1–C7/O1/O2) and amide (O3/C9/N1) units but the dihedral angle between these planes is different in each case because of the torsion angle about the bridging methylene group (C8; Tables 1–3). The of each is illustrated in Fig. 2. That of I consists of two independent molecules (A and B), which differ in the position of the amide groups relative to the benzoate (r.m.s. deviations of 0.021 Å for A and 0.031 Å for B) fragments, as indicated by the dihedral angles of 82.5 (4) and 75.9 (3)° in A and B, respectively. The of II contains only one molecule of 2-amino-2-oxoethyl 4-nitrobenzoate. The dihedral angle between the mean planes of the amide and the benzoate (r.m.s. deviation = 0.070 Å) groups is 89.4 (2)°. The of III contains one water molecule and one 2-amino-2-oxoethyl 4-aminobenzoate molecule (Fig. 2). The dihedral angle between the mean planes of the amide and benzoate (r.m.s. deviation = 0.027 Å) groups is 4.4 (5)°. Analysis of the bond lengths and bond angles of I–III shows slight differences, but these data are in the expected ranges (Allen et al., 1987).
|
|
|
3. Supramolecular features
In the crystal structures, several types of intermolecular interactions are observed but all contain intermolecular N—H⋯O hydrogen bonds.
In I, intermolecular A⋯A (N1A—H1A⋯O3Ai), B⋯B (N1B—H2B⋯O3Bii) and B⋯A (N1B—H2B⋯O3Biii) interactions cross-link the molecules, generating rings with an R33(12) graph-set motif (Fig. 3, Table 4) (Grell et al., 1999). Although both the A and B molecules contain a bromine atom, a short intermolecular Br⋯Br interaction only occurs between B molecules [Br1B⋯Br1B(−x + , y + , −z + ) = 3.519 (1) Å, 0.18 Å less than the sum of the van der Waals radii]. This interaction connects the molecules into chains extending along the b-axis direction (Fig. 3). A similar short Br ⋯ Br interaction was observed in the crystal structures of 4-chlorophenyl-4-bromobenzoate (TAYNEP; Saha & Desiraju, 2017) and 4-bromophenyl-4-bromobenzoate (VEWSIC; Saha & Desiraju, 2018).
In II, the angle between the mean planes of the nitro group and the aromatic ring is 4.1 (1)°. A characteristic intermolecular interaction for II is the formation of centrosymmetric dimers as a result of the N1—H1⋯O3i hydrogen bonds formed between amide fragments (Table 5). Short intermolecular O5⋯O5(−x + 1, −y + 2, −z + 1) interactions [at 2.874 (4) Å these are 0.14 Å less than the sum of the van der Waals radii] are observed between the nitro groups of the dimers (Fig. 4). A similar intermolecular O⋯O contact was observed in the of meta-dinitrobenzene (DNBENZ11, DNBENZ12; Wójcik et al., 2002).
In III, as in II, inversion dimers are formed by N1—H1⋯O3i hydrogen bonds (Fig. 5, Table 6). An intermolecular hydrogen bond is also observed between the oxygen of the amide fragment and the water molecule (Fig. 6), although the angle is only 101°, and the water molecules are further connected by hydrogen bonds to form an infinite chain along the b-axis direction.
4. Database survey
A search for the 2-amino-2-oxoethyl benzoate (carbamoylmethylbenzoate) scaffold in the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) gave 34 hits. Of these, the structures most closely related to the title compounds are MAMJOC [2-(dimethylamino)-2-oxoethyl 5-bromo-2-hydroxybenzoate; Santra et al., 2016], CEPWID (1-benzoyloxy-1-methoxy-N-methylacetamide; Nishio et al., 1984) and HUMJII (carbamoylmethyl 3,4,5-trihydroxybenzoate hydrate; Parkin et al., 2002).
5. Synthesis and crystallization
Synthesis 2-amino-2-oxoethyl 4-bromobenzoate: General method. To a 25 mL round-bottom flask containing 0.27 g (1.2 mmol) of the sodium salt of p-bromobenzoic acid were added 6 mL of DMF. The resulting mixture was heated for 10 min (for partial dissolution of the salt) and 0.1 g (1 mmol) of chloroacetamide was added. The flask was equipped with a reflux condenser and mechanical stirrer and was heated in a sand bath with stirring at 426 K for 6 h. The DMF was removed in vacuo (15 mm Hg) at 328 K. After cooling, cold water was poured into the reaction mixture to completely eliminate the residual reactants and DMF. The resulting precipitate was filtered off to give 0.22 g (86% yield) of product. RF = 0.65 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 475–477 K. 1H NMR [400 MHz, CD3OD, δ (ppm.), J (Hz)]: 7.95 (2H, d, J = 8.64, H3 and H5), 7.61 (2H, d, J = 8.63, H2 and H6), 4.72 (2H, s, CH2).
(2-Amino-2-oxoethyl)-4-nitrobenzoate. The reaction yield is 78%. RF = 0.62 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 439–441 K. 1H NMR [400 MHz, CD3OD+CDCl3+C2D5OD δ (ppm), J (Hz)]: 8.23 (2H, d, J = 9.28, H3 and H5), 8.19 (2H, d, J = 9.31, H2 and H6), 4.73 (2H, s, CH2).
(2-Amino-2-oxoethyl)-4-aminobenzoate. The reaction yield is 88%. RF = 0.53 [in 5:1.5:1 (v/v) CHCl3/C6H6/CH3OH solvent system]; m.p. 435–438 K. 1H NMR [400 MHz, CD3OD, δ (ppm), J (Hz)]: 7.75 (2H, d, J = 8.75, H3 and H5), 6.58 (2H, d, J = 8.75, H2 and H6), 4.62 (2H, s, CH2).
Each compound was dissolved in ethanol and the solvent allowed to evaporate at room temperature. Colourless crystals suitable for X-ray
were obtained.The crystal of the 2-amino-2-oxoethyl 4-aminobenzoate monohydrate loses its transparency without chemical change (without becoming amorphous) in the range 344–346 K when the crystals are heated and melts in the range 435–438 K.
The yields of 2-amino-2-oxoethyl 4-bromobenzoate, C9H8BrNO3, I, 2-amino-2-oxoethyl 4-nitrobenzoate, C9H8N2O5, II, and 2-amino-2-oxoethyl 4-aminobenzoate monohydrate, C9H10N2O3·H2O, III, are 86, 78 and 88%, respectively. The low yield of II is explained by the reduced reactivity of the molecule in a nucleophilic exchange reaction because of the negative induction and negative mesomeric effects of the nitro group on the benzene ring.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed geometrically (with C—H distances of 0.97 Å for CH2 and 0.93 Å for Car) and included in the as riding contributions with Uiso(H) = 1.2Ueq(C) [Uiso = 1.5 Ueq(C) for methyl H atoms]. The hydrogen atoms attached to N and O (water) were located in difference-Fourier maps and refined freely.
details are summarized in Table 7
|
Supporting information
https://doi.org/10.1107/S2056989020014371/mw2171sup1.cif
contains datablocks I, II, III, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020014371/mw2171Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989020014371/mw2171IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989020014371/mw2171IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014371/mw2171Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014371/mw2171IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014371/mw2171IIIsup7.cml
For all structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/8 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2020) and publCIF (Westrip, 2010)'.C9H8BrNO3 | Dx = 1.786 Mg m−3 |
Mr = 258.07 | Melting point: 475(2) K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 18.623 (4) Å | Cell parameters from 2381 reflections |
b = 4.8255 (10) Å | θ = 3.9–75.4° |
c = 23.195 (5) Å | µ = 5.71 mm−1 |
β = 112.96 (3)° | T = 291 K |
V = 1919.3 (8) Å3 | Prismatic, colorless |
Z = 8 | 0.60 × 0.20 × 0.15 mm |
F(000) = 1024 |
Oxford Diffraction Xcalibur, Ruby diffractometer | 3832 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.9°, θmin = 3.9° |
ω scans | h = −20→22 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −3→5 |
Tmin = 0.292, Tmax = 0.425 | l = −28→28 |
6390 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: mixed |
wR(F2) = 0.138 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0772P)2 + 0.3454P] where P = (Fo2 + 2Fc2)/3 |
3832 reflections | (Δ/σ)max = 0.001 |
269 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.85 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1A | 0.59795 (3) | 0.16726 (12) | 0.02621 (3) | 0.06387 (18) | |
O1A | 0.8638 (2) | 1.0616 (8) | −0.01058 (15) | 0.0605 (8) | |
O2A | 0.89019 (17) | 1.1199 (6) | 0.09136 (15) | 0.0503 (7) | |
O3A | 1.03189 (18) | 0.9293 (6) | 0.09906 (17) | 0.0565 (8) | |
N1A | 1.0666 (2) | 1.3499 (8) | 0.0755 (2) | 0.0562 (10) | |
C1A | 0.7921 (2) | 0.7970 (9) | 0.03619 (17) | 0.0415 (8) | |
C2A | 0.7811 (2) | 0.7232 (10) | 0.09046 (18) | 0.0480 (9) | |
H2AA | 0.8124 | 0.8027 | 0.1285 | 0.058* | |
C3A | 0.7248 (2) | 0.5349 (10) | 0.08845 (19) | 0.0490 (9) | |
H3AA | 0.7173 | 0.4880 | 0.1246 | 0.059* | |
C4A | 0.6792 (2) | 0.4160 (9) | 0.03104 (19) | 0.0448 (8) | |
C5A | 0.6903 (3) | 0.4759 (9) | −0.0231 (2) | 0.0502 (10) | |
H5AA | 0.6607 | 0.3889 | −0.0606 | 0.060* | |
C6A | 0.7466 (2) | 0.6684 (10) | −0.02010 (18) | 0.0490 (9) | |
H6AA | 0.7544 | 0.7128 | −0.0563 | 0.059* | |
C7A | 0.8509 (2) | 1.0019 (9) | 0.03547 (19) | 0.0446 (9) | |
C8A | 0.9478 (2) | 1.3163 (9) | 0.0930 (2) | 0.0513 (10) | |
H8AA | 0.9637 | 1.4220 | 0.1316 | 0.062* | |
H8AB | 0.9257 | 1.4444 | 0.0583 | 0.062* | |
C9A | 1.0189 (2) | 1.1759 (8) | 0.08903 (19) | 0.0423 (8) | |
Br1B | 0.67568 (2) | 0.97787 (9) | 0.22125 (2) | 0.05283 (17) | |
O1B | 0.38919 (19) | −0.0158 (7) | 0.13654 (16) | 0.0566 (8) | |
O2B | 0.40704 (17) | 0.0563 (7) | 0.23657 (14) | 0.0499 (7) | |
O3B | 0.2552 (2) | 0.2216 (6) | 0.17521 (19) | 0.0599 (8) | |
N1B | 0.2115 (2) | −0.2140 (8) | 0.1638 (2) | 0.0590 (10) | |
C1B | 0.4827 (2) | 0.3192 (8) | 0.19559 (18) | 0.0403 (8) | |
C2B | 0.5228 (2) | 0.4425 (8) | 0.25363 (18) | 0.0438 (8) | |
H2BA | 0.5112 | 0.3927 | 0.2877 | 0.053* | |
C3B | 0.5798 (2) | 0.6380 (8) | 0.26086 (18) | 0.0431 (8) | |
H3BA | 0.6070 | 0.7184 | 0.2998 | 0.052* | |
C4B | 0.5961 (2) | 0.7133 (8) | 0.20969 (19) | 0.0413 (8) | |
C5B | 0.5564 (2) | 0.5973 (9) | 0.15118 (19) | 0.0463 (9) | |
H5BA | 0.5673 | 0.6527 | 0.1170 | 0.056* | |
C6B | 0.5005 (2) | 0.3988 (9) | 0.14437 (18) | 0.0451 (8) | |
H6BA | 0.4743 | 0.3166 | 0.1055 | 0.054* | |
C7B | 0.4222 (2) | 0.1058 (9) | 0.18490 (19) | 0.0433 (8) | |
C8B | 0.3457 (2) | −0.1403 (9) | 0.2275 (2) | 0.0499 (9) | |
H8BA | 0.3449 | −0.1889 | 0.2679 | 0.060* | |
H8BB | 0.3562 | −0.3078 | 0.2090 | 0.060* | |
C9B | 0.2666 (2) | −0.0281 (8) | 0.1857 (2) | 0.0430 (8) | |
H1A | 1.064 (4) | 1.527 (14) | 0.074 (3) | 0.070 (18)* | |
H2A | 1.107 (3) | 1.286 (12) | 0.067 (2) | 0.058 (14)* | |
H1B | 0.160 (4) | −0.159 (12) | 0.142 (3) | 0.064 (16)* | |
H2B | 0.225 (5) | −0.385 (19) | 0.167 (4) | 0.11 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1A | 0.0482 (3) | 0.0654 (3) | 0.0756 (3) | −0.0109 (2) | 0.0215 (2) | −0.0061 (2) |
O1A | 0.0569 (19) | 0.074 (2) | 0.0558 (17) | 0.0015 (16) | 0.0275 (14) | 0.0065 (16) |
O2A | 0.0425 (15) | 0.0511 (16) | 0.0623 (16) | −0.0055 (12) | 0.0258 (13) | −0.0114 (14) |
O3A | 0.0476 (16) | 0.0373 (15) | 0.087 (2) | 0.0071 (13) | 0.0286 (16) | 0.0083 (15) |
N1A | 0.0413 (19) | 0.039 (2) | 0.096 (3) | 0.0026 (15) | 0.0345 (19) | 0.0011 (19) |
C1A | 0.0327 (17) | 0.048 (2) | 0.0439 (17) | 0.0086 (15) | 0.0146 (14) | −0.0008 (16) |
C2A | 0.042 (2) | 0.057 (2) | 0.0425 (18) | 0.0013 (18) | 0.0139 (15) | −0.0077 (17) |
C3A | 0.043 (2) | 0.059 (3) | 0.0448 (19) | 0.0018 (18) | 0.0166 (16) | −0.0040 (18) |
C4A | 0.0346 (18) | 0.041 (2) | 0.054 (2) | −0.0005 (15) | 0.0117 (15) | −0.0046 (17) |
C5A | 0.045 (2) | 0.053 (2) | 0.048 (2) | 0.0029 (18) | 0.0125 (17) | −0.0100 (18) |
C6A | 0.041 (2) | 0.061 (3) | 0.0414 (18) | 0.0027 (18) | 0.0131 (15) | −0.0046 (18) |
C7A | 0.0373 (19) | 0.045 (2) | 0.053 (2) | 0.0099 (16) | 0.0200 (16) | 0.0010 (17) |
C8A | 0.039 (2) | 0.043 (2) | 0.077 (3) | −0.0009 (16) | 0.0283 (19) | −0.010 (2) |
C9A | 0.0335 (17) | 0.038 (2) | 0.0526 (19) | 0.0053 (14) | 0.0141 (15) | −0.0037 (16) |
Br1B | 0.0354 (2) | 0.0468 (3) | 0.0738 (3) | −0.00022 (16) | 0.01852 (19) | 0.0072 (2) |
O1B | 0.0513 (17) | 0.0560 (18) | 0.0640 (18) | −0.0109 (14) | 0.0240 (14) | −0.0166 (15) |
O2B | 0.0429 (15) | 0.0532 (16) | 0.0554 (15) | −0.0074 (13) | 0.0211 (12) | −0.0041 (13) |
O3B | 0.0531 (17) | 0.0311 (15) | 0.097 (2) | 0.0056 (13) | 0.0305 (17) | 0.0047 (15) |
N1B | 0.048 (2) | 0.0341 (19) | 0.080 (3) | 0.0025 (15) | 0.0084 (18) | 0.0062 (18) |
C1B | 0.0310 (16) | 0.0385 (19) | 0.0511 (19) | 0.0056 (14) | 0.0155 (14) | −0.0013 (15) |
C2B | 0.0410 (19) | 0.044 (2) | 0.0453 (18) | 0.0022 (16) | 0.0157 (15) | 0.0024 (16) |
C3B | 0.0401 (19) | 0.040 (2) | 0.0459 (18) | −0.0042 (15) | 0.0136 (15) | −0.0016 (15) |
C4B | 0.0254 (15) | 0.0373 (18) | 0.056 (2) | 0.0002 (13) | 0.0106 (14) | 0.0024 (16) |
C5B | 0.0371 (18) | 0.054 (2) | 0.0483 (19) | 0.0046 (17) | 0.0166 (15) | 0.0018 (17) |
C6B | 0.0350 (17) | 0.052 (2) | 0.0453 (18) | 0.0046 (16) | 0.0124 (14) | −0.0055 (17) |
C7B | 0.0327 (17) | 0.042 (2) | 0.054 (2) | 0.0067 (15) | 0.0152 (15) | −0.0038 (17) |
C8B | 0.039 (2) | 0.044 (2) | 0.067 (2) | −0.0004 (16) | 0.0206 (18) | 0.0046 (19) |
C9B | 0.043 (2) | 0.0319 (19) | 0.061 (2) | 0.0028 (15) | 0.0282 (17) | 0.0023 (16) |
Br1A—C4A | 1.900 (4) | Br1B—C4B | 1.894 (4) |
O1A—C7A | 1.217 (6) | O1B—C7B | 1.201 (5) |
O2A—C7A | 1.342 (5) | O2B—C7B | 1.355 (5) |
O2A—C8A | 1.421 (5) | O2B—C8B | 1.437 (5) |
O3A—C9A | 1.219 (5) | O3B—C9B | 1.231 (5) |
N1A—C9A | 1.345 (6) | N1B—C9B | 1.307 (6) |
N1A—H1A | 0.85 (7) | N1B—H1B | 0.93 (6) |
N1A—H2A | 0.91 (6) | N1B—H2B | 0.86 (9) |
C1A—C6A | 1.394 (5) | C1B—C2B | 1.393 (6) |
C1A—C2A | 1.398 (6) | C1B—C6B | 1.406 (6) |
C1A—C7A | 1.480 (6) | C1B—C7B | 1.474 (6) |
C2A—C3A | 1.374 (6) | C2B—C3B | 1.381 (6) |
C2A—H2AA | 0.9300 | C2B—H2BA | 0.9300 |
C3A—C4A | 1.394 (6) | C3B—C4B | 1.383 (6) |
C3A—H3AA | 0.9300 | C3B—H3BA | 0.9300 |
C4A—C5A | 1.380 (6) | C4B—C5B | 1.385 (6) |
C5A—C6A | 1.382 (7) | C5B—C6B | 1.378 (6) |
C5A—H5AA | 0.9300 | C5B—H5BA | 0.9300 |
C6A—H6AA | 0.9300 | C6B—H6BA | 0.9300 |
C8A—C9A | 1.522 (5) | C8B—C9B | 1.512 (6) |
C8A—H8AA | 0.9700 | C8B—H8BA | 0.9700 |
C8A—H8AB | 0.9700 | C8B—H8BB | 0.9700 |
C7A—O2A—C8A | 115.5 (3) | C7B—O2B—C8B | 114.5 (3) |
C9A—N1A—H1A | 127 (4) | C9B—N1B—H1B | 120 (4) |
C9A—N1A—H2A | 121 (4) | C9B—N1B—H2B | 117 (5) |
H1A—N1A—H2A | 111 (6) | H1B—N1B—H2B | 122 (6) |
C6A—C1A—C2A | 118.7 (4) | C2B—C1B—C6B | 119.1 (4) |
C6A—C1A—C7A | 117.9 (4) | C2B—C1B—C7B | 123.2 (4) |
C2A—C1A—C7A | 123.3 (4) | C6B—C1B—C7B | 117.7 (4) |
C3A—C2A—C1A | 121.1 (4) | C3B—C2B—C1B | 120.4 (4) |
C3A—C2A—H2AA | 119.5 | C3B—C2B—H2BA | 119.8 |
C1A—C2A—H2AA | 119.5 | C1B—C2B—H2BA | 119.8 |
C2A—C3A—C4A | 118.5 (4) | C2B—C3B—C4B | 119.4 (4) |
C2A—C3A—H3AA | 120.7 | C2B—C3B—H3BA | 120.3 |
C4A—C3A—H3AA | 120.7 | C4B—C3B—H3BA | 120.3 |
C5A—C4A—C3A | 122.1 (4) | C3B—C4B—C5B | 121.5 (4) |
C5A—C4A—Br1A | 118.5 (3) | C3B—C4B—Br1B | 118.5 (3) |
C3A—C4A—Br1A | 119.4 (3) | C5B—C4B—Br1B | 120.0 (3) |
C4A—C5A—C6A | 118.4 (4) | C6B—C5B—C4B | 119.0 (4) |
C4A—C5A—H5AA | 120.8 | C6B—C5B—H5BA | 120.5 |
C6A—C5A—H5AA | 120.8 | C4B—C5B—H5BA | 120.5 |
C5A—C6A—C1A | 121.2 (4) | C5B—C6B—C1B | 120.7 (4) |
C5A—C6A—H6AA | 119.4 | C5B—C6B—H6BA | 119.7 |
C1A—C6A—H6AA | 119.4 | C1B—C6B—H6BA | 119.7 |
O1A—C7A—O2A | 121.8 (4) | O1B—C7B—O2B | 122.2 (4) |
O1A—C7A—C1A | 124.6 (4) | O1B—C7B—C1B | 125.3 (4) |
O2A—C7A—C1A | 113.6 (4) | O2B—C7B—C1B | 112.6 (3) |
O2A—C8A—C9A | 111.5 (3) | O2B—C8B—C9B | 112.1 (3) |
O2A—C8A—H8AA | 109.3 | O2B—C8B—H8BA | 109.2 |
C9A—C8A—H8AA | 109.3 | C9B—C8B—H8BA | 109.2 |
O2A—C8A—H8AB | 109.3 | O2B—C8B—H8BB | 109.2 |
C9A—C8A—H8AB | 109.3 | C9B—C8B—H8BB | 109.2 |
H8AA—C8A—H8AB | 108.0 | H8BA—C8B—H8BB | 107.9 |
O3A—C9A—N1A | 123.7 (4) | O3B—C9B—N1B | 123.1 (4) |
O3A—C9A—C8A | 122.4 (4) | O3B—C9B—C8B | 121.8 (4) |
N1A—C9A—C8A | 113.9 (4) | N1B—C9B—C8B | 115.1 (4) |
C6A—C1A—C2A—C3A | −2.3 (6) | C6B—C1B—C2B—C3B | −0.6 (6) |
C7A—C1A—C2A—C3A | 178.9 (4) | C7B—C1B—C2B—C3B | 178.9 (4) |
C1A—C2A—C3A—C4A | 0.7 (7) | C1B—C2B—C3B—C4B | 0.8 (6) |
C2A—C3A—C4A—C5A | 1.8 (7) | C2B—C3B—C4B—C5B | 0.1 (6) |
C2A—C3A—C4A—Br1A | −177.3 (3) | C2B—C3B—C4B—Br1B | −179.1 (3) |
C3A—C4A—C5A—C6A | −2.6 (6) | C3B—C4B—C5B—C6B | −1.3 (6) |
Br1A—C4A—C5A—C6A | 176.5 (3) | Br1B—C4B—C5B—C6B | 177.9 (3) |
C4A—C5A—C6A—C1A | 0.9 (6) | C4B—C5B—C6B—C1B | 1.4 (6) |
C2A—C1A—C6A—C5A | 1.5 (6) | C2B—C1B—C6B—C5B | −0.5 (6) |
C7A—C1A—C6A—C5A | −179.7 (4) | C7B—C1B—C6B—C5B | 179.9 (4) |
C8A—O2A—C7A—O1A | −0.4 (6) | C8B—O2B—C7B—O1B | −3.3 (6) |
C8A—O2A—C7A—C1A | 179.4 (3) | C8B—O2B—C7B—C1B | 177.1 (3) |
C6A—C1A—C7A—O1A | −1.9 (6) | C2B—C1B—C7B—O1B | −175.9 (4) |
C2A—C1A—C7A—O1A | 176.9 (4) | C6B—C1B—C7B—O1B | 3.7 (6) |
C6A—C1A—C7A—O2A | 178.3 (3) | C2B—C1B—C7B—O2B | 3.7 (5) |
C2A—C1A—C7A—O2A | −3.0 (5) | C6B—C1B—C7B—O2B | −176.7 (3) |
C7A—O2A—C8A—C9A | −72.9 (5) | C7B—O2B—C8B—C9B | −69.1 (5) |
O2A—C8A—C9A—O3A | −16.9 (6) | O2B—C8B—C9B—O3B | −17.6 (6) |
O2A—C8A—C9A—N1A | 165.0 (4) | O2B—C8B—C9B—N1B | 164.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O3Ai | 0.85 (6) | 2.18 (7) | 2.969 (5) | 153 |
N1B—H1B···O3Aii | 0.93 (6) | 2.24 (6) | 3.163 (5) | 170 |
N1B—H2B···O3Biii | 0.86 (9) | 1.97 (9) | 2.825 (5) | 178 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y−1, z; (iii) x, y−1, z. |
C9H8N2O5 | F(000) = 232 |
Mr = 224.17 | Dx = 1.502 Mg m−3 |
Triclinic, P1 | Melting point: 439(2) K |
a = 7.1238 (14) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.3683 (15) Å | Cell parameters from 1249 reflections |
c = 10.063 (2) Å | θ = 4.6–75.6° |
α = 107.82 (3)° | µ = 1.08 mm−1 |
β = 94.95 (3)° | T = 291 K |
γ = 96.32 (3)° | Prismatic, colorless |
V = 495.76 (19) Å3 | 0.40 × 0.34 × 0.21 mm |
Z = 2 |
Oxford Diffraction Xcalibur, Ruby diffractometer | 1859 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1560 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 70.0°, θmin = 4.7° |
ω scans | h = −5→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −8→8 |
Tmin = 0.681, Tmax = 0.797 | l = −12→12 |
2971 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.148 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.080P)2 + 0.1088P] where P = (Fo2 + 2Fc2)/3 |
1859 reflections | (Δ/σ)max < 0.001 |
153 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0727 (3) | −0.1039 (2) | 0.29955 (18) | 0.0820 (6) | |
O2 | 0.19162 (19) | −0.00610 (18) | 0.13179 (13) | 0.0492 (4) | |
O3 | 0.2532 (2) | −0.49315 (19) | −0.04910 (17) | 0.0635 (5) | |
O4 | 0.3147 (3) | 0.8233 (2) | 0.75383 (18) | 0.0866 (6) | |
O5 | 0.3833 (3) | 0.9205 (2) | 0.58393 (19) | 0.0852 (6) | |
N1 | 0.4638 (3) | −0.2474 (3) | 0.0945 (2) | 0.0608 (5) | |
N2 | 0.3258 (2) | 0.7948 (2) | 0.62962 (19) | 0.0526 (4) | |
C1 | 0.1925 (2) | 0.2274 (2) | 0.35306 (18) | 0.0409 (4) | |
C2 | 0.2520 (3) | 0.3754 (3) | 0.30129 (19) | 0.0443 (4) | |
H2A | 0.2634 | 0.3488 | 0.2061 | 0.053* | |
C3 | 0.2945 (3) | 0.5635 (3) | 0.3920 (2) | 0.0466 (4) | |
H3A | 0.3342 | 0.6645 | 0.3590 | 0.056* | |
C4 | 0.2762 (2) | 0.5962 (2) | 0.53229 (19) | 0.0425 (4) | |
C5 | 0.2171 (3) | 0.4526 (3) | 0.58712 (19) | 0.0465 (4) | |
H5A | 0.2065 | 0.4799 | 0.6825 | 0.056* | |
C6 | 0.1739 (3) | 0.2665 (3) | 0.4952 (2) | 0.0466 (4) | |
H6A | 0.1321 | 0.1666 | 0.5287 | 0.056* | |
C7 | 0.1433 (3) | 0.0225 (3) | 0.2615 (2) | 0.0465 (4) | |
C8 | 0.1380 (3) | −0.1993 (3) | 0.0349 (2) | 0.0509 (5) | |
H8A | 0.0999 | −0.1916 | −0.0579 | 0.061* | |
H8B | 0.0285 | −0.2604 | 0.0640 | 0.061* | |
C9 | 0.2934 (3) | −0.3240 (2) | 0.02512 (19) | 0.0455 (4) | |
H1 | 0.561 (3) | −0.323 (3) | 0.082 (2) | 0.057 (6)* | |
H2 | 0.488 (3) | −0.127 (4) | 0.138 (3) | 0.062 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1300 (16) | 0.0426 (9) | 0.0620 (10) | −0.0163 (9) | 0.0267 (10) | 0.0061 (7) |
O2 | 0.0603 (8) | 0.0354 (7) | 0.0467 (7) | 0.0097 (5) | 0.0122 (6) | 0.0032 (5) |
O3 | 0.0579 (8) | 0.0369 (7) | 0.0759 (10) | 0.0070 (6) | −0.0010 (7) | −0.0085 (7) |
O4 | 0.1315 (16) | 0.0536 (10) | 0.0537 (10) | −0.0086 (10) | 0.0189 (10) | −0.0075 (7) |
O5 | 0.1262 (16) | 0.0381 (8) | 0.0797 (12) | −0.0066 (9) | 0.0143 (11) | 0.0079 (8) |
N1 | 0.0543 (10) | 0.0380 (9) | 0.0710 (12) | 0.0099 (8) | −0.0013 (8) | −0.0091 (8) |
N2 | 0.0515 (9) | 0.0380 (9) | 0.0591 (10) | 0.0061 (7) | 0.0043 (7) | 0.0030 (7) |
C1 | 0.0403 (8) | 0.0353 (9) | 0.0443 (9) | 0.0092 (7) | 0.0064 (7) | 0.0073 (7) |
C2 | 0.0510 (10) | 0.0394 (9) | 0.0414 (9) | 0.0097 (7) | 0.0086 (7) | 0.0094 (7) |
C3 | 0.0522 (10) | 0.0352 (9) | 0.0528 (10) | 0.0077 (7) | 0.0077 (8) | 0.0139 (8) |
C4 | 0.0386 (8) | 0.0343 (9) | 0.0481 (10) | 0.0078 (7) | 0.0035 (7) | 0.0032 (7) |
C5 | 0.0504 (10) | 0.0439 (10) | 0.0406 (9) | 0.0062 (7) | 0.0086 (7) | 0.0060 (7) |
C6 | 0.0530 (10) | 0.0385 (9) | 0.0471 (10) | 0.0045 (7) | 0.0106 (8) | 0.0116 (8) |
C7 | 0.0527 (10) | 0.0369 (10) | 0.0464 (10) | 0.0060 (7) | 0.0078 (8) | 0.0080 (8) |
C8 | 0.0552 (11) | 0.0402 (10) | 0.0467 (10) | 0.0088 (8) | 0.0023 (8) | −0.0011 (8) |
C9 | 0.0526 (10) | 0.0347 (9) | 0.0426 (9) | 0.0053 (7) | 0.0066 (7) | 0.0027 (7) |
O1—C7 | 1.190 (2) | C1—C7 | 1.492 (3) |
O2—C7 | 1.339 (2) | C2—C3 | 1.390 (3) |
O2—C8 | 1.445 (2) | C2—H2A | 0.9300 |
O3—C9 | 1.228 (2) | C3—C4 | 1.378 (3) |
O4—N2 | 1.213 (2) | C3—H3A | 0.9300 |
O5—N2 | 1.203 (2) | C4—C5 | 1.379 (3) |
N1—C9 | 1.320 (3) | C5—C6 | 1.383 (3) |
N1—H1 | 0.93 (2) | C5—H5A | 0.9300 |
N1—H2 | 0.85 (3) | C6—H6A | 0.9300 |
N2—C4 | 1.474 (2) | C8—C9 | 1.506 (3) |
C1—C2 | 1.387 (3) | C8—H8A | 0.9700 |
C1—C6 | 1.391 (3) | C8—H8B | 0.9700 |
C7—O2—C8 | 115.74 (15) | C4—C5—C6 | 117.62 (17) |
C9—N1—H1 | 118.2 (14) | C4—C5—H5A | 121.2 |
C9—N1—H2 | 120.2 (16) | C6—C5—H5A | 121.2 |
H1—N1—H2 | 121 (2) | C5—C6—C1 | 120.57 (17) |
O5—N2—O4 | 122.58 (18) | C5—C6—H6A | 119.7 |
O5—N2—C4 | 118.83 (17) | C1—C6—H6A | 119.7 |
O4—N2—C4 | 118.52 (17) | O1—C7—O2 | 123.05 (17) |
C2—C1—C6 | 120.33 (17) | O1—C7—C1 | 124.14 (17) |
C2—C1—C7 | 122.69 (16) | O2—C7—C1 | 112.80 (16) |
C6—C1—C7 | 116.98 (16) | O2—C8—C9 | 114.12 (15) |
C1—C2—C3 | 119.85 (17) | O2—C8—H8A | 108.7 |
C1—C2—H2A | 120.1 | C9—C8—H8A | 108.7 |
C3—C2—H2A | 120.1 | O2—C8—H8B | 108.7 |
C4—C3—C2 | 118.12 (17) | C9—C8—H8B | 108.7 |
C4—C3—H3A | 120.9 | H8A—C8—H8B | 107.6 |
C2—C3—H3A | 120.9 | O3—C9—N1 | 123.64 (18) |
C3—C4—C5 | 123.50 (16) | O3—C9—C8 | 117.23 (17) |
C3—C4—N2 | 118.35 (17) | N1—C9—C8 | 119.14 (16) |
C5—C4—N2 | 118.14 (17) | ||
C6—C1—C2—C3 | 0.4 (3) | C2—C1—C6—C5 | −0.9 (3) |
C7—C1—C2—C3 | 179.61 (16) | C7—C1—C6—C5 | 179.83 (16) |
C1—C2—C3—C4 | 0.2 (3) | C8—O2—C7—O1 | 5.0 (3) |
C2—C3—C4—C5 | −0.4 (3) | C8—O2—C7—C1 | −176.52 (14) |
C2—C3—C4—N2 | 178.47 (15) | C2—C1—C7—O1 | −171.5 (2) |
O5—N2—C4—C3 | −1.2 (3) | C6—C1—C7—O1 | 7.7 (3) |
O4—N2—C4—C3 | −178.06 (18) | C2—C1—C7—O2 | 10.0 (3) |
O5—N2—C4—C5 | 177.72 (18) | C6—C1—C7—O2 | −170.76 (15) |
O4—N2—C4—C5 | 0.8 (3) | C7—O2—C8—C9 | −95.53 (19) |
C3—C4—C5—C6 | −0.1 (3) | O2—C8—C9—O3 | 175.79 (17) |
N2—C4—C5—C6 | −178.96 (15) | O2—C8—C9—N1 | −4.7 (3) |
C4—C5—C6—C1 | 0.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.93 (2) | 1.97 (2) | 2.898 (2) | 174 (2) |
Symmetry code: (i) −x+1, −y−1, −z. |
C9H10N2O3·H2O | F(000) = 448 |
Mr = 212.21 | Dx = 1.329 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 8.2431 (16) Å | Cell parameters from 927 reflections |
b = 4.8088 (10) Å | θ = 5.6–71.4° |
c = 26.754 (5) Å | µ = 0.90 mm−1 |
β = 90.10 (3)° | T = 291 K |
V = 1060.5 (4) Å3 | Prismatic, colorless |
Z = 4 | 0.28 × 0.24 × 0.17 mm |
Oxford Diffraction Xcalibur, Ruby diffractometer | 2165 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1129 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.1°, θmin = 3.3° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −4→5 |
Tmin = 0.778, Tmax = 0.859 | l = −32→33 |
6444 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: mixed |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3 |
2165 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4903 (2) | 0.0764 (5) | 0.65718 (8) | 0.0717 (6) | |
O2 | 0.3607 (2) | 0.3784 (4) | 0.60830 (7) | 0.0589 (5) | |
O3 | 0.6302 (2) | 0.8021 (4) | 0.53839 (9) | 0.0729 (6) | |
N1 | 0.3578 (3) | 0.7857 (6) | 0.54142 (11) | 0.0633 (7) | |
N2 | −0.2461 (3) | −0.2041 (6) | 0.70993 (11) | 0.0691 (8) | |
C1 | 0.2029 (3) | 0.0794 (5) | 0.65846 (10) | 0.0496 (6) | |
C2 | 0.0592 (3) | 0.1846 (6) | 0.63861 (11) | 0.0626 (8) | |
H2A | 0.0631 | 0.3213 | 0.6141 | 0.075* | |
C3 | −0.0884 (3) | 0.0879 (6) | 0.65503 (11) | 0.0641 (8) | |
H3A | −0.1833 | 0.1587 | 0.6411 | 0.077* | |
C4 | −0.0982 (3) | −0.1143 (6) | 0.69216 (10) | 0.0540 (7) | |
C5 | 0.0452 (3) | −0.2176 (6) | 0.71203 (11) | 0.0592 (7) | |
H5A | 0.0413 | −0.3527 | 0.7369 | 0.071* | |
C6 | 0.1923 (3) | −0.1237 (6) | 0.69558 (11) | 0.0583 (7) | |
H6A | 0.2869 | −0.1963 | 0.7094 | 0.070* | |
C7 | 0.3628 (3) | 0.1724 (6) | 0.64262 (10) | 0.0531 (7) | |
C8 | 0.5179 (3) | 0.4682 (6) | 0.59167 (11) | 0.0598 (7) | |
H8A | 0.5748 | 0.3129 | 0.5766 | 0.072* | |
H8B | 0.5809 | 0.5319 | 0.6201 | 0.072* | |
C9 | 0.5026 (3) | 0.6994 (6) | 0.55425 (10) | 0.0549 (7) | |
O1W | 0.9804 (4) | 0.7452 (7) | 0.52690 (16) | 0.1083 (11) | |
H1 | 0.348 (4) | 0.917 (8) | 0.5195 (15) | 0.107 (14)* | |
H2 | 0.264 (4) | 0.697 (7) | 0.5524 (12) | 0.088 (11)* | |
H3 | −0.337 (4) | −0.147 (6) | 0.6897 (12) | 0.078 (10)* | |
H4 | −0.253 (4) | −0.365 (8) | 0.7275 (15) | 0.108 (14)* | |
H1W | 0.887 (5) | 0.743 (8) | 0.5326 (16) | 0.100 (16)* | |
H2W | 0.939 (13) | 0.731 (19) | 0.495 (3) | 0.35 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0530 (12) | 0.0881 (16) | 0.0740 (14) | 0.0039 (11) | 0.0000 (10) | 0.0249 (12) |
O2 | 0.0543 (11) | 0.0566 (11) | 0.0659 (12) | 0.0019 (9) | 0.0084 (9) | 0.0131 (9) |
O3 | 0.0613 (13) | 0.0704 (14) | 0.0872 (15) | −0.0025 (11) | 0.0146 (11) | 0.0193 (12) |
N1 | 0.0587 (16) | 0.0643 (17) | 0.0669 (17) | −0.0031 (13) | 0.0020 (13) | 0.0124 (13) |
N2 | 0.0517 (15) | 0.0773 (19) | 0.0784 (19) | −0.0002 (14) | 0.0039 (13) | 0.0163 (15) |
C1 | 0.0502 (15) | 0.0501 (15) | 0.0487 (14) | 0.0018 (12) | 0.0004 (11) | 0.0015 (12) |
C2 | 0.0592 (17) | 0.0656 (19) | 0.0632 (18) | 0.0069 (14) | 0.0038 (14) | 0.0195 (15) |
C3 | 0.0530 (17) | 0.069 (2) | 0.0699 (19) | 0.0072 (14) | −0.0018 (14) | 0.0149 (15) |
C4 | 0.0531 (16) | 0.0515 (15) | 0.0572 (16) | 0.0022 (13) | 0.0046 (13) | 0.0000 (13) |
C5 | 0.0612 (18) | 0.0587 (17) | 0.0577 (17) | 0.0028 (14) | 0.0018 (14) | 0.0136 (13) |
C6 | 0.0532 (16) | 0.0612 (17) | 0.0603 (17) | 0.0052 (14) | −0.0049 (13) | 0.0077 (14) |
C7 | 0.0569 (16) | 0.0541 (16) | 0.0483 (14) | 0.0035 (13) | 0.0044 (12) | −0.0002 (12) |
C8 | 0.0555 (17) | 0.0547 (17) | 0.0694 (19) | 0.0013 (13) | 0.0076 (14) | 0.0014 (14) |
C9 | 0.0591 (17) | 0.0485 (15) | 0.0571 (16) | −0.0005 (13) | 0.0087 (13) | −0.0012 (13) |
O1W | 0.0720 (19) | 0.112 (2) | 0.141 (3) | −0.0013 (17) | 0.0223 (19) | −0.017 (2) |
O1—C7 | 1.212 (3) | C2—C3 | 1.376 (4) |
O2—C7 | 1.351 (3) | C2—H2A | 0.9300 |
O2—C8 | 1.437 (3) | C3—C4 | 1.393 (4) |
O3—O3 | 0.000 (7) | C3—H3A | 0.9300 |
O3—C9 | 1.238 (3) | C4—C5 | 1.388 (4) |
N1—C9 | 1.309 (4) | C5—C6 | 1.368 (4) |
N1—H1 | 0.87 (4) | C5—H5A | 0.9300 |
N1—H2 | 0.93 (4) | C6—H6A | 0.9300 |
N2—C4 | 1.378 (4) | C8—C9 | 1.501 (4) |
N2—H3 | 0.96 (3) | C8—H8A | 0.9700 |
N2—H4 | 0.91 (4) | C8—H8B | 0.9700 |
C1—C2 | 1.393 (4) | C9—O3 | 1.238 (3) |
C1—C6 | 1.396 (4) | O1W—H1W | 0.78 (4) |
C1—C7 | 1.455 (4) | O1W—H2W | 0.91 (9) |
C7—O2—C8 | 114.9 (2) | C6—C5—H5A | 119.5 |
C9—N1—H1 | 120 (2) | C4—C5—H5A | 119.5 |
C9—N1—H2 | 122 (2) | C5—C6—C1 | 121.1 (3) |
H1—N1—H2 | 118 (3) | C5—C6—H6A | 119.4 |
C4—N2—H3 | 113.9 (19) | C1—C6—H6A | 119.4 |
C4—N2—H4 | 120 (2) | O1—C7—O2 | 120.5 (3) |
H3—N2—H4 | 119 (3) | O1—C7—C1 | 125.1 (3) |
C2—C1—C6 | 118.1 (2) | O2—C7—C1 | 114.4 (2) |
C2—C1—C7 | 123.2 (2) | O2—C8—C9 | 110.8 (2) |
C6—C1—C7 | 118.7 (2) | O2—C8—H8A | 109.5 |
C3—C2—C1 | 120.5 (3) | C9—C8—H8A | 109.5 |
C3—C2—H2A | 119.7 | O2—C8—H8B | 109.5 |
C1—C2—H2A | 119.7 | C9—C8—H8B | 109.5 |
C2—C3—C4 | 121.1 (3) | H8A—C8—H8B | 108.1 |
C2—C3—H3A | 119.5 | O3—C9—N1 | 124.0 (3) |
C4—C3—H3A | 119.5 | O3—C9—N1 | 124.0 (3) |
N2—C4—C5 | 120.6 (3) | O3—C9—C8 | 117.0 (3) |
N2—C4—C3 | 121.1 (3) | O3—C9—C8 | 117.0 (3) |
C5—C4—C3 | 118.2 (3) | N1—C9—C8 | 119.0 (3) |
C6—C5—C4 | 120.9 (3) | H1W—O1W—H2W | 79 (7) |
C6—C1—C2—C3 | −0.6 (5) | C8—O2—C7—O1 | −0.1 (4) |
C7—C1—C2—C3 | 179.9 (3) | C8—O2—C7—C1 | −178.9 (2) |
C1—C2—C3—C4 | 0.8 (5) | C2—C1—C7—O1 | −176.2 (3) |
C2—C3—C4—N2 | 177.6 (3) | C6—C1—C7—O1 | 4.3 (4) |
C2—C3—C4—C5 | −0.4 (5) | C2—C1—C7—O2 | 2.5 (4) |
N2—C4—C5—C6 | −178.1 (3) | C6—C1—C7—O2 | −177.0 (2) |
C3—C4—C5—C6 | 0.0 (4) | C7—O2—C8—C9 | −179.2 (2) |
C4—C5—C6—C1 | 0.2 (5) | O2—C8—C9—O3 | 177.4 (2) |
C2—C1—C6—C5 | 0.1 (4) | O2—C8—C9—N1 | −0.6 (4) |
C7—C1—C6—C5 | 179.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.87 (4) | 2.06 (4) | 2.915 (3) | 168 |
N2—H3···O1ii | 0.96 (3) | 1.98 (3) | 2.919 (4) | 163 |
O1W—H1W···O3 | 0.78 (4) | 2.14 (4) | 2.916 (4) | 169 (4) |
O1W—H2W···O1Wiii | 0.91 (9) | 2.46 (9) | 2.782 (7) | 101 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1. |
Acknowledgements
We are especially grateful to Dr Kambarali Turgunov for help in discussing the results.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Nishio, T., Nakajima, N., Kondo, M., Omote, Y. & Kaftory, M. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 391–396. CSD CrossRef Web of Science Google Scholar
Parkin, A., Parsons, S., Robertson, J. H. & Tasker, P. A. (2002). Acta Cryst. E58, o1348–o1350. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saha, S. & Desiraju, G. R. (2017). J. Am. Chem. Soc. 139, 1975–1983. Web of Science CSD CrossRef CAS PubMed Google Scholar
Saha, S. & Desiraju, G. R. (2018). Chem. Commun. 54, 6348–6351. Web of Science CSD CrossRef CAS Google Scholar
Santra, S. K., Banerjee, A., Rajamanickam, S., Khatun, N. & Patel, B. K. (2016). Chem. Commun. 52, 4501–4504. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wójcik, G., Mossakowska, I., Holband, J. & Bartkowiak, W. (2002). Acta Cryst. B58, 998–1004. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.