research communications
Comparison of molecular structures of cis-bis[8-(dimethylphosphanyl)quinoline]nickel(II) and -platinum(II) complex cations
aGraduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan, and bResearch Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp
The crystal structures of the complexes (SP-4-2)-cis-bis[8-(dimethylphosphanyl)quinoline-κ2N,P]nickel(II) bis(perchlorate) nitromethane monosolvate, [Ni(C11H12NP)2](ClO4)2·CH3NO2 (1), and (SP-4-2)-cis-bis[8-(dimethylphosphanyl)quinoline-κ2N,P]platinum(II) bis(tetrafluoroborate) acetonitrile monosolvate, [Pt(C11H12NP)2](BF4)2·C2H3N (2), are reported. In both complex cations, two phosphanylquinolines act as bidentate P,N-donating chelate ligands and form the mutually cis configuration in the square-planar coordination geometry. The strong trans influence of the dimethylphosphanyl donor group is confirmed by the Ni—N bond lengths in 1, 1.970 (2) and 1.982 (2) Å and, the Pt—N bond lengths of 2, 2.123 (4) and 2.132 (4) Å, which are relatively long as compared to those in the analogous 8-(diphenylphosphanyl)quinoline complexes. Mutually cis-positioned quinoline donor groups would give a severe between their ortho-H atoms. In order to reduce such a steric congestion, the NiII complex in 1 shows a tetrahedral distortion of the coordination geometry, as parameterized by τ4 = 0.199 (1)°, while the PtII complex in 2 exhibits a typical square-planar coordination geometry [τ4 = 0.014 (1)°] with a large bending deformation of the ideally planar Me2Pqn chelate planes. In the of 2, three F atoms of one of the BF4− anions are disordered over two sets of positions with refined occupancies of 0.573 (10) and 0.427 (10).
1. Chemical context
8-Quinolylphosphanes are an intriguing class of ligands because they form a planar asymmetrical five-membered chelate ring via coordination through a phosphane-P atom having a strong σ-donating character and an imine-N atom incorporated in a π-conjugated quinoline ring (Salem & Wild, 1992; Scattolin et al., 2017; Cai et al., 2018). The electronic properties of these ligands, in particular their π-bonding nature, may stabilize unusual electronic states of their transition-metal complexes (Suzuki et al., 1995; Hashimoto et al., 2010; Hopkins et al., 2019). In addition, the steric requirement from the planar quinoline moiety often has a significant influence on the properties of their metal complexes. For example, the nickel(II), palladium(II) and platinum(II) complexes containing two 8-(diphenylphosphanyl)quinoline (Ph2Pqn) in the cis(P,P) configuration exhibit a severe distortion of the square-planar coordination geometry around MII (M = Ni, Pd or Pt; Suzuki, 2004; Hashimoto et al., 2010; Mori et al., 2020). The dimethylphosphanyl analogue, 8-(dimethylphosphanyl)quinoline (Me2Pqn), is an interesting derivative, because it would give a stronger trans influence, which could affect the steric congestion between the intramolecular ligands. However, the transition-metal complexes bearing Me2Pqn are limited to only those listed in section 4: Database survey, all of which were reported by our group. In 1995 we reported the preparation and of (SP-4-2)-[Pd(Me2Pqn)2](BF4)2 (Suzuki et al., 1995), but the crystal structures of the corresponding NiII and PtII complexes were not compared.
2. Structural commentary
A red block-shaped crystal of the NiII complex, [Ni(Me2Pqn)2](ClO4)2·CH3NO2 (1), recrystallized from nitromethane/diisopropyl ether and a colorless platelet crystal of the PtII complex, [Pt(Me2Pqn)2](BF4)2·CH3CN (2), recrystallized from acetonitrile/diisopropyl ether were used for the X-ray diffraction analysis.
In the 2, three F atoms of one of the BF4− anions show disorder over two sets of positions: (F2A, F3A and F4A) and (F2B, F3B and F4B). The occupancy parameters of these atoms were refined with suitable restrictions and found to be 0.573 (10) and 0.427 (10) for the A-set atoms and the B-set atoms, respectively.
ofIn both crystals, two Me2Pqn ligands coordinate to a metal(II) center in the bidentate κ2P,N mode to form a cis-isomer of the complex dication, (SP-4-2)-[M(Me2Pqn)2]2+ (M = Ni or Pt), having a roughly square-planar coordination geometry (Figs. 1 and 2, Tables 1 and 2). For the group 10 metal(II) complexes bearing 8-quinolylphosphanes, it was revealed that most of the bis(κ2P,N)-type complexes have a similar geometrical structure, except for those of the halide complexes (Suzuki, 2004; Mori et al., 2020), because the strong trans influence of the phosphane donor groups makes the mutually trans(P,P) configuration thermodynamically unstable. The Ni—N bond lengths in 1 are 1.970 (2) and 1.982 (2) Å, which are slightly longer than those in [Ni(MePhPqn)2](BF4)2 [MePhPqn = 8-(methylphenylphosphanyl)quinoline; 1.954 (3) and 1.977 (3) Å] and [Ni(Ph2Pqn)2](BF4)2 [1.954 (6) and 1.949 (5) Å] (Hashimoto et al., 2010), indicating the trans influence becomes stronger in the order of Ph2Pqn < MePhPqn < Me2Pqn. In the case of PtII complexes, the Pt—N bond lengths in 2 [2.123 (4) and 2.132 (4) Å] are similarly long, as compared to those in [Pt(Ph2Pqn)2](ClO4)2 [2.107 (4) and 2.108 (5) Å; Mori et al., 2020]. By contrast, the Ni—P bond lengths and the P—Ni—N chelate bite angles are comparable among the complexes 1 [2.1576 (7) and 2.1534 (7) Å; 86.13 (7) and 85.97 (6)°], [Ni(MePhPqn)2](BF4)2 [2.151 (1) and 2.162 (1) Å; 87.4 (1) and 86.6 (1)°] and [Ni(Ph2Pqn)2](BF4)2 [2.168 (2) and 2.177 (2) Å; 86.6 (1) and 84.6 (1)°]. The Pt—P bond lengths and the P—Pt—N bite angles in 2 [2.2293 (12) and 2.2365 (12) Å; 82.76 (11) and 81.93 (11)°] are also comparable to those in [Pt(Ph2Pqn)2](ClO4)2 [2.2311 (14) and 2.2318 (14) Å; 83.29 (13) and 82.79 (13)°].
|
|
Comparison of the NiII complex cation in 1 and the corresponding PtII complex cation in 2 shows an obvious difference in their coordination geometry (Figs. 3 and 4). The four-coordinate NiII center in 1 exhibits a large tetrahedral distortion, as indicated by the τ4 value (Yang et al., 2007) of 0.199 (1)°. This is due to the steric requirement from the planar quinoline moiety located in the mutually cis positions around the NiII center. In the analogous MePhPqn and Ph2Pqn complexes, the τ4 values are 0.273 (1)° and 0.189 (2)°, respectively. By contrast, the τ4 value of the PtII complex in 2 is only 0.014 (1)°, indicating a nearly perfect planar coordination geometry around the PtII center. The corresponding value in [Pt(Ph2Pqn)2](BF4)2 is 0.149 (2)° (Mori et al., 2020). It is obvious that the present planar structure of the PtII center in 2 is a rare example. In this complex, the interligand steric interaction expected for the mutually cis-positioned quinoline groups could be reduced by envelope-type bending of the planar Me2Pqn chelate coordination, that is, the displacement of the PtII metal center from the ideal plane defined by the chelate ring of 8-quinolylphosphanes. The dihedral angle, φC, between the [Pt,P,N] coordination plane and the [PCCN] phosphanylquinoline planes in 2 are 21.53 (16) and 24.76 (16)°, and the displacement of the Pt1 atom from the ideal quinoline [C9H6N] planes is 0.579 (5) and 0.550 (5) Å. The two quinoline planes are nearly parallel, with the dihedral angle between them being only 7.99 (10)°. Such a synchronized bending deformation of two chelate coordination (Fig. 4) acts to reduce the steric congestion effectively. The corresponding φC values for 1 are 17.44 (9) and 19.76 (9)°, and the dihedral angle between the two quinoline planes is obviously large, at 33.35 (6)°. Interestingly, the analogous palladium(II) complex, [Pd(Me2Pqn)2](BF4)2, has a τ4 value of 0.096 (2)° (Suzuki et al., 1995), which is in between those of the present NiII and PtII complexes.
3. Supramolecular features
In the 1, there are two ClO4− anions and a CH3NO2 solvent molecule, in addition to the [Ni(Me2Pqn)2]2+ complex cation in the The of the PtII complex, 2, contains a [Pt(Me2Pqn)2]2+ complex cation, two BF4− anions (in one of which the positions of three F atoms are disordered) and a CH3CN solvent molecule. In the crystal structures of both 1 and 2 (Figs. 5 and 6, respectively), no remarkable intermolecular stacking or hydrogen-bonding interactions are observed.
of4. Database survey
Metal complexes containing Me2Pqn have been reported by us, e.g., cis-[Pd(Me2Pqn)2](BF4)2 (refcode ZIFPUZ in the CSD database, version 5.41, last update May 2020; Groom et al., 2016) and [Pd2Cl2(Me2Pqn)2] (ZIFQAG; Suzuki et al., 1995), [Cu(Me2Pqn)2]PF6 (OZILAL; Suzuki et al., 2011), [Ru(bpy)3–n(Me2Pqn)n](PF6)2 (bpy = 2,2′-bipyridine; HUTRIV, HUTPCB, HUTPUH and HUTQAO; Suzuki et al., 2003), and [Pt(ppy)(Me2Pqn)]BF4 (ppy = 2-(2′-pyridyl)phenyl; Mori & Suzuki, 2020). Some of the related bis(8-quinolylphosphanes) complexes are: [Ni(Ph2Pqn)2](BF4)n (n = 1 or 2; BUGDAJ, BUGDEN and BUGDOX) and [Ni(MePhPqn)2](BF4)2 (BUGDIR; Hashimoto et al., 2010), [Pd(Ph2Pqn)2]X2 (X2 = Cl2, Br2 or ClBF4; FERZOS, FERZUY and FESBAH; Suzuki, 2004), [Cu(Ph2Pqn)2]BF4 (OZILEP and OZILEP01; Suzuki et al., 2011) and [Cu(Ph2Pqn)2]PF6 (NOPNIQ; Tsukuda et al., 2009).
5. Synthesis and crystallization
The ligand, Me2Pqn, and the nickel(II) complexes, [Ni(Me2Pqn)2](ClO4)2, were prepared according to the method reported previously (Suzuki et al., 1995). Single crystals of 1 suitable for an X-ray diffraction study were obtained by recrystallization from nitromethane by diffusion of diisopropyl ether. The platinum(II) complex, [Pt(Me2Pqn)2](BF4)2, was prepared by the following method. A methanol (5 ml) solution of Me2Pqn (0.76 mmol) was added dropwise with stirring to a dichloromethane solution (10 ml) of [PtCl2(EtCN)2] (0.105 g, 0.278 mmol), and the mixture was stirred for 24 h at room temperature. After removal of the resulting precipitate, the filtrate was concentrated to ca 5 ml using a rotary evaporator. A large excess amount of a methanol solution of NaBF4 was added, and the mixture was stirred for 1 h at room temperature. The resulting pale-yellow precipitate was collected by filtration, washed with water (5 ml) and diethyl ether (10 ml), and dried in vacuo. Colorless platelet-shaped crystals of [Pt(Me2Pqn)2](BF4)2·CH3CN (2) were obtained by recrystallization from an acetonitrile solution by diffusion of diisopropyl ether. Yield: 0.126 g (61%). Analysis calculated for C24H27B2F8N3P2Pt: C, 35.37; H, 3.24; N, 3.75%. Found (after completely drying): C, 35.39; H, 2.89; N, 3.74%.
6. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model, with C—H = 0.95 (aromatic) or 0.98 (methyl) Å and Uiso(H) = 1.2Ueq(C). In the analysis of 2, two sets of F atoms for one of the two BF4− anions were introduced as positionally disordered atoms, and their occupation parameters were refined with suitable restrictions [the final major:minor occupancy ratio was 0.573 (10):0.427 (10)].
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020014437/pk2650sup1.cif
contains datablocks 1, 2, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989020014437/pk26501sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989020014437/pk26502sup3.hkl
For both structures, data collection: RAPID AUTO (Rigaku, 1998); cell
RAPID AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker Software, 2017); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).[Ni(C11H12NP)2](ClO4)2·CH3NO2 | F(000) = 1432 |
Mr = 697.02 | Dx = 1.641 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 17.8114 (13) Å | Cell parameters from 20058 reflections |
b = 8.9398 (6) Å | θ = 3.2–27.6° |
c = 18.0245 (14) Å | µ = 1.05 mm−1 |
β = 100.524 (3)° | T = 188 K |
V = 2821.8 (4) Å3 | Block, red |
Z = 4 | 0.70 × 0.50 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 6459 independent reflections |
Radiation source: fine-focus sealed tube | 5440 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.041 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −23→23 |
Tmin = 0.379, Tmax = 0.811 | k = −11→10 |
26671 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0596P)2 + 2.7492P] where P = (Fo2 + 2Fc2)/3 |
6459 reflections | (Δ/σ)max = 0.001 |
370 parameters | Δρmax = 1.03 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.74556 (2) | 0.21692 (3) | 0.05020 (2) | 0.02369 (10) | |
Cl1 | 0.60962 (3) | 0.03126 (7) | −0.11398 (3) | 0.02893 (15) | |
Cl2 | 0.90376 (4) | 0.47701 (8) | 0.15809 (4) | 0.03678 (16) | |
P1 | 0.79934 (4) | 0.00551 (7) | 0.08449 (4) | 0.02582 (15) | |
P2 | 0.68019 (4) | 0.22150 (7) | 0.13957 (3) | 0.02357 (14) | |
O1 | 0.57753 (13) | 0.1576 (2) | −0.15803 (13) | 0.0477 (5) | |
O2 | 0.59943 (13) | −0.1010 (2) | −0.15961 (11) | 0.0409 (5) | |
O3 | 0.57362 (13) | 0.0136 (3) | −0.04995 (12) | 0.0495 (6) | |
O4 | 0.68979 (11) | 0.0582 (3) | −0.08854 (13) | 0.0475 (5) | |
O5 | 0.94703 (18) | 0.4498 (6) | 0.1033 (2) | 0.1249 (18) | |
O6 | 0.9264 (2) | 0.6110 (4) | 0.1969 (2) | 0.1026 (13) | |
O7 | 0.9117 (3) | 0.3654 (5) | 0.2115 (3) | 0.156 (2) | |
O8 | 0.82342 (15) | 0.4791 (4) | 0.12503 (17) | 0.0726 (8) | |
O9 | 0.77720 (18) | 0.6729 (4) | −0.1337 (2) | 0.1098 (15) | |
O10 | 0.70736 (19) | 0.6516 (3) | −0.24168 (17) | 0.0800 (10) | |
N1 | 0.82335 (12) | 0.2389 (2) | −0.01392 (12) | 0.0267 (4) | |
N2 | 0.67687 (12) | 0.3788 (2) | 0.00323 (11) | 0.0251 (4) | |
N3 | 0.75088 (15) | 0.7214 (3) | −0.19493 (17) | 0.0435 (6) | |
C1 | 0.83949 (15) | 0.3680 (3) | −0.04390 (15) | 0.0334 (6) | |
H1 | 0.8160 | 0.4564 | −0.0300 | 0.040* | |
C2 | 0.88960 (16) | 0.3797 (4) | −0.09511 (16) | 0.0408 (7) | |
H2 | 0.9004 | 0.4747 | −0.1144 | 0.049* | |
C3 | 0.92279 (16) | 0.2540 (4) | −0.11705 (16) | 0.0408 (7) | |
H3 | 0.9538 | 0.2594 | −0.1546 | 0.049* | |
C4 | 0.91060 (14) | 0.1157 (4) | −0.08344 (15) | 0.0349 (6) | |
C5 | 0.94656 (15) | −0.0205 (4) | −0.09839 (17) | 0.0413 (7) | |
H5 | 0.9771 | −0.0228 | −0.1364 | 0.050* | |
C6 | 0.93793 (16) | −0.1476 (4) | −0.05907 (18) | 0.0429 (7) | |
H6 | 0.9621 | −0.2375 | −0.0702 | 0.051* | |
C7 | 0.89332 (15) | −0.1466 (3) | −0.00189 (17) | 0.0364 (6) | |
H7 | 0.8894 | −0.2343 | 0.0270 | 0.044* | |
C8 | 0.85549 (14) | −0.0183 (3) | 0.01185 (15) | 0.0286 (5) | |
C9 | 0.86259 (13) | 0.1132 (3) | −0.02987 (14) | 0.0277 (5) | |
C10 | 0.86537 (16) | −0.0119 (3) | 0.17317 (16) | 0.0370 (6) | |
H10A | 0.9035 | 0.0681 | 0.1772 | 0.044* | |
H10B | 0.8910 | −0.1092 | 0.1753 | 0.044* | |
H10C | 0.8373 | −0.0040 | 0.2150 | 0.044* | |
C11 | 0.73838 (16) | −0.1577 (3) | 0.07758 (19) | 0.0391 (6) | |
H11A | 0.7694 | −0.2480 | 0.0768 | 0.047* | |
H11B | 0.7002 | −0.1523 | 0.0311 | 0.047* | |
H11C | 0.7126 | −0.1611 | 0.1212 | 0.047* | |
C12 | 0.66794 (15) | 0.4179 (3) | −0.06857 (14) | 0.0298 (5) | |
H12 | 0.6936 | 0.3612 | −0.1009 | 0.036* | |
C13 | 0.62244 (16) | 0.5391 (3) | −0.09962 (16) | 0.0354 (6) | |
H13 | 0.6166 | 0.5605 | −0.1520 | 0.042* | |
C14 | 0.58701 (15) | 0.6251 (3) | −0.05472 (16) | 0.0349 (6) | |
H14 | 0.5590 | 0.7111 | −0.0745 | 0.042* | |
C15 | 0.59216 (14) | 0.5853 (3) | 0.02189 (15) | 0.0287 (5) | |
C16 | 0.55524 (15) | 0.6643 (3) | 0.07288 (17) | 0.0343 (6) | |
H16 | 0.5277 | 0.7531 | 0.0569 | 0.041* | |
C17 | 0.55876 (15) | 0.6142 (3) | 0.14475 (17) | 0.0357 (6) | |
H17 | 0.5353 | 0.6702 | 0.1791 | 0.043* | |
C18 | 0.59706 (15) | 0.4793 (3) | 0.16850 (16) | 0.0320 (6) | |
H18 | 0.5962 | 0.4416 | 0.2176 | 0.038* | |
C19 | 0.63542 (14) | 0.4026 (3) | 0.12141 (14) | 0.0262 (5) | |
C20 | 0.63564 (14) | 0.4568 (3) | 0.04816 (14) | 0.0250 (5) | |
C21 | 0.60140 (15) | 0.0941 (3) | 0.13956 (17) | 0.0348 (6) | |
H21A | 0.5720 | 0.0851 | 0.0882 | 0.042* | |
H21B | 0.5683 | 0.1325 | 0.1731 | 0.042* | |
H21C | 0.6212 | −0.0044 | 0.1573 | 0.042* | |
C22 | 0.73083 (16) | 0.2268 (3) | 0.23602 (14) | 0.0332 (6) | |
H22A | 0.6946 | 0.2457 | 0.2698 | 0.040* | |
H22B | 0.7690 | 0.3069 | 0.2416 | 0.040* | |
H22C | 0.7563 | 0.1306 | 0.2489 | 0.040* | |
C23 | 0.77162 (18) | 0.8734 (3) | −0.21331 (18) | 0.0415 (7) | |
H23A | 0.7415 | 0.9028 | −0.2622 | 0.050* | |
H23B | 0.8261 | 0.8769 | −0.2158 | 0.050* | |
H23C | 0.7611 | 0.9425 | −0.1742 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02478 (17) | 0.02146 (17) | 0.02684 (18) | 0.00232 (12) | 0.00998 (12) | 0.00229 (11) |
Cl1 | 0.0286 (3) | 0.0280 (3) | 0.0311 (3) | 0.0003 (2) | 0.0078 (2) | −0.0003 (2) |
Cl2 | 0.0402 (4) | 0.0324 (3) | 0.0390 (4) | −0.0014 (3) | 0.0107 (3) | −0.0005 (3) |
P1 | 0.0232 (3) | 0.0227 (3) | 0.0327 (3) | 0.0020 (2) | 0.0082 (2) | 0.0015 (2) |
P2 | 0.0240 (3) | 0.0233 (3) | 0.0246 (3) | 0.0029 (2) | 0.0078 (2) | 0.0016 (2) |
O1 | 0.0566 (13) | 0.0350 (11) | 0.0505 (13) | 0.0162 (10) | 0.0072 (11) | 0.0061 (9) |
O2 | 0.0594 (13) | 0.0287 (10) | 0.0360 (11) | −0.0060 (9) | 0.0123 (10) | −0.0034 (8) |
O3 | 0.0531 (13) | 0.0633 (15) | 0.0376 (12) | −0.0076 (11) | 0.0227 (10) | −0.0053 (10) |
O4 | 0.0267 (10) | 0.0517 (13) | 0.0637 (14) | −0.0025 (9) | 0.0070 (9) | −0.0069 (11) |
O5 | 0.0573 (18) | 0.220 (5) | 0.107 (3) | −0.033 (2) | 0.0413 (19) | −0.094 (3) |
O6 | 0.091 (2) | 0.082 (2) | 0.149 (3) | −0.041 (2) | 0.059 (2) | −0.062 (2) |
O7 | 0.164 (4) | 0.120 (4) | 0.159 (4) | −0.038 (3) | −0.041 (3) | 0.091 (3) |
O8 | 0.0430 (14) | 0.095 (2) | 0.080 (2) | 0.0072 (14) | 0.0111 (13) | −0.0257 (16) |
O9 | 0.070 (2) | 0.103 (3) | 0.139 (3) | −0.0263 (18) | −0.029 (2) | 0.086 (2) |
O10 | 0.110 (2) | 0.0643 (17) | 0.0767 (19) | −0.0462 (18) | 0.0471 (18) | −0.0385 (15) |
N1 | 0.0243 (10) | 0.0289 (10) | 0.0280 (11) | −0.0045 (9) | 0.0071 (8) | −0.0013 (8) |
N2 | 0.0278 (10) | 0.0213 (10) | 0.0271 (10) | −0.0013 (8) | 0.0074 (8) | 0.0013 (8) |
N3 | 0.0373 (13) | 0.0317 (13) | 0.0643 (18) | 0.0005 (11) | 0.0165 (13) | 0.0012 (12) |
C1 | 0.0315 (13) | 0.0354 (14) | 0.0337 (14) | −0.0072 (11) | 0.0073 (11) | 0.0006 (11) |
C2 | 0.0332 (14) | 0.0522 (18) | 0.0378 (15) | −0.0148 (13) | 0.0088 (12) | 0.0072 (13) |
C3 | 0.0261 (13) | 0.066 (2) | 0.0326 (14) | −0.0110 (14) | 0.0113 (11) | −0.0016 (14) |
C4 | 0.0211 (11) | 0.0549 (18) | 0.0286 (13) | −0.0042 (12) | 0.0043 (10) | −0.0086 (12) |
C5 | 0.0213 (12) | 0.066 (2) | 0.0377 (15) | 0.0004 (13) | 0.0072 (11) | −0.0178 (14) |
C6 | 0.0263 (13) | 0.0550 (19) | 0.0467 (17) | 0.0075 (13) | 0.0051 (12) | −0.0227 (15) |
C7 | 0.0275 (13) | 0.0372 (15) | 0.0432 (16) | 0.0036 (12) | 0.0026 (11) | −0.0096 (12) |
C8 | 0.0204 (11) | 0.0324 (13) | 0.0328 (13) | −0.0007 (10) | 0.0044 (10) | −0.0071 (10) |
C9 | 0.0205 (11) | 0.0343 (13) | 0.0282 (12) | −0.0036 (10) | 0.0038 (9) | −0.0080 (10) |
C10 | 0.0324 (14) | 0.0433 (16) | 0.0354 (15) | 0.0106 (12) | 0.0069 (11) | 0.0035 (12) |
C11 | 0.0338 (14) | 0.0282 (13) | 0.0570 (18) | −0.0022 (12) | 0.0128 (13) | 0.0031 (13) |
C12 | 0.0320 (13) | 0.0285 (12) | 0.0295 (13) | −0.0043 (11) | 0.0068 (10) | 0.0019 (10) |
C13 | 0.0365 (14) | 0.0350 (14) | 0.0332 (14) | −0.0058 (12) | 0.0023 (11) | 0.0129 (11) |
C14 | 0.0321 (13) | 0.0256 (13) | 0.0450 (16) | −0.0024 (11) | 0.0014 (12) | 0.0106 (11) |
C15 | 0.0244 (11) | 0.0212 (11) | 0.0394 (14) | −0.0027 (10) | 0.0029 (10) | 0.0006 (10) |
C16 | 0.0273 (12) | 0.0226 (12) | 0.0517 (17) | 0.0033 (10) | 0.0035 (12) | −0.0029 (11) |
C17 | 0.0292 (13) | 0.0324 (14) | 0.0457 (16) | 0.0073 (11) | 0.0075 (11) | −0.0120 (12) |
C18 | 0.0288 (12) | 0.0345 (14) | 0.0330 (14) | 0.0043 (11) | 0.0065 (10) | −0.0053 (11) |
C19 | 0.0247 (11) | 0.0256 (12) | 0.0279 (12) | 0.0022 (10) | 0.0039 (9) | −0.0016 (9) |
C20 | 0.0239 (11) | 0.0199 (11) | 0.0309 (12) | −0.0014 (9) | 0.0043 (9) | −0.0015 (9) |
C21 | 0.0294 (13) | 0.0337 (14) | 0.0436 (15) | −0.0020 (11) | 0.0128 (11) | 0.0019 (12) |
C22 | 0.0383 (14) | 0.0352 (14) | 0.0256 (13) | 0.0099 (12) | 0.0047 (11) | 0.0011 (10) |
C23 | 0.0407 (15) | 0.0336 (15) | 0.0501 (17) | −0.0029 (13) | 0.0081 (13) | 0.0051 (13) |
Ni1—N1 | 1.970 (2) | C6—C7 | 1.412 (4) |
Ni1—N2 | 1.982 (2) | C6—H6 | 0.9500 |
Ni1—P2 | 2.1534 (7) | C7—C8 | 1.376 (4) |
Ni1—P1 | 2.1576 (7) | C7—H7 | 0.9500 |
Cl1—O3 | 1.428 (2) | C8—C9 | 1.413 (4) |
Cl1—O2 | 1.433 (2) | C10—H10A | 0.9800 |
Cl1—O1 | 1.438 (2) | C10—H10B | 0.9800 |
Cl1—O4 | 1.438 (2) | C10—H10C | 0.9800 |
Cl2—O7 | 1.376 (4) | C11—H11A | 0.9800 |
Cl2—O5 | 1.381 (3) | C11—H11B | 0.9800 |
Cl2—O6 | 1.408 (3) | C11—H11C | 0.9800 |
Cl2—O8 | 1.446 (3) | C12—C13 | 1.406 (4) |
P1—C8 | 1.800 (3) | C12—H12 | 0.9500 |
P1—C11 | 1.809 (3) | C13—C14 | 1.353 (4) |
P1—C10 | 1.810 (3) | C13—H13 | 0.9500 |
P2—C22 | 1.807 (3) | C14—C15 | 1.413 (4) |
P2—C21 | 1.807 (3) | C14—H14 | 0.9500 |
P2—C19 | 1.808 (3) | C15—C16 | 1.413 (4) |
O9—N3 | 1.199 (4) | C15—C20 | 1.417 (3) |
O10—N3 | 1.209 (4) | C16—C17 | 1.361 (4) |
N1—C1 | 1.327 (3) | C16—H16 | 0.9500 |
N1—C9 | 1.381 (3) | C17—C18 | 1.413 (4) |
N2—C12 | 1.322 (3) | C17—H17 | 0.9500 |
N2—C20 | 1.378 (3) | C18—C19 | 1.367 (3) |
N3—C23 | 1.462 (4) | C18—H18 | 0.9500 |
C1—C2 | 1.400 (4) | C19—C20 | 1.407 (3) |
C1—H1 | 0.9500 | C21—H21A | 0.9800 |
C2—C3 | 1.362 (5) | C21—H21B | 0.9800 |
C2—H2 | 0.9500 | C21—H21C | 0.9800 |
C3—C4 | 1.411 (4) | C22—H22A | 0.9800 |
C3—H3 | 0.9500 | C22—H22B | 0.9800 |
C4—C9 | 1.402 (3) | C22—H22C | 0.9800 |
C4—C5 | 1.424 (4) | C23—H23A | 0.9800 |
C5—C6 | 1.363 (5) | C23—H23B | 0.9800 |
C5—H5 | 0.9500 | C23—H23C | 0.9800 |
N1—Ni1—N2 | 97.01 (9) | C9—C8—P1 | 113.84 (18) |
N1—Ni1—P2 | 166.27 (7) | N1—C9—C4 | 121.7 (2) |
N2—Ni1—P2 | 85.97 (6) | N1—C9—C8 | 117.9 (2) |
N1—Ni1—P1 | 86.13 (7) | C4—C9—C8 | 120.3 (2) |
N2—Ni1—P1 | 165.68 (6) | P1—C10—H10A | 109.5 |
P2—Ni1—P1 | 94.29 (3) | P1—C10—H10B | 109.5 |
O3—Cl1—O2 | 110.15 (13) | H10A—C10—H10B | 109.5 |
O3—Cl1—O1 | 109.95 (14) | P1—C10—H10C | 109.5 |
O2—Cl1—O1 | 109.60 (13) | H10A—C10—H10C | 109.5 |
O3—Cl1—O4 | 109.09 (14) | H10B—C10—H10C | 109.5 |
O2—Cl1—O4 | 109.61 (13) | P1—C11—H11A | 109.5 |
O1—Cl1—O4 | 108.41 (14) | P1—C11—H11B | 109.5 |
O7—Cl2—O5 | 111.9 (4) | H11A—C11—H11B | 109.5 |
O7—Cl2—O6 | 106.6 (3) | P1—C11—H11C | 109.5 |
O5—Cl2—O6 | 111.0 (2) | H11A—C11—H11C | 109.5 |
O7—Cl2—O8 | 105.4 (3) | H11B—C11—H11C | 109.5 |
O5—Cl2—O8 | 110.3 (2) | N2—C12—C13 | 123.4 (2) |
O6—Cl2—O8 | 111.5 (2) | N2—C12—H12 | 118.3 |
C8—P1—C11 | 105.12 (13) | C13—C12—H12 | 118.3 |
C8—P1—C10 | 105.93 (12) | C14—C13—C12 | 119.8 (3) |
C11—P1—C10 | 106.05 (15) | C14—C13—H13 | 120.1 |
C8—P1—Ni1 | 99.90 (9) | C12—C13—H13 | 120.1 |
C11—P1—Ni1 | 117.20 (10) | C13—C14—C15 | 119.2 (2) |
C10—P1—Ni1 | 120.75 (10) | C13—C14—H14 | 120.4 |
C22—P2—C21 | 105.52 (14) | C15—C14—H14 | 120.4 |
C22—P2—C19 | 106.08 (12) | C14—C15—C16 | 123.7 (2) |
C21—P2—C19 | 104.32 (12) | C14—C15—C20 | 117.7 (2) |
C22—P2—Ni1 | 118.50 (10) | C16—C15—C20 | 118.6 (2) |
C21—P2—Ni1 | 120.92 (10) | C17—C16—C15 | 120.6 (2) |
C19—P2—Ni1 | 99.35 (8) | C17—C16—H16 | 119.7 |
C1—N1—C9 | 117.8 (2) | C15—C16—H16 | 119.7 |
C1—N1—Ni1 | 123.61 (18) | C16—C17—C18 | 120.3 (2) |
C9—N1—Ni1 | 118.53 (17) | C16—C17—H17 | 119.8 |
C12—N2—C20 | 117.4 (2) | C18—C17—H17 | 119.8 |
C12—N2—Ni1 | 124.45 (18) | C19—C18—C17 | 120.6 (3) |
C20—N2—Ni1 | 118.18 (16) | C19—C18—H18 | 119.7 |
O9—N3—O10 | 123.2 (3) | C17—C18—H18 | 119.7 |
O9—N3—C23 | 118.2 (3) | C18—C19—C20 | 119.8 (2) |
O10—N3—C23 | 118.6 (3) | C18—C19—P2 | 126.2 (2) |
N1—C1—C2 | 123.0 (3) | C20—C19—P2 | 113.68 (18) |
N1—C1—H1 | 118.5 | N2—C20—C19 | 118.0 (2) |
C2—C1—H1 | 118.5 | N2—C20—C15 | 122.1 (2) |
C3—C2—C1 | 119.5 (3) | C19—C20—C15 | 119.8 (2) |
C3—C2—H2 | 120.3 | P2—C21—H21A | 109.5 |
C1—C2—H2 | 120.3 | P2—C21—H21B | 109.5 |
C2—C3—C4 | 119.3 (2) | H21A—C21—H21B | 109.5 |
C2—C3—H3 | 120.3 | P2—C21—H21C | 109.5 |
C4—C3—H3 | 120.3 | H21A—C21—H21C | 109.5 |
C9—C4—C3 | 118.1 (3) | H21B—C21—H21C | 109.5 |
C9—C4—C5 | 117.9 (3) | P2—C22—H22A | 109.5 |
C3—C4—C5 | 123.9 (3) | P2—C22—H22B | 109.5 |
C6—C5—C4 | 121.1 (3) | H22A—C22—H22B | 109.5 |
C6—C5—H5 | 119.4 | P2—C22—H22C | 109.5 |
C4—C5—H5 | 119.4 | H22A—C22—H22C | 109.5 |
C5—C6—C7 | 120.4 (3) | H22B—C22—H22C | 109.5 |
C5—C6—H6 | 119.8 | N3—C23—H23A | 109.5 |
C7—C6—H6 | 119.8 | N3—C23—H23B | 109.5 |
C8—C7—C6 | 119.7 (3) | H23A—C23—H23B | 109.5 |
C8—C7—H7 | 120.1 | N3—C23—H23C | 109.5 |
C6—C7—H7 | 120.1 | H23A—C23—H23C | 109.5 |
C7—C8—C9 | 120.2 (2) | H23B—C23—H23C | 109.5 |
C7—C8—P1 | 125.8 (2) | ||
C9—N1—C1—C2 | 5.1 (4) | C20—N2—C12—C13 | 3.7 (4) |
Ni1—N1—C1—C2 | −173.7 (2) | Ni1—N2—C12—C13 | −175.97 (19) |
N1—C1—C2—C3 | 1.3 (4) | N2—C12—C13—C14 | 2.1 (4) |
C1—C2—C3—C4 | −4.8 (4) | C12—C13—C14—C15 | −4.3 (4) |
C2—C3—C4—C9 | 1.8 (4) | C13—C14—C15—C16 | −177.8 (3) |
C2—C3—C4—C5 | −175.6 (3) | C13—C14—C15—C20 | 0.9 (4) |
C9—C4—C5—C6 | −3.4 (4) | C14—C15—C16—C17 | 175.8 (3) |
C3—C4—C5—C6 | 173.9 (3) | C20—C15—C16—C17 | −2.8 (4) |
C4—C5—C6—C7 | −0.5 (4) | C15—C16—C17—C18 | −2.4 (4) |
C5—C6—C7—C8 | 3.0 (4) | C16—C17—C18—C19 | 4.4 (4) |
C6—C7—C8—C9 | −1.5 (4) | C17—C18—C19—C20 | −1.2 (4) |
C6—C7—C8—P1 | −177.4 (2) | C17—C18—C19—P2 | −174.3 (2) |
C11—P1—C8—C7 | −47.4 (3) | C22—P2—C19—C18 | −44.2 (3) |
C10—P1—C8—C7 | 64.6 (3) | C21—P2—C19—C18 | 67.0 (3) |
Ni1—P1—C8—C7 | −169.2 (2) | Ni1—P2—C19—C18 | −167.6 (2) |
C11—P1—C8—C9 | 136.4 (2) | C22—P2—C19—C20 | 142.27 (19) |
C10—P1—C8—C9 | −111.6 (2) | C21—P2—C19—C20 | −106.6 (2) |
Ni1—P1—C8—C9 | 14.54 (19) | Ni1—P2—C19—C20 | 18.86 (19) |
C1—N1—C9—C4 | −8.2 (4) | C12—N2—C20—C19 | 170.6 (2) |
Ni1—N1—C9—C4 | 170.70 (18) | Ni1—N2—C20—C19 | −9.7 (3) |
C1—N1—C9—C8 | 169.3 (2) | C12—N2—C20—C15 | −7.3 (3) |
Ni1—N1—C9—C8 | −11.8 (3) | Ni1—N2—C20—C15 | 172.42 (18) |
C3—C4—C9—N1 | 4.8 (4) | C18—C19—C20—N2 | 178.1 (2) |
C5—C4—C9—N1 | −177.7 (2) | P2—C19—C20—N2 | −8.0 (3) |
C3—C4—C9—C8 | −172.6 (2) | C18—C19—C20—C15 | −4.0 (4) |
C5—C4—C9—C8 | 4.9 (4) | P2—C19—C20—C15 | 169.96 (18) |
C7—C8—C9—N1 | 179.9 (2) | C14—C15—C20—N2 | 5.1 (4) |
P1—C8—C9—N1 | −3.6 (3) | C16—C15—C20—N2 | −176.2 (2) |
C7—C8—C9—C4 | −2.6 (4) | C14—C15—C20—C19 | −172.7 (2) |
P1—C8—C9—C4 | 173.89 (19) | C16—C15—C20—C19 | 6.0 (4) |
[Pt(C11H12NP)2](BF4)2·C2H3N | F(000) = 1528 |
Mr = 788.13 | Dx = 1.882 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71075 Å |
a = 7.9102 (3) Å | Cell parameters from 31045 reflections |
b = 21.0833 (5) Å | θ = 3.1–27.5° |
c = 16.7519 (4) Å | µ = 5.23 mm−1 |
β = 95.3931 (11)° | T = 188 K |
V = 2781.42 (15) Å3 | Platelet, colorless |
Z = 4 | 0.30 × 0.30 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 6350 independent reflections |
Radiation source: fine-focus sealed tube | 5435 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −10→10 |
Tmin = 0.338, Tmax = 0.594 | k = −27→27 |
43967 measured reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0382P)2 + 9.8949P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
6350 reflections | Δρmax = 1.42 e Å−3 |
366 parameters | Δρmin = −1.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.64274 (2) | 0.17364 (2) | 0.20553 (2) | 0.02183 (7) | |
P1 | 0.50347 (15) | 0.24824 (5) | 0.26806 (7) | 0.0237 (2) | |
P2 | 0.80277 (15) | 0.23745 (6) | 0.13781 (7) | 0.0247 (2) | |
F1 | 1.2369 (6) | −0.1256 (2) | 0.0823 (5) | 0.136 (3) | |
F2A | 1.5089 (15) | −0.1511 (5) | 0.0808 (7) | 0.089 (2) | 0.573 (10) |
F3A | 1.4191 (13) | −0.0455 (4) | 0.0691 (7) | 0.089 (2) | 0.573 (10) |
F4A | 1.3835 (12) | −0.1067 (4) | 0.1779 (6) | 0.089 (2) | 0.573 (10) |
F2B | 1.4392 (16) | −0.1049 (8) | 0.0213 (10) | 0.121 (4) | 0.427 (10) |
F3B | 1.4100 (18) | −0.0423 (9) | 0.1216 (12) | 0.121 (4) | 0.427 (10) |
F4B | 1.520 (2) | −0.1430 (9) | 0.1262 (12) | 0.121 (4) | 0.427 (10) |
F5 | 0.0397 (6) | 0.3460 (3) | −0.0167 (5) | 0.115 (2) | |
F6 | 0.2266 (7) | 0.4071 (2) | −0.0644 (3) | 0.0883 (15) | |
F7 | 0.1968 (10) | 0.4023 (3) | 0.0675 (3) | 0.126 (3) | |
F8 | 0.3139 (5) | 0.31996 (17) | 0.0067 (2) | 0.0566 (10) | |
N1 | 0.4883 (5) | 0.11161 (18) | 0.2672 (2) | 0.0256 (8) | |
N2 | 0.7738 (5) | 0.10240 (18) | 0.1453 (2) | 0.0270 (8) | |
N3 | 0.8437 (7) | −0.0443 (3) | 0.3316 (4) | 0.0521 (13) | |
C1 | 0.5191 (7) | 0.0503 (2) | 0.2795 (3) | 0.0342 (11) | |
H1 | 0.6285 | 0.0343 | 0.2714 | 0.041* | |
C2 | 0.3965 (8) | 0.0078 (3) | 0.3041 (3) | 0.0411 (13) | |
H2 | 0.4219 | −0.0361 | 0.3103 | 0.049* | |
C3 | 0.2415 (7) | 0.0304 (3) | 0.3190 (3) | 0.0395 (12) | |
H3 | 0.1547 | 0.0020 | 0.3317 | 0.047* | |
C4 | 0.2103 (6) | 0.0963 (2) | 0.3155 (3) | 0.0310 (10) | |
C5 | 0.0599 (6) | 0.1251 (3) | 0.3391 (3) | 0.0350 (11) | |
H5 | −0.0327 | 0.0992 | 0.3512 | 0.042* | |
C6 | 0.0477 (7) | 0.1893 (3) | 0.3444 (3) | 0.0346 (11) | |
H6 | −0.0519 | 0.2077 | 0.3620 | 0.042* | |
C7 | 0.1812 (6) | 0.2289 (2) | 0.3239 (3) | 0.0307 (10) | |
H7 | 0.1727 | 0.2736 | 0.3298 | 0.037* | |
C8 | 0.3228 (6) | 0.2031 (2) | 0.2955 (3) | 0.0253 (9) | |
C9 | 0.3391 (6) | 0.1368 (2) | 0.2909 (3) | 0.0254 (9) | |
C10 | 0.6062 (6) | 0.2807 (2) | 0.3599 (3) | 0.0328 (11) | |
H10A | 0.6548 | 0.2461 | 0.3938 | 0.039* | |
H10B | 0.6968 | 0.3097 | 0.3474 | 0.039* | |
H10C | 0.5227 | 0.3038 | 0.3884 | 0.039* | |
C11 | 0.4207 (7) | 0.3163 (2) | 0.2120 (3) | 0.0353 (11) | |
H11A | 0.3625 | 0.3023 | 0.1609 | 0.042* | |
H11B | 0.3403 | 0.3389 | 0.2429 | 0.042* | |
H11C | 0.5144 | 0.3447 | 0.2019 | 0.042* | |
C12 | 0.7232 (7) | 0.0429 (2) | 0.1333 (3) | 0.0333 (11) | |
H12 | 0.6088 | 0.0325 | 0.1405 | 0.040* | |
C13 | 0.8316 (7) | −0.0059 (2) | 0.1104 (3) | 0.0380 (12) | |
H13 | 0.7911 | −0.0482 | 0.1044 | 0.046* | |
C14 | 0.9946 (7) | 0.0083 (3) | 0.0970 (3) | 0.0392 (12) | |
H14 | 1.0717 | −0.0244 | 0.0861 | 0.047* | |
C15 | 1.0478 (6) | 0.0725 (2) | 0.0996 (3) | 0.0311 (10) | |
C16 | 1.2074 (6) | 0.0932 (3) | 0.0757 (3) | 0.0392 (12) | |
H16 | 1.2897 | 0.0628 | 0.0632 | 0.047* | |
C17 | 1.2421 (7) | 0.1564 (3) | 0.0707 (3) | 0.0409 (13) | |
H17 | 1.3472 | 0.1696 | 0.0530 | 0.049* | |
C18 | 1.1258 (6) | 0.2021 (3) | 0.0913 (3) | 0.0350 (11) | |
H18 | 1.1518 | 0.2459 | 0.0865 | 0.042* | |
C19 | 0.9729 (6) | 0.1843 (2) | 0.1186 (3) | 0.0268 (10) | |
C20 | 0.9326 (6) | 0.1191 (2) | 0.1230 (3) | 0.0256 (9) | |
C21 | 0.8949 (7) | 0.3084 (2) | 0.1834 (3) | 0.0349 (11) | |
H21A | 0.8043 | 0.3379 | 0.1944 | 0.042* | |
H21B | 0.9617 | 0.2974 | 0.2338 | 0.042* | |
H21C | 0.9688 | 0.3284 | 0.1469 | 0.042* | |
C22 | 0.7056 (7) | 0.2620 (3) | 0.0406 (3) | 0.0354 (11) | |
H22A | 0.6527 | 0.2252 | 0.0124 | 0.042* | |
H22B | 0.6189 | 0.2942 | 0.0476 | 0.042* | |
H22C | 0.7926 | 0.2798 | 0.0091 | 0.042* | |
C23 | 0.8162 (8) | −0.0480 (3) | 0.3952 (4) | 0.0437 (13) | |
C24 | 0.7834 (13) | −0.0553 (4) | 0.4779 (4) | 0.078 (2) | |
H24A | 0.7717 | −0.0134 | 0.5021 | 0.094* | |
H24B | 0.8781 | −0.0780 | 0.5071 | 0.094* | |
H24C | 0.6783 | −0.0794 | 0.4808 | 0.094* | |
B1 | 1.3953 (8) | −0.1035 (3) | 0.0979 (4) | 0.0361 (13) | |
B2 | 0.2039 (8) | 0.3716 (3) | 0.0001 (4) | 0.0370 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02079 (9) | 0.02222 (10) | 0.02284 (10) | 0.00020 (6) | 0.00396 (6) | 0.00096 (7) |
P1 | 0.0234 (6) | 0.0233 (5) | 0.0243 (6) | 0.0018 (4) | 0.0025 (4) | 0.0014 (5) |
P2 | 0.0221 (6) | 0.0261 (6) | 0.0258 (6) | −0.0021 (4) | 0.0023 (4) | 0.0032 (5) |
F1 | 0.040 (2) | 0.051 (3) | 0.317 (10) | −0.003 (2) | 0.017 (4) | 0.009 (4) |
F2A | 0.104 (4) | 0.057 (3) | 0.106 (5) | 0.009 (3) | 0.014 (4) | 0.015 (3) |
F3A | 0.104 (4) | 0.057 (3) | 0.106 (5) | 0.009 (3) | 0.014 (4) | 0.015 (3) |
F4A | 0.104 (4) | 0.057 (3) | 0.106 (5) | 0.009 (3) | 0.014 (4) | 0.015 (3) |
F2B | 0.071 (5) | 0.136 (8) | 0.158 (10) | −0.024 (5) | 0.031 (6) | −0.015 (7) |
F3B | 0.071 (5) | 0.136 (8) | 0.158 (10) | −0.024 (5) | 0.031 (6) | −0.015 (7) |
F4B | 0.071 (5) | 0.136 (8) | 0.158 (10) | −0.024 (5) | 0.031 (6) | −0.015 (7) |
F5 | 0.052 (3) | 0.081 (3) | 0.215 (7) | 0.001 (2) | 0.032 (4) | 0.012 (4) |
F6 | 0.108 (4) | 0.087 (3) | 0.075 (3) | 0.032 (3) | 0.037 (3) | 0.040 (3) |
F7 | 0.207 (7) | 0.110 (4) | 0.057 (3) | 0.077 (5) | −0.008 (4) | −0.027 (3) |
F8 | 0.053 (2) | 0.054 (2) | 0.062 (2) | 0.0172 (17) | 0.0060 (18) | 0.0040 (18) |
N1 | 0.0241 (19) | 0.0264 (19) | 0.0269 (19) | 0.0009 (15) | 0.0066 (15) | 0.0044 (16) |
N2 | 0.028 (2) | 0.027 (2) | 0.0252 (19) | −0.0004 (16) | 0.0028 (16) | −0.0020 (16) |
N3 | 0.052 (3) | 0.049 (3) | 0.057 (3) | 0.003 (2) | 0.013 (3) | 0.004 (3) |
C1 | 0.040 (3) | 0.028 (2) | 0.037 (3) | 0.004 (2) | 0.012 (2) | 0.004 (2) |
C2 | 0.058 (4) | 0.026 (3) | 0.042 (3) | 0.000 (2) | 0.018 (3) | 0.006 (2) |
C3 | 0.045 (3) | 0.034 (3) | 0.042 (3) | −0.010 (2) | 0.014 (2) | 0.003 (2) |
C4 | 0.030 (2) | 0.037 (3) | 0.026 (2) | −0.005 (2) | 0.0045 (19) | 0.000 (2) |
C5 | 0.025 (2) | 0.049 (3) | 0.032 (3) | −0.003 (2) | 0.007 (2) | 0.004 (2) |
C6 | 0.030 (3) | 0.047 (3) | 0.028 (2) | 0.009 (2) | 0.006 (2) | 0.005 (2) |
C7 | 0.030 (2) | 0.038 (3) | 0.025 (2) | 0.006 (2) | 0.0046 (19) | 0.001 (2) |
C8 | 0.026 (2) | 0.031 (2) | 0.019 (2) | 0.0008 (18) | 0.0018 (17) | 0.0029 (18) |
C9 | 0.026 (2) | 0.029 (2) | 0.022 (2) | 0.0007 (18) | 0.0033 (18) | 0.0014 (18) |
C10 | 0.032 (3) | 0.036 (3) | 0.030 (2) | 0.000 (2) | 0.001 (2) | −0.007 (2) |
C11 | 0.033 (3) | 0.031 (3) | 0.043 (3) | 0.004 (2) | 0.006 (2) | 0.009 (2) |
C12 | 0.035 (3) | 0.030 (2) | 0.036 (3) | −0.004 (2) | 0.010 (2) | −0.004 (2) |
C13 | 0.052 (3) | 0.025 (2) | 0.038 (3) | 0.000 (2) | 0.013 (2) | −0.004 (2) |
C14 | 0.047 (3) | 0.038 (3) | 0.033 (3) | 0.013 (2) | 0.007 (2) | −0.002 (2) |
C15 | 0.029 (2) | 0.039 (3) | 0.025 (2) | 0.006 (2) | 0.0046 (19) | −0.003 (2) |
C16 | 0.026 (3) | 0.057 (3) | 0.034 (3) | 0.009 (2) | 0.004 (2) | −0.004 (3) |
C17 | 0.026 (3) | 0.062 (4) | 0.035 (3) | −0.007 (2) | 0.007 (2) | −0.010 (3) |
C18 | 0.028 (2) | 0.045 (3) | 0.033 (3) | −0.007 (2) | 0.008 (2) | −0.003 (2) |
C19 | 0.024 (2) | 0.033 (2) | 0.024 (2) | −0.0016 (18) | 0.0028 (18) | −0.0035 (19) |
C20 | 0.022 (2) | 0.031 (2) | 0.023 (2) | 0.0034 (18) | 0.0017 (17) | 0.0004 (19) |
C21 | 0.030 (3) | 0.029 (2) | 0.046 (3) | −0.004 (2) | 0.001 (2) | −0.002 (2) |
C22 | 0.034 (3) | 0.043 (3) | 0.029 (2) | −0.001 (2) | 0.000 (2) | 0.007 (2) |
C23 | 0.044 (3) | 0.030 (3) | 0.057 (4) | −0.006 (2) | 0.005 (3) | −0.001 (3) |
C24 | 0.125 (7) | 0.057 (4) | 0.054 (4) | −0.025 (5) | 0.020 (5) | 0.005 (4) |
B1 | 0.038 (3) | 0.028 (3) | 0.044 (4) | 0.003 (2) | 0.010 (3) | −0.002 (3) |
B2 | 0.043 (3) | 0.034 (3) | 0.036 (3) | 0.005 (3) | 0.014 (3) | 0.001 (3) |
Pt1—N1 | 2.123 (4) | C6—C7 | 1.414 (7) |
Pt1—N2 | 2.132 (4) | C6—H6 | 0.9500 |
Pt1—P2 | 2.2293 (12) | C7—C8 | 1.371 (6) |
Pt1—P1 | 2.2365 (12) | C7—H7 | 0.9500 |
P1—C11 | 1.804 (5) | C8—C9 | 1.405 (7) |
P1—C10 | 1.805 (5) | C10—H10A | 0.9800 |
P1—C8 | 1.812 (5) | C10—H10B | 0.9800 |
P2—C21 | 1.802 (5) | C10—H10C | 0.9800 |
P2—C19 | 1.804 (5) | C11—H11A | 0.9800 |
P2—C22 | 1.810 (5) | C11—H11B | 0.9800 |
F1—B1 | 1.340 (8) | C11—H11C | 0.9800 |
F2A—B1 | 1.395 (13) | C12—C13 | 1.416 (7) |
F3A—B1 | 1.334 (11) | C12—H12 | 0.9500 |
F4A—B1 | 1.353 (11) | C13—C14 | 1.363 (8) |
F2B—B1 | 1.361 (17) | C13—H13 | 0.9500 |
F3B—B1 | 1.351 (18) | C14—C15 | 1.416 (8) |
F4B—B1 | 1.35 (2) | C14—H14 | 0.9500 |
F5—B2 | 1.410 (8) | C15—C20 | 1.421 (6) |
F6—B2 | 1.341 (7) | C15—C16 | 1.428 (7) |
F7—B2 | 1.309 (8) | C16—C17 | 1.366 (8) |
F8—B2 | 1.391 (7) | C16—H16 | 0.9500 |
N1—C1 | 1.329 (6) | C17—C18 | 1.398 (8) |
N1—C9 | 1.386 (6) | C17—H17 | 0.9500 |
N2—C12 | 1.326 (6) | C18—C19 | 1.384 (7) |
N2—C20 | 1.389 (6) | C18—H18 | 0.9500 |
N3—C23 | 1.110 (8) | C19—C20 | 1.414 (6) |
C1—C2 | 1.409 (7) | C21—H21A | 0.9800 |
C1—H1 | 0.9500 | C21—H21B | 0.9800 |
C2—C3 | 1.360 (8) | C21—H21C | 0.9800 |
C2—H2 | 0.9500 | C22—H22A | 0.9800 |
C3—C4 | 1.410 (7) | C22—H22B | 0.9800 |
C3—H3 | 0.9500 | C22—H22C | 0.9800 |
C4—C9 | 1.421 (7) | C23—C24 | 1.441 (9) |
C4—C5 | 1.424 (7) | C24—H24A | 0.9800 |
C5—C6 | 1.361 (8) | C24—H24B | 0.9800 |
C5—H5 | 0.9500 | C24—H24C | 0.9800 |
N1—Pt1—N2 | 97.13 (15) | N2—C12—H12 | 118.4 |
N1—Pt1—P2 | 178.51 (11) | C13—C12—H12 | 118.4 |
N2—Pt1—P2 | 81.93 (11) | C14—C13—C12 | 119.4 (5) |
N1—Pt1—P1 | 82.76 (11) | C14—C13—H13 | 120.3 |
N2—Pt1—P1 | 179.55 (11) | C12—C13—H13 | 120.3 |
P2—Pt1—P1 | 98.17 (4) | C13—C14—C15 | 119.2 (5) |
C11—P1—C10 | 104.7 (3) | C13—C14—H14 | 120.4 |
C11—P1—C8 | 107.1 (2) | C15—C14—H14 | 120.4 |
C10—P1—C8 | 106.6 (2) | C14—C15—C20 | 118.3 (5) |
C11—P1—Pt1 | 119.12 (19) | C14—C15—C16 | 123.4 (5) |
C10—P1—Pt1 | 117.60 (17) | C20—C15—C16 | 118.2 (5) |
C8—P1—Pt1 | 100.60 (16) | C17—C16—C15 | 120.2 (5) |
C21—P2—C19 | 108.2 (2) | C17—C16—H16 | 119.9 |
C21—P2—C22 | 105.4 (3) | C15—C16—H16 | 119.9 |
C19—P2—C22 | 106.1 (2) | C16—C17—C18 | 121.2 (5) |
C21—P2—Pt1 | 120.76 (19) | C16—C17—H17 | 119.4 |
C19—P2—Pt1 | 100.65 (16) | C18—C17—H17 | 119.4 |
C22—P2—Pt1 | 114.64 (18) | C19—C18—C17 | 120.6 (5) |
C1—N1—C9 | 118.5 (4) | C19—C18—H18 | 119.7 |
C1—N1—Pt1 | 124.7 (3) | C17—C18—H18 | 119.7 |
C9—N1—Pt1 | 116.6 (3) | C18—C19—C20 | 119.3 (4) |
C12—N2—C20 | 117.8 (4) | C18—C19—P2 | 125.4 (4) |
C12—N2—Pt1 | 125.8 (3) | C20—C19—P2 | 114.7 (3) |
C20—N2—Pt1 | 116.2 (3) | N2—C20—C19 | 118.3 (4) |
N1—C1—C2 | 122.9 (5) | N2—C20—C15 | 121.2 (4) |
N1—C1—H1 | 118.6 | C19—C20—C15 | 120.3 (4) |
C2—C1—H1 | 118.6 | P2—C21—H21A | 109.5 |
C3—C2—C1 | 119.2 (5) | P2—C21—H21B | 109.5 |
C3—C2—H2 | 120.4 | H21A—C21—H21B | 109.5 |
C1—C2—H2 | 120.4 | P2—C21—H21C | 109.5 |
C2—C3—C4 | 119.7 (5) | H21A—C21—H21C | 109.5 |
C2—C3—H3 | 120.2 | H21B—C21—H21C | 109.5 |
C4—C3—H3 | 120.2 | P2—C22—H22A | 109.5 |
C3—C4—C9 | 118.5 (5) | P2—C22—H22B | 109.5 |
C3—C4—C5 | 123.8 (5) | H22A—C22—H22B | 109.5 |
C9—C4—C5 | 117.6 (5) | P2—C22—H22C | 109.5 |
C6—C5—C4 | 120.6 (5) | H22A—C22—H22C | 109.5 |
C6—C5—H5 | 119.7 | H22B—C22—H22C | 109.5 |
C4—C5—H5 | 119.7 | N3—C23—C24 | 177.7 (7) |
C5—C6—C7 | 120.8 (5) | C23—C24—H24A | 109.5 |
C5—C6—H6 | 119.6 | C23—C24—H24B | 109.5 |
C7—C6—H6 | 119.6 | H24A—C24—H24B | 109.5 |
C8—C7—C6 | 120.2 (5) | C23—C24—H24C | 109.5 |
C8—C7—H7 | 119.9 | H24A—C24—H24C | 109.5 |
C6—C7—H7 | 119.9 | H24B—C24—H24C | 109.5 |
C7—C8—C9 | 119.8 (4) | F3A—B1—F1 | 114.2 (7) |
C7—C8—P1 | 124.7 (4) | F1—B1—F4B | 119.8 (9) |
C9—C8—P1 | 115.5 (3) | F1—B1—F3B | 116.3 (8) |
N1—C9—C8 | 118.8 (4) | F4B—B1—F3B | 116.6 (12) |
N1—C9—C4 | 120.3 (4) | F3A—B1—F4A | 115.4 (8) |
C8—C9—C4 | 120.7 (4) | F1—B1—F4A | 91.4 (7) |
P1—C10—H10A | 109.5 | F1—B1—F2B | 97.2 (8) |
P1—C10—H10B | 109.5 | F4B—B1—F2B | 94.3 (11) |
H10A—C10—H10B | 109.5 | F3B—B1—F2B | 106.0 (11) |
P1—C10—H10C | 109.5 | F3A—B1—F2A | 118.0 (8) |
H10A—C10—H10C | 109.5 | F1—B1—F2A | 108.5 (7) |
H10B—C10—H10C | 109.5 | F4A—B1—F2A | 105.8 (7) |
P1—C11—H11A | 109.5 | F7—B2—F6 | 116.0 (6) |
P1—C11—H11B | 109.5 | F7—B2—F8 | 113.3 (6) |
H11A—C11—H11B | 109.5 | F6—B2—F8 | 111.8 (5) |
P1—C11—H11C | 109.5 | F7—B2—F5 | 104.4 (6) |
H11A—C11—H11C | 109.5 | F6—B2—F5 | 104.1 (6) |
H11B—C11—H11C | 109.5 | F8—B2—F5 | 105.9 (5) |
N2—C12—C13 | 123.2 (5) | ||
C9—N1—C1—C2 | 10.0 (7) | C20—N2—C12—C13 | 9.6 (7) |
Pt1—N1—C1—C2 | −165.3 (4) | Pt1—N2—C12—C13 | −164.6 (4) |
N1—C1—C2—C3 | −2.5 (8) | N2—C12—C13—C14 | −2.3 (8) |
C1—C2—C3—C4 | −4.8 (8) | C12—C13—C14—C15 | −5.4 (8) |
C2—C3—C4—C9 | 4.3 (8) | C13—C14—C15—C20 | 5.4 (7) |
C2—C3—C4—C5 | −172.4 (5) | C13—C14—C15—C16 | −171.1 (5) |
C3—C4—C5—C6 | 171.1 (5) | C14—C15—C16—C17 | 172.3 (5) |
C9—C4—C5—C6 | −5.6 (7) | C20—C15—C16—C17 | −4.2 (7) |
C4—C5—C6—C7 | 2.3 (8) | C15—C16—C17—C18 | 2.2 (8) |
C5—C6—C7—C8 | 2.4 (7) | C16—C17—C18—C19 | 1.1 (8) |
C6—C7—C8—C9 | −3.5 (7) | C17—C18—C19—C20 | −2.1 (7) |
C6—C7—C8—P1 | −179.3 (4) | C17—C18—C19—P2 | −173.6 (4) |
C11—P1—C8—C7 | −43.4 (5) | C21—P2—C19—C18 | −39.4 (5) |
C10—P1—C8—C7 | 68.3 (4) | C22—P2—C19—C18 | 73.3 (5) |
Pt1—P1—C8—C7 | −168.5 (4) | Pt1—P2—C19—C18 | −167.0 (4) |
C11—P1—C8—C9 | 140.6 (4) | C21—P2—C19—C20 | 148.8 (4) |
C10—P1—C8—C9 | −107.7 (4) | C22—P2—C19—C20 | −98.5 (4) |
Pt1—P1—C8—C9 | 15.5 (3) | Pt1—P2—C19—C20 | 21.2 (4) |
C1—N1—C9—C8 | 165.5 (4) | C12—N2—C20—C19 | 166.2 (4) |
Pt1—N1—C9—C8 | −18.9 (5) | Pt1—N2—C20—C19 | −19.0 (5) |
C1—N1—C9—C4 | −10.1 (7) | C12—N2—C20—C15 | −9.3 (7) |
Pt1—N1—C9—C4 | 165.5 (3) | Pt1—N2—C20—C15 | 165.4 (3) |
C7—C8—C9—N1 | −175.6 (4) | C18—C19—C20—N2 | −175.7 (4) |
P1—C8—C9—N1 | 0.6 (5) | P2—C19—C20—N2 | −3.3 (6) |
C7—C8—C9—C4 | −0.1 (7) | C18—C19—C20—C15 | −0.1 (7) |
P1—C8—C9—C4 | 176.2 (3) | P2—C19—C20—C15 | 172.3 (4) |
C3—C4—C9—N1 | 3.1 (7) | C14—C15—C20—N2 | 2.0 (7) |
C5—C4—C9—N1 | −179.9 (4) | C16—C15—C20—N2 | 178.6 (4) |
C3—C4—C9—C8 | −172.4 (5) | C14—C15—C20—C19 | −173.5 (4) |
C5—C4—C9—C8 | 4.6 (7) | C16—C15—C20—C19 | 3.2 (7) |
Funding information
This work was partly supported by JSPS KAKENHI Grant No. 18 K05146.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606–1618. Web of Science CSD CrossRef CAS PubMed Google Scholar
CrystalMaker Software (2017). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39–47. Web of Science CSD CrossRef Google Scholar
Hopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300–1310. Web of Science CSD CrossRef CAS Google Scholar
Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242–2027255. Google Scholar
Mori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862. Web of Science CSD CrossRef Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Salem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581–586. CrossRef CAS Web of Science Google Scholar
Scattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210–5217. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876. Web of Science CSD CrossRef CAS Google Scholar
Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619–1626. CSD CrossRef CAS Web of Science Google Scholar
Suzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S., Takagi, H.-D. & Kato, M. (2003). Inorg. Chem. 42, 785–795. Web of Science CSD CrossRef PubMed CAS Google Scholar
Suzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981–3987. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12. Web of Science CSD CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.