research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Comparison of mol­ecular structures of cis-bis­­[8-(di­methyl­phosphan­yl)quinoline]­nickel(II) and -platinum(II) complex cations

CROSSMARK_Color_square_no_text.svg

aGraduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan, and bResearch Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 19 October 2020; accepted 29 October 2020; online 6 November 2020)

The crystal structures of the complexes (SP-4-2)-cis-bis­[8-(di­methyl­phosphan­yl)quinoline-κ2N,P]nickel(II) bis­(perchlorate) nitro­methane monosolvate, [Ni(C11H12NP)2](ClO4)2·CH3NO2 (1), and (SP-4-2)-cis-bis­[8-(di­methyl­phos­phan­yl)quinoline-κ2N,P]platinum(II) bis­(tetra­fluoro­borate) aceto­nitrile monosolvate, [Pt(C11H12NP)2](BF4)2·C2H3N (2), are reported. In both complex cations, two phosphanyl­quinolines act as bidentate P,N-donating chelate ligands and form the mutually cis configuration in the square-planar coordination geometry. The strong trans influence of the di­methyl­phosphanyl donor group is confirmed by the Ni—N bond lengths in 1, 1.970 (2) and 1.982 (2) Å and, the Pt—N bond lengths of 2, 2.123 (4) and 2.132 (4) Å, which are relatively long as compared to those in the analogous 8-(di­phenyl­phosphan­yl)quinoline complexes. Mutually cis-positioned quinoline donor groups would give a severe steric hindrance between their ortho-H atoms. In order to reduce such a steric congestion, the NiII complex in 1 shows a tetra­hedral distortion of the coordination geometry, as parameterized by τ4 = 0.199 (1)°, while the PtII complex in 2 exhibits a typical square-planar coordination geometry [τ4 = 0.014 (1)°] with a large bending deformation of the ideally planar Me2Pqn chelate planes. In the crystal structure of 2, three F atoms of one of the BF4 anions are disordered over two sets of positions with refined occupancies of 0.573 (10) and 0.427 (10).

1. Chemical context

8-Quinolylphosphanes are an intriguing class of ligands because they form a planar asymmetrical five-membered chelate ring via coordination through a phosphane-P atom having a strong σ-donating character and an imine-N atom incorporated in a π-conjugated quinoline ring (Salem & Wild, 1992[Salem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581-586.]; Scattolin et al., 2017[Scattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210-5217.]; Cai et al., 2018[Cai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606-1618.]). The electronic properties of these ligands, in particular their π-bonding nature, may stabilize unusual electronic states of their transition-metal complexes (Suzuki et al., 1995[Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619-1626.]; Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]; Hopkins et al., 2019[Hopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300-1310.]). In addition, the steric requirement from the planar quinoline moiety often has a significant influence on the properties of their metal complexes. For example, the nickel(II), palladium(II) and platinum(II) complexes containing two 8-(di­phenyl­phosphan­yl)quinoline (Ph2Pqn) in the cis(P,P) configuration exhibit a severe distortion of the square-planar coordination geometry around MII (M = Ni, Pd or Pt; Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]; Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]; Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242-2027255.]). The di­methyl­phosphanyl analogue, 8-(di­methyl­phosphan­yl)quinoline (Me2Pqn), is an inter­esting derivative, because it would give a stronger trans influence, which could affect the steric congestion between the intra­molecular ligands. However, the transition-metal complexes bearing Me2Pqn are limited to only those listed in section 4: Database survey, all of which were reported by our group. In 1995 we reported the preparation and crystal structure of (SP-4-2)-[Pd(Me2Pqn)2](BF4)2 (Suzuki et al., 1995[Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619-1626.]), but the crystal structures of the corresponding NiII and PtII complexes were not compared.

[Scheme 1]

2. Structural commentary

A red block-shaped crystal of the NiII complex, [Ni(Me2Pqn)2](ClO4)2·CH3NO2 (1), recrystallized from nitro­methane/diisopropyl ether and a colorless platelet crystal of the PtII complex, [Pt(Me2Pqn)2](BF4)2·CH3CN (2), recrystallized from aceto­nitrile/diisopropyl ether were used for the X-ray diffraction analysis.

In the crystal structure of 2, three F atoms of one of the BF4 anions show disorder over two sets of positions: (F2A, F3A and F4A) and (F2B, F3B and F4B). The occupancy parameters of these atoms were refined with suitable restrictions and found to be 0.573 (10) and 0.427 (10) for the A-set atoms and the B-set atoms, respectively.

In both crystals, two Me2Pqn ligands coordinate to a metal(II) center in the bidentate κ2P,N mode to form a cis-isomer of the complex dication, (SP-4-2)-[M(Me2Pqn)2]2+ (M = Ni or Pt), having a roughly square-planar coordination geometry (Figs. 1[link] and 2[link], Tables 1[link] and 2[link]). For the group 10 metal(II) complexes bearing 8-quinolylphosphanes, it was revealed that most of the bis­(κ2P,N)-type complexes have a similar geometrical structure, except for those of the halide complexes (Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]; Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242-2027255.]), because the strong trans influence of the phosphane donor groups makes the mutually trans(P,P) configuration thermodynamically unstable. The Ni—N bond lengths in 1 are 1.970 (2) and 1.982 (2) Å, which are slightly longer than those in [Ni(MePhPqn)2](BF4)2 [MePhPqn = 8-(methyl­phenyl­phosphan­yl)quinoline; 1.954 (3) and 1.977 (3) Å] and [Ni(Ph2Pqn)2](BF4)2 [1.954 (6) and 1.949 (5) Å] (Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]), indicating the trans influence becomes stronger in the order of Ph2Pqn < MePhPqn < Me2Pqn. In the case of PtII complexes, the Pt—N bond lengths in 2 [2.123 (4) and 2.132 (4) Å] are similarly long, as compared to those in [Pt(Ph2Pqn)2](ClO4)2 [2.107 (4) and 2.108 (5) Å; Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242-2027255.]]. By contrast, the Ni—P bond lengths and the P—Ni—N chelate bite angles are comparable among the complexes 1 [2.1576 (7) and 2.1534 (7) Å; 86.13 (7) and 85.97 (6)°], [Ni(MePhPqn)2](BF4)2 [2.151 (1) and 2.162 (1) Å; 87.4 (1) and 86.6 (1)°] and [Ni(Ph2Pqn)2](BF4)2 [2.168 (2) and 2.177 (2) Å; 86.6 (1) and 84.6 (1)°]. The Pt—P bond lengths and the P—Pt—N bite angles in 2 [2.2293 (12) and 2.2365 (12) Å; 82.76 (11) and 81.93 (11)°] are also comparable to those in [Pt(Ph2Pqn)2](ClO4)2 [2.2311 (14) and 2.2318 (14) Å; 83.29 (13) and 82.79 (13)°].

Table 1
Selected geometric parameters (Å, °) for 1[link]

Ni1—N1 1.970 (2) Ni1—P2 2.1534 (7)
Ni1—N2 1.982 (2) Ni1—P1 2.1576 (7)
       
N1—Ni1—N2 97.01 (9) N1—Ni1—P1 86.13 (7)
N1—Ni1—P2 166.27 (7) N2—Ni1—P1 165.68 (6)
N2—Ni1—P2 85.97 (6) P2—Ni1—P1 94.29 (3)
       
Ni1—P1—C8—C9 14.54 (19) Ni1—P2—C19—C20 18.86 (19)
Ni1—N1—C9—C8 −11.8 (3) Ni1—N2—C20—C19 −9.7 (3)

Table 2
Selected geometric parameters (Å, °) for 2[link]

Pt1—N1 2.123 (4) Pt1—P2 2.2293 (12)
Pt1—N2 2.132 (4) Pt1—P1 2.2365 (12)
       
N1—Pt1—N2 97.13 (15) N1—Pt1—P1 82.76 (11)
N1—Pt1—P2 178.51 (11) N2—Pt1—P1 179.55 (11)
N2—Pt1—P2 81.93 (11) P2—Pt1—P1 98.17 (4)
       
Pt1—P1—C8—C9 15.5 (3) Pt1—P2—C19—C20 21.2 (4)
Pt1—N1—C9—C8 −18.9 (5) Pt1—N2—C20—C19 −19.0 (5)
[Figure 1]
Figure 1
An ellipsoid plot of the mol­ecular structures in [Ni(Me2Pqn)2](ClO4)2·CH3NO2 (1), showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
An ellipsoid plot of the mol­ecular structures in [Pt(Me2Pqn)2](BF4)2·CH3CN (2), showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level. The minor component atoms (F2B, F3B and F4B) of the positionally disordered F atoms are omitted for clarity.

Comparison of the NiII complex cation in 1 and the corres­ponding PtII complex cation in 2 shows an obvious difference in their coordination geometry (Figs. 3[link] and 4[link]). The four-coordinate NiII center in 1 exhibits a large tetra­hedral distortion, as indicated by the τ4 value (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of 0.199 (1)°. This is due to the steric requirement from the planar quinoline moiety located in the mutually cis positions around the NiII center. In the analogous MePhPqn and Ph2Pqn complexes, the τ4 values are 0.273 (1)° and 0.189 (2)°, respectively. By contrast, the τ4 value of the PtII complex in 2 is only 0.014 (1)°, indicating a nearly perfect planar coordin­ation geometry around the PtII center. The corresponding value in [Pt(Ph2Pqn)2](BF4)2 is 0.149 (2)° (Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242-2027255.]). It is obvious that the present planar structure of the PtII center in 2 is a rare example. In this complex, the inter­ligand steric inter­action expected for the mutually cis-positioned quinoline groups could be reduced by envelope-type bending of the planar Me2Pqn chelate coordination, that is, the displacement of the PtII metal center from the ideal plane defined by the chelate ring of 8-quinolylphosphanes. The dihedral angle, φC, between the [Pt,P,N] coordination plane and the [PCCN] phosphanyl­quinoline planes in 2 are 21.53 (16) and 24.76 (16)°, and the displacement of the Pt1 atom from the ideal quinoline [C9H6N] planes is 0.579 (5) and 0.550 (5) Å. The two quinoline planes are nearly parallel, with the dihedral angle between them being only 7.99 (10)°. Such a synchronized bending deformation of two chelate coordination (Fig. 4[link]) acts to reduce the steric congestion effectively. The corresponding φC values for 1 are 17.44 (9) and 19.76 (9)°, and the dihedral angle between the two quinoline planes is obviously large, at 33.35 (6)°. Inter­estingly, the analogous palladium(II) complex, [Pd(Me2Pqn)2](BF4)2, has a τ4 value of 0.096 (2)° (Suzuki et al., 1995[Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619-1626.]), which is in between those of the present NiII and PtII complexes.

[Figure 3]
Figure 3
A perspective side view (from one of the NiPN coordination planes) of [Ni(Me2Pqn)2](ClO4)2·CH3NO2 (1). Color code: Ni, dark green; P, orange; N, blue; C, black and H, gray.
[Figure 4]
Figure 4
A perspective side view (from one of the PtPN coordination planes) of [Pt(Me2Pqn)2](BF4)2·CH3CN (2). Color code: Pt, purple; P, orange; N, blue; C, black and H, gray.

3. Supra­molecular features

In the crystal structure of 1, there are two ClO4 anions and a CH3NO2 solvent mol­ecule, in addition to the [Ni(Me2Pqn)2]2+ complex cation in the asymmetric unit. The asymmetric unit of the PtII complex, 2, contains a [Pt(Me2Pqn)2]2+ complex cation, two BF4 anions (in one of which the positions of three F atoms are disordered) and a CH3CN solvent mol­ecule. In the crystal structures of both 1 and 2 (Figs. 5[link] and 6[link], respectively), no remarkable inter­molecular stacking or hydrogen-bonding inter­actions are observed.

[Figure 5]
Figure 5
A packing drawing of [Ni(Me2Pqn)2](ClO4)2CH3NO2 (1) along the crystallographic b axis (two unit cells are shown). Color code: Ni, dark green; Cl, light green; P, orange; O, red; N, blue; C, black and H, gray.
[Figure 6]
Figure 6
A packing drawing of [Pt(Me2Pqn)2](BF4)2·CH3CN (2) along the crystallographic a axis (two unit cells are shown). Color code: Pt, purple; P, orange; F, green; N, blue; C, black; B, pale purple and H, gray.

4. Database survey

Metal complexes containing Me2Pqn have been reported by us, e.g., cis-[Pd(Me2Pqn)2](BF4)2 (refcode ZIFPUZ in the CSD database, version 5.41, last update May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and [Pd2Cl2(Me2Pqn)2] (ZIFQAG; Suzuki et al., 1995[Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619-1626.]), [Cu(Me2Pqn)2]PF6 (OZILAL; Suzuki et al., 2011[Suzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981-3987.]), [Ru(bpy)3–n(Me2Pqn)n](PF6)2 (bpy = 2,2′-bi­pyridine; HUTRIV, HUTPCB, HUTPUH and HUTQAO; Suzuki et al., 2003[Suzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S., Takagi, H.-D. & Kato, M. (2003). Inorg. Chem. 42, 785-795.]), and [Pt(ppy)(Me2Pqn)]BF4 (ppy = 2-(2′-pyrid­yl)phenyl; Mori & Suzuki, 2020[Mori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862.]). Some of the related bis­(8-quinolylphosphanes) complexes are: [Ni(Ph2Pqn)2](BF4)n (n = 1 or 2; BUGDAJ, BUGDEN and BUGDOX) and [Ni(MePhPqn)2](BF4)2 (BUGDIR; Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]), [Pd(Ph2Pqn)2]X2 (X2 = Cl2, Br2 or ClBF4; FERZOS, FERZUY and FESBAH; Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]), [Cu(Ph2Pqn)2]BF4 (OZILEP and OZILEP01; Suzuki et al., 2011[Suzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981-3987.]) and [Cu(Ph2Pqn)2]PF6 (NOPNIQ; Tsukuda et al., 2009[Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7-12.]).

5. Synthesis and crystallization

The ligand, Me2Pqn, and the nickel(II) complexes, [Ni(Me2Pqn)2](ClO4)2, were prepared according to the method reported previously (Suzuki et al., 1995[Suzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619-1626.]). Single crystals of 1 suitable for an X-ray diffraction study were obtained by recrystallization from nitro­methane by diffusion of diisopropyl ether. The platinum(II) complex, [Pt(Me2Pqn)2](BF4)2, was prepared by the following method. A methanol (5 ml) solution of Me2Pqn (0.76 mmol) was added dropwise with stirring to a di­chloro­methane solution (10 ml) of [PtCl2(EtCN)2] (0.105 g, 0.278 mmol), and the mixture was stirred for 24 h at room temperature. After removal of the resulting precipitate, the filtrate was concentrated to ca 5 ml using a rotary evaporator. A large excess amount of a methanol solution of NaBF4 was added, and the mixture was stirred for 1 h at room temperature. The resulting pale-yellow precipitate was collected by filtration, washed with water (5 ml) and diethyl ether (10 ml), and dried in vacuo. Colorless platelet-shaped crystals of [Pt(Me2Pqn)2](BF4)2·CH3CN (2) were obtained by recrystallization from an aceto­nitrile solution by diffusion of diisopropyl ether. Yield: 0.126 g (61%). Analysis calculated for C24H27B2F8N3P2Pt: C, 35.37; H, 3.24; N, 3.75%. Found (after completely drying): C, 35.39; H, 2.89; N, 3.74%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model, with C—H = 0.95 (aromatic) or 0.98 (meth­yl) Å and Uiso(H) = 1.2Ueq(C). In the analysis of 2, two sets of F atoms for one of the two BF4 anions were introduced as positionally disordered atoms, and their occupation parameters were refined with suitable restrictions [the final major:minor occupancy ratio was 0.573 (10):0.427 (10)].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Ni(C11H12NP)2](ClO4)2·CH3NO2 [Pt(C11H12NP)2](BF4)2·C2H3N
Mr 697.02 788.13
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 188 188
a, b, c (Å) 17.8114 (13), 8.9398 (6), 18.0245 (14) 7.9102 (3), 21.0833 (5), 16.7519 (4)
β (°) 100.524 (3) 95.3931 (11)
V3) 2821.8 (4) 2781.42 (15)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.05 5.23
Crystal size (mm) 0.70 × 0.50 × 0.20 0.30 × 0.30 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.379, 0.811 0.338, 0.594
No. of measured, independent and observed [I > 2σ(I)] reflections 26671, 6459, 5440 43967, 6350, 5435
Rint 0.041 0.042
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.05 0.033, 0.084, 1.07
No. of reflections 6459 6350
No. of parameters 370 366
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −0.49 1.42, −1.45
Computer programs: RAPID AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (CrystalMaker Software, 2017[CrystalMaker Software (2017). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]).

Supporting information


Computing details top

For both structures, data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker Software, 2017); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

(SP-4-2)-cis-Bis[8-(dimethylphosphanyl)quinoline-κ2N,P]nickel(II) bis(perchlorate) nitromethane monosolvate (1) top
Crystal data top
[Ni(C11H12NP)2](ClO4)2·CH3NO2F(000) = 1432
Mr = 697.02Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 17.8114 (13) ÅCell parameters from 20058 reflections
b = 8.9398 (6) Åθ = 3.2–27.6°
c = 18.0245 (14) ŵ = 1.05 mm1
β = 100.524 (3)°T = 188 K
V = 2821.8 (4) Å3Block, red
Z = 40.70 × 0.50 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6459 independent reflections
Radiation source: fine-focus sealed tube5440 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.041
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 2323
Tmin = 0.379, Tmax = 0.811k = 1110
26671 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2 + 2.7492P]
where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.74556 (2)0.21692 (3)0.05020 (2)0.02369 (10)
Cl10.60962 (3)0.03126 (7)0.11398 (3)0.02893 (15)
Cl20.90376 (4)0.47701 (8)0.15809 (4)0.03678 (16)
P10.79934 (4)0.00551 (7)0.08449 (4)0.02582 (15)
P20.68019 (4)0.22150 (7)0.13957 (3)0.02357 (14)
O10.57753 (13)0.1576 (2)0.15803 (13)0.0477 (5)
O20.59943 (13)0.1010 (2)0.15961 (11)0.0409 (5)
O30.57362 (13)0.0136 (3)0.04995 (12)0.0495 (6)
O40.68979 (11)0.0582 (3)0.08854 (13)0.0475 (5)
O50.94703 (18)0.4498 (6)0.1033 (2)0.1249 (18)
O60.9264 (2)0.6110 (4)0.1969 (2)0.1026 (13)
O70.9117 (3)0.3654 (5)0.2115 (3)0.156 (2)
O80.82342 (15)0.4791 (4)0.12503 (17)0.0726 (8)
O90.77720 (18)0.6729 (4)0.1337 (2)0.1098 (15)
O100.70736 (19)0.6516 (3)0.24168 (17)0.0800 (10)
N10.82335 (12)0.2389 (2)0.01392 (12)0.0267 (4)
N20.67687 (12)0.3788 (2)0.00323 (11)0.0251 (4)
N30.75088 (15)0.7214 (3)0.19493 (17)0.0435 (6)
C10.83949 (15)0.3680 (3)0.04390 (15)0.0334 (6)
H10.81600.45640.03000.040*
C20.88960 (16)0.3797 (4)0.09511 (16)0.0408 (7)
H20.90040.47470.11440.049*
C30.92279 (16)0.2540 (4)0.11705 (16)0.0408 (7)
H30.95380.25940.15460.049*
C40.91060 (14)0.1157 (4)0.08344 (15)0.0349 (6)
C50.94656 (15)0.0205 (4)0.09839 (17)0.0413 (7)
H50.97710.02280.13640.050*
C60.93793 (16)0.1476 (4)0.05907 (18)0.0429 (7)
H60.96210.23750.07020.051*
C70.89332 (15)0.1466 (3)0.00189 (17)0.0364 (6)
H70.88940.23430.02700.044*
C80.85549 (14)0.0183 (3)0.01185 (15)0.0286 (5)
C90.86259 (13)0.1132 (3)0.02987 (14)0.0277 (5)
C100.86537 (16)0.0119 (3)0.17317 (16)0.0370 (6)
H10A0.90350.06810.17720.044*
H10B0.89100.10920.17530.044*
H10C0.83730.00400.21500.044*
C110.73838 (16)0.1577 (3)0.07758 (19)0.0391 (6)
H11A0.76940.24800.07680.047*
H11B0.70020.15230.03110.047*
H11C0.71260.16110.12120.047*
C120.66794 (15)0.4179 (3)0.06857 (14)0.0298 (5)
H120.69360.36120.10090.036*
C130.62244 (16)0.5391 (3)0.09962 (16)0.0354 (6)
H130.61660.56050.15200.042*
C140.58701 (15)0.6251 (3)0.05472 (16)0.0349 (6)
H140.55900.71110.07450.042*
C150.59216 (14)0.5853 (3)0.02189 (15)0.0287 (5)
C160.55524 (15)0.6643 (3)0.07288 (17)0.0343 (6)
H160.52770.75310.05690.041*
C170.55876 (15)0.6142 (3)0.14475 (17)0.0357 (6)
H170.53530.67020.17910.043*
C180.59706 (15)0.4793 (3)0.16850 (16)0.0320 (6)
H180.59620.44160.21760.038*
C190.63542 (14)0.4026 (3)0.12141 (14)0.0262 (5)
C200.63564 (14)0.4568 (3)0.04816 (14)0.0250 (5)
C210.60140 (15)0.0941 (3)0.13956 (17)0.0348 (6)
H21A0.57200.08510.08820.042*
H21B0.56830.13250.17310.042*
H21C0.62120.00440.15730.042*
C220.73083 (16)0.2268 (3)0.23602 (14)0.0332 (6)
H22A0.69460.24570.26980.040*
H22B0.76900.30690.24160.040*
H22C0.75630.13060.24890.040*
C230.77162 (18)0.8734 (3)0.21331 (18)0.0415 (7)
H23A0.74150.90280.26220.050*
H23B0.82610.87690.21580.050*
H23C0.76110.94250.17420.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02478 (17)0.02146 (17)0.02684 (18)0.00232 (12)0.00998 (12)0.00229 (11)
Cl10.0286 (3)0.0280 (3)0.0311 (3)0.0003 (2)0.0078 (2)0.0003 (2)
Cl20.0402 (4)0.0324 (3)0.0390 (4)0.0014 (3)0.0107 (3)0.0005 (3)
P10.0232 (3)0.0227 (3)0.0327 (3)0.0020 (2)0.0082 (2)0.0015 (2)
P20.0240 (3)0.0233 (3)0.0246 (3)0.0029 (2)0.0078 (2)0.0016 (2)
O10.0566 (13)0.0350 (11)0.0505 (13)0.0162 (10)0.0072 (11)0.0061 (9)
O20.0594 (13)0.0287 (10)0.0360 (11)0.0060 (9)0.0123 (10)0.0034 (8)
O30.0531 (13)0.0633 (15)0.0376 (12)0.0076 (11)0.0227 (10)0.0053 (10)
O40.0267 (10)0.0517 (13)0.0637 (14)0.0025 (9)0.0070 (9)0.0069 (11)
O50.0573 (18)0.220 (5)0.107 (3)0.033 (2)0.0413 (19)0.094 (3)
O60.091 (2)0.082 (2)0.149 (3)0.041 (2)0.059 (2)0.062 (2)
O70.164 (4)0.120 (4)0.159 (4)0.038 (3)0.041 (3)0.091 (3)
O80.0430 (14)0.095 (2)0.080 (2)0.0072 (14)0.0111 (13)0.0257 (16)
O90.070 (2)0.103 (3)0.139 (3)0.0263 (18)0.029 (2)0.086 (2)
O100.110 (2)0.0643 (17)0.0767 (19)0.0462 (18)0.0471 (18)0.0385 (15)
N10.0243 (10)0.0289 (10)0.0280 (11)0.0045 (9)0.0071 (8)0.0013 (8)
N20.0278 (10)0.0213 (10)0.0271 (10)0.0013 (8)0.0074 (8)0.0013 (8)
N30.0373 (13)0.0317 (13)0.0643 (18)0.0005 (11)0.0165 (13)0.0012 (12)
C10.0315 (13)0.0354 (14)0.0337 (14)0.0072 (11)0.0073 (11)0.0006 (11)
C20.0332 (14)0.0522 (18)0.0378 (15)0.0148 (13)0.0088 (12)0.0072 (13)
C30.0261 (13)0.066 (2)0.0326 (14)0.0110 (14)0.0113 (11)0.0016 (14)
C40.0211 (11)0.0549 (18)0.0286 (13)0.0042 (12)0.0043 (10)0.0086 (12)
C50.0213 (12)0.066 (2)0.0377 (15)0.0004 (13)0.0072 (11)0.0178 (14)
C60.0263 (13)0.0550 (19)0.0467 (17)0.0075 (13)0.0051 (12)0.0227 (15)
C70.0275 (13)0.0372 (15)0.0432 (16)0.0036 (12)0.0026 (11)0.0096 (12)
C80.0204 (11)0.0324 (13)0.0328 (13)0.0007 (10)0.0044 (10)0.0071 (10)
C90.0205 (11)0.0343 (13)0.0282 (12)0.0036 (10)0.0038 (9)0.0080 (10)
C100.0324 (14)0.0433 (16)0.0354 (15)0.0106 (12)0.0069 (11)0.0035 (12)
C110.0338 (14)0.0282 (13)0.0570 (18)0.0022 (12)0.0128 (13)0.0031 (13)
C120.0320 (13)0.0285 (12)0.0295 (13)0.0043 (11)0.0068 (10)0.0019 (10)
C130.0365 (14)0.0350 (14)0.0332 (14)0.0058 (12)0.0023 (11)0.0129 (11)
C140.0321 (13)0.0256 (13)0.0450 (16)0.0024 (11)0.0014 (12)0.0106 (11)
C150.0244 (11)0.0212 (11)0.0394 (14)0.0027 (10)0.0029 (10)0.0006 (10)
C160.0273 (12)0.0226 (12)0.0517 (17)0.0033 (10)0.0035 (12)0.0029 (11)
C170.0292 (13)0.0324 (14)0.0457 (16)0.0073 (11)0.0075 (11)0.0120 (12)
C180.0288 (12)0.0345 (14)0.0330 (14)0.0043 (11)0.0065 (10)0.0053 (11)
C190.0247 (11)0.0256 (12)0.0279 (12)0.0022 (10)0.0039 (9)0.0016 (9)
C200.0239 (11)0.0199 (11)0.0309 (12)0.0014 (9)0.0043 (9)0.0015 (9)
C210.0294 (13)0.0337 (14)0.0436 (15)0.0020 (11)0.0128 (11)0.0019 (12)
C220.0383 (14)0.0352 (14)0.0256 (13)0.0099 (12)0.0047 (11)0.0011 (10)
C230.0407 (15)0.0336 (15)0.0501 (17)0.0029 (13)0.0081 (13)0.0051 (13)
Geometric parameters (Å, º) top
Ni1—N11.970 (2)C6—C71.412 (4)
Ni1—N21.982 (2)C6—H60.9500
Ni1—P22.1534 (7)C7—C81.376 (4)
Ni1—P12.1576 (7)C7—H70.9500
Cl1—O31.428 (2)C8—C91.413 (4)
Cl1—O21.433 (2)C10—H10A0.9800
Cl1—O11.438 (2)C10—H10B0.9800
Cl1—O41.438 (2)C10—H10C0.9800
Cl2—O71.376 (4)C11—H11A0.9800
Cl2—O51.381 (3)C11—H11B0.9800
Cl2—O61.408 (3)C11—H11C0.9800
Cl2—O81.446 (3)C12—C131.406 (4)
P1—C81.800 (3)C12—H120.9500
P1—C111.809 (3)C13—C141.353 (4)
P1—C101.810 (3)C13—H130.9500
P2—C221.807 (3)C14—C151.413 (4)
P2—C211.807 (3)C14—H140.9500
P2—C191.808 (3)C15—C161.413 (4)
O9—N31.199 (4)C15—C201.417 (3)
O10—N31.209 (4)C16—C171.361 (4)
N1—C11.327 (3)C16—H160.9500
N1—C91.381 (3)C17—C181.413 (4)
N2—C121.322 (3)C17—H170.9500
N2—C201.378 (3)C18—C191.367 (3)
N3—C231.462 (4)C18—H180.9500
C1—C21.400 (4)C19—C201.407 (3)
C1—H10.9500C21—H21A0.9800
C2—C31.362 (5)C21—H21B0.9800
C2—H20.9500C21—H21C0.9800
C3—C41.411 (4)C22—H22A0.9800
C3—H30.9500C22—H22B0.9800
C4—C91.402 (3)C22—H22C0.9800
C4—C51.424 (4)C23—H23A0.9800
C5—C61.363 (5)C23—H23B0.9800
C5—H50.9500C23—H23C0.9800
N1—Ni1—N297.01 (9)C9—C8—P1113.84 (18)
N1—Ni1—P2166.27 (7)N1—C9—C4121.7 (2)
N2—Ni1—P285.97 (6)N1—C9—C8117.9 (2)
N1—Ni1—P186.13 (7)C4—C9—C8120.3 (2)
N2—Ni1—P1165.68 (6)P1—C10—H10A109.5
P2—Ni1—P194.29 (3)P1—C10—H10B109.5
O3—Cl1—O2110.15 (13)H10A—C10—H10B109.5
O3—Cl1—O1109.95 (14)P1—C10—H10C109.5
O2—Cl1—O1109.60 (13)H10A—C10—H10C109.5
O3—Cl1—O4109.09 (14)H10B—C10—H10C109.5
O2—Cl1—O4109.61 (13)P1—C11—H11A109.5
O1—Cl1—O4108.41 (14)P1—C11—H11B109.5
O7—Cl2—O5111.9 (4)H11A—C11—H11B109.5
O7—Cl2—O6106.6 (3)P1—C11—H11C109.5
O5—Cl2—O6111.0 (2)H11A—C11—H11C109.5
O7—Cl2—O8105.4 (3)H11B—C11—H11C109.5
O5—Cl2—O8110.3 (2)N2—C12—C13123.4 (2)
O6—Cl2—O8111.5 (2)N2—C12—H12118.3
C8—P1—C11105.12 (13)C13—C12—H12118.3
C8—P1—C10105.93 (12)C14—C13—C12119.8 (3)
C11—P1—C10106.05 (15)C14—C13—H13120.1
C8—P1—Ni199.90 (9)C12—C13—H13120.1
C11—P1—Ni1117.20 (10)C13—C14—C15119.2 (2)
C10—P1—Ni1120.75 (10)C13—C14—H14120.4
C22—P2—C21105.52 (14)C15—C14—H14120.4
C22—P2—C19106.08 (12)C14—C15—C16123.7 (2)
C21—P2—C19104.32 (12)C14—C15—C20117.7 (2)
C22—P2—Ni1118.50 (10)C16—C15—C20118.6 (2)
C21—P2—Ni1120.92 (10)C17—C16—C15120.6 (2)
C19—P2—Ni199.35 (8)C17—C16—H16119.7
C1—N1—C9117.8 (2)C15—C16—H16119.7
C1—N1—Ni1123.61 (18)C16—C17—C18120.3 (2)
C9—N1—Ni1118.53 (17)C16—C17—H17119.8
C12—N2—C20117.4 (2)C18—C17—H17119.8
C12—N2—Ni1124.45 (18)C19—C18—C17120.6 (3)
C20—N2—Ni1118.18 (16)C19—C18—H18119.7
O9—N3—O10123.2 (3)C17—C18—H18119.7
O9—N3—C23118.2 (3)C18—C19—C20119.8 (2)
O10—N3—C23118.6 (3)C18—C19—P2126.2 (2)
N1—C1—C2123.0 (3)C20—C19—P2113.68 (18)
N1—C1—H1118.5N2—C20—C19118.0 (2)
C2—C1—H1118.5N2—C20—C15122.1 (2)
C3—C2—C1119.5 (3)C19—C20—C15119.8 (2)
C3—C2—H2120.3P2—C21—H21A109.5
C1—C2—H2120.3P2—C21—H21B109.5
C2—C3—C4119.3 (2)H21A—C21—H21B109.5
C2—C3—H3120.3P2—C21—H21C109.5
C4—C3—H3120.3H21A—C21—H21C109.5
C9—C4—C3118.1 (3)H21B—C21—H21C109.5
C9—C4—C5117.9 (3)P2—C22—H22A109.5
C3—C4—C5123.9 (3)P2—C22—H22B109.5
C6—C5—C4121.1 (3)H22A—C22—H22B109.5
C6—C5—H5119.4P2—C22—H22C109.5
C4—C5—H5119.4H22A—C22—H22C109.5
C5—C6—C7120.4 (3)H22B—C22—H22C109.5
C5—C6—H6119.8N3—C23—H23A109.5
C7—C6—H6119.8N3—C23—H23B109.5
C8—C7—C6119.7 (3)H23A—C23—H23B109.5
C8—C7—H7120.1N3—C23—H23C109.5
C6—C7—H7120.1H23A—C23—H23C109.5
C7—C8—C9120.2 (2)H23B—C23—H23C109.5
C7—C8—P1125.8 (2)
C9—N1—C1—C25.1 (4)C20—N2—C12—C133.7 (4)
Ni1—N1—C1—C2173.7 (2)Ni1—N2—C12—C13175.97 (19)
N1—C1—C2—C31.3 (4)N2—C12—C13—C142.1 (4)
C1—C2—C3—C44.8 (4)C12—C13—C14—C154.3 (4)
C2—C3—C4—C91.8 (4)C13—C14—C15—C16177.8 (3)
C2—C3—C4—C5175.6 (3)C13—C14—C15—C200.9 (4)
C9—C4—C5—C63.4 (4)C14—C15—C16—C17175.8 (3)
C3—C4—C5—C6173.9 (3)C20—C15—C16—C172.8 (4)
C4—C5—C6—C70.5 (4)C15—C16—C17—C182.4 (4)
C5—C6—C7—C83.0 (4)C16—C17—C18—C194.4 (4)
C6—C7—C8—C91.5 (4)C17—C18—C19—C201.2 (4)
C6—C7—C8—P1177.4 (2)C17—C18—C19—P2174.3 (2)
C11—P1—C8—C747.4 (3)C22—P2—C19—C1844.2 (3)
C10—P1—C8—C764.6 (3)C21—P2—C19—C1867.0 (3)
Ni1—P1—C8—C7169.2 (2)Ni1—P2—C19—C18167.6 (2)
C11—P1—C8—C9136.4 (2)C22—P2—C19—C20142.27 (19)
C10—P1—C8—C9111.6 (2)C21—P2—C19—C20106.6 (2)
Ni1—P1—C8—C914.54 (19)Ni1—P2—C19—C2018.86 (19)
C1—N1—C9—C48.2 (4)C12—N2—C20—C19170.6 (2)
Ni1—N1—C9—C4170.70 (18)Ni1—N2—C20—C199.7 (3)
C1—N1—C9—C8169.3 (2)C12—N2—C20—C157.3 (3)
Ni1—N1—C9—C811.8 (3)Ni1—N2—C20—C15172.42 (18)
C3—C4—C9—N14.8 (4)C18—C19—C20—N2178.1 (2)
C5—C4—C9—N1177.7 (2)P2—C19—C20—N28.0 (3)
C3—C4—C9—C8172.6 (2)C18—C19—C20—C154.0 (4)
C5—C4—C9—C84.9 (4)P2—C19—C20—C15169.96 (18)
C7—C8—C9—N1179.9 (2)C14—C15—C20—N25.1 (4)
P1—C8—C9—N13.6 (3)C16—C15—C20—N2176.2 (2)
C7—C8—C9—C42.6 (4)C14—C15—C20—C19172.7 (2)
P1—C8—C9—C4173.89 (19)C16—C15—C20—C196.0 (4)
(SP-4-2)-cis-Bis[8-(dimethylphosphanyl)quinoline-κ2N,P]platinum(II) bis(tetrafluoroborate) acetonitrile monosolvate (2) top
Crystal data top
[Pt(C11H12NP)2](BF4)2·C2H3NF(000) = 1528
Mr = 788.13Dx = 1.882 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.9102 (3) ÅCell parameters from 31045 reflections
b = 21.0833 (5) Åθ = 3.1–27.5°
c = 16.7519 (4) ŵ = 5.23 mm1
β = 95.3931 (11)°T = 188 K
V = 2781.42 (15) Å3Platelet, colorless
Z = 40.30 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6350 independent reflections
Radiation source: fine-focus sealed tube5435 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1010
Tmin = 0.338, Tmax = 0.594k = 2727
43967 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0382P)2 + 9.8949P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6350 reflectionsΔρmax = 1.42 e Å3
366 parametersΔρmin = 1.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.64274 (2)0.17364 (2)0.20553 (2)0.02183 (7)
P10.50347 (15)0.24824 (5)0.26806 (7)0.0237 (2)
P20.80277 (15)0.23745 (6)0.13781 (7)0.0247 (2)
F11.2369 (6)0.1256 (2)0.0823 (5)0.136 (3)
F2A1.5089 (15)0.1511 (5)0.0808 (7)0.089 (2)0.573 (10)
F3A1.4191 (13)0.0455 (4)0.0691 (7)0.089 (2)0.573 (10)
F4A1.3835 (12)0.1067 (4)0.1779 (6)0.089 (2)0.573 (10)
F2B1.4392 (16)0.1049 (8)0.0213 (10)0.121 (4)0.427 (10)
F3B1.4100 (18)0.0423 (9)0.1216 (12)0.121 (4)0.427 (10)
F4B1.520 (2)0.1430 (9)0.1262 (12)0.121 (4)0.427 (10)
F50.0397 (6)0.3460 (3)0.0167 (5)0.115 (2)
F60.2266 (7)0.4071 (2)0.0644 (3)0.0883 (15)
F70.1968 (10)0.4023 (3)0.0675 (3)0.126 (3)
F80.3139 (5)0.31996 (17)0.0067 (2)0.0566 (10)
N10.4883 (5)0.11161 (18)0.2672 (2)0.0256 (8)
N20.7738 (5)0.10240 (18)0.1453 (2)0.0270 (8)
N30.8437 (7)0.0443 (3)0.3316 (4)0.0521 (13)
C10.5191 (7)0.0503 (2)0.2795 (3)0.0342 (11)
H10.62850.03430.27140.041*
C20.3965 (8)0.0078 (3)0.3041 (3)0.0411 (13)
H20.42190.03610.31030.049*
C30.2415 (7)0.0304 (3)0.3190 (3)0.0395 (12)
H30.15470.00200.33170.047*
C40.2103 (6)0.0963 (2)0.3155 (3)0.0310 (10)
C50.0599 (6)0.1251 (3)0.3391 (3)0.0350 (11)
H50.03270.09920.35120.042*
C60.0477 (7)0.1893 (3)0.3444 (3)0.0346 (11)
H60.05190.20770.36200.042*
C70.1812 (6)0.2289 (2)0.3239 (3)0.0307 (10)
H70.17270.27360.32980.037*
C80.3228 (6)0.2031 (2)0.2955 (3)0.0253 (9)
C90.3391 (6)0.1368 (2)0.2909 (3)0.0254 (9)
C100.6062 (6)0.2807 (2)0.3599 (3)0.0328 (11)
H10A0.65480.24610.39380.039*
H10B0.69680.30970.34740.039*
H10C0.52270.30380.38840.039*
C110.4207 (7)0.3163 (2)0.2120 (3)0.0353 (11)
H11A0.36250.30230.16090.042*
H11B0.34030.33890.24290.042*
H11C0.51440.34470.20190.042*
C120.7232 (7)0.0429 (2)0.1333 (3)0.0333 (11)
H120.60880.03250.14050.040*
C130.8316 (7)0.0059 (2)0.1104 (3)0.0380 (12)
H130.79110.04820.10440.046*
C140.9946 (7)0.0083 (3)0.0970 (3)0.0392 (12)
H141.07170.02440.08610.047*
C151.0478 (6)0.0725 (2)0.0996 (3)0.0311 (10)
C161.2074 (6)0.0932 (3)0.0757 (3)0.0392 (12)
H161.28970.06280.06320.047*
C171.2421 (7)0.1564 (3)0.0707 (3)0.0409 (13)
H171.34720.16960.05300.049*
C181.1258 (6)0.2021 (3)0.0913 (3)0.0350 (11)
H181.15180.24590.08650.042*
C190.9729 (6)0.1843 (2)0.1186 (3)0.0268 (10)
C200.9326 (6)0.1191 (2)0.1230 (3)0.0256 (9)
C210.8949 (7)0.3084 (2)0.1834 (3)0.0349 (11)
H21A0.80430.33790.19440.042*
H21B0.96170.29740.23380.042*
H21C0.96880.32840.14690.042*
C220.7056 (7)0.2620 (3)0.0406 (3)0.0354 (11)
H22A0.65270.22520.01240.042*
H22B0.61890.29420.04760.042*
H22C0.79260.27980.00910.042*
C230.8162 (8)0.0480 (3)0.3952 (4)0.0437 (13)
C240.7834 (13)0.0553 (4)0.4779 (4)0.078 (2)
H24A0.77170.01340.50210.094*
H24B0.87810.07800.50710.094*
H24C0.67830.07940.48080.094*
B11.3953 (8)0.1035 (3)0.0979 (4)0.0361 (13)
B20.2039 (8)0.3716 (3)0.0001 (4)0.0370 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02079 (9)0.02222 (10)0.02284 (10)0.00020 (6)0.00396 (6)0.00096 (7)
P10.0234 (6)0.0233 (5)0.0243 (6)0.0018 (4)0.0025 (4)0.0014 (5)
P20.0221 (6)0.0261 (6)0.0258 (6)0.0021 (4)0.0023 (4)0.0032 (5)
F10.040 (2)0.051 (3)0.317 (10)0.003 (2)0.017 (4)0.009 (4)
F2A0.104 (4)0.057 (3)0.106 (5)0.009 (3)0.014 (4)0.015 (3)
F3A0.104 (4)0.057 (3)0.106 (5)0.009 (3)0.014 (4)0.015 (3)
F4A0.104 (4)0.057 (3)0.106 (5)0.009 (3)0.014 (4)0.015 (3)
F2B0.071 (5)0.136 (8)0.158 (10)0.024 (5)0.031 (6)0.015 (7)
F3B0.071 (5)0.136 (8)0.158 (10)0.024 (5)0.031 (6)0.015 (7)
F4B0.071 (5)0.136 (8)0.158 (10)0.024 (5)0.031 (6)0.015 (7)
F50.052 (3)0.081 (3)0.215 (7)0.001 (2)0.032 (4)0.012 (4)
F60.108 (4)0.087 (3)0.075 (3)0.032 (3)0.037 (3)0.040 (3)
F70.207 (7)0.110 (4)0.057 (3)0.077 (5)0.008 (4)0.027 (3)
F80.053 (2)0.054 (2)0.062 (2)0.0172 (17)0.0060 (18)0.0040 (18)
N10.0241 (19)0.0264 (19)0.0269 (19)0.0009 (15)0.0066 (15)0.0044 (16)
N20.028 (2)0.027 (2)0.0252 (19)0.0004 (16)0.0028 (16)0.0020 (16)
N30.052 (3)0.049 (3)0.057 (3)0.003 (2)0.013 (3)0.004 (3)
C10.040 (3)0.028 (2)0.037 (3)0.004 (2)0.012 (2)0.004 (2)
C20.058 (4)0.026 (3)0.042 (3)0.000 (2)0.018 (3)0.006 (2)
C30.045 (3)0.034 (3)0.042 (3)0.010 (2)0.014 (2)0.003 (2)
C40.030 (2)0.037 (3)0.026 (2)0.005 (2)0.0045 (19)0.000 (2)
C50.025 (2)0.049 (3)0.032 (3)0.003 (2)0.007 (2)0.004 (2)
C60.030 (3)0.047 (3)0.028 (2)0.009 (2)0.006 (2)0.005 (2)
C70.030 (2)0.038 (3)0.025 (2)0.006 (2)0.0046 (19)0.001 (2)
C80.026 (2)0.031 (2)0.019 (2)0.0008 (18)0.0018 (17)0.0029 (18)
C90.026 (2)0.029 (2)0.022 (2)0.0007 (18)0.0033 (18)0.0014 (18)
C100.032 (3)0.036 (3)0.030 (2)0.000 (2)0.001 (2)0.007 (2)
C110.033 (3)0.031 (3)0.043 (3)0.004 (2)0.006 (2)0.009 (2)
C120.035 (3)0.030 (2)0.036 (3)0.004 (2)0.010 (2)0.004 (2)
C130.052 (3)0.025 (2)0.038 (3)0.000 (2)0.013 (2)0.004 (2)
C140.047 (3)0.038 (3)0.033 (3)0.013 (2)0.007 (2)0.002 (2)
C150.029 (2)0.039 (3)0.025 (2)0.006 (2)0.0046 (19)0.003 (2)
C160.026 (3)0.057 (3)0.034 (3)0.009 (2)0.004 (2)0.004 (3)
C170.026 (3)0.062 (4)0.035 (3)0.007 (2)0.007 (2)0.010 (3)
C180.028 (2)0.045 (3)0.033 (3)0.007 (2)0.008 (2)0.003 (2)
C190.024 (2)0.033 (2)0.024 (2)0.0016 (18)0.0028 (18)0.0035 (19)
C200.022 (2)0.031 (2)0.023 (2)0.0034 (18)0.0017 (17)0.0004 (19)
C210.030 (3)0.029 (2)0.046 (3)0.004 (2)0.001 (2)0.002 (2)
C220.034 (3)0.043 (3)0.029 (2)0.001 (2)0.000 (2)0.007 (2)
C230.044 (3)0.030 (3)0.057 (4)0.006 (2)0.005 (3)0.001 (3)
C240.125 (7)0.057 (4)0.054 (4)0.025 (5)0.020 (5)0.005 (4)
B10.038 (3)0.028 (3)0.044 (4)0.003 (2)0.010 (3)0.002 (3)
B20.043 (3)0.034 (3)0.036 (3)0.005 (3)0.014 (3)0.001 (3)
Geometric parameters (Å, º) top
Pt1—N12.123 (4)C6—C71.414 (7)
Pt1—N22.132 (4)C6—H60.9500
Pt1—P22.2293 (12)C7—C81.371 (6)
Pt1—P12.2365 (12)C7—H70.9500
P1—C111.804 (5)C8—C91.405 (7)
P1—C101.805 (5)C10—H10A0.9800
P1—C81.812 (5)C10—H10B0.9800
P2—C211.802 (5)C10—H10C0.9800
P2—C191.804 (5)C11—H11A0.9800
P2—C221.810 (5)C11—H11B0.9800
F1—B11.340 (8)C11—H11C0.9800
F2A—B11.395 (13)C12—C131.416 (7)
F3A—B11.334 (11)C12—H120.9500
F4A—B11.353 (11)C13—C141.363 (8)
F2B—B11.361 (17)C13—H130.9500
F3B—B11.351 (18)C14—C151.416 (8)
F4B—B11.35 (2)C14—H140.9500
F5—B21.410 (8)C15—C201.421 (6)
F6—B21.341 (7)C15—C161.428 (7)
F7—B21.309 (8)C16—C171.366 (8)
F8—B21.391 (7)C16—H160.9500
N1—C11.329 (6)C17—C181.398 (8)
N1—C91.386 (6)C17—H170.9500
N2—C121.326 (6)C18—C191.384 (7)
N2—C201.389 (6)C18—H180.9500
N3—C231.110 (8)C19—C201.414 (6)
C1—C21.409 (7)C21—H21A0.9800
C1—H10.9500C21—H21B0.9800
C2—C31.360 (8)C21—H21C0.9800
C2—H20.9500C22—H22A0.9800
C3—C41.410 (7)C22—H22B0.9800
C3—H30.9500C22—H22C0.9800
C4—C91.421 (7)C23—C241.441 (9)
C4—C51.424 (7)C24—H24A0.9800
C5—C61.361 (8)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
N1—Pt1—N297.13 (15)N2—C12—H12118.4
N1—Pt1—P2178.51 (11)C13—C12—H12118.4
N2—Pt1—P281.93 (11)C14—C13—C12119.4 (5)
N1—Pt1—P182.76 (11)C14—C13—H13120.3
N2—Pt1—P1179.55 (11)C12—C13—H13120.3
P2—Pt1—P198.17 (4)C13—C14—C15119.2 (5)
C11—P1—C10104.7 (3)C13—C14—H14120.4
C11—P1—C8107.1 (2)C15—C14—H14120.4
C10—P1—C8106.6 (2)C14—C15—C20118.3 (5)
C11—P1—Pt1119.12 (19)C14—C15—C16123.4 (5)
C10—P1—Pt1117.60 (17)C20—C15—C16118.2 (5)
C8—P1—Pt1100.60 (16)C17—C16—C15120.2 (5)
C21—P2—C19108.2 (2)C17—C16—H16119.9
C21—P2—C22105.4 (3)C15—C16—H16119.9
C19—P2—C22106.1 (2)C16—C17—C18121.2 (5)
C21—P2—Pt1120.76 (19)C16—C17—H17119.4
C19—P2—Pt1100.65 (16)C18—C17—H17119.4
C22—P2—Pt1114.64 (18)C19—C18—C17120.6 (5)
C1—N1—C9118.5 (4)C19—C18—H18119.7
C1—N1—Pt1124.7 (3)C17—C18—H18119.7
C9—N1—Pt1116.6 (3)C18—C19—C20119.3 (4)
C12—N2—C20117.8 (4)C18—C19—P2125.4 (4)
C12—N2—Pt1125.8 (3)C20—C19—P2114.7 (3)
C20—N2—Pt1116.2 (3)N2—C20—C19118.3 (4)
N1—C1—C2122.9 (5)N2—C20—C15121.2 (4)
N1—C1—H1118.6C19—C20—C15120.3 (4)
C2—C1—H1118.6P2—C21—H21A109.5
C3—C2—C1119.2 (5)P2—C21—H21B109.5
C3—C2—H2120.4H21A—C21—H21B109.5
C1—C2—H2120.4P2—C21—H21C109.5
C2—C3—C4119.7 (5)H21A—C21—H21C109.5
C2—C3—H3120.2H21B—C21—H21C109.5
C4—C3—H3120.2P2—C22—H22A109.5
C3—C4—C9118.5 (5)P2—C22—H22B109.5
C3—C4—C5123.8 (5)H22A—C22—H22B109.5
C9—C4—C5117.6 (5)P2—C22—H22C109.5
C6—C5—C4120.6 (5)H22A—C22—H22C109.5
C6—C5—H5119.7H22B—C22—H22C109.5
C4—C5—H5119.7N3—C23—C24177.7 (7)
C5—C6—C7120.8 (5)C23—C24—H24A109.5
C5—C6—H6119.6C23—C24—H24B109.5
C7—C6—H6119.6H24A—C24—H24B109.5
C8—C7—C6120.2 (5)C23—C24—H24C109.5
C8—C7—H7119.9H24A—C24—H24C109.5
C6—C7—H7119.9H24B—C24—H24C109.5
C7—C8—C9119.8 (4)F3A—B1—F1114.2 (7)
C7—C8—P1124.7 (4)F1—B1—F4B119.8 (9)
C9—C8—P1115.5 (3)F1—B1—F3B116.3 (8)
N1—C9—C8118.8 (4)F4B—B1—F3B116.6 (12)
N1—C9—C4120.3 (4)F3A—B1—F4A115.4 (8)
C8—C9—C4120.7 (4)F1—B1—F4A91.4 (7)
P1—C10—H10A109.5F1—B1—F2B97.2 (8)
P1—C10—H10B109.5F4B—B1—F2B94.3 (11)
H10A—C10—H10B109.5F3B—B1—F2B106.0 (11)
P1—C10—H10C109.5F3A—B1—F2A118.0 (8)
H10A—C10—H10C109.5F1—B1—F2A108.5 (7)
H10B—C10—H10C109.5F4A—B1—F2A105.8 (7)
P1—C11—H11A109.5F7—B2—F6116.0 (6)
P1—C11—H11B109.5F7—B2—F8113.3 (6)
H11A—C11—H11B109.5F6—B2—F8111.8 (5)
P1—C11—H11C109.5F7—B2—F5104.4 (6)
H11A—C11—H11C109.5F6—B2—F5104.1 (6)
H11B—C11—H11C109.5F8—B2—F5105.9 (5)
N2—C12—C13123.2 (5)
C9—N1—C1—C210.0 (7)C20—N2—C12—C139.6 (7)
Pt1—N1—C1—C2165.3 (4)Pt1—N2—C12—C13164.6 (4)
N1—C1—C2—C32.5 (8)N2—C12—C13—C142.3 (8)
C1—C2—C3—C44.8 (8)C12—C13—C14—C155.4 (8)
C2—C3—C4—C94.3 (8)C13—C14—C15—C205.4 (7)
C2—C3—C4—C5172.4 (5)C13—C14—C15—C16171.1 (5)
C3—C4—C5—C6171.1 (5)C14—C15—C16—C17172.3 (5)
C9—C4—C5—C65.6 (7)C20—C15—C16—C174.2 (7)
C4—C5—C6—C72.3 (8)C15—C16—C17—C182.2 (8)
C5—C6—C7—C82.4 (7)C16—C17—C18—C191.1 (8)
C6—C7—C8—C93.5 (7)C17—C18—C19—C202.1 (7)
C6—C7—C8—P1179.3 (4)C17—C18—C19—P2173.6 (4)
C11—P1—C8—C743.4 (5)C21—P2—C19—C1839.4 (5)
C10—P1—C8—C768.3 (4)C22—P2—C19—C1873.3 (5)
Pt1—P1—C8—C7168.5 (4)Pt1—P2—C19—C18167.0 (4)
C11—P1—C8—C9140.6 (4)C21—P2—C19—C20148.8 (4)
C10—P1—C8—C9107.7 (4)C22—P2—C19—C2098.5 (4)
Pt1—P1—C8—C915.5 (3)Pt1—P2—C19—C2021.2 (4)
C1—N1—C9—C8165.5 (4)C12—N2—C20—C19166.2 (4)
Pt1—N1—C9—C818.9 (5)Pt1—N2—C20—C1919.0 (5)
C1—N1—C9—C410.1 (7)C12—N2—C20—C159.3 (7)
Pt1—N1—C9—C4165.5 (3)Pt1—N2—C20—C15165.4 (3)
C7—C8—C9—N1175.6 (4)C18—C19—C20—N2175.7 (4)
P1—C8—C9—N10.6 (5)P2—C19—C20—N23.3 (6)
C7—C8—C9—C40.1 (7)C18—C19—C20—C150.1 (7)
P1—C8—C9—C4176.2 (3)P2—C19—C20—C15172.3 (4)
C3—C4—C9—N13.1 (7)C14—C15—C20—N22.0 (7)
C5—C4—C9—N1179.9 (4)C16—C15—C20—N2178.6 (4)
C3—C4—C9—C8172.4 (5)C14—C15—C20—C19173.5 (4)
C5—C4—C9—C84.6 (7)C16—C15—C20—C193.2 (7)
 

Funding information

This work was partly supported by JSPS KAKENHI Grant No. 18 K05146.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606–1618.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCrystalMaker Software (2017). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39–47.  Web of Science CSD CrossRef Google Scholar
First citationHopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300–1310.  Web of Science CSD CrossRef CAS Google Scholar
First citationMori, M., Sunatsuki, Y. & Suzuki, T. (2020). Manuscript to be submitted: CCDC No. 2027242–2027255.  Google Scholar
First citationMori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSalem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581–586.  CrossRef CAS Web of Science Google Scholar
First citationScattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210–5217.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Kashiwabara, K. & Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 1619–1626.  CSD CrossRef CAS Web of Science Google Scholar
First citationSuzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S., Takagi, H.-D. & Kato, M. (2003). Inorg. Chem. 42, 785–795.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSuzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981–3987.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds