research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic characterization of 3-chloro-5-fluoro­salicyl­aldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by S. Parkin, University of Kentucky, USA (Received 23 October 2020; accepted 29 October 2020; online 3 November 2020)

The title compound (systematic name: 3-chloro-5-fluoro-2-hy­droxy­benzaldehyde), C7H4ClFO2, is a dihalogenated salicyl­aldehyde derivative that has been studied for its anti­bacterial characteristics. The salicyl­aldehyde engages in intra­molecular hydrogen bonding with an O—H⋯O distance of 2.6231 (19) Å while the mol­ecules pack together via weak inter­molecular C—H⋯O, C—H⋯F and F⋯O inter­actions and offset face-to-face π-stacking.

1. Chemical context

Salicyl­aldehyde and its derivatives, including the title compound 3-chloro-5-fluoro-2-hy­droxy­benzaldehyde, (I)[link], play an important role in the synthesis of novel anti­microbial complexes (Bozkır et al., 2012[Bozkır, E., Sarı, N. & Öğütcü, H. (2012). J. Inorg. Organomet. Polym. 22, 1146-1155.]; Dahlgren et al., 2010[Dahlgren, M. K., Zetterström, C. E., Gylfe, Å., Linusson, A. & Elofsson, M. (2010). Bioorg. Med. Chem. 18, 2686-2703.]; Sarı et al., 2013[Sarı, N., Pişkin, N., Öğütcü, H. & Kurnaz, N. (2013). Med. Chem. Res. 22, 580-587.]). The title compound, commonly known as 3-chloro-5-fluoro­salicyl­aldehyde, may be synthesized by the formyl­ation of 2-chloro-4-fluoro­phenol with chloro­form through reflux with concentrated NaOH(aq) (Balko et al., 2007[Balko, T. W., Schmitzer, P. R., Daeuble, J. F., Yerkes, C. N. & Siddall, T. L. (2007). Patent WO2007-US994, 1-117.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (Fig. 1[link]) is planar, with an r.m.s. deviation from the plane of all non-hydrogen atoms of 0.0135 Å. The mol­ecule engages in intra­molecular hydrogen bonding between the phenol hydrogen atom and formyl functional group oxygen with an O1⋯O2 distance of 2.6231 (19) Å characterizing the O1—H1⋯O2 inter­action. The C3—Cl and C5—F bond lengths were found to be 1.7334 (16) and 1.3529 (19) Å, respectively.

[Figure 1]
Figure 1
A view of 3-chloro-5-fluoro­salicyl­aldehyde, (I)[link], depicting the intra­molecular hydrogen bonding with the atom-numbering scheme. Dis­place­ment ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The mol­ecules pack together in the solid state with weak inter­molecular C—H⋯O, C—H⋯F and F⋯O inter­actions and an offset face-to-face π-stacking geometrical relationship. Mol­ecules of 3-chloro-5-fluoro­salicyl­aldehyde form one-dimensional π-stacking chains (Fig. 2[link]), which are characterized by a ring centroid-to-centroid distance of 3.7154 (3) Å, a centroid-to-plane distance of 3.3989 (8) Å, and a ring-offset slippage of 1.501 (2) Å. These π-stacking chains are linked together to form the three-dimensional structure through weak inter­molecular C—H⋯O and C—H⋯F contacts (Table 1[link] and Fig. 3[link]). Specifically, O1—H1⋯Fi, C4—H4A⋯O2ii, and C6—H6A⋯O1iii inter­molecular inter­actions (symmetry codes as defined in Table 1[link]), with donor–acceptor distances of 3.0101 (18), 3.254 (2) and 3.377 (2) Å, respectively. In addition, an O2⋯Fi contact with a distance of 2.880 (2) Å is observed. Notably, there are no close halogen–halogen inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Fi 0.77 (3) 2.47 (3) 3.0101 (18) 128 (2)
O1—H1⋯O2 0.77 (3) 1.93 (3) 2.6231 (19) 150 (3)
C4—H4A⋯O2ii 0.95 2.37 3.254 (2) 155
C6—H6A⋯O1iii 0.95 2.55 3.377 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the inter­molecular π-stacking in 3-chloro-5-fluoro­salicyl­aldehyde, (I)[link], with the thick line indicating a centroid-to-centroid relationship.
[Figure 3]
Figure 3
A view of the packing and weak inter­molecular C—H⋯O, C—H⋯F and F⋯O inter­actions in 3-chloro-5-fluoro­salicyl­aldehyde, (I)[link]. Symmetry codes are defined in Table 1[link].

4. Database survey

The Cambridge Structural Database (Version 5.40, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains many halogenated benzene structures and relatively few halogenated salicyl­aldehyde structures. Literature aryl C—Cl and C—F bond lengths, as seen in halogenated benzene crystal structures, are similar to those seen in the title compound. For example, the C—Cl distances in 1,2- and 1,3-di­chloro­benzene range between 1.731 (3) and 1.756 (3) Å (ABUMIT and ABUMOZ; Boese et al., 2001[Boese, R., Kirchner, M. T., Dunitz, J. D., Filippini, G. & Gavezzotti, A. (2001). Helv. Chim. Acta, 84, 1561-1577.]), while the C—F distances in 1,3-di­fluoro­benzene are found to be between 1.3486 (14) and 1.3553 (13) Å (PUGDAX; Kirchner et al., 2009[Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2009). Acta Cryst. E65, o2668-o2669.]). Related salicyl­aldehyde structures that differ in the number of halogen atoms include unsubstituted salicyl­aldehyde itself (YADJOE; Kirchner et al., 2011[Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387-o390.]), 5-chloro­salicyl­aldehyde (RAJGOA01; Aitken et al., 2013[Aitken, R. A., Gidlow, A. L., Ramsewak, R. S. & Slawin, A. M. (2013). J. Chem. Crystallogr. 43, 65-69.]; RAJGOA, Jin et al., 2011[Jin, S., Lin, F., Yu, Y. & He, H. (2011). Z. Kristallogr. New. Cryst. Struct. 226, 601-602.]), and 3,5-di­chloro­salicyl­aldehyde (MIXYEY; Azizul & Ng, 2008[Azizul, I. & Ng, S. W. (2008). Acta Cryst. E64, o917.]). As with the title compound, each of these structures exhibits strong intra­molecular hydrogen bonding between the phenol hydrogen atom and formyl oxygen atom.

5. Synthesis and crystallization

3-Chloro-5-fluoro­salicyl­aldehyde (I, 97%) was purchased from Aldrich Chemical Company, USA, and was used as received.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bonded to carbon were included in calculated positions and refined using a riding model with C—H = 0.95 and Uiso(H) = 1.2Ueq(C) for the aryl H atoms. The position of the phenolic hydrogen atom was found in the difference map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C7H4ClFO2
Mr 174.55
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 125
a, b, c (Å) 14.2730 (13), 12.7102 (12), 3.7154 (3)
V3) 674.02 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.45 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.87, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 16131, 2052, 1985
Rint 0.030
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.066, 1.07
No. of reflections 2052
No. of parameters 104
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.19
Absolute structure Flack x determined using 837 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (2)
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

7. Analytical Data

1H NMR (Bruker Avance III 400 MHz, CDCl3): δ 7.23 (dd, 1H, Car­ylH, Jmeta = 3.0 Hz, JH–F = 7.2 Hz), 7.42 (dd, 1H, Car­ylH, Jmeta = 3.0 Hz, JH–F = 7.8 Hz), 9.86 (s, 1H, OH), 11.21 (s, 1H, C(=O)H). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 116.90 (d, Car­ylH, JC–F = 22.6 Hz), 120.24 (d, Car­yl, JC–F = 6.6 Hz), 123.15 (d, Car­yl, JC–F = 9.1 Hz), 124.72 (d, Car­ylH, JC–F = 26.4 Hz), 153.85 (d, Car­yl, JC–F = 2.2 Hz), 154.85 (d, Car­ylF, JC–F = 244.0 Hz), 194.97 (C(=O)H). 19F NMR (19F{1H}, 376.5 MHz, CDCl3): δ −121.50. IR (Thermo Nicolet iS50, ATR, cm−1) : 3081 (m br, O—H & Car­yl—H str), 2859 [w, C(=O)—H fermi doublet str], 2733 [w, C(=O)—H fermi doublet str], 1803 (w), 1754 (w), 1664 (s, C=O str), 1623 (m), 1583 (w), 1524 (w), 1462 (m), 1436 (s), 1373 (m), 1351 (w), 1294 (s), 1238 (s), 1183 (s), 1119 (s), 982 (s), 902 (m), 894 (m), 875 (s), 802 (s), 727 (s), 708 (s), 578 (m), 530 (s), 493 (s), 458 (m). GC/MS (Agilent MS 5975/GC 7890): M+ = 174 (calc. exact mass 173.99).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

3-Chloro-5-fluoro-2-hydroxybenzaldehyde top
Crystal data top
C7H4ClFO2Dx = 1.720 Mg m3
Mr = 174.55Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9931 reflections
a = 14.2730 (13) Åθ = 2.9–30.5°
b = 12.7102 (12) ŵ = 0.52 mm1
c = 3.7154 (3) ÅT = 125 K
V = 674.02 (10) Å3Needle, colourless
Z = 40.45 × 0.10 × 0.02 mm
F(000) = 352
Data collection top
Bruker APEXII CCD
diffractometer
2052 independent reflections
Radiation source: fine-focus sealed tube1985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.2°
φ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1817
Tmin = 0.87, Tmax = 0.99l = 55
16131 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.1224P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2052 reflectionsΔρmax = 0.34 e Å3
104 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack x determined using 837 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.07 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.43892 (3)0.11149 (3)0.78847 (17)0.02049 (11)
F0.41791 (7)0.50784 (8)0.7158 (3)0.0246 (3)
O10.25167 (10)0.12611 (10)0.4770 (4)0.0204 (3)
H10.202 (2)0.137 (2)0.412 (8)0.036 (8)*
O20.11001 (9)0.23221 (11)0.2114 (4)0.0256 (3)
C10.24600 (12)0.31544 (12)0.4365 (4)0.0143 (3)
C20.29149 (11)0.22104 (12)0.5277 (4)0.0142 (3)
C30.38146 (11)0.22705 (12)0.6760 (4)0.0141 (3)
C40.42463 (11)0.32301 (13)0.7379 (4)0.0157 (3)
H4A0.4856390.3262650.83950.019*
C50.37672 (11)0.41404 (13)0.6482 (5)0.0160 (3)
C60.28892 (11)0.41307 (13)0.4973 (4)0.0157 (3)
H6A0.2580840.4768160.4357520.019*
C70.15263 (10)0.31310 (13)0.2738 (6)0.0186 (3)
H7A0.1237910.3781340.2137670.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02085 (18)0.01654 (18)0.02407 (19)0.00416 (13)0.00540 (17)0.00218 (18)
F0.0206 (5)0.0149 (5)0.0384 (7)0.0046 (4)0.0032 (5)0.0033 (5)
O10.0189 (6)0.0142 (6)0.0281 (7)0.0017 (5)0.0059 (5)0.0005 (5)
O20.0192 (5)0.0225 (6)0.0350 (9)0.0014 (5)0.0094 (6)0.0006 (5)
C10.0138 (7)0.0147 (7)0.0145 (6)0.0007 (5)0.0012 (5)0.0000 (6)
C20.0156 (7)0.0133 (7)0.0136 (6)0.0007 (5)0.0007 (6)0.0000 (6)
C30.0153 (7)0.0133 (7)0.0139 (6)0.0024 (5)0.0015 (5)0.0006 (5)
C40.0141 (6)0.0165 (7)0.0166 (8)0.0001 (5)0.0005 (6)0.0012 (6)
C50.0160 (7)0.0135 (7)0.0185 (7)0.0025 (6)0.0011 (6)0.0017 (6)
C60.0167 (7)0.0136 (7)0.0167 (7)0.0011 (6)0.0001 (6)0.0005 (6)
C70.0162 (7)0.0192 (7)0.0205 (7)0.0022 (5)0.0031 (7)0.0008 (8)
Geometric parameters (Å, º) top
Cl—C31.7334 (16)C2—C31.399 (2)
F—C51.3529 (19)C3—C41.386 (2)
O1—C21.3470 (19)C4—C51.385 (2)
O1—H10.77 (3)C4—H4A0.95
O2—C71.217 (2)C5—C61.373 (2)
C1—C61.402 (2)C6—H6A0.95
C1—C21.406 (2)C7—H7A0.95
C1—C71.464 (2)
C2—O1—H1106 (2)C5—C4—H4A120.8
C6—C1—C2120.99 (14)C3—C4—H4A120.8
C6—C1—C7118.83 (14)F—C5—C6118.71 (15)
C2—C1—C7120.18 (14)F—C5—C4118.49 (14)
O1—C2—C3119.41 (14)C6—C5—C4122.79 (15)
O1—C2—C1122.42 (14)C5—C6—C1118.19 (15)
C3—C2—C1118.17 (14)C5—C6—H6A120.9
C4—C3—C2121.43 (14)C1—C6—H6A120.9
C4—C3—Cl119.70 (12)O2—C7—C1123.44 (15)
C2—C3—Cl118.87 (12)O2—C7—H7A118.3
C5—C4—C3118.42 (15)C1—C7—H7A118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Fi0.77 (3)2.47 (3)3.0101 (18)128 (2)
O1—H1···O20.77 (3)1.93 (3)2.6231 (19)150 (3)
C4—H4A···O2ii0.952.373.254 (2)155
C6—H6A···O1iii0.952.553.377 (2)145
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z1/2.
 

Funding information

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grants Nos. 0521237 and 0911324 to JMT). We acknowledge the Salmon Fund and Olin College Fund of Vassar College for funding publication expenses.

References

First citationAitken, R. A., Gidlow, A. L., Ramsewak, R. S. & Slawin, A. M. (2013). J. Chem. Crystallogr. 43, 65–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationAzizul, I. & Ng, S. W. (2008). Acta Cryst. E64, o917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBalko, T. W., Schmitzer, P. R., Daeuble, J. F., Yerkes, C. N. & Siddall, T. L. (2007). Patent WO2007-US994, 1–117.  Google Scholar
First citationBoese, R., Kirchner, M. T., Dunitz, J. D., Filippini, G. & Gavezzotti, A. (2001). Helv. Chim. Acta, 84, 1561–1577.  CrossRef CAS Google Scholar
First citationBozkır, E., Sarı, N. & Öğütcü, H. (2012). J. Inorg. Organomet. Polym. 22, 1146–1155.  Google Scholar
First citationBruker (2017). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDahlgren, M. K., Zetterström, C. E., Gylfe, Å., Linusson, A. & Elofsson, M. (2010). Bioorg. Med. Chem. 18, 2686–2703.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, S., Lin, F., Yu, Y. & He, H. (2011). Z. Kristallogr. New. Cryst. Struct. 226, 601–602.  CAS Google Scholar
First citationKirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2009). Acta Cryst. E65, o2668–o2669.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387–o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSarı, N., Pişkin, N., Öğütcü, H. & Kurnaz, N. (2013). Med. Chem. Res. 22, 580–587.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds