research communications
Crystal structures and comparisons of potassium rare-earth molybdates KRE(MoO4)2 (RE = Tb, Dy, Ho, Er, Yb, and Lu)
aPacific Northwest National Laboratory, Richland, WA 99354, USA, and bDepartment of Civil and Environmental Engineering and Earth Sciences, University, of Notre Dame, Notre Dame, IN 46556, USA
*Correspondence e-mail: saehwa.chong@pnnl.gov
Six potassium rare-earth molybdates KRE(MoO4)2 (RE = Tb, Dy, Ho, Er, Yb, and Lu) were synthesized by flux-assisted growth in K2Mo3O10. The crystal structures were determined using single-crystal X-ray diffraction data. The synthesized molybdates crystallize with the orthorhombic Pbcn (No. 60). Trendlines for unit-cell parameters were calculated using data from the current study. The unit-cell parameters a and c increase linearly whereas b decreases with larger RE cations, based on crystal radii. The unit-cell volumes increase linearly and the densities decrease linearly with larger RE cations. The average distances between the RE cations and the nearest O atoms increase with larger cations whereas the average distances of Mo—O and K—O do not show specific trends.
Keywords: rare-earth molybdate; lanthanide molybdate; single-crystal XRD.
1. Chemical context
Rare-earth (RE) molybdates have been studied extensively because of their luminescent, magnetoelectric, and ferroelectric properties (Borchardt & Bierstedt, 1967; Axe et al., 1971; Pratap et al., 1987; Ponomarev et al., 1994; Shi et al., 1996; Kut'ko, 2005; Wang et al., 2007; Ponomarev & Zhukov, 2012). The RE molybdates of ARE(MoO4)2 (A = Li, Na, K, Rb, Cs, Ag) generally crystallize with the tetragonal I41/a with the scheelite (CaWO4) structure or the orthorhombic Pbcn (Wanklyn & Wondre, 1978; Hanuza & Fomitsev, 1980; Leask et al., 1981; Hanuza et al., 1994; Stedman et al., 1994; Shi et al., 1996; Voron'ko et al., 2004; Kut'ko, 2005; Wang et al., 2007; Mat'aš et al., 2010; Poperezhai et al., 2017). The ARE(MoO4)2 compounds having the I41/a have luminescent properties with high thermal and hydrolytic stability (Stedman et al., 1994; Shi et al., 1996; Voron'ko et al., 2004; Wang et al., 2007) whereas the compounds with the Pbcn are known for the structural by the Jahn–Teller effect (Kut'ko, 2005; Mat'aš et al., 2010; Kamenskyi et al., 2014; Poperezhai et al., 2017). Other well-known RE molybdates RE2(MoO4)3 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy) crystallize with different space groups including P21/c, C2/c, or P2m depending on the RE cations and the synthesis conditions (Brixner et al., 1979; Jeitschko, 1973; Ponomarev & Zhukov, 2012; Pratap et al., 1987); these phases exhibit magnetoelectric and ferroelectric properties (Borchardt & Bierstedt, 1967; Axe et al., 1971; Ponomarev et al., 1994; Ponomarev & Zhukov, 2012). The RE molybdate compounds are synthesized using flux-assisted or solid-state synthesis methods. Wanklyn & Wondre (1978) synthesized KRE(MoO4)2 (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu) compounds by the flux-assisted method using REOx, MoO3, and K2SO4 at 1000°C for 24 h. They reported that crystals containing RE = Tb → Lu crystallized in the Pbcn whereas RE = La and Pr crystallized in the I41/a and others were not defined (Wanklyn & Wondre, 1978). Shi et al. (1996) synthesized the AgRE(MoO4)2 (RE = Eu, Gd, Tb) compounds with a tetragonal scheelite-type structure by heating the stoichiometric mixtures of REOx, Ag2O, and MoO3 at 800°C for 50 h. Wang et al. (2007) synthesized the tetragonal AEu(MoO4)2 (A = Li, Na, K) compounds by heating a mixture of REOx, LiCO3, NaHCO3, K2CO3, and (NH4)6Mo7O24·4H2O at 550–750°C for 4 h. The RE2(MoO4)3 compounds were synthesized by heating a mixture of REOx and MoO3 at 900–1000°C (Borchardt & Bierstedt, 1967; Guzmán-Afonso et al., 2013).
2. Structural commentary
The title KRE(MoO4)2 compounds crystallized in the orthorhombic Pbcn and have alternating layers of [RE(MoO4)2]− and K+ ions (Fig. 1a). The [RE(MoO4)2]− layer contains chains formed by edge-sharing REO8 octahedra connected by MoO4 tetrahedra along the c-axis direction (Fig. 1b). The trendlines of the structural parameters were calculated using data from the current study. The unit-cell parameters of a and c increase while those of b decrease linearly with increasing size of the RE cations (Fig. 2). Although these trends are shown clearly, there are large deviations from the trendlines for some molybdates including Tb and Tm molybdates for unit-cell parameter a, and Tb and Yb for unit-cell parameter b. The unit-cell volume of the Yb compound also shows a large deviation. Compared to the structural parameters from the previous studies (PDF 00-050-1762 and PDF 00-052-1688) on the Yb compound, the cell length b is longer by ∼0.02 Å, and the unit-cell volume is larger by ∼2 Å3. The structural parameters in these previous studies are from powder samples whereas the data in this study are from single-crystal studies. These inconsistencies could be due to possible mixed valences of RE or non-stoichiometry of RE sites. However, the bond-valence calculations for all the KRE(MoO4)2 compounds show that the bond-valence sums of RE cations are close to 3 (Table 1). The average distances between the RE cations and neighboring O atoms increase with larger RE cations whereas there are no trends for <Mo—O> or <K—O> (Fig. 3). Further investigation should be done in the future to understand these deviations from the law. The unit-cell volumes increase linearly whereas the densities of the phases decrease linearly as the radius of the RE cations increases (Fig. 2).
|
3. Synthesis and crystallization
The single crystals of KRE(MoO4)2 were synthesized using Tb4O7 (Alfa Aesar, 99.9%), Dy2O3 (Alfa Aesar, 99.9%), Ho2O3 (Alfa Aesar, 99.9%), Er2O3 (Alfa Aesar, 99.9%), Yb2O3 (Alfa Aesar, 99.9%), Lu2O3 (Alfa Aesar, 99.9%), K2CO3 (Alfa Aesar, 99%), and MoO3 (Alfa Aesar, 99.5%). All the chemicals were used as received. First, K2Mo3O10 was synthesized using K2CO3 and MoO3 by heating at 520°C for 8 h as described in a previous study (Chong et al., 2020). The stoichiometric mixture of REOx and K2Mo3O10 was put into a Pt/10%Rh crucible with a lid and placed in a Thermolyne box furnace. The furnace was heated to 1150°C at 5°C min−1, dwelled for 10 h, cooled to 400°C at 5°C h−1 in air, and then shut off. The single crystals were recovered from the solidified after washing in an ultrasonic bath with deionized water and using vacuum filtration. In addition to the listed six crystals, KTm(MoO4)2 was synthesized similarly, but it was not reported in this study due to the unresolved residual electron densities during structural All the KRE(MoO4)2 crystals were plates (Fig. 4) with different colors (Fig. 5).
4. Refinement
Crystal data, data collection and structure . A hemisphere of data was collected on two crystals (RE = Ho, Yb) using a Bruker APEXII Quazar diffractometer equipped with a microsource tube emitting monochromated Mo Kα X-ray radiation and collected on a CCD detector. Data were collected for five crystals (RE = Dy, Er, Lu, Tb, Tm) with a Rigaku XtaLab Synergy diffractometer using a single microfocus Mo Kα X-ray radiation source in a sealed tube, equipped with a Hybrid Pixel (HyPix) Array detector and using an Oxford liquid-nitrogen Cryostream. For the Bruker datasets, APEX3 software (Bruker, 2014) was used for determining the and integrating the collected reflection data. Absorption corrections were applied with the SADABS software package (Krause et al., 2015). For the Rigaku datasets, the CrysAlis Pro software package was used for unit-cell determination and data integration (Rigaku OD, 2019). The numerical absorption correction was applied utilizing SCALE3 ABSPACK (Clark & Reid, 1995). All structures were solved by the intrinsic phasing method using SHELXT and refined with SHELXL (Sheldrick, 2015a,b) within the OLEX2 software package (Dolomanov et al., 2009).
details are summarized in Table 2Supporting information
https://doi.org/10.1107/S205698902001542X/ru2071sup1.cif
contains datablocks global, Tb_Molybdate, Dy_Molybdate, Ho_Molybdate, Er_Molybdate, Yb_Molybdate, Lu_Molybdate. DOI:Structure factors: contains datablock Tb_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Tb_Molybdatesup2.hkl
Structure factors: contains datablock Dy_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Dy_Molybdatesup3.hkl
Structure factors: contains datablock Ho_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Ho_Molybdatesup4.hkl
Structure factors: contains datablock Er_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Er_Molybdatesup5.hkl
Structure factors: contains datablock Yb_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Yb_Molybdatesup6.hkl
Structure factors: contains datablock Lu_Molybdate. DOI: https://doi.org/10.1107/S205698902001542X/ru2071Lu_Molybdatesup7.hkl
Bond-valence tables. DOI: https://doi.org/10.1107/S205698902001542X/ru2071sup8.pdf
Data collection: CrysAlis PRO (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; APEX3 (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. Cell
CrysAlis PRO (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; APEX3 (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. Data reduction: CrysAlis PRO (Rigaku OD, 2019) for Tb_Molybdate, Dy_Molybdate, Er_Molybdate, Lu_Molybdate; APEX3 (Bruker, 2014) for Ho_Molybdate, Yb_Molybdate. For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).KTb(MoO4)2 | F(000) = 928 |
Mr = 517.90 | Dx = 4.674 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 6923 reflections |
a = 5.0826 (1) Å | θ = 2.3–33.5° |
b = 18.1273 (7) Å | µ = 13.43 mm−1 |
c = 7.9875 (2) Å | T = 100 K |
V = 735.92 (4) Å3 | Plate, white |
Z = 4 | 0.36 × 0.20 × 0.04 mm |
Rigaku XtaLAB Synergy-S, HyPix diffractometer | 1350 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1238 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.069 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 33.7°, θmin = 2.3° |
ω scans | h = −7→6 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | k = −27→27 |
Tmin = 0.035, Tmax = 0.703 | l = −12→12 |
13792 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.033 | Primary atom site location: dual |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0705P)2 + 1.3389P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
1350 reflections | Δρmax = 2.63 e Å−3 |
56 parameters | Δρmin = −2.78 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Tb1 | 0.000000 | 0.49384 (2) | 0.250000 | 0.00653 (12) | |
Mo1 | 0.48012 (7) | 0.60289 (2) | 0.48337 (5) | 0.00701 (12) | |
K1 | 0.500000 | 0.77012 (8) | 0.750000 | 0.0114 (2) | |
O2 | 0.7489 (5) | 0.53496 (13) | 0.5042 (2) | 0.0089 (4) | |
O4 | 0.6111 (5) | 0.69028 (13) | 0.4759 (3) | 0.0105 (5) | |
O1 | 0.2592 (5) | 0.59503 (12) | 0.3093 (3) | 0.0099 (4) | |
O3 | 0.2716 (5) | 0.60251 (12) | 0.6603 (3) | 0.0102 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00409 (18) | 0.01076 (18) | 0.00476 (17) | 0.000 | −0.00033 (5) | 0.000 |
Mo1 | 0.00425 (19) | 0.01069 (19) | 0.00610 (19) | 0.00024 (8) | −0.00066 (7) | −0.00020 (10) |
K1 | 0.0118 (5) | 0.0136 (5) | 0.0089 (5) | 0.000 | −0.0008 (3) | 0.000 |
O2 | 0.0056 (12) | 0.0138 (9) | 0.0073 (9) | 0.0017 (9) | −0.0008 (6) | 0.0002 (7) |
O4 | 0.0096 (12) | 0.0130 (10) | 0.0089 (10) | −0.0036 (9) | 0.0011 (7) | −0.0007 (8) |
O1 | 0.0069 (10) | 0.0143 (10) | 0.0084 (10) | −0.0001 (8) | −0.0021 (8) | 0.0002 (8) |
O3 | 0.0089 (10) | 0.0144 (10) | 0.0073 (9) | −0.0003 (8) | 0.0003 (8) | −0.0008 (7) |
Tb1—Tb1i | 4.0000 (1) | Mo1—O3 | 1.767 (2) |
Tb1—Tb1ii | 4.0000 (1) | K1—Mo1xi | 3.8378 (9) |
Tb1—K1iii | 4.2788 (14) | K1—Mo1xii | 3.7062 (11) |
Tb1—O2iv | 2.399 (2) | K1—Mo1xiii | 3.8378 (9) |
Tb1—O2v | 2.399 (2) | K1—O4 | 2.684 (2) |
Tb1—O2vi | 2.511 (2) | K1—O4xiv | 2.771 (2) |
Tb1—O2vii | 2.511 (2) | K1—O4xii | 2.684 (2) |
Tb1—O1viii | 2.308 (2) | K1—O4xv | 2.771 (2) |
Tb1—O1 | 2.308 (2) | K1—O1xiii | 2.817 (3) |
Tb1—O3ix | 2.339 (2) | K1—O1xi | 2.817 (3) |
Tb1—O3ii | 2.339 (2) | K1—O3 | 3.330 (3) |
Mo1—K1 | 3.7062 (11) | K1—O3xii | 3.330 (3) |
Mo1—K1x | 3.9694 (9) | O2—Tb1iv | 2.399 (2) |
Mo1—K1iii | 3.8378 (9) | O2—Tb1xvi | 2.511 (2) |
Mo1—O2 | 1.847 (2) | O4—K1x | 2.771 (2) |
Mo1—O4 | 1.719 (2) | O1—K1iii | 2.817 (3) |
Mo1—O1 | 1.793 (2) | O3—Tb1ii | 2.339 (2) |
Tb1ii—Tb1—Tb1i | 173.598 (18) | Mo1xiii—K1—Mo1xi | 106.29 (4) |
Tb1ii—Tb1—K1iii | 86.799 (9) | Mo1—K1—Mo1xiii | 103.230 (11) |
Tb1i—Tb1—K1iii | 86.799 (9) | Mo1xii—K1—Mo1xiii | 138.798 (13) |
O2iv—Tb1—Tb1i | 146.02 (5) | Mo1—K1—Mo1xii | 70.24 (3) |
O2v—Tb1—Tb1i | 36.40 (5) | Mo1xii—K1—Mo1xi | 103.230 (11) |
O2vi—Tb1—Tb1i | 34.54 (5) | O4xii—K1—Mo1 | 91.25 (6) |
O2vii—Tb1—Tb1i | 142.24 (5) | O4—K1—Mo1xii | 91.25 (6) |
O2iv—Tb1—Tb1ii | 36.40 (5) | O4xiv—K1—Mo1xi | 72.98 (5) |
O2v—Tb1—Tb1ii | 146.02 (5) | O4xiv—K1—Mo1xii | 127.27 (6) |
O2vi—Tb1—Tb1ii | 142.24 (5) | O4xii—K1—Mo1xi | 78.09 (5) |
O2vii—Tb1—Tb1ii | 34.54 (5) | O4—K1—Mo1 | 25.32 (5) |
O2vi—Tb1—K1iii | 72.73 (5) | O4xiv—K1—Mo1 | 79.53 (5) |
O2vii—Tb1—K1iii | 72.73 (5) | O4—K1—Mo1xiii | 78.09 (5) |
O2v—Tb1—K1iii | 102.57 (6) | O4—K1—Mo1xi | 148.56 (6) |
O2iv—Tb1—K1iii | 102.57 (6) | O4xii—K1—Mo1xiii | 148.57 (6) |
O2vii—Tb1—O2vi | 145.47 (11) | O4xv—K1—Mo1xi | 88.96 (6) |
O2iv—Tb1—O2vi | 117.12 (10) | O4xv—K1—Mo1xiii | 72.98 (5) |
O2iv—Tb1—O2vii | 70.93 (9) | O4xii—K1—Mo1xii | 25.32 (5) |
O2v—Tb1—O2vi | 70.93 (9) | O4xiv—K1—Mo1xiii | 88.96 (6) |
O2v—Tb1—O2vii | 117.12 (10) | O4xv—K1—Mo1 | 127.27 (6) |
O2v—Tb1—O2iv | 154.87 (11) | O4xv—K1—Mo1xii | 79.53 (5) |
O1—Tb1—Tb1i | 99.23 (6) | O4xii—K1—O4xv | 76.03 (6) |
O1viii—Tb1—Tb1i | 75.57 (6) | O4—K1—O4xv | 121.38 (3) |
O1—Tb1—Tb1ii | 75.57 (6) | O4xv—K1—O4xiv | 149.97 (11) |
O1viii—Tb1—Tb1ii | 99.23 (6) | O4—K1—O4xiv | 76.03 (6) |
O1viii—Tb1—K1iii | 37.35 (6) | O4xii—K1—O4xiv | 121.38 (3) |
O1—Tb1—K1iii | 37.35 (6) | O4—K1—O4xii | 114.75 (11) |
O1viii—Tb1—O2iv | 130.14 (8) | O4xii—K1—O1xi | 103.44 (7) |
O1—Tb1—O2vi | 68.88 (7) | O4—K1—O1xi | 134.69 (7) |
O1viii—Tb1—O2vii | 68.88 (7) | O4—K1—O1xiii | 103.44 (7) |
O1viii—Tb1—O2vi | 83.59 (8) | O4xiv—K1—O1xiii | 89.97 (8) |
O1—Tb1—O2iv | 72.62 (8) | O4xiv—K1—O1xi | 63.32 (7) |
O1—Tb1—O2vii | 83.59 (8) | O4xii—K1—O1xiii | 134.69 (7) |
O1viii—Tb1—O2v | 72.62 (8) | O4xv—K1—O1xiii | 63.32 (7) |
O1—Tb1—O2v | 130.14 (8) | O4xv—K1—O1xi | 89.97 (8) |
O1—Tb1—O1viii | 74.71 (11) | O4xv—K1—O3 | 128.69 (7) |
O1viii—Tb1—O3ix | 150.21 (8) | O4xv—K1—O3xii | 81.24 (7) |
O1viii—Tb1—O3ii | 108.63 (9) | O4xii—K1—O3 | 67.06 (7) |
O1—Tb1—O3ix | 108.63 (9) | O4xiv—K1—O3 | 81.24 (7) |
O1—Tb1—O3ii | 150.21 (8) | O4xiv—K1—O3xii | 128.69 (7) |
O3ix—Tb1—Tb1i | 74.69 (5) | O4—K1—O3xii | 67.06 (7) |
O3ix—Tb1—Tb1ii | 110.34 (5) | O4—K1—O3 | 53.56 (7) |
O3ii—Tb1—Tb1ii | 74.69 (5) | O4xii—K1—O3xii | 53.56 (7) |
O3ii—Tb1—Tb1i | 110.34 (5) | O1xiii—K1—Mo1 | 128.75 (5) |
O3ii—Tb1—K1iii | 138.32 (6) | O1xiii—K1—Mo1xi | 81.87 (6) |
O3ix—Tb1—K1iii | 138.32 (6) | O1xi—K1—Mo1xii | 128.75 (5) |
O3ix—Tb1—O2vii | 140.29 (7) | O1xi—K1—Mo1 | 142.52 (5) |
O3ix—Tb1—O2iv | 76.95 (8) | O1xiii—K1—Mo1xii | 142.52 (5) |
O3ii—Tb1—O2vii | 70.98 (8) | O1xiii—K1—Mo1xiii | 25.90 (5) |
O3ii—Tb1—O2v | 76.95 (8) | O1xi—K1—Mo1xiii | 81.87 (6) |
O3ix—Tb1—O2vi | 70.98 (8) | O1xi—K1—Mo1xi | 25.90 (5) |
O3ii—Tb1—O2vi | 140.29 (7) | O1xiii—K1—O1xi | 59.61 (10) |
O3ii—Tb1—O2iv | 84.31 (8) | O1xiii—K1—O3xii | 131.66 (6) |
O3ix—Tb1—O2v | 84.31 (8) | O1xi—K1—O3 | 131.66 (6) |
O3ii—Tb1—O3ix | 83.37 (11) | O1xi—K1—O3xii | 156.71 (6) |
K1—Mo1—K1x | 77.135 (10) | O1xiii—K1—O3 | 156.71 (6) |
K1iii—Mo1—K1x | 81.22 (2) | O3—K1—Mo1xiii | 131.63 (4) |
K1—Mo1—K1iii | 78.802 (10) | O3—K1—Mo1 | 28.44 (4) |
O2—Mo1—K1iii | 156.08 (6) | O3xii—K1—Mo1xi | 131.63 (4) |
O2—Mo1—K1x | 86.36 (7) | O3xii—K1—Mo1xiii | 115.47 (4) |
O2—Mo1—K1 | 118.26 (7) | O3xii—K1—Mo1 | 52.19 (4) |
O4—Mo1—K1iii | 71.14 (9) | O3—K1—Mo1xi | 115.47 (4) |
O4—Mo1—K1x | 36.07 (8) | O3xii—K1—Mo1xii | 28.44 (4) |
O4—Mo1—K1 | 41.90 (7) | O3—K1—Mo1xii | 52.19 (4) |
O4—Mo1—O2 | 109.34 (11) | O3—K1—O3xii | 48.36 (8) |
O4—Mo1—O1 | 106.78 (11) | Tb1iv—O2—Tb1xvi | 109.07 (9) |
O4—Mo1—O3 | 105.28 (10) | Mo1—O2—Tb1iv | 127.76 (10) |
O1—Mo1—K1 | 121.85 (7) | Mo1—O2—Tb1xvi | 120.07 (9) |
O1—Mo1—K1iii | 43.35 (7) | Mo1—O4—K1 | 112.78 (11) |
O1—Mo1—K1x | 95.66 (7) | Mo1—O4—K1x | 122.51 (11) |
O1—Mo1—O2 | 118.69 (10) | K1—O4—K1x | 122.78 (9) |
O3—Mo1—K1 | 63.88 (7) | Tb1—O1—K1iii | 112.84 (9) |
O3—Mo1—K1iii | 90.54 (8) | Mo1—O1—Tb1 | 125.44 (11) |
O3—Mo1—K1x | 141.01 (7) | Mo1—O1—K1iii | 110.75 (10) |
O3—Mo1—O2 | 111.67 (10) | Tb1ii—O3—K1 | 145.20 (9) |
O3—Mo1—O1 | 104.16 (12) | Mo1—O3—Tb1ii | 127.02 (11) |
Mo1—K1—Mo1xi | 138.799 (13) | Mo1—O3—K1 | 87.68 (8) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x+1/2, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x−1, −y+1, z−1/2; (vi) −x+1, y, −z+1/2; (vii) x−1, y, z; (viii) −x, y, −z+1/2; (ix) x, −y+1, z−1/2; (x) −x+3/2, −y+3/2, z−1/2; (xi) −x+1/2, −y+3/2, z+1/2; (xii) −x+1, y, −z+3/2; (xiii) x+1/2, −y+3/2, −z+1; (xiv) x−1/2, −y+3/2, −z+1; (xv) −x+3/2, −y+3/2, z+1/2; (xvi) x+1, y, z. |
KDy(MoO4)2 | F(000) = 932 |
Mr = 521.48 | Dx = 4.739 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 5121 reflections |
a = 5.0776 (2) Å | θ = 2.3–33.3° |
b = 18.1214 (7) Å | µ = 14.07 mm−1 |
c = 7.9428 (3) Å | T = 100 K |
V = 730.84 (5) Å3 | Plate, light yellow |
Z = 4 | 0.11 × 0.11 × 0.03 mm |
Rigaku XtaLAB Synergy-S, HyPix diffractometer | 1388 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1196 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.075 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 34.0°, θmin = 2.3° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | k = −27→27 |
Tmin = 0.247, Tmax = 0.695 | l = −11→11 |
17317 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.033 | Primary atom site location: dual |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0343P)2 + 8.538P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
1388 reflections | Δρmax = 2.38 e Å−3 |
56 parameters | Δρmin = −2.65 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.000000 | 0.49408 (2) | 0.250000 | 0.00749 (11) | |
Mo1 | 0.48037 (7) | 0.60238 (2) | 0.48347 (5) | 0.00769 (11) | |
K1 | 0.500000 | 0.77076 (9) | 0.750000 | 0.0118 (3) | |
O4 | 0.6101 (7) | 0.6900 (2) | 0.4770 (4) | 0.0121 (6) | |
O2 | 0.7489 (7) | 0.53449 (19) | 0.5049 (4) | 0.0100 (6) | |
O1 | 0.2588 (6) | 0.59449 (19) | 0.3083 (4) | 0.0111 (6) | |
O3 | 0.2709 (6) | 0.60172 (19) | 0.6610 (4) | 0.0109 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.00510 (15) | 0.01210 (17) | 0.00526 (16) | 0.000 | −0.00001 (8) | 0.000 |
Mo1 | 0.00512 (18) | 0.0115 (2) | 0.00648 (18) | 0.00032 (12) | −0.00022 (10) | −0.00023 (12) |
K1 | 0.0125 (6) | 0.0147 (6) | 0.0083 (6) | 0.000 | −0.0006 (4) | 0.000 |
O4 | 0.0098 (15) | 0.0154 (16) | 0.0109 (15) | −0.0020 (12) | 0.0006 (11) | −0.0004 (12) |
O2 | 0.0066 (13) | 0.0161 (16) | 0.0072 (14) | 0.0018 (11) | −0.0009 (11) | −0.0015 (11) |
O1 | 0.0081 (13) | 0.0178 (16) | 0.0074 (14) | −0.0013 (12) | −0.0010 (11) | 0.0001 (12) |
O3 | 0.0073 (13) | 0.0171 (16) | 0.0082 (14) | −0.0003 (12) | 0.0008 (11) | 0.0006 (11) |
Dy1—Dy1i | 3.9772 (1) | Mo1—O3 | 1.766 (3) |
Dy1—Dy1ii | 3.9772 (2) | K1—Mo1xi | 3.8305 (10) |
Dy1—K1iii | 4.2614 (16) | K1—Mo1xii | 3.7150 (13) |
Dy1—O2iv | 2.384 (3) | K1—Mo1xiii | 3.8305 (10) |
Dy1—O2v | 2.384 (3) | K1—O4 | 2.676 (4) |
Dy1—O2vi | 2.502 (3) | K1—O4xiv | 2.770 (3) |
Dy1—O2vii | 2.502 (3) | K1—O4xii | 2.676 (4) |
Dy1—O1 | 2.292 (3) | K1—O4xv | 2.770 (3) |
Dy1—O1viii | 2.292 (3) | K1—O1xiii | 2.812 (4) |
Dy1—O3ix | 2.325 (3) | K1—O1xi | 2.812 (4) |
Dy1—O3ii | 2.325 (3) | K1—O3xii | 3.352 (4) |
Mo1—K1 | 3.7150 (13) | K1—O3 | 3.352 (4) |
Mo1—K1x | 3.9604 (10) | O4—K1x | 2.770 (3) |
Mo1—K1iii | 3.8305 (10) | O2—Dy1xvi | 2.502 (3) |
Mo1—O4 | 1.720 (4) | O2—Dy1iv | 2.384 (3) |
Mo1—O2 | 1.845 (3) | O1—K1iii | 2.812 (4) |
Mo1—O1 | 1.795 (3) | O3—Dy1ii | 2.325 (3) |
Dy1ii—Dy1—Dy1i | 173.818 (18) | Mo1—K1—Mo1xii | 69.57 (3) |
Dy1ii—Dy1—K1iii | 86.909 (9) | Mo1—K1—Mo1xi | 138.737 (15) |
Dy1i—Dy1—K1iii | 86.909 (9) | Mo1xii—K1—Mo1xiii | 138.737 (15) |
O2iv—Dy1—Dy1i | 145.80 (8) | Mo1xiii—K1—Mo1xi | 106.24 (4) |
O2v—Dy1—Dy1i | 36.52 (8) | Mo1xii—K1—Mo1xi | 103.540 (12) |
O2vi—Dy1—Dy1i | 34.53 (8) | O4xv—K1—Mo1xii | 79.68 (8) |
O2vii—Dy1—Dy1i | 142.40 (8) | O4—K1—Mo1xii | 90.40 (9) |
O2iv—Dy1—Dy1ii | 36.52 (8) | O4xiv—K1—Mo1xi | 72.90 (7) |
O2v—Dy1—Dy1ii | 145.80 (8) | O4xii—K1—Mo1 | 90.40 (9) |
O2vi—Dy1—Dy1ii | 142.40 (8) | O4xii—K1—Mo1xi | 78.63 (8) |
O2vii—Dy1—Dy1ii | 34.53 (8) | O4xv—K1—Mo1 | 126.93 (8) |
O2vi—Dy1—K1iii | 72.98 (8) | O4xiv—K1—Mo1 | 79.68 (8) |
O2vii—Dy1—K1iii | 72.98 (8) | O4—K1—Mo1xiii | 78.63 (8) |
O2v—Dy1—K1iii | 102.55 (8) | O4—K1—Mo1xi | 148.63 (8) |
O2iv—Dy1—K1iii | 102.55 (8) | O4xii—K1—Mo1xiii | 148.63 (8) |
O2vii—Dy1—O2vi | 145.97 (16) | O4xv—K1—Mo1xi | 89.19 (8) |
O2iv—Dy1—O2vi | 116.87 (14) | O4xv—K1—Mo1xiii | 72.90 (7) |
O2iv—Dy1—O2vii | 71.05 (13) | O4—K1—Mo1 | 25.09 (8) |
O2v—Dy1—O2vi | 71.05 (13) | O4xiv—K1—Mo1xiii | 89.19 (8) |
O2v—Dy1—O2vii | 116.87 (14) | O4xii—K1—Mo1xii | 25.09 (8) |
O2v—Dy1—O2iv | 154.91 (17) | O4xiv—K1—Mo1xii | 126.93 (8) |
O1viii—Dy1—Dy1i | 75.84 (8) | O4xii—K1—O4xv | 76.26 (9) |
O1—Dy1—Dy1i | 99.15 (8) | O4—K1—O4xv | 121.24 (5) |
O1viii—Dy1—Dy1ii | 99.15 (8) | O4xv—K1—O4xiv | 150.24 (16) |
O1—Dy1—Dy1ii | 75.84 (8) | O4—K1—O4xiv | 76.25 (8) |
O1—Dy1—K1iii | 37.45 (8) | O4xii—K1—O4xiv | 121.24 (5) |
O1viii—Dy1—K1iii | 37.45 (8) | O4—K1—O4xii | 113.67 (16) |
O1—Dy1—O2iv | 72.59 (12) | O4xii—K1—O1xi | 104.12 (10) |
O1viii—Dy1—O2vi | 84.04 (12) | O4—K1—O1xi | 134.94 (11) |
O1—Dy1—O2vii | 84.04 (12) | O4—K1—O1xiii | 104.12 (10) |
O1—Dy1—O2vi | 68.85 (11) | O4xiv—K1—O1xiii | 90.21 (11) |
O1viii—Dy1—O2iv | 130.11 (12) | O4xiv—K1—O1xi | 63.27 (10) |
O1viii—Dy1—O2vii | 68.85 (11) | O4xii—K1—O1xiii | 134.94 (11) |
O1—Dy1—O2v | 130.11 (12) | O4xv—K1—O1xiii | 63.27 (10) |
O1viii—Dy1—O2v | 72.59 (12) | O4xv—K1—O1xi | 90.21 (11) |
O1viii—Dy1—O1 | 74.89 (17) | O4xv—K1—O3xii | 81.35 (10) |
O1—Dy1—O3ix | 108.36 (12) | O4xv—K1—O3 | 128.30 (10) |
O1—Dy1—O3ii | 150.54 (12) | O4xii—K1—O3xii | 53.25 (10) |
O1viii—Dy1—O3ix | 150.54 (12) | O4xiv—K1—O3xii | 128.30 (10) |
O1viii—Dy1—O3ii | 108.36 (12) | O4xiv—K1—O3 | 81.35 (10) |
O3ix—Dy1—Dy1i | 74.74 (8) | O4—K1—O3 | 53.25 (10) |
O3ix—Dy1—Dy1ii | 110.11 (8) | O4—K1—O3xii | 66.32 (10) |
O3ii—Dy1—Dy1ii | 74.74 (8) | O4xii—K1—O3 | 66.32 (10) |
O3ii—Dy1—Dy1i | 110.11 (8) | O1xiii—K1—Mo1 | 129.20 (7) |
O3ii—Dy1—K1iii | 138.31 (8) | O1xiii—K1—Mo1xi | 81.73 (8) |
O3ix—Dy1—K1iii | 138.31 (8) | O1xi—K1—Mo1xii | 129.20 (7) |
O3ix—Dy1—O2vii | 139.98 (11) | O1xi—K1—Mo1 | 142.63 (7) |
O3ix—Dy1—O2iv | 76.68 (11) | O1xiii—K1—Mo1xii | 142.63 (7) |
O3ii—Dy1—O2vii | 70.80 (12) | O1xiii—K1—Mo1xiii | 26.02 (7) |
O3ii—Dy1—O2v | 76.68 (11) | O1xi—K1—Mo1xiii | 81.73 (8) |
O3ix—Dy1—O2v | 84.61 (12) | O1xi—K1—Mo1xi | 26.02 (7) |
O3ix—Dy1—O2vi | 70.80 (12) | O1xiii—K1—O1xi | 59.42 (14) |
O3ii—Dy1—O2iv | 84.61 (12) | O1xiii—K1—O3 | 157.10 (9) |
O3ii—Dy1—O2vi | 139.98 (11) | O1xi—K1—O3xii | 157.10 (9) |
O3ii—Dy1—O3ix | 83.39 (16) | O1xi—K1—O3 | 131.78 (9) |
K1—Mo1—K1iii | 78.467 (11) | O1xiii—K1—O3xii | 131.78 (9) |
K1—Mo1—K1x | 76.833 (11) | O3xii—K1—Mo1xiii | 115.44 (6) |
K1iii—Mo1—K1x | 81.33 (3) | O3xii—K1—Mo1 | 51.60 (6) |
O4—Mo1—K1x | 36.37 (12) | O3—K1—Mo1xi | 115.44 (6) |
O4—Mo1—K1 | 41.29 (11) | O3—K1—Mo1xiii | 131.86 (6) |
O4—Mo1—K1iii | 71.06 (12) | O3—K1—Mo1 | 28.36 (6) |
O4—Mo1—O2 | 109.59 (16) | O3xii—K1—Mo1xi | 131.86 (6) |
O4—Mo1—O1 | 106.89 (16) | O3—K1—Mo1xii | 51.60 (6) |
O4—Mo1—O3 | 105.13 (16) | O3xii—K1—Mo1xii | 28.36 (6) |
O2—Mo1—K1x | 86.44 (11) | O3xii—K1—O3 | 47.91 (11) |
O2—Mo1—K1iii | 156.32 (9) | Mo1—O4—K1x | 122.04 (17) |
O2—Mo1—K1 | 118.38 (10) | Mo1—O4—K1 | 113.61 (16) |
O1—Mo1—K1iii | 43.41 (11) | K1—O4—K1x | 122.44 (13) |
O1—Mo1—K1 | 121.60 (11) | Dy1iv—O2—Dy1xvi | 108.95 (13) |
O1—Mo1—K1x | 95.79 (11) | Mo1—O2—Dy1xvi | 119.80 (14) |
O1—Mo1—O2 | 118.81 (15) | Mo1—O2—Dy1iv | 128.01 (15) |
O3—Mo1—K1iii | 90.42 (11) | Dy1—O1—K1iii | 112.84 (12) |
O3—Mo1—K1x | 141.16 (11) | Mo1—O1—Dy1 | 125.41 (17) |
O3—Mo1—K1 | 64.32 (11) | Mo1—O1—K1iii | 110.57 (15) |
O3—Mo1—O2 | 111.51 (15) | Dy1ii—O3—K1 | 145.45 (13) |
O3—Mo1—O1 | 103.94 (16) | Mo1—O3—Dy1ii | 127.15 (18) |
Mo1—K1—Mo1xiii | 103.540 (12) | Mo1—O3—K1 | 87.32 (12) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x+1/2, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x−1, −y+1, z−1/2; (vi) −x+1, y, −z+1/2; (vii) x−1, y, z; (viii) −x, y, −z+1/2; (ix) x, −y+1, z−1/2; (x) −x+3/2, −y+3/2, z−1/2; (xi) −x+1/2, −y+3/2, z+1/2; (xii) −x+1, y, −z+3/2; (xiii) x+1/2, −y+3/2, −z+1; (xiv) x−1/2, −y+3/2, −z+1; (xv) −x+3/2, −y+3/2, z+1/2; (xvi) x+1, y, z. |
KHo(MoO4)2 | F(000) = 936 |
Mr = 523.91 | Dx = 4.757 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 2917 reflections |
a = 5.0770 (15) Å | θ = 3.4–28.8° |
b = 18.161 (5) Å | µ = 14.66 mm−1 |
c = 7.934 (2) Å | T = 273 K |
V = 731.5 (4) Å3 | Plate, light red |
Z = 4 | 0.06 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 818 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.032 |
φ and ω scans | θmax = 28.9°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −6→6 |
Tmin = 0.248, Tmax = 0.343 | k = −24→24 |
7665 measured reflections | l = −10→10 |
936 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.027 | Primary atom site location: dual |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + 11.609P] where P = (Fo2 + 2Fc2)/3 |
S = 1.25 | (Δ/σ)max = 0.001 |
936 reflections | Δρmax = 1.51 e Å−3 |
56 parameters | Δρmin = −1.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Ho1 | 0.000000 | 0.49423 (2) | 0.750000 | 0.00704 (12) | |
Mo1 | 0.47909 (9) | 0.60179 (3) | 0.51614 (6) | 0.00726 (13) | |
K1 | 0.500000 | 0.77102 (11) | 0.250000 | 0.0141 (4) | |
O4 | 0.6095 (9) | 0.6894 (3) | 0.5227 (6) | 0.0122 (9) | |
O2 | 0.7503 (9) | 0.5342 (2) | 0.4941 (5) | 0.0095 (8) | |
O1 | 0.2583 (8) | 0.5939 (2) | 0.6923 (5) | 0.0096 (8) | |
O3 | 0.2700 (9) | 0.6008 (2) | 0.3389 (5) | 0.0093 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ho1 | 0.00566 (18) | 0.0094 (2) | 0.00606 (18) | 0.000 | −0.00040 (14) | 0.000 |
Mo1 | 0.0058 (2) | 0.0084 (3) | 0.0076 (2) | 0.00040 (19) | −0.00009 (17) | 0.00032 (17) |
K1 | 0.0177 (9) | 0.0132 (9) | 0.0115 (8) | 0.000 | 0.0013 (8) | 0.000 |
O4 | 0.013 (2) | 0.014 (2) | 0.010 (2) | −0.0011 (18) | 0.0002 (17) | 0.0016 (17) |
O2 | 0.0080 (19) | 0.014 (2) | 0.0061 (19) | 0.0016 (17) | 0.0037 (18) | −0.0005 (17) |
O1 | 0.0072 (19) | 0.013 (2) | 0.0085 (19) | −0.0001 (17) | 0.0015 (16) | 0.0001 (17) |
O3 | 0.013 (2) | 0.012 (2) | 0.0035 (19) | −0.0008 (19) | −0.0005 (15) | 0.0000 (16) |
Ho1—Ho1i | 3.9723 (11) | Mo1—O3 | 1.762 (4) |
Ho1—Ho1ii | 3.9723 (11) | K1—Mo1xi | 3.8332 (14) |
Ho1—K1iii | 4.263 (2) | K1—Mo1xii | 3.7303 (18) |
Ho1—O2iv | 2.372 (4) | K1—Mo1xiii | 3.8332 (14) |
Ho1—O2v | 2.372 (4) | K1—O4 | 2.680 (5) |
Ho1—O2vi | 2.501 (4) | K1—O4xiv | 2.775 (5) |
Ho1—O2vii | 2.501 (4) | K1—O4xii | 2.681 (5) |
Ho1—O1viii | 2.282 (4) | K1—O4xv | 2.775 (5) |
Ho1—O1 | 2.282 (4) | K1—O1xiii | 2.819 (5) |
Ho1—O3ix | 2.314 (4) | K1—O1xi | 2.819 (5) |
Ho1—O3i | 2.314 (4) | K1—O3 | 3.380 (5) |
Mo1—K1 | 3.7303 (18) | K1—O3xii | 3.380 (5) |
Mo1—K1x | 3.9713 (14) | O4—K1x | 2.775 (5) |
Mo1—K1iii | 3.8332 (14) | O2—Ho1xvi | 2.501 (4) |
Mo1—O4 | 1.724 (5) | O2—Ho1v | 2.372 (4) |
Mo1—O2 | 1.853 (4) | O1—K1iii | 2.819 (5) |
Mo1—O1 | 1.797 (4) | O3—Ho1i | 2.314 (4) |
Ho1ii—Ho1—Ho1i | 173.96 (2) | Mo1xii—K1—Mo1 | 69.05 (4) |
Ho1ii—Ho1—K1iii | 86.979 (11) | Mo1xii—K1—Mo1xi | 103.92 (2) |
Ho1i—Ho1—K1iii | 86.979 (11) | Mo1—K1—Mo1xiii | 103.92 (2) |
O2iv—Ho1—Ho1i | 145.79 (11) | Mo1xiii—K1—Mo1xi | 105.89 (5) |
O2v—Ho1—Ho1i | 36.49 (11) | Mo1—K1—Mo1xi | 138.79 (2) |
O2vi—Ho1—Ho1i | 34.33 (10) | O4xv—K1—Mo1 | 126.98 (10) |
O2vii—Ho1—Ho1i | 142.68 (10) | O4—K1—Mo1 | 24.98 (10) |
O2iv—Ho1—Ho1ii | 36.49 (11) | O4xiv—K1—Mo1xi | 72.85 (10) |
O2v—Ho1—Ho1ii | 145.79 (11) | O4xii—K1—Mo1xii | 24.98 (10) |
O2vi—Ho1—Ho1ii | 142.68 (10) | O4xii—K1—Mo1xi | 79.11 (10) |
O2vii—Ho1—Ho1ii | 34.33 (10) | O4xv—K1—Mo1xii | 79.93 (10) |
O2vi—Ho1—K1iii | 73.13 (10) | O4xiv—K1—Mo1xii | 126.98 (10) |
O2vii—Ho1—K1iii | 73.13 (10) | O4—K1—Mo1xiii | 79.11 (10) |
O2v—Ho1—K1iii | 102.57 (11) | O4—K1—Mo1xi | 148.80 (10) |
O2iv—Ho1—K1iii | 102.57 (11) | O4xii—K1—Mo1xiii | 148.80 (10) |
O2vii—Ho1—O2vi | 146.3 (2) | O4xv—K1—Mo1xi | 89.01 (10) |
O2iv—Ho1—O2vi | 117.06 (18) | O4xv—K1—Mo1xiii | 72.85 (10) |
O2iv—Ho1—O2vii | 70.81 (17) | O4—K1—Mo1xii | 89.73 (11) |
O2v—Ho1—O2vi | 70.81 (17) | O4xiv—K1—Mo1xiii | 89.01 (10) |
O2v—Ho1—O2vii | 117.06 (18) | O4xii—K1—Mo1 | 89.73 (11) |
O2v—Ho1—O2iv | 154.9 (2) | O4xiv—K1—Mo1 | 79.93 (10) |
O1—Ho1—Ho1i | 75.99 (11) | O4xii—K1—O4xv | 76.52 (11) |
O1viii—Ho1—Ho1i | 99.12 (11) | O4—K1—O4xv | 121.30 (6) |
O1—Ho1—Ho1ii | 99.12 (11) | O4xv—K1—O4xiv | 150.0 (2) |
O1viii—Ho1—Ho1ii | 75.99 (11) | O4—K1—O4xiv | 76.52 (11) |
O1viii—Ho1—K1iii | 37.49 (11) | O4xii—K1—O4xiv | 121.30 (6) |
O1—Ho1—K1iii | 37.50 (11) | O4—K1—O4xii | 112.9 (2) |
O1viii—Ho1—O2iv | 72.64 (15) | O4xii—K1—O1xi | 104.69 (13) |
O1—Ho1—O2vi | 84.17 (15) | O4—K1—O1xi | 135.12 (13) |
O1viii—Ho1—O2vii | 84.17 (15) | O4—K1—O1xiii | 104.69 (13) |
O1viii—Ho1—O2vi | 68.97 (15) | O4xiv—K1—O1xiii | 90.09 (14) |
O1—Ho1—O2iv | 130.07 (15) | O4xiv—K1—O1xi | 63.11 (13) |
O1—Ho1—O2vii | 68.97 (15) | O4xii—K1—O1xiii | 135.13 (13) |
O1viii—Ho1—O2v | 130.06 (15) | O4xv—K1—O1xiii | 63.11 (13) |
O1—Ho1—O2v | 72.64 (15) | O4xv—K1—O1xi | 90.09 (14) |
O1—Ho1—O1viii | 75.0 (2) | O4xv—K1—O3 | 128.28 (13) |
O1viii—Ho1—O3ix | 150.57 (15) | O4xv—K1—O3xii | 81.63 (12) |
O1viii—Ho1—O3i | 108.19 (16) | O4xii—K1—O3 | 65.85 (13) |
O1—Ho1—O3ix | 108.19 (16) | O4xiv—K1—O3 | 81.63 (12) |
O1—Ho1—O3i | 150.57 (15) | O4xiv—K1—O3xii | 128.28 (13) |
O3ix—Ho1—Ho1i | 110.11 (10) | O4—K1—O3xii | 65.85 (13) |
O3ix—Ho1—Ho1ii | 74.62 (10) | O4—K1—O3 | 52.94 (12) |
O3i—Ho1—Ho1ii | 110.11 (10) | O4xii—K1—O3xii | 52.93 (12) |
O3i—Ho1—Ho1i | 74.62 (10) | O1xiii—K1—Mo1xii | 142.71 (9) |
O3i—Ho1—K1iii | 138.22 (11) | O1xiii—K1—Mo1xi | 81.34 (10) |
O3ix—Ho1—K1iii | 138.21 (11) | O1xi—K1—Mo1 | 142.71 (9) |
O3ix—Ho1—O2vii | 70.64 (15) | O1xi—K1—Mo1xii | 129.66 (9) |
O3ix—Ho1—O2iv | 84.58 (15) | O1xiii—K1—Mo1 | 129.66 (9) |
O3i—Ho1—O2vii | 139.83 (14) | O1xiii—K1—Mo1xiii | 26.09 (9) |
O3i—Ho1—O2v | 84.58 (15) | O1xi—K1—Mo1xiii | 81.34 (10) |
O3ix—Ho1—O2v | 76.70 (15) | O1xi—K1—Mo1xi | 26.09 (9) |
O3ix—Ho1—O2vi | 139.83 (14) | O1xiii—K1—O1xi | 59.05 (18) |
O3i—Ho1—O2iv | 76.70 (15) | O1xiii—K1—O3xii | 132.01 (12) |
O3i—Ho1—O2vi | 70.64 (15) | O1xi—K1—O3 | 132.01 (12) |
O3i—Ho1—O3ix | 83.6 (2) | O1xi—K1—O3xii | 157.36 (11) |
K1—Mo1—K1iii | 78.20 (2) | O1xiii—K1—O3 | 157.36 (11) |
K1—Mo1—K1x | 76.49 (2) | O3—K1—Mo1xiii | 132.03 (7) |
K1iii—Mo1—K1x | 81.14 (4) | O3—K1—Mo1xii | 51.26 (8) |
O4—Mo1—K1x | 36.25 (15) | O3xii—K1—Mo1xi | 132.03 (7) |
O4—Mo1—K1 | 41.04 (15) | O3xii—K1—Mo1xiii | 115.66 (8) |
O4—Mo1—K1iii | 70.92 (15) | O3xii—K1—Mo1xii | 28.14 (7) |
O4—Mo1—O2 | 109.2 (2) | O3—K1—Mo1xi | 115.66 (8) |
O4—Mo1—O1 | 106.8 (2) | O3xii—K1—Mo1 | 51.26 (8) |
O4—Mo1—O3 | 105.4 (2) | O3—K1—Mo1 | 28.14 (7) |
O2—Mo1—K1x | 86.25 (14) | O3—K1—O3xii | 47.61 (15) |
O2—Mo1—K1iii | 156.40 (13) | Mo1—O4—K1x | 122.2 (2) |
O2—Mo1—K1 | 118.13 (13) | Mo1—O4—K1 | 114.0 (2) |
O1—Mo1—K1iii | 43.60 (14) | K1—O4—K1x | 121.97 (17) |
O1—Mo1—K1 | 121.56 (14) | Ho1v—O2—Ho1xvi | 109.19 (17) |
O1—Mo1—K1x | 95.64 (14) | Mo1—O2—Ho1xvi | 119.50 (19) |
O1—Mo1—O2 | 118.95 (19) | Mo1—O2—Ho1v | 128.2 (2) |
O3—Mo1—K1iii | 90.59 (14) | Ho1—O1—K1iii | 112.98 (16) |
O3—Mo1—K1x | 141.28 (15) | Mo1—O1—Ho1 | 125.3 (2) |
O3—Mo1—K1 | 64.79 (14) | Mo1—O1—K1iii | 110.32 (19) |
O3—Mo1—O2 | 111.44 (19) | Ho1i—O3—K1 | 145.41 (16) |
O3—Mo1—O1 | 104.1 (2) | Mo1—O3—Ho1i | 127.5 (2) |
Mo1xii—K1—Mo1xiii | 138.79 (2) | Mo1—O3—K1 | 87.06 (16) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) −x+1/2, −y+3/2, z+1/2; (iv) x−1, −y+1, z+1/2; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) −x+1, y, −z+3/2; (viii) −x, y, −z+3/2; (ix) x, −y+1, z+1/2; (x) −x+3/2, −y+3/2, z+1/2; (xi) −x+1/2, −y+3/2, z−1/2; (xii) −x+1, y, −z+1/2; (xiii) x+1/2, −y+3/2, −z+1; (xiv) x−1/2, −y+3/2, −z+1; (xv) −x+3/2, −y+3/2, z−1/2; (xvi) x+1, y, z. |
KEr(MoO4)2 | F(000) = 940 |
Mr = 526.24 | Dx = 4.810 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 7328 reflections |
a = 5.0602 (2) Å | θ = 3.4–34.0° |
b = 18.1965 (8) Å | µ = 15.42 mm−1 |
c = 7.8920 (3) Å | T = 100 K |
V = 726.68 (5) Å3 | Plate, light pink |
Z = 4 | 0.28 × 0.15 × 0.02 mm |
Rigaku XtaLAB Synergy-S, HyPix diffractometer | 1386 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1255 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.072 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 34.0°, θmin = 2.2° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | k = −28→27 |
Tmin = 0.091, Tmax = 0.911 | l = −12→10 |
21246 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.027 | Primary atom site location: dual |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0345P)2 + 4.1539P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
1386 reflections | Δρmax = 2.04 e Å−3 |
56 parameters | Δρmin = −1.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Er1 | 1.000000 | 0.50535 (2) | 0.750000 | 0.00602 (9) | |
Mo1 | 0.52026 (6) | 0.39859 (2) | 0.51517 (4) | 0.00637 (9) | |
K1 | 0.500000 | 0.22821 (7) | 0.250000 | 0.0107 (2) | |
O4 | 0.3903 (5) | 0.31111 (15) | 0.5213 (3) | 0.0102 (5) | |
O2 | 0.2497 (5) | 0.46619 (15) | 0.4954 (3) | 0.0084 (5) | |
O1 | 0.7417 (5) | 0.40581 (14) | 0.6914 (3) | 0.0100 (4) | |
O3 | 0.7315 (5) | 0.39970 (14) | 0.3369 (3) | 0.0099 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.00367 (12) | 0.00995 (13) | 0.00443 (13) | 0.000 | −0.00030 (6) | 0.000 |
Mo1 | 0.00374 (14) | 0.00961 (16) | 0.00575 (15) | 0.00027 (9) | −0.00044 (8) | −0.00032 (9) |
K1 | 0.0112 (5) | 0.0124 (5) | 0.0085 (5) | 0.000 | −0.0007 (3) | 0.000 |
O4 | 0.0079 (11) | 0.0127 (12) | 0.0100 (11) | −0.0029 (9) | 0.0009 (9) | −0.0003 (9) |
O2 | 0.0052 (10) | 0.0131 (12) | 0.0067 (10) | 0.0007 (9) | −0.0008 (8) | −0.0006 (8) |
O1 | 0.0077 (10) | 0.0142 (12) | 0.0080 (10) | −0.0014 (9) | −0.0019 (9) | −0.0004 (9) |
O3 | 0.0068 (10) | 0.0153 (12) | 0.0074 (10) | −0.0014 (9) | 0.0006 (8) | −0.0003 (8) |
Er1—Er1i | 3.9508 (2) | Mo1—O3 | 1.767 (2) |
Er1—Er1ii | 3.9508 (1) | K1—Mo1xi | 3.8277 (8) |
Er1—K1iii | 4.2499 (13) | K1—Mo1xii | 3.7419 (10) |
Er1—O2iv | 2.370 (2) | K1—Mo1xiii | 3.8277 (8) |
Er1—O2v | 2.370 (2) | K1—O4 | 2.677 (3) |
Er1—O2vi | 2.478 (2) | K1—O4xiv | 2.770 (3) |
Er1—O2vii | 2.478 (2) | K1—O4xii | 2.677 (3) |
Er1—O1viii | 2.281 (2) | K1—O4xv | 2.770 (3) |
Er1—O1 | 2.281 (3) | K1—O1xiii | 2.805 (3) |
Er1—O3ix | 2.303 (3) | K1—O1xi | 2.805 (3) |
Er1—O3ii | 2.303 (3) | K1—O3 | 3.403 (3) |
Mo1—K1 | 3.7419 (10) | K1—O3xii | 3.403 (3) |
Mo1—K1x | 3.9610 (8) | O4—K1x | 2.770 (3) |
Mo1—K1iii | 3.8278 (8) | O2—Er1xvi | 2.478 (2) |
Mo1—O4 | 1.723 (3) | O2—Er1iv | 2.370 (2) |
Mo1—O2 | 1.847 (3) | O1—K1iii | 2.805 (3) |
Mo1—O1 | 1.791 (2) | O3—Er1ii | 2.303 (3) |
Er1ii—Er1—Er1i | 174.354 (13) | Mo1xii—K1—Mo1 | 68.10 (2) |
Er1ii—Er1—K1iii | 87.177 (7) | Mo1xii—K1—Mo1xi | 104.243 (10) |
Er1i—Er1—K1iii | 87.177 (7) | Mo1—K1—Mo1xiii | 104.243 (10) |
O2iv—Er1—Er1i | 145.80 (6) | Mo1xiii—K1—Mo1xi | 105.86 (3) |
O2v—Er1—Er1i | 36.34 (6) | Mo1—K1—Mo1xi | 138.837 (12) |
O2vi—Er1—Er1i | 34.52 (6) | O4xv—K1—Mo1 | 126.73 (6) |
O2vii—Er1—Er1i | 142.71 (6) | O4—K1—Mo1 | 24.71 (6) |
O2iv—Er1—Er1ii | 36.34 (6) | O4xiv—K1—Mo1xi | 73.00 (5) |
O2v—Er1—Er1ii | 145.80 (6) | O4xii—K1—Mo1xii | 24.71 (6) |
O2vi—Er1—Er1ii | 142.71 (6) | O4xii—K1—Mo1xi | 79.69 (6) |
O2vii—Er1—Er1ii | 34.52 (6) | O4xv—K1—Mo1xii | 80.21 (6) |
O2vi—Er1—K1iii | 73.29 (6) | O4xiv—K1—Mo1xii | 126.73 (6) |
O2vii—Er1—K1iii | 73.29 (6) | O4—K1—Mo1xiii | 79.69 (6) |
O2v—Er1—K1iii | 102.63 (6) | O4—K1—Mo1xi | 149.13 (6) |
O2iv—Er1—K1iii | 102.63 (6) | O4xii—K1—Mo1xiii | 149.13 (6) |
O2vii—Er1—O2vi | 146.57 (12) | O4xv—K1—Mo1xi | 88.91 (6) |
O2iv—Er1—O2vi | 116.98 (11) | O4xv—K1—Mo1xiii | 73.00 (5) |
O2iv—Er1—O2vii | 70.86 (10) | O4—K1—Mo1xii | 88.55 (6) |
O2v—Er1—O2vi | 70.86 (10) | O4xiv—K1—Mo1xiii | 88.91 (6) |
O2v—Er1—O2vii | 116.98 (11) | O4xii—K1—Mo1 | 88.55 (6) |
O2v—Er1—O2iv | 154.75 (13) | O4xiv—K1—Mo1 | 80.21 (6) |
O1—Er1—Er1i | 99.40 (6) | O4xii—K1—O4xv | 76.83 (6) |
O1viii—Er1—Er1i | 76.03 (6) | O4—K1—O4xv | 121.26 (4) |
O1—Er1—Er1ii | 76.03 (6) | O4xv—K1—O4xiv | 150.06 (12) |
O1viii—Er1—Er1ii | 99.39 (6) | O4—K1—O4xiv | 76.83 (6) |
O1viii—Er1—K1iii | 37.43 (6) | O4xii—K1—O4xiv | 121.26 (4) |
O1—Er1—K1iii | 37.43 (6) | O4—K1—O4xii | 111.41 (12) |
O1viii—Er1—O2iv | 130.14 (9) | O4xii—K1—O1xi | 105.16 (8) |
O1—Er1—O2vi | 69.13 (8) | O4—K1—O1xi | 135.91 (8) |
O1viii—Er1—O2vii | 69.13 (8) | O4—K1—O1xiii | 105.16 (8) |
O1viii—Er1—O2vi | 84.23 (9) | O4xiv—K1—O1xiii | 90.02 (8) |
O1—Er1—O2iv | 72.69 (9) | O4xiv—K1—O1xi | 63.29 (8) |
O1—Er1—O2vii | 84.23 (9) | O4xii—K1—O1xiii | 135.91 (8) |
O1viii—Er1—O2v | 72.70 (9) | O4xv—K1—O1xiii | 63.29 (8) |
O1—Er1—O2v | 130.14 (9) | O4xv—K1—O1xi | 90.02 (8) |
O1—Er1—O1viii | 74.85 (13) | O4xv—K1—O3 | 127.86 (8) |
O1viii—Er1—O3ix | 150.89 (9) | O4xv—K1—O3xii | 81.96 (7) |
O1viii—Er1—O3ii | 108.55 (10) | O4xii—K1—O3 | 64.73 (7) |
O1—Er1—O3ix | 108.55 (10) | O4xiv—K1—O3 | 81.96 (7) |
O1—Er1—O3ii | 150.89 (9) | O4xiv—K1—O3xii | 127.86 (8) |
O3ix—Er1—Er1i | 74.90 (6) | O4—K1—O3xii | 64.73 (7) |
O3ix—Er1—Er1ii | 109.54 (6) | O4—K1—O3 | 52.66 (7) |
O3ii—Er1—Er1ii | 74.90 (6) | O4xii—K1—O3xii | 52.66 (7) |
O3ii—Er1—Er1i | 109.54 (6) | O1xiii—K1—Mo1xii | 143.10 (5) |
O3ii—Er1—K1iii | 138.62 (6) | O1xiii—K1—Mo1xi | 81.44 (6) |
O3ix—Er1—K1iii | 138.62 (6) | O1xi—K1—Mo1 | 143.10 (5) |
O3ix—Er1—O2vii | 139.31 (8) | O1xi—K1—Mo1xii | 129.86 (5) |
O3ix—Er1—O2iv | 76.40 (8) | O1xiii—K1—Mo1 | 129.86 (5) |
O3ii—Er1—O2vii | 70.94 (9) | O1xiii—K1—Mo1xiii | 25.94 (5) |
O3ii—Er1—O2v | 76.40 (8) | O1xi—K1—Mo1xiii | 81.44 (6) |
O3ix—Er1—O2v | 84.67 (9) | O1xi—K1—Mo1xi | 25.94 (5) |
O3ix—Er1—O2vi | 70.94 (9) | O1xiii—K1—O1xi | 59.23 (10) |
O3ii—Er1—O2iv | 84.67 (9) | O1xiii—K1—O3xii | 132.07 (6) |
O3ii—Er1—O2vi | 139.31 (8) | O1xi—K1—O3 | 132.07 (6) |
O3ii—Er1—O3ix | 82.76 (13) | O1xi—K1—O3xii | 157.57 (7) |
K1—Mo1—K1iii | 77.802 (9) | O1xiii—K1—O3 | 157.57 (7) |
K1—Mo1—K1x | 76.162 (9) | O3—K1—Mo1xiii | 132.33 (4) |
K1iii—Mo1—K1x | 81.02 (2) | O3—K1—Mo1xii | 50.39 (4) |
O4—Mo1—K1x | 36.40 (9) | O3xii—K1—Mo1xi | 132.33 (4) |
O4—Mo1—K1 | 40.51 (8) | O3xii—K1—Mo1xiii | 115.60 (4) |
O4—Mo1—K1iii | 70.83 (9) | O3xii—K1—Mo1xii | 28.12 (4) |
O4—Mo1—O2 | 109.56 (12) | O3—K1—Mo1xi | 115.60 (4) |
O4—Mo1—O1 | 106.55 (12) | O3xii—K1—Mo1 | 50.39 (4) |
O4—Mo1—O3 | 105.29 (12) | O3—K1—Mo1 | 28.12 (4) |
O2—Mo1—K1x | 86.26 (8) | O3—K1—O3xii | 47.02 (9) |
O2—Mo1—K1iii | 155.83 (7) | Mo1—O4—K1x | 121.94 (12) |
O2—Mo1—K1 | 118.97 (8) | Mo1—O4—K1 | 114.78 (12) |
O1—Mo1—K1iii | 43.23 (8) | K1—O4—K1x | 121.57 (10) |
O1—Mo1—K1 | 120.81 (8) | Er1iv—O2—Er1xvi | 109.14 (10) |
O1—Mo1—K1x | 95.46 (8) | Mo1—O2—Er1xvi | 120.07 (10) |
O1—Mo1—O2 | 118.71 (11) | Mo1—O2—Er1iv | 127.56 (11) |
O3—Mo1—K1iii | 90.50 (8) | Er1—O1—K1iii | 112.96 (10) |
O3—Mo1—K1x | 141.37 (9) | Mo1—O1—Er1 | 125.03 (13) |
O3—Mo1—K1 | 65.21 (8) | Mo1—O1—K1iii | 110.84 (11) |
O3—Mo1—O2 | 111.94 (11) | Er1ii—O3—K1 | 146.22 (10) |
O3—Mo1—O1 | 103.83 (12) | Mo1—O3—Er1ii | 127.06 (13) |
Mo1xii—K1—Mo1xiii | 138.837 (12) | Mo1—O3—K1 | 86.67 (9) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) −x+3/2, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, −y+1, z+1/2; (vi) −x+1, y, −z+3/2; (vii) x+1, y, z; (viii) −x+2, y, −z+3/2; (ix) x, −y+1, z+1/2; (x) −x+1/2, −y+1/2, z+1/2; (xi) −x+3/2, −y+1/2, z−1/2; (xii) −x+1, y, −z+1/2; (xiii) x−1/2, −y+1/2, −z+1; (xiv) x+1/2, −y+1/2, −z+1; (xv) −x+1/2, −y+1/2, z−1/2; (xvi) x−1, y, z. |
KYb(MoO4)2 | F(000) = 948 |
Mr = 532.02 | Dx = 4.866 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 3007 reflections |
a = 5.0417 (5) Å | θ = 2.2–29.2° |
b = 18.3039 (19) Å | µ = 16.75 mm−1 |
c = 7.8693 (8) Å | T = 273 K |
V = 726.20 (13) Å3 | Plate, white |
Z = 4 | 0.06 × 0.06 × 0.04 mm |
Bruker APEXII CCD diffractometer | 845 reflections with I > 2σ(I) |
Radiation source: X-ray tube | Rint = 0.038 |
φ and ω scans | θmax = 29.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −6→6 |
Tmin = 0.198, Tmax = 0.301 | k = −24→25 |
8164 measured reflections | l = −10→10 |
978 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.022 | Primary atom site location: dual |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0244P)2 + 3.0168P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
978 reflections | Δρmax = 1.55 e Å−3 |
56 parameters | Δρmin = −1.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Yb1 | 0.000000 | 0.49506 (2) | 0.750000 | 0.01036 (11) | |
Mo1 | 0.47826 (7) | 0.60027 (2) | 0.51395 (5) | 0.01066 (12) | |
K1 | 0.500000 | 0.77252 (9) | 0.250000 | 0.0230 (3) | |
O4 | 0.6053 (7) | 0.68778 (18) | 0.5206 (4) | 0.0188 (7) | |
O2 | 0.7521 (6) | 0.53396 (17) | 0.4939 (3) | 0.0128 (6) | |
O1 | 0.2572 (6) | 0.59262 (17) | 0.6912 (4) | 0.0149 (6) | |
O3 | 0.2661 (6) | 0.59860 (17) | 0.3360 (4) | 0.0152 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Yb1 | 0.00810 (17) | 0.01404 (17) | 0.00894 (16) | 0.000 | 0.00084 (9) | 0.000 |
Mo1 | 0.0085 (2) | 0.0117 (2) | 0.0118 (2) | 0.00068 (12) | 0.00134 (12) | 0.00054 (13) |
K1 | 0.0306 (9) | 0.0195 (7) | 0.0189 (7) | 0.000 | 0.0019 (6) | 0.000 |
O4 | 0.0212 (18) | 0.0179 (17) | 0.0173 (16) | −0.0025 (14) | −0.0044 (13) | 0.0007 (13) |
O2 | 0.0112 (15) | 0.0184 (17) | 0.0086 (14) | 0.0033 (12) | 0.0023 (12) | −0.0010 (11) |
O1 | 0.0131 (14) | 0.0175 (15) | 0.0143 (15) | −0.0011 (12) | 0.0039 (12) | −0.0038 (13) |
O3 | 0.0142 (15) | 0.0177 (16) | 0.0137 (15) | −0.0024 (13) | 0.0006 (12) | 0.0003 (12) |
Yb1—Mo1i | 3.6018 (5) | Mo1—O2 | 1.845 (3) |
Yb1—Mo1ii | 3.6294 (5) | Mo1—O1 | 1.791 (3) |
Yb1—Mo1iii | 3.6294 (5) | Mo1—O3 | 1.762 (3) |
Yb1—Mo1 | 3.6018 (5) | K1—Mo1xi | 3.9738 (11) |
Yb1—O2iv | 2.351 (3) | K1—Mo1xii | 3.7772 (14) |
Yb1—O2v | 2.476 (3) | K1—Mo1xiii | 3.8322 (11) |
Yb1—O2vi | 2.351 (3) | K1—Mo1xiv | 3.8322 (11) |
Yb1—O2vii | 2.476 (3) | K1—Mo1xv | 3.9738 (11) |
Yb1—O1 | 2.255 (3) | K1—O4xii | 2.687 (3) |
Yb1—O1i | 2.255 (3) | K1—O4 | 2.687 (3) |
Yb1—O3ii | 2.280 (3) | K1—O4xi | 2.784 (3) |
Yb1—O3iii | 2.280 (3) | K1—O4xv | 2.784 (3) |
Mo1—Yb1iii | 3.6294 (5) | K1—O1xiii | 2.826 (3) |
Mo1—Yb1iv | 3.7786 (5) | K1—O1xiv | 2.826 (3) |
Mo1—Yb1viii | 3.7522 (5) | O4—K1x | 2.784 (3) |
Mo1—K1ix | 3.8322 (11) | O2—Yb1iv | 2.351 (3) |
Mo1—K1x | 3.9738 (11) | O2—Yb1viii | 2.476 (3) |
Mo1—K1 | 3.7772 (14) | O1—K1ix | 2.826 (3) |
Mo1—O4 | 1.726 (3) | O3—Yb1iii | 2.280 (3) |
Mo1—Yb1—Mo1i | 115.356 (17) | O2—Mo1—Yb1 | 101.15 (10) |
Mo1i—Yb1—Mo1iii | 96.169 (13) | O2—Mo1—Yb1iii | 97.58 (10) |
Mo1—Yb1—Mo1iii | 113.994 (10) | O2—Mo1—K1ix | 155.78 (8) |
Mo1—Yb1—Mo1ii | 96.168 (13) | O2—Mo1—K1x | 85.99 (10) |
Mo1iii—Yb1—Mo1ii | 122.531 (16) | O2—Mo1—K1 | 118.71 (10) |
Mo1i—Yb1—Mo1ii | 113.994 (10) | O1—Mo1—Yb1iii | 89.70 (10) |
O2v—Yb1—Mo1i | 85.88 (7) | O1—Mo1—Yb1viii | 90.61 (10) |
O2iv—Yb1—Mo1ii | 90.31 (8) | O1—Mo1—Yb1iv | 145.62 (10) |
O2vii—Yb1—Mo1i | 76.37 (8) | O1—Mo1—Yb1 | 30.68 (10) |
O2iv—Yb1—Mo1 | 49.00 (8) | O1—Mo1—K1 | 120.77 (10) |
O2vii—Yb1—Mo1ii | 48.48 (8) | O1—Mo1—K1x | 95.37 (10) |
O2iv—Yb1—Mo1iii | 77.14 (8) | O1—Mo1—K1ix | 43.81 (10) |
O2vi—Yb1—Mo1i | 49.00 (8) | O1—Mo1—O2 | 118.75 (14) |
O2vi—Yb1—Mo1 | 153.85 (8) | O3—Mo1—Yb1 | 89.67 (10) |
O2vi—Yb1—Mo1ii | 77.14 (8) | O3—Mo1—Yb1viii | 144.09 (11) |
O2vii—Yb1—Mo1 | 85.88 (7) | O3—Mo1—Yb1iii | 29.97 (10) |
O2v—Yb1—Mo1ii | 159.95 (7) | O3—Mo1—Yb1iv | 88.72 (10) |
O2v—Yb1—Mo1iii | 48.48 (8) | O3—Mo1—K1 | 66.11 (10) |
O2iv—Yb1—Mo1i | 153.85 (8) | O3—Mo1—K1x | 141.56 (11) |
O2vi—Yb1—Mo1iii | 90.31 (8) | O3—Mo1—K1ix | 90.79 (10) |
O2vii—Yb1—Mo1iii | 159.95 (7) | O3—Mo1—O2 | 112.01 (14) |
O2v—Yb1—Mo1 | 76.37 (8) | O3—Mo1—O1 | 103.88 (15) |
O2iv—Yb1—O2v | 70.66 (12) | Mo1xiv—K1—Mo1xv | 80.44 (3) |
O2iv—Yb1—O2vii | 117.45 (14) | Mo1xii—K1—Mo1 | 66.83 (3) |
O2vi—Yb1—O2vii | 70.66 (12) | Mo1—K1—Mo1xv | 139.938 (17) |
O2vi—Yb1—O2v | 117.45 (14) | Mo1xiii—K1—Mo1xiv | 105.17 (4) |
O2vii—Yb1—O2v | 146.58 (15) | Mo1—K1—Mo1xi | 102.288 (13) |
O2iv—Yb1—O2vi | 153.89 (16) | Mo1—K1—Mo1xiii | 105.003 (13) |
O1—Yb1—Mo1 | 23.91 (8) | Mo1xii—K1—Mo1xv | 102.287 (13) |
O1i—Yb1—Mo1iii | 96.67 (8) | Mo1xii—K1—Mo1xiii | 139.065 (16) |
O1—Yb1—Mo1ii | 96.67 (8) | Mo1xiii—K1—Mo1xv | 56.91 (2) |
O1i—Yb1—Mo1 | 93.86 (8) | Mo1xiv—K1—Mo1xi | 56.91 (2) |
O1i—Yb1—Mo1ii | 130.19 (8) | Mo1xii—K1—Mo1xi | 139.938 (17) |
O1—Yb1—Mo1i | 93.86 (8) | Mo1xii—K1—Mo1xiv | 105.003 (13) |
O1i—Yb1—Mo1i | 23.91 (8) | Mo1xiii—K1—Mo1xi | 80.44 (3) |
O1—Yb1—Mo1iii | 130.19 (8) | Mo1—K1—Mo1xiv | 139.065 (16) |
O1i—Yb1—O2v | 69.45 (10) | Mo1xv—K1—Mo1xi | 108.26 (4) |
O1—Yb1—O2vii | 69.45 (10) | O4—K1—Mo1xiv | 149.21 (8) |
O1i—Yb1—O2iv | 130.70 (11) | O4xi—K1—Mo1xi | 21.66 (7) |
O1—Yb1—O2iv | 72.89 (11) | O4—K1—Mo1xiii | 80.93 (7) |
O1i—Yb1—O2vii | 84.00 (11) | O4xi—K1—Mo1xiv | 72.90 (7) |
O1—Yb1—O2v | 84.00 (11) | O4xi—K1—Mo1xii | 126.53 (8) |
O1—Yb1—O2vi | 130.70 (11) | O4xii—K1—Mo1 | 87.03 (8) |
O1i—Yb1—O2vi | 72.89 (11) | O4xii—K1—Mo1xi | 125.30 (8) |
O1—Yb1—O1i | 75.25 (16) | O4—K1—Mo1 | 24.24 (7) |
O1i—Yb1—O3iii | 108.54 (12) | O4xv—K1—Mo1xiii | 72.90 (7) |
O1—Yb1—O3iii | 150.82 (12) | O4xi—K1—Mo1 | 80.82 (7) |
O1i—Yb1—O3ii | 150.82 (12) | O4xii—K1—Mo1xiii | 149.21 (8) |
O1—Yb1—O3ii | 108.54 (12) | O4xv—K1—Mo1 | 126.53 (8) |
O3iii—Yb1—Mo1 | 130.01 (7) | O4xi—K1—Mo1xiii | 88.68 (8) |
O3ii—Yb1—Mo1iii | 101.50 (8) | O4xii—K1—Mo1xv | 95.65 (7) |
O3ii—Yb1—Mo1i | 130.01 (7) | O4—K1—Mo1xi | 95.65 (7) |
O3ii—Yb1—Mo1 | 99.27 (8) | O4—K1—Mo1xv | 125.30 (8) |
O3iii—Yb1—Mo1i | 99.27 (8) | O4xv—K1—Mo1xi | 128.58 (9) |
O3iii—Yb1—Mo1iii | 22.72 (8) | O4xi—K1—Mo1xv | 128.58 (9) |
O3iii—Yb1—Mo1ii | 101.50 (8) | O4—K1—Mo1xii | 87.03 (8) |
O3ii—Yb1—Mo1ii | 22.72 (8) | O4xv—K1—Mo1xv | 21.66 (7) |
O3iii—Yb1—O2iv | 84.30 (11) | O4xv—K1—Mo1xii | 80.82 (7) |
O3ii—Yb1—O2v | 139.02 (10) | O4xii—K1—Mo1xii | 24.25 (7) |
O3iii—Yb1—O2v | 71.18 (11) | O4xv—K1—Mo1xiv | 88.68 (8) |
O3ii—Yb1—O2iv | 76.09 (10) | O4xii—K1—Mo1xiv | 80.93 (7) |
O3ii—Yb1—O2vi | 84.30 (11) | O4xii—K1—O4xi | 121.56 (5) |
O3iii—Yb1—O2vi | 76.09 (10) | O4xii—K1—O4 | 109.49 (15) |
O3iii—Yb1—O2vii | 139.02 (10) | O4—K1—O4xv | 121.56 (5) |
O3ii—Yb1—O2vii | 71.18 (11) | O4—K1—O4xi | 77.17 (8) |
O3iii—Yb1—O3ii | 82.48 (16) | O4xii—K1—O4xv | 77.17 (8) |
Yb1viii—Mo1—Yb1iv | 63.070 (9) | O4xi—K1—O4xv | 149.74 (15) |
Yb1iii—Mo1—Yb1viii | 120.155 (13) | O4xv—K1—O1xiv | 89.65 (10) |
Yb1iii—Mo1—Yb1iv | 85.752 (11) | O4xv—K1—O1xiii | 63.27 (9) |
Yb1—Mo1—Yb1iii | 66.007 (10) | O4xii—K1—O1xiv | 106.49 (10) |
Yb1—Mo1—Yb1viii | 86.536 (12) | O4xi—K1—O1xiii | 89.65 (10) |
Yb1—Mo1—Yb1iv | 120.176 (13) | O4xi—K1—O1xiv | 63.27 (9) |
Yb1—Mo1—K1 | 138.532 (12) | O4xii—K1—O1xiii | 136.42 (10) |
Yb1iii—Mo1—K1x | 171.48 (2) | O4—K1—O1xiii | 106.49 (10) |
Yb1iv—Mo1—K1ix | 170.07 (2) | O4—K1—O1xiv | 136.42 (10) |
Yb1iii—Mo1—K1 | 96.075 (15) | O1xiv—K1—Mo1xiv | 26.02 (6) |
Yb1viii—Mo1—K1ix | 120.864 (13) | O1xiv—K1—Mo1xiii | 80.64 (7) |
Yb1viii—Mo1—K1 | 132.869 (12) | O1xiii—K1—Mo1xi | 73.47 (7) |
Yb1—Mo1—K1x | 121.021 (14) | O1xiii—K1—Mo1xiv | 80.64 (7) |
Yb1iv—Mo1—K1x | 93.824 (14) | O1xiii—K1—Mo1 | 130.72 (6) |
Yb1viii—Mo1—K1x | 66.75 (2) | O1xiii—K1—Mo1xii | 143.68 (7) |
Yb1—Mo1—K1ix | 69.74 (2) | O1xiv—K1—Mo1xi | 42.36 (7) |
Yb1iii—Mo1—K1ix | 98.712 (15) | O1xiv—K1—Mo1xii | 130.72 (6) |
K1—Mo1—Yb1iv | 93.608 (16) | O1xiv—K1—Mo1xv | 73.47 (7) |
K1—Mo1—K1ix | 77.153 (12) | O1xiii—K1—Mo1xv | 42.36 (7) |
K1—Mo1—K1x | 75.448 (12) | O1xiv—K1—Mo1 | 143.68 (7) |
K1ix—Mo1—K1x | 80.44 (3) | O1xiii—K1—Mo1xiii | 26.02 (6) |
O4—Mo1—Yb1 | 136.81 (11) | O1xiii—K1—O1xiv | 58.30 (13) |
O4—Mo1—Yb1viii | 101.62 (11) | Mo1—O4—K1 | 116.01 (15) |
O4—Mo1—Yb1iv | 100.77 (12) | Mo1—O4—K1x | 121.81 (16) |
O4—Mo1—Yb1iii | 135.23 (11) | K1—O4—K1x | 120.30 (12) |
O4—Mo1—K1x | 36.53 (11) | Yb1iv—O2—Yb1viii | 109.33 (12) |
O4—Mo1—K1ix | 69.81 (12) | Mo1—O2—Yb1iv | 128.04 (14) |
O4—Mo1—K1 | 39.74 (10) | Mo1—O2—Yb1viii | 119.82 (13) |
O4—Mo1—O2 | 109.61 (16) | Yb1—O1—K1ix | 113.22 (12) |
O4—Mo1—O1 | 106.25 (15) | Mo1—O1—Yb1 | 125.42 (16) |
O4—Mo1—O3 | 105.38 (15) | Mo1—O1—K1ix | 110.17 (14) |
O2—Mo1—Yb1iv | 29.34 (8) | Mo1—O3—Yb1iii | 127.31 (16) |
O2—Mo1—Yb1viii | 34.93 (8) |
Symmetry codes: (i) −x, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x−1, −y+1, z+1/2; (vii) −x+1, y, −z+3/2; (viii) x+1, y, z; (ix) −x+1/2, −y+3/2, z+1/2; (x) −x+3/2, −y+3/2, z+1/2; (xi) x−1/2, −y+3/2, −z+1; (xii) −x+1, y, −z+1/2; (xiii) x+1/2, −y+3/2, −z+1; (xiv) −x+1/2, −y+3/2, z−1/2; (xv) −x+3/2, −y+3/2, z−1/2. |
KLu(MoO4)2 | F(000) = 952 |
Mr = 533.95 | Dx = 4.942 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 6634 reflections |
a = 5.0292 (2) Å | θ = 3.4–30.5° |
b = 18.2519 (10) Å | µ = 17.68 mm−1 |
c = 7.8174 (4) Å | T = 100 K |
V = 717.58 (6) Å3 | Plate, white |
Z = 4 | 0.44 × 0.14 × 0.04 mm |
Rigaku XtaLAB Synergy-S, HyPix diffractometer | 1105 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 1004 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.087 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 30.5°, θmin = 2.2° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | k = −26→26 |
Tmin = 0.240, Tmax = 1.000 | l = −11→11 |
19857 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 0 constraints |
R[F2 > 2σ(F2)] = 0.027 | Primary atom site location: dual |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0305P)2 + 4.6788P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.001 |
1105 reflections | Δρmax = 2.05 e Å−3 |
57 parameters | Δρmin = −3.03 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. _reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. |
x | y | z | Uiso*/Ueq | ||
Lu1 | 1.000000 | 0.50463 (2) | 0.750000 | 0.00674 (13) | |
Mo1 | 0.52103 (8) | 0.39975 (3) | 0.51329 (5) | 0.00699 (13) | |
K1 | 0.500000 | 0.22690 (9) | 0.250000 | 0.0116 (3) | |
O4 | 0.3935 (7) | 0.31279 (19) | 0.5200 (4) | 0.0119 (7) | |
O2 | 0.2476 (7) | 0.4667 (2) | 0.4950 (4) | 0.0098 (7) | |
O1 | 0.7429 (6) | 0.40718 (19) | 0.6920 (4) | 0.0101 (6) | |
O3 | 0.7347 (6) | 0.40152 (19) | 0.3343 (4) | 0.0098 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.00628 (18) | 0.0100 (2) | 0.00389 (17) | 0.000 | 0.00006 (8) | 0.000 |
Mo1 | 0.0067 (2) | 0.0091 (2) | 0.0051 (2) | 0.00028 (12) | −0.00024 (11) | −0.00031 (13) |
K1 | 0.0142 (7) | 0.0132 (8) | 0.0073 (6) | 0.000 | −0.0006 (4) | 0.000 |
O4 | 0.0128 (17) | 0.0141 (17) | 0.0087 (14) | −0.0011 (13) | 0.0006 (12) | −0.0018 (12) |
O2 | 0.0079 (15) | 0.0168 (18) | 0.0046 (14) | 0.0006 (13) | −0.0051 (11) | 0.0004 (11) |
O1 | 0.0100 (14) | 0.0130 (16) | 0.0074 (14) | −0.0011 (13) | −0.0028 (12) | 0.0009 (12) |
O3 | 0.0118 (15) | 0.0126 (16) | 0.0051 (13) | 0.0008 (13) | 0.0002 (11) | −0.0001 (11) |
Lu1—Lu1i | 3.9123 (2) | Mo1—O3 | 1.765 (3) |
Lu1—Lu1ii | 3.9123 (2) | K1—Mo1xi | 3.9540 (11) |
Lu1—K1iii | 4.2257 (17) | K1—Mo1xii | 3.7684 (14) |
Lu1—O2iv | 2.344 (3) | K1—Mo1xiii | 3.8171 (11) |
Lu1—O2v | 2.344 (3) | K1—Mo1xiv | 3.8171 (11) |
Lu1—O2vi | 2.450 (3) | K1—Mo1xv | 3.9540 (11) |
Lu1—O2vii | 2.450 (3) | K1—O4 | 2.683 (3) |
Lu1—O1 | 2.245 (3) | K1—O4xii | 2.683 (3) |
Lu1—O1viii | 2.245 (3) | K1—O4xv | 2.770 (3) |
Lu1—O3ix | 2.269 (3) | K1—O4xi | 2.770 (3) |
Lu1—O3ii | 2.269 (3) | K1—O1xiii | 2.805 (4) |
Mo1—K1 | 3.7684 (14) | K1—O1xiv | 2.805 (4) |
Mo1—K1x | 3.9540 (11) | O4—K1x | 2.770 (3) |
Mo1—K1iii | 3.8171 (11) | O2—Lu1iv | 2.344 (3) |
Mo1—O4 | 1.713 (4) | O2—Lu1xvi | 2.450 (3) |
Mo1—O2 | 1.845 (4) | O1—K1iii | 2.805 (4) |
Mo1—O1 | 1.793 (3) | O3—Lu1ii | 2.269 (3) |
Lu1ii—Lu1—Lu1i | 175.051 (17) | Mo1xiv—K1—Mo1xv | 80.64 (3) |
Lu1ii—Lu1—K1iii | 87.526 (9) | Mo1—K1—Mo1xv | 139.788 (18) |
Lu1i—Lu1—K1iii | 87.526 (9) | Mo1xiii—K1—Mo1xiv | 105.46 (4) |
O2vii—Lu1—Lu1ii | 34.41 (8) | Mo1xii—K1—Mo1xi | 139.788 (18) |
O2vii—Lu1—Lu1i | 143.18 (8) | Mo1xii—K1—Mo1 | 66.31 (3) |
O2iv—Lu1—Lu1ii | 36.22 (8) | Mo1xiii—K1—Mo1xi | 80.64 (3) |
O2v—Lu1—Lu1ii | 145.70 (8) | Mo1xii—K1—Mo1xv | 102.429 (13) |
O2vi—Lu1—Lu1i | 34.41 (8) | Mo1—K1—Mo1xiii | 105.066 (13) |
O2v—Lu1—Lu1i | 36.22 (8) | Mo1xiii—K1—Mo1xv | 56.95 (2) |
O2iv—Lu1—Lu1i | 145.70 (8) | Mo1xii—K1—Mo1xiv | 105.066 (14) |
O2vi—Lu1—Lu1ii | 143.18 (8) | Mo1—K1—Mo1xiv | 138.944 (16) |
O2vii—Lu1—K1iii | 73.58 (8) | Mo1—K1—Mo1xi | 102.429 (13) |
O2iv—Lu1—K1iii | 102.92 (9) | Mo1xiv—K1—Mo1xi | 56.95 (2) |
O2v—Lu1—K1iii | 102.92 (9) | Mo1xii—K1—Mo1xiii | 138.944 (16) |
O2vi—Lu1—K1iii | 73.58 (8) | Mo1xv—K1—Mo1xi | 108.45 (4) |
O2iv—Lu1—O2vi | 117.26 (15) | O4xii—K1—Mo1xiv | 81.17 (8) |
O2v—Lu1—O2vii | 117.26 (15) | O4xv—K1—Mo1xi | 128.63 (9) |
O2v—Lu1—O2iv | 154.16 (18) | O4xv—K1—Mo1xii | 81.05 (7) |
O2v—Lu1—O2vi | 70.63 (14) | O4xv—K1—Mo1xiv | 88.73 (8) |
O2vii—Lu1—O2vi | 147.15 (17) | O4—K1—Mo1 | 24.06 (8) |
O2iv—Lu1—O2vii | 70.63 (14) | O4xi—K1—Mo1xiv | 72.87 (7) |
O1—Lu1—Lu1i | 99.65 (8) | O4—K1—Mo1xi | 96.06 (8) |
O1—Lu1—Lu1ii | 76.35 (8) | O4xii—K1—Mo1 | 86.27 (8) |
O1viii—Lu1—Lu1i | 76.35 (8) | O4xi—K1—Mo1xiii | 88.73 (8) |
O1viii—Lu1—Lu1ii | 99.65 (8) | O4xv—K1—Mo1 | 126.40 (8) |
O1viii—Lu1—K1iii | 37.61 (8) | O4xii—K1—Mo1xii | 24.06 (8) |
O1—Lu1—K1iii | 37.61 (8) | O4xi—K1—Mo1 | 81.05 (7) |
O1viii—Lu1—O2iv | 130.40 (12) | O4xv—K1—Mo1xiii | 72.87 (7) |
O1—Lu1—O2vi | 69.37 (11) | O4—K1—Mo1xv | 125.27 (8) |
O1viii—Lu1—O2vii | 69.37 (11) | O4xii—K1—Mo1xi | 125.27 (8) |
O1—Lu1—O2iv | 72.91 (12) | O4xii—K1—Mo1xv | 96.06 (8) |
O1viii—Lu1—O2v | 72.91 (12) | O4xi—K1—Mo1xi | 21.55 (7) |
O1—Lu1—O2vii | 84.51 (12) | O4xv—K1—Mo1xv | 21.55 (7) |
O1—Lu1—O2v | 130.40 (12) | O4xi—K1—Mo1xii | 126.40 (8) |
O1viii—Lu1—O2vi | 84.51 (12) | O4xi—K1—Mo1xv | 128.63 (9) |
O1viii—Lu1—O1 | 75.22 (17) | O4—K1—Mo1xiv | 149.44 (8) |
O1—Lu1—O3ix | 108.54 (13) | O4—K1—Mo1xii | 86.27 (8) |
O1viii—Lu1—O3ix | 151.41 (12) | O4xii—K1—Mo1xiii | 149.44 (8) |
O1viii—Lu1—O3ii | 108.54 (13) | O4—K1—Mo1xiii | 81.17 (8) |
O1—Lu1—O3ii | 151.41 (12) | O4—K1—O4xv | 121.38 (5) |
O3ii—Lu1—Lu1ii | 75.08 (8) | O4—K1—O4xii | 108.51 (16) |
O3ix—Lu1—Lu1ii | 108.82 (8) | O4xii—K1—O4xi | 121.38 (5) |
O3ii—Lu1—Lu1i | 108.82 (8) | O4xii—K1—O4xv | 77.57 (9) |
O3ix—Lu1—Lu1i | 75.08 (8) | O4—K1—O4xi | 77.57 (9) |
O3ii—Lu1—K1iii | 139.02 (8) | O4xv—K1—O4xi | 149.68 (16) |
O3ix—Lu1—K1iii | 139.02 (8) | O4xi—K1—O1xiv | 63.09 (10) |
O3ii—Lu1—O2vii | 71.24 (12) | O4xi—K1—O1xiii | 89.78 (11) |
O3ii—Lu1—O2iv | 84.63 (12) | O4—K1—O1xiv | 136.80 (10) |
O3ix—Lu1—O2v | 84.63 (12) | O4xv—K1—O1xiii | 63.09 (10) |
O3ii—Lu1—O2v | 75.88 (11) | O4xv—K1—O1xiv | 89.78 (11) |
O3ix—Lu1—O2vii | 138.46 (11) | O4—K1—O1xiii | 106.89 (10) |
O3ii—Lu1—O2vi | 138.46 (11) | O4xii—K1—O1xiii | 136.80 (10) |
O3ix—Lu1—O2vi | 71.24 (12) | O4xii—K1—O1xiv | 106.89 (10) |
O3ix—Lu1—O2iv | 75.88 (11) | O1xiv—K1—Mo1xiv | 26.14 (7) |
O3ii—Lu1—O3ix | 81.96 (17) | O1xiv—K1—Mo1xiii | 80.84 (7) |
K1—Mo1—K1x | 75.379 (13) | O1xiii—K1—Mo1xi | 73.72 (7) |
K1—Mo1—K1iii | 77.027 (12) | O1xiii—K1—Mo1xiv | 80.84 (7) |
K1iii—Mo1—K1x | 80.64 (3) | O1xiii—K1—Mo1 | 130.93 (6) |
O4—Mo1—K1 | 39.69 (11) | O1xiii—K1—Mo1xii | 143.70 (7) |
O4—Mo1—K1x | 36.45 (11) | O1xiv—K1—Mo1xi | 42.27 (7) |
O4—Mo1—K1iii | 70.14 (12) | O1xiv—K1—Mo1xii | 130.93 (6) |
O4—Mo1—O2 | 109.68 (17) | O1xiv—K1—Mo1xv | 73.72 (7) |
O4—Mo1—O1 | 106.21 (16) | O1xiii—K1—Mo1xv | 42.27 (7) |
O4—Mo1—O3 | 105.63 (16) | O1xiv—K1—Mo1 | 143.70 (7) |
O2—Mo1—K1iii | 155.36 (9) | O1xiii—K1—Mo1xiii | 26.14 (7) |
O2—Mo1—K1 | 119.41 (10) | O1xiii—K1—O1xiv | 58.48 (14) |
O2—Mo1—K1x | 85.95 (11) | Mo1—O4—K1 | 116.25 (16) |
O1—Mo1—K1iii | 43.56 (11) | Mo1—O4—K1x | 122.00 (16) |
O1—Mo1—K1x | 95.28 (11) | K1—O4—K1x | 120.03 (13) |
O1—Mo1—K1 | 120.42 (11) | Lu1iv—O2—Lu1xvi | 109.37 (14) |
O1—Mo1—O2 | 118.31 (14) | Mo1—O2—Lu1iv | 127.40 (15) |
O3—Mo1—K1x | 141.76 (12) | Mo1—O2—Lu1xvi | 120.19 (14) |
O3—Mo1—K1iii | 90.65 (11) | Lu1—O1—K1iii | 113.15 (12) |
O3—Mo1—K1 | 66.38 (11) | Mo1—O1—Lu1 | 125.15 (17) |
O3—Mo1—O2 | 112.35 (14) | Mo1—O1—K1iii | 110.29 (15) |
O3—Mo1—O1 | 103.74 (16) | Mo1—O3—Lu1ii | 127.02 (17) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y+1, −z+1; (iii) −x+3/2, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1; (v) x+1, −y+1, z+1/2; (vi) −x+1, y, −z+3/2; (vii) x+1, y, z; (viii) −x+2, y, −z+3/2; (ix) x, −y+1, z+1/2; (x) −x+1/2, −y+1/2, z+1/2; (xi) x+1/2, −y+1/2, −z+1; (xii) −x+1, y, −z+1/2; (xiii) x−1/2, −y+1/2, −z+1; (xiv) −x+3/2, −y+1/2, z−1/2; (xv) −x+1/2, −y+1/2, z−1/2; (xvi) x−1, y, z. |
Detailed tables are included in the supporting information. |
KTb(MoO4)2 | KDy(MoO4)2 | KHo(MoO4)2 | KEr(MoO4)2 | KYb(MoO4)2 | KLu(MoO4)2 | |
RE | 3.11 | 2.97 | 3.25 | 3.00 | 2.97 | 3.13 |
Mo | 5.66 | 5.66 | 5.62 | 5.65 | 5.66 | 5.70 |
K | 1.20 | 1.21 | 1.19 | 1.20 | 1.10 | 1.13 |
O1 | 1.99 | 1.97 | 2.00 | 1.98 | 1.98 | 2.00 |
O2 | 1.82 | 1.80 | 1.82 | 1.80 | 1.79 | 1.82 |
O3 | 1.90 | 1.92 | 1.97 | 1.92 | 1.91 | 1.91 |
O4 | 2.06 | 2.07 | 2.07 | 2.05 | 2.03 | 2.09 |
Acknowledgements
The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05–76RL01830.
References
Axe, J., Dorner, B. & Shirane, G. (1971). Phys. Rev. Lett. 26, 519–523. CrossRef CAS Google Scholar
Borchardt, H. J. & Bierstedt, P. E. (1967). J. Appl. Phys. 38, 2057–2060. CrossRef CAS Web of Science Google Scholar
Brixner, L. H., Barkley, J. R. & Jeitschko, W. (1979). Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, pp. 609–654. Berlin, Heidelberg, New York: Springer. Google Scholar
Bruker (2014). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chong, S., Riley, B. J., Nelson, Z. J. & Perry, S. N. (2020). Acta Cryst. E76, 339–343. CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guzmán-Afonso, C., González-Silgo, C., Torres, M., Matesanz, E. & Mujica, A. (2013). J. Phys. Condens. Matter, 25, 035902–1–03590, 2–10. Google Scholar
Hanuza, J. & Fomitsev, V. V. (1980). J. Mol. Struct. 66, 1–24. CrossRef CAS Google Scholar
Hanuza, J., Macalik, L. & Hermanowicz, K. (1994). J. Mol. Struct. 319, 17–30. CrossRef CAS Google Scholar
Jeitschko, W. (1973). Acta Cryst. B29, 2074–2081. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Kamenskyi, D., Poperezhai, S., Gogoi, P., Engelkamp, H., Maan, J., Wosnitza, J. & Kut'ko, V. (2014). Phys. Rev. B, 89, 014410–1–01441. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kut'ko, V. I. (2005). Low Temp. Phys. 31, 1–31. CrossRef CAS Google Scholar
Leask, M. J. M., Tropper, A. C. & Wells, M. R. (1981). J. Phys. C.: Solid State Phys. 14, 3481–3498. CrossRef CAS Google Scholar
Mat'aš, S., Dudzik, E., Feyerherm, R., Gerischer, S., Klemke, S., Prokeš, K. & Orendáčová, A. (2010). Phys. Rev. B, 82, 184427–1–18442, 7–8. Google Scholar
Ponomarev, B. K., Ivanov, S. A., Popov, Y. F., Negrii, V. D. & Red'Kin, B. S. (1994). Ferroelectrics, 161, 43–48. CrossRef CAS Google Scholar
Ponomarev, B. K. & Zhukov, A. (2012). Phys. Res. Int. 2012, 276348–1–27634, 8–22. Google Scholar
Poperezhai, S., Gogoi, P., Zubenko, N., Kutko, K., Kutko, V. I., Kovalev, A. S. & Kamenskyi, D. (2017). J. Phys. Condens. Matter, 29, 095402–1–09540, 2–6. Google Scholar
Pratap, V., Gaur, K. & Lal, H. B. (1987). Mater. Res. Bull. 22, 1381–1393. CrossRef CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, F., Meng, J. & Ren, Y. (1996). J. Solid State Chem. 121, 236–239. CrossRef CAS Google Scholar
Stedman, N. J., Cheetham, A. K. & Battle, P. D. (1994). J. Mater. Chem. 4, 707–711. CrossRef ICSD CAS Web of Science Google Scholar
Voron'ko, Y. K., Zharikov, E. V., Lis, D., Sobol, A. A., Subbotin, K. A., Ushakov, S. N. & Shukshin, V. E. (2004). Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, pp. 60–68. International Society for Optics and Photonics. Google Scholar
Wang, Z., Liang, H., Gong, M. & Su, Q. (2007). J. Alloys Compd. 432, 308–312. CrossRef CAS Google Scholar
Wanklyn, B. M. & Wondre, F. R. (1978). J. Cryst. Growth, 43, 93–100. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.