research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(tetra­methyl­thio­urea-κS)bis­­(thio­cyanato-κN)nickel(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 29 October 2020; accepted 13 November 2020; online 17 November 2020)

In the course of our investigations regarding transition-metal thio­cyanates with thio­urea derivatives, the title compound, [Ni(NCS)2(C5H12N2S)2], was obtained. The asymmetric unit consists of one thio­cyanate anion and one tetra­methyl­thio­urea mol­ecule on general positions, as well as one NiII cation that is located on a twofold rotational axis. In this compound, discrete complexes are formed in which the NiII cations are surrounded by two trans-N-bonding thio­cyanate anions as well as two trans-S-bonding tetra­methyl­thio­urea mol­ecules within a distorted square-planar coordination geometry. The discrete complexes are linked by pairs of weak C—H⋯S hydrogen bonds between the thio­cyanate S and one of the tetra­methyl­thio­urea methyl hydrogen atoms into chains along the crystallographic a- and c-axis directions, which are combined into layers parallel to the ac plane. X-ray powder diffraction proves that a pure crystalline phase was obtained and measurements using thermogravimetry and differential thermoanalysis reveal that the compound decomposes at about 408 K, where all tetra­methyl­thio­urea mol­ecules are lost.

1. Chemical context

Many thio­cyanate coordination compounds are reported in the literature, which mostly consist of discrete complexes containing non-bridging N-terminally coordinated thio­cyanate anions, while compounds in which the metal cations are bridged by these anionic ligands are comparatively rare. Despite this fact, a variety of coordination modes can be found for bridging thio­cyanate anions, which leads to metal–thio­cyanate networks with different dimensionalities and topologies (Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]; Lin, 2008[Lin, H.-W. (2008). Acta Cryst. E64, m295.]; Li et al., 2014[Li, L., Chen, S., Zhou, R.-M., Bai, Y. & Dang, D.-B. (2014). Spectrochim. Acta Part A, 120, 401-404.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]). If these compounds contain paramagnetic metal cations, they are of special inter­est, because thio­cyanate anions can mediate magnetic exchange and thus cooperative magnetic phenomena can be expected (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; Mousavi et al., 2020[Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603-7613.]; Rams et al., 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]; Mautner et al., 2018[Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436-442.]). Our inter­est focuses mainly on transition-metal thio­cyanates with the general composition [M(NCS)2(coligand)2]n with M = MnII, FeII, CoII or NiII that consist of linear chains, in which the metal cations are connected by pairs of N- and S-bonding thio­cyanate anions into centrosymmetric M2(NCS)2 units, while the remaining sites of the coordination octa­hedron are occupied by neutral coligands forming a coordination environment in which all ligands are trans (Wöhlert et al., 2014[Wöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902-1913.]; Werner et al., 2014[Werner, J., Neumann, T. & Näther, C. (2014). Z. Anorg. Allg. Chem. 640, 2839-2846.], 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]; Prananto et al., 2017[Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516-528.]). In this context, it is noted that the CoII compounds are of special inter­est, because either ferromagnetic behavior or a slow relaxation of the magnetization is observed (Werner et al., 2015[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149-14158.]; Neumann et al., 2019[Neumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652-2655.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.], 2020[Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837-2851.]). Besides these chain compounds with an all-trans coordination environment, several other isomers with different ciscistrans arrangements of the ligands can be found in which either the coligand, the N-bonding or the S-bonding thio­cyanate are trans, while the other ligands are cis (Maji et al., 2001[Maji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. R. (2001). Polyhedron, 20, 651-655.]; Shi et al., 2007[Shi, J.-M., Chen, J.-N., Wu, C.-J. & Ma, J.-P. (2007). J. Coord. Chem. 60, 2009-2013.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]). For most of these compounds, corrugated chains are observed in which the magnetic exchange is low or negligible (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). In the case of [M(NCS)2(4-chloro­pyridine)2]n (M = Co, Ni), two isomeric compounds are observed that contain either linear or corrugated chains, which allowed investigations on the influence of the chain geometry on the magnetic behavior, because both compounds contain the same coligand and thus all differences in the magnetic behavior can be attributed to the structural changes (Böhme et al., 2020[Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325-5338.]; Jochim et al., 2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]).

[Scheme 1]

However, to investigate the magnetic properties of trans­ition-metal thio­cyanate compounds in more detail, the influence of the coligands on the structural and magnetic behavior must be investigated systematically. Most of these compounds contain N-donor coligands, whereas compounds with, for example, O- or S-donor coligands are rare (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Amzel et al., 1969[Amzel, L. M., Baggio, S. & Becka, L. N. (1969). J. Chem. Soc. A, pp. 2066-2073.]; Shurdha, et al., 2013[Shurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583-10594.]). This is the reason why we became inter­ested in transition-metal thio­cyanate compounds with thio­urea derivatives, where a few compounds have been reported for which either octa­hedral (Amzel et al., 1969[Amzel, L. M., Baggio, S. & Becka, L. N. (1969). J. Chem. Soc. A, pp. 2066-2073.]) or tetra­hedral complexes (Jochim et al., 2020a[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020a). Acta Cryst. E76, 1373-1377.],b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476-1481.]) are observed. Furthermore, some polymeric compounds have been reported in which the metal cations are connected by either the coligands (Nardelli et al., 1966a[Nardelli, M., Gasparri, G. F., Battistini, G. G. & Domiano, P. (1966a). Acta Cryst. 20, 349-353.]) or the thio­cyanate anions into chains (Nardelli et al., 1966b[Nardelli, M., Gasparri, G. F., Musatti, A. & Manfredotti, A. (1966b). Acta Cryst. 21, 910-919.]; Jochim et al., 2020c[Jochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020c). Inorg. Chem. 59, 8971-8982.]). In the course of our systematic investigations we became inter­ested in tetra­methyl­thio­urea as coligand, which upon reaction with nickel thio­cyanate leads to the formation of the title compound [Ni(NCS)2(C5H12N2S)2] that consists of discrete complexes, in which the thio­cyanate anions are N-terminally coordinated. Phase pure powders of the title compound could easily be obtained, which is confirmed by X-ray powder diffraction (Fig. S1 in the supporting information). The C—N stretching band of the thio­cyanate anion can be found at 2080 cm−1, which proves the presence of terminally bonded thio­cyanate anions, in accordance with the results from single crystal X-ray diffraction (Fig. S2). Investigation of the thermal behavior of the title compound shows that it decomposes at about 408 K in one discrete step of 59.0%, which is in agreement with the mass loss calculated for the loss of all coligand mol­ecules of 60.2% (Fig. S3).

2. Structural commentary

The asymmetric unit consists of one NiII cation that is located on a twofold rotational axis as well as one thio­cyanate anion and one tetra­methyl­thio­urea mol­ecule, which both occupy general positions. Each NiII cation is fourfold coordinated by two trans N-binding thio­cyanate anions and two trans S-binding tetra­methyl­thio­urea mol­ecules into discrete complexes. (Fig. 1[link]). The Ni—N bonds are much shorter than the Ni—S bonds and from the angles it is obvious that the Ni cation is in a square-planar coordination geometry (Table 1[link]). Furthermore, a strong deviation from the ideal angles is found in the coordination environment of the Ni cation, which can probably be attributed to the relatively bulky NMe2 groups of the tetra­methyl­thio­urea mol­ecules. This is most pronounced in the N—Ni—N angle, which amounts to 167.47 (16)°. In contrast, for the S—Ni—S angle a smaller deviation with a value of 173.26 (5)° can be found. The tetra­methyl­thio­urea mol­ecules are twisted relative to each other with a C=S⋯S=C torsion angle of 135.0 (2)°. Furthermore, while the thio­urea unit of each tetra­methyl­thio­urea ligand is planar, both NMe2 groups are rotated out of this plane by angles of 28.8 (2) and 27.3 (2)°.

Table 1
Selected geometric parameters (Å, °)

Ni1—N1 1.844 (3) Ni1—S11 2.2259 (7)
       
N1—Ni1—N1i 167.47 (16) N1i—Ni1—S11 93.93 (8)
N1—Ni1—S11 86.80 (8) S11i—Ni1—S11 173.26 (5)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
View of the asymmetric unit of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry transformations used to generate equivalent atoms: (i) −x + 1, y, −z + [{3\over 2}].

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are linked by two crystallographically different inter­molecular C—H⋯S hydrogen bonds between the thio­cyanate S atom S1 and the methyl hydrogen atoms H13C and H12C of the tetra­methyl­thio­urea mol­ecule. In both cases, each two neighbouring complexes are linked into pairs containing 18-membered rings that are located on centers of inversion (Fig. 2[link] and Table 2[link]). These pairs are further linked into chains, which for the hydrogen bonds between S1 and H13C proceed along the crystallographic a-axis direction and for those between S1 and H12b along the c-axis direction (Fig. 2[link]). These two chains condense into layers parallel to the ac plane by centrosymmetric pairs of both crystallographically different C—H⋯S hydrogen bonds (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯S1ii 0.98 3.01 3.821 (3) 140
C13—H13C⋯S1iii 0.98 2.93 3.798 (3) 148
Symmetry codes: (ii) [-x+1, -y, -z+1]; (iii) x+1, y, z.
[Figure 2]
Figure 2
Crystal structure of the title compound with view of the two different chains formed by inter­molecular C—H⋯S hydrogen bonding between S1 and H13C (top) and between S1 and H12B (bottom). Inter­molecular C—H⋯S hydrogen bonding is shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound with view along the crystallographic b axis and inter­molecular C—H⋯S hydrogen bonding shown as dashed lines.

4. Database survey

In the Cambridge Crystallographic Database (CSD, Version 5.41, last update May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) no transition-metal thio­cyanate compounds with tetra­methyl­thio­urea are reported, but one such compound with cobalt was published recently (Jochim et al., 2020b[Jochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476-1481.]). In this compound, discrete tetra­hedral complexes are found in which the metal cations are coordinated by two N-bonding thio­cyanate anions and two S-bonding tetra­methyl­thio­urea mol­ecules. Several compounds with transition-metal cations and tetra­methyl­thio­urea are reported in the CSD, of which two contain nickel cations. Both consist of discrete binuclear complexes in which the metal cations are connected by thiol­ate ligands. These complexes contain either two NiII cations with a square-planar coordin­ation geometry (Ito et al., 2009[Ito, M., Kotera, M., Song, Y., Matsumoto, T. & Tatsumi, K. (2009). Inorg. Chem. 48, 1250-1256.]) or one NiII and one FeII cation with square-pyramidal and octa­hedral coordination geom­etries (Ohki et al., 2008[Ohki, Y., Yasumura, K., Kuge, K., Tanino, S., Ando, M., Li, Z. & Tatsumi, K. (2008). Proc. Natl Acad. Sci. USA, 105, 7652-7657.]), respectively. Several Ni(NCS)2 compounds with other thio­urea derivatives are also found, including polymeric compounds such as [Ni(NCS)2(ethyl­ene­thio­urea)2]n (Nardelli et al., 1966b[Nardelli, M., Gasparri, G. F., Musatti, A. & Manfredotti, A. (1966b). Acta Cryst. 21, 910-919.]) and discrete complexes like [Ni(NCS)2(N,N′-di­ethyl­thio­urea)4] (Amzel et al., 1969[Amzel, L. M., Baggio, S. & Becka, L. N. (1969). J. Chem. Soc. A, pp. 2066-2073.]), but only one of those contains nickel cations with a square-planar coordination geometry (Leovac et al., 1995[Leovac, V. M., Češljević, V. I., Argay, G., Kálmán, A. & Ribár, B. (1995). J. Coord. Chem. 34, 357-364.]).

5. Synthesis and crystallization

General

Ni(NCS)2 was synthesized using a procedure described in Jochim et al. (2018[Jochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779-4789.]). The reagents NiSO4·6H2O and Ba(NCS)2·3H2O, which were used for this, were obtained from Merck and Alfa Aesar, respectively.

Synthesis

To synthesize a powder sample, a mixture of Ni(NCS)2 (0.50 mmol, 87.4 mg) and tetra­methyl­thio­urea (1.00 mmol, 132.2 mg) was stirred in 0.5 mL of ethanol for one day. The black residue was filtered off and washed with n-heptane. Single crystals were grown by slow evaporation of the filtrate obtained from a similar reaction. In this case, Ni(NCS)2 (0.25 mmol, 43.7 mg) and tetra­methyl­thio­urea (1.00 mmol, 132.3 mg) were reacted in 0.5 mL of n-butanol for one day, after which the residue was filtered off. Elemental analysis calculated for C12H24N6NiS4 (439.32 g mol−1) C 32.81, H 5.51, N 19.13, S 29.20, found: C 32.77, H 5.42, N 19.07, S 29.18. IR (ATR): νmax = 3025 (w), 3008 (w), 2954 (w), 2926 (w), 2164 (w), 2080 (s), 1555 (s), 1492 (m), 1461 (m), 1441 (m), 1415 (w), 1378 (s), 1259 (m), 1209 (w), 1156 (s), 1109 (s), 1100 (s), 1060 (m), 1055 (m), 941 (w), 878 (s), 845 (s), 653 (m), 612 (m), 490 (m), 478 (m), 468 (m), 408 (m) cm−1.

Experimental details

Elemental analysis was performed using an EURO EA elemental analyzer fabricated by EURO VECTOR Instruments. The IR spectrum was measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. The XRPD measurements were performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe Transmission Powder Diffraction System (STADI P) that is equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator. DTA–TG measurements were performed in a dynamic nitro­gen atmos­phere (5 NL h−1) in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined with anisotropic displacement parameters. The C-bound H atoms were positioned with idealized geometry (C—H = 0.98 Å) allowing them to rotate, but not to tip and refined isotropically with Uiso(H) = 1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C5H12N2S)2]
Mr 439.32
Crystal system, space group Monoclinic, P2/c
Temperature (K) 200
a, b, c (Å) 10.7245 (3), 6.2050 (3), 15.1579 (5)
β (°) 103.140 (3)
V3) 982.28 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.42
Crystal size (mm) 0.12 × 0.09 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.716, 0.874
No. of measured, independent and observed [I > 2σ(I)] reflections 9982, 1945, 1607
Rint 0.070
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.05
No. of reflections 1945
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.36
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(tetramethylthiourea-κS)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C5H12N2S)2]F(000) = 460
Mr = 439.32Dx = 1.485 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 10.7245 (3) ÅCell parameters from 9982 reflections
b = 6.2050 (3) Åθ = 2.0–26.0°
c = 15.1579 (5) ŵ = 1.42 mm1
β = 103.140 (3)°T = 200 K
V = 982.28 (6) Å3Block, black
Z = 20.12 × 0.09 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
1607 reflections with I > 2σ(I)
ω scansRint = 0.070
Absorption correction: numerical
(X-Red and X-Shape; Stoe & Cie, 2002)
θmax = 26.0°, θmin = 2.0°
Tmin = 0.716, Tmax = 0.874h = 1313
9982 measured reflectionsk = 77
1945 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1275P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1945 reflectionsΔρmax = 0.39 e Å3
109 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.29112 (8)0.7500000.03467 (16)
N10.3260 (3)0.2587 (4)0.70613 (16)0.0416 (6)
C10.2221 (3)0.1954 (5)0.67755 (18)0.0375 (6)
S10.07891 (8)0.10731 (15)0.63716 (6)0.0536 (2)
S110.51467 (7)0.31221 (13)0.60612 (5)0.0421 (2)
C110.6634 (3)0.4138 (5)0.60210 (18)0.0368 (6)
N110.7271 (2)0.3274 (4)0.54463 (16)0.0402 (5)
C120.7000 (4)0.1112 (6)0.5071 (2)0.0551 (8)
H12A0.6581430.0263580.5466310.083*
H12B0.7803470.0411410.5028780.083*
H12C0.6434050.1210460.4465820.083*
C130.8112 (3)0.4537 (6)0.5012 (2)0.0495 (8)
H13A0.8010020.6072190.5130610.074*
H13B0.7886700.4277470.4357330.074*
H13C0.9002820.4109300.5256960.074*
N120.7143 (2)0.5845 (4)0.65156 (16)0.0410 (5)
C140.6379 (4)0.7320 (5)0.6929 (2)0.0522 (8)
H14A0.5498710.7353590.6564310.078*
H14B0.6748740.8769290.6957800.078*
H14C0.6377660.6825130.7543020.078*
C150.8524 (3)0.6057 (6)0.6875 (2)0.0522 (8)
H15A0.8949420.4709560.6776420.078*
H15B0.8694140.6363910.7525990.078*
H15C0.8853810.7238500.6564570.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0307 (3)0.0413 (3)0.0316 (3)0.0000.00619 (19)0.000
N10.0423 (15)0.0489 (14)0.0335 (12)0.0005 (11)0.0085 (10)0.0004 (10)
C10.0364 (16)0.0446 (15)0.0319 (13)0.0021 (12)0.0086 (11)0.0017 (11)
S10.0354 (4)0.0637 (5)0.0597 (5)0.0076 (4)0.0063 (4)0.0022 (4)
S110.0360 (4)0.0576 (5)0.0323 (4)0.0074 (3)0.0069 (3)0.0023 (3)
C110.0337 (14)0.0430 (14)0.0327 (13)0.0007 (12)0.0052 (11)0.0045 (11)
N110.0399 (13)0.0451 (13)0.0368 (12)0.0015 (10)0.0112 (10)0.0024 (10)
C120.066 (2)0.0556 (19)0.0474 (18)0.0026 (17)0.0204 (16)0.0084 (15)
C130.0405 (17)0.065 (2)0.0471 (17)0.0022 (15)0.0188 (14)0.0113 (14)
N120.0391 (13)0.0417 (13)0.0418 (13)0.0021 (10)0.0081 (10)0.0029 (10)
C140.060 (2)0.0426 (16)0.0564 (19)0.0031 (14)0.0185 (16)0.0051 (14)
C150.0418 (17)0.0580 (19)0.0539 (18)0.0090 (15)0.0050 (14)0.0051 (15)
Geometric parameters (Å, º) top
Ni1—N11.844 (3)C11—N121.340 (4)
Ni1—S112.2259 (7)N11—C131.460 (4)
N1—C11.168 (4)N11—C121.460 (4)
C1—S11.614 (3)N12—C141.461 (4)
S11—C111.729 (3)N12—C151.464 (4)
C11—N111.335 (4)
N1—Ni1—N1i167.47 (16)N11—C11—S11119.3 (2)
N1—Ni1—S1186.80 (8)N12—C11—S11122.0 (2)
N1i—Ni1—S1193.93 (8)C11—N11—C13122.6 (3)
S11i—Ni1—S11173.26 (5)C11—N11—C12122.5 (3)
C1—N1—Ni1166.5 (3)C13—N11—C12113.9 (2)
N1—C1—S1179.4 (3)C11—N12—C14122.6 (3)
C11—S11—Ni1109.10 (9)C11—N12—C15121.9 (3)
N11—C11—N12118.6 (3)C14—N12—C15113.7 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···S1ii0.983.013.821 (3)140
C13—H13C···S1iii0.982.933.798 (3)148
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–2) and the State of Schleswig-Holstein.

References

First citationAmzel, L. M., Baggio, S. & Becka, L. N. (1969). J. Chem. Soc. A, pp. 2066–2073.  CSD CrossRef Google Scholar
First citationBöhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338.  Web of Science PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIto, M., Kotera, M., Song, Y., Matsumoto, T. & Tatsumi, K. (2009). Inorg. Chem. 48, 1250–1256.  CSD CrossRef PubMed CAS Google Scholar
First citationJochim, A., Lohmiller, T., Rams, M., Böhme, M., Ceglarska, M., Schnegg, A., Plass, W. & Näther, C. (2020c). Inorg. Chem. 59, 8971–8982.  CSD CrossRef CAS PubMed Google Scholar
First citationJochim, A., Radulovic, R., Jess, I. & Näther, C. (2020a). Acta Cryst. E76, 1373–1377.  CSD CrossRef IUCr Journals Google Scholar
First citationJochim, A., Radulovic, R., Jess, I. & Näther, C. (2020b). Acta Cryst. E76, 1476–1481.  CSD CrossRef IUCr Journals Google Scholar
First citationJochim, A., Rams, M., Neumann, T., Wellm, C., Reinsch, H., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. pp. 4779–4789.  Web of Science CSD CrossRef Google Scholar
First citationLeovac, V. M., Češljević, V. I., Argay, G., Kálmán, A. & Ribár, B. (1995). J. Coord. Chem. 34, 357–364.  CSD CrossRef CAS Google Scholar
First citationLi, L., Chen, S., Zhou, R.-M., Bai, Y. & Dang, D.-B. (2014). Spectrochim. Acta Part A, 120, 401–404.  CSD CrossRef CAS Google Scholar
First citationLin, H.-W. (2008). Acta Cryst. E64, m295.  CSD CrossRef IUCr Journals Google Scholar
First citationMaji, T. K., Laskar, I. R., Mostafa, G., Welch, A. J., Mukherjee, P. S. & Chaudhuri, N. R. (2001). Polyhedron, 20, 651–655.  CSD CrossRef CAS Google Scholar
First citationMautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613.  CSD CrossRef CAS PubMed Google Scholar
First citationNardelli, M., Gasparri, G. F., Battistini, G. G. & Domiano, P. (1966a). Acta Cryst. 20, 349–353.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M., Gasparri, G. F., Musatti, A. & Manfredotti, A. (1966b). Acta Cryst. 21, 910–919.  CSD CrossRef IUCr Journals Google Scholar
First citationNeumann, T., Rams, M., Tomkowicz, Z., Jess, I. & Näther, C. (2019). Chem. Commun. 55, 2652–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhki, Y., Yasumura, K., Kuge, K., Tanino, S., Ando, M., Li, Z. & Tatsumi, K. (2008). Proc. Natl Acad. Sci. USA, 105, 7652–7657.  CSD CrossRef PubMed CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.  Web of Science CSD CrossRef CAS Google Scholar
First citationRams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Chen, J.-N., Wu, C.-J. & Ma, J.-P. (2007). J. Coord. Chem. 60, 2009–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationShurdha, E., Moore, C. E., Rheingold, A. L., Lapidus, S. H., Stephens, P. W., Arif, A. M. & Miller, J. S. (2013). Inorg. Chem. 52, 10583–10594.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Neumann, T. & Näther, C. (2014). Z. Anorg. Allg. Chem. 640, 2839–2846.  CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G. & Näther, C. (2014). Cryst. Growth Des. 14, 1902–1913.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds