- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features and Hirshfeld surface analysis
- 4. Theoretical calculations
- 5. Frontier molecular orbital and chemical reactivity
- 6. Molecular electrostatic potential analysis
- 7. Synthesis and spectral characterization
- 8. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features and Hirshfeld surface analysis
- 4. Theoretical calculations
- 5. Frontier molecular orbital and chemical reactivity
- 6. Molecular electrostatic potential analysis
- 7. Synthesis and spectral characterization
- 8. Refinement
- Supporting information
- References
research communications
Molecular and a]benzimidazole-2-thione
Hirshfeld analysis and DFT investigation of 5-(furan-2-ylmethylidene)thiazolo[3,4-aLaboratory of Organic Applied Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1, Ahmed Ben Bella, 31000 Oran, Algeria, bCentre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, and cLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria
*Correspondence e-mail: achouaih@gmail.com
The thiazolo[3,4-a]benzimidazole fused-ring system in the title compound, C14H8N2OS2, is nearly planar, the r.m.s. deviation being 0.0073 Å. The thiazolo-benzimidazole-2-thione system is almost in the same plane as the furan-2-yl-methylene moiety, with a dihedral angle of 5.6 (2)° between the two least-squares planes. In the crystal, adjacent molecules are connected by weak intermolecular interactions (C—H⋯N and slipped π–π stacking) into a three-dimensional network. The nature of the intermolecular interactions was also quantified by Hirshfeld surface analysis. DFT analysis indicates a good agreement of the experimentally determined and the theoretically calculated molecular structures.
Keywords: crystal structure; benzimidazoles; thiazoles; DFT analysis; reactivity.
CCDC reference: 2043709
1. Chemical context
The synthesis and biological activity of thiazolobenzimidazoles were first studied several decades ago (Ogura et al., 1968; Krasovskii & Kochergin, 1972; Alper & Taurins, 1967). With regard to their biological activity, thiazolobenzimidazole derivatives have been evaluated in particular for their inhibitory effects on HIV-1 (Chimirri et al., 1999; Roth et al., 1997) and their use as antibacterial (Oh et al., 1995), anti-inflammatory (Bender et al., 1985), antidiabetic (El-Shorbagi et al., 2001), broncholytic (Park et al., 1993), antiprotozoal (Singh, 1970), anticonvulsant (Sharpe et al., 1971) and antidepressant (Miller & Bambury, 1972) agents. Some thiazolobenzimidazole derivatives are also used for the treatment of cancer and bone diseases (Al-Rashood & Abdel-Aziz, 2010). Furthermore, compounds with the benzimidazole moiety have been developed into useful materials for usage in non-linear optical fields (Vijayan et al., 2004) or photovoltaic cells (Bodedla et al., 2016; Gong et al., 2010).
We report in this communication the synthesis, molecular and crystal structures and Hirshfeld surface analysis of the title thiazolo derivative. In addition, the HOMO–LUMO energies, molecular electrostatic potential and chemical reactivity descriptors are described on the basis of theoretical calculations.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The tricyclic thiazolobenzimidazole group, consisting of a benzimidazole unit fused to a thiazole ring, is bonded to a furan-2-yl-methylene moiety at carbon atom C6. As expected, the thiazolo[3,4-a]benzimidazole group is planar with an r.m.s. deviation of 0.0073 Å for the thirteen (C6–C14/N1/N2/S1/S2) non H-atoms. The furan-2-yl-methylene moiety is also planar, with an r.m.s deviation of 0.0028 Å for the six (C1–C5/O1) non H-atoms. The two ring systems are almost in the same plane, their least-squares planes subtending a dihedral angle of 5.6 (2)°. The molecule exists in a Z configuration with respect to the C5=C6 bond. The S1—C8 and S1—C6 distances, 1.739 (4) and 1.775 (3) Å, respectively, are in agreement with a C—S single bond of a thiazole ring (Rahmani et al., 2016). In comparison, the S2—C8 bond [1.612 (4) Å] of the thione moiety is much shorter as a result of its double-bond character and the presence of a delocalized π-electronic system throughout the entire thiazolobenzimidazole ring system (Liang et al., 2009). The bond lengths of the thiazolobenzimidazole and furan rings are similar than those in a series of thiazolo[3,2-a]benzimidazole and thiazolo[3,4-a]benzimidazole compounds (Bruno et al., 1996; Wang et al., 2011). The intramolecular C10—H10⋯S2 hydrogen-bonding interaction (Table 1) helps to stabilize the molecular conformation.
3. Supramolecular features and Hirshfeld surface analysis
In similar reported structures containing thiazole ring systems, the crystal packing is mainly based on short contacts and weak π–π interactions (Djafri et al., 2017). In the crystal packing of the title compound, weak C3—H3aromatic⋯N2i hydrogen bonds (Table 1) connect the molecules into dimers (Fig. 2). Additional π–π stacking interactions between adjacent thiazolobenzimidazole ring systems link the dimers into a three-dimensional network structure, with centroid-to-centroid distances of 3.6523 (18) Å (slippage 1.141 Å) and 3.6515 (1) Å (slippage 1.137 Å) between the thiazole ring and the benzene ring of one thiazolobenzimidazole ring system, and between the imidazole ring and the benzene ring of another thiazolobenzimidazole ring system, respectively.
Hirshfeld surface (HS) analysis of the title compound was performed using Crystal Explorer 17 (Turner et al., 2017) with the surface mapped over dnorm as described in the literature (Yahiaoui et al., 2019). In the dnorm surface, strong intermolecular interactions appear as red spots (Bahoussi et al., 2017; Khelloul et al., 2016) as depicted in Fig. 3a (here originating particularly from the C—H⋯N hydrogen bond). The presence of π–π stacking interactions is indicated by red and blue triangles on the shape-index surface as can be seen in Fig. 3b. In Fig. 3c, the other red spots indicate also the presence of a weaker C—H⋯S hydrogen bond (between H3 and S2) and C—H⋯N (between H1 and N2). The overall two-dimensional fingerprint (FP) plots, and those delineated into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, N⋯H/H⋯N and C⋯C contacts are shown in Fig. 4. H⋯H contacts are the dominant interactions with a contribution of 29.8% to the overall HS. The S⋯H/H⋯S interactions appear as the next largest region of the FP plot, highly concentrated at the edges, characteristic of hydrogen-bond interactions with an overall HS contribution of 19.6%. The C⋯H/H⋯C interactions are illustrated by two symmetrical wings on the left and right sides (16.5% contribution). The C⋯C contacts, which are the measure of π–π stacking interactions, occupy 9.1% of the HS and appear as a unique triangle. The N⋯H/H⋯N contacts are represented by a pair of sharp spikes and make a contribution of 6.6%. Other intermolecular contacts in the HS mapping contribution less than 5%.
4. Theoretical calculations
The hybrid functional B3LYP (Becke's three-parameter hybrid model using the Lee-Yang Parr correlation functional) with the 6-311G (d, p) basis set (Becke, 1993) were used in all calculations as implemented in Gaussian 09 (Frisch et al., 2009). Theoretical calculations were performed to obtain the optimized molecular structure of the title compound in the gas phase. The was used as an input file in the GaussView 5 program (Frisch et al., 2000) to start structure optimization of the title compound. Comparison of the DFT-optimized molecular structure with the refined structure based on single crystal X-ray data revealed a good agreement (see supporting information for a detailed comparison of bond lengths and angles). Frontier molecular orbitals and the molecular electrostatic potential were calculated using the same level of theory.
5. Frontier molecular orbital and chemical reactivity
The frontier molecular orbitals, HOMO (highest occupied molecular orbital) and LUMO (lowest-unoccupied molecular orbital), are plotted to specify the distribution of electronic densities. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 5. As can be seen from the figure, the HOMO and LUMO are localized in the plane extending from the whole furan ring to the thiazolo-benzimidazole ring system. The frontier molecular orbital energies, EHOMO and ELUMO are −7.23 and −1.87 eV, respectively, and the HOMO–LUMO gap is 5.36 eV. Since the gap energy is considered to be small, the molecule is defined as soft.
Global chemical reactivity descriptor (GCRD) parameters can be obtained as reported in the literature (Belkafouf et al., 2019). The calculated values of the GCRD parameters for the title molecule are summarized in Table 2. The chemical stability of the title molecule is explained by the (μ) value, which is −4.55 eV. On the other hand, the chemical hardness (η) value is 2.68 eV, indicating that the charge transfer occurs within the molecule. From Table 2, the electrophilic behaviour of the molecule is confirmed by the global (ω), which has a value of 3.86 eV. The structure–property relationship can be also described by the hyper-hardness descriptor (Γ), which was introduced to investigate the reactivity or stability of molecules theoretically (Ghanavatkar et al., 2020). According to the results, the positive value of Γ (+4.30 eV) indicates stability of the molecule.
|
6. Molecular electrostatic potential analysis
To predict reactive sites for electrophilic and nucleophilic attack, molecular electrostatic potential (MEP) surfaces were computed at the B3LYP/6-311G (d,p) level with the optimized structure using GaussView (Frisch et al., 2000). The different values of the electrostatic potential at the MEP surface are represented by red, blue and green (Kourat et al., 2020). From Fig. 6, it is obvious that the negative potential regions (red) are associated with sulfur and nitrogen atoms whereas the positive potential regions (blue) are on the side of hydrogen atoms. It may also be seen in Fig. 6 that green areas cover parts of the molecule enveloping the π system of the aromatic rings.
7. Synthesis and spectral characterization
The synthetic route preparation of the title compound is illustrated in Fig. 7. Initially, the tricyclic thiazolo(3,4-a)benzimidazole (1) was obtained from amino phenylene dithiocarbamate and chloroacetic acid by the Hanztsch reaction. The title compound (3) was prepared by Knoevenagel condensation of furaldehyde 2 (2; 0.01 mol) and the tricyclic compound (1; 0.02 mol) in acetic acid (10 ml) buffered by sodium acetate (0.02 mol). The reaction was monitored by TLC (petroleum ether/ethyl acetate, 8/2). After 4 h of refluxing and stirring, the brown solid obtained was filtered off, dried and recrystallized from ethanol to give the title compound, m.p. 493 K, in a yield of 85%.
Spectroscopic data (FT–IR, 1H NMR and 13C NMR) for (3). IR (KBr, cm−1): 3099, 3076 and 3026 (Csp2—Harom), 1602 (C=N), 1555–1464 (C=C), 1390 (C=S), 1324 (–C—S–), 1259 (C—N) and 815, 759 (C—Haryl). 1H NMR (300 MHz, CDCl3, δ ppm) J (Hz): 6,6 (q, 1H, J3 = 1.76 Hz, furan), 6.80 (d, 1H, J = 3.48 Hz, furan), 7.45 (m, 2H, J3 = 1.66 Hz, J4 = 5,60 phenyl), 7.60 (s, 1H, C=CH), 7.70 (s, 1H, furan) , 7.80 (d, 1H, J3 = 8.56 Hz, phenyl), 8.50 (d, 1H, J3 = 8.72 Hz, phenyl). 13C NMR (75 MHz, CDCl3, δ ppm): 113.46, 113.51, 113.90, 117.15, 118.81, 120.65, 121.32, 125.59, 126.55, 131.00, 146.63, 149.48, 150.42 (C=N), 187.15 (C=S).
8. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3Supporting information
CCDC reference: 2043709
https://doi.org/10.1107/S2056989020015017/wm5587sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015017/wm5587Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015017/wm5587Isup3.mol
Selected bond lengths, bond angles and torsion angles for the non-hydrogen atoms, as determined by X-ray diffraction technique and DFT calculations. DOI: https://doi.org/10.1107/S2056989020015017/wm5587sup5.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015017/wm5587Isup5.cml
Data collection: KappaCCD (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C14H8N2OS2 | F(000) = 584 |
Mr = 284.34 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.768 (5) Å | Cell parameters from 100 reflections |
b = 4.7583 (15) Å | θ = 2.0–25.3° |
c = 17.316 (6) Å | µ = 0.41 mm−1 |
β = 101.572 (8)° | T = 295 K |
V = 1272.8 (7) Å3 | Prism, colourless |
Z = 4 | 0.58 × 0.21 × 0.20 mm |
Nonius Kappa CCD diffractometer | 1835 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.020 |
θ/2θ scans | θmax = 25.4°, θmin = 3.6° |
Absorption correction: multi-scan (Blessing, 1995) | h = −18→18 |
Tmin = 0.856, Tmax = 0.919 | k = −5→5 |
10879 measured reflections | l = −20→20 |
2281 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0089P)2 + 4.0499P] where P = (Fo2 + 2Fc2)/3 |
S = 0.96 | (Δ/σ)max < 0.001 |
2281 reflections | Δρmax = 0.17 e Å−3 |
172 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.01611 (6) | 0.1179 (2) | 0.89016 (5) | 0.0504 (3) | |
S2 | −0.14717 (8) | −0.2152 (3) | 0.85975 (7) | 0.0732 (4) | |
O1 | 0.15244 (16) | 0.5043 (6) | 0.94349 (14) | 0.0523 (7) | |
C14 | 0.0218 (2) | −0.4142 (8) | 0.67488 (18) | 0.0432 (9) | |
N1 | −0.01982 (18) | −0.2326 (7) | 0.77765 (15) | 0.0436 (7) | |
C9 | −0.0453 (2) | −0.4245 (9) | 0.71658 (19) | 0.0467 (9) | |
C7 | 0.0587 (2) | −0.1218 (8) | 0.76838 (19) | 0.0427 (9) | |
C11 | −0.1192 (3) | −0.7634 (9) | 0.6302 (2) | 0.0536 (10) | |
H11 | −0.1661 | −0.8825 | 0.6139 | 0.064* | |
N2 | 0.08686 (18) | −0.2264 (7) | 0.70874 (15) | 0.0430 (7) | |
C8 | −0.0552 (2) | −0.1294 (9) | 0.83946 (19) | 0.0467 (9) | |
C13 | 0.0170 (2) | −0.5792 (9) | 0.60819 (19) | 0.0485 (10) | |
H13 | 0.0595 | −0.5718 | 0.5780 | 0.058* | |
C6 | 0.0923 (2) | 0.0822 (8) | 0.82795 (19) | 0.0430 (9) | |
C5 | 0.1667 (2) | 0.2165 (8) | 0.8349 (2) | 0.0433 (9) | |
H5 | 0.1996 | 0.1713 | 0.7976 | 0.052* | |
C3 | 0.2789 (2) | 0.5589 (8) | 0.9074 (2) | 0.0490 (9) | |
H3 | 0.3240 | 0.5411 | 0.8804 | 0.059* | |
C10 | −0.1160 (2) | −0.5960 (9) | 0.6964 (2) | 0.0503 (10) | |
H10 | −0.1595 | −0.6002 | 0.7255 | 0.060* | |
C4 | 0.2034 (2) | 0.4222 (8) | 0.8920 (2) | 0.0462 (9) | |
C1 | 0.2005 (3) | 0.6951 (9) | 0.9914 (2) | 0.0551 (10) | |
H1 | 0.1822 | 0.7867 | 1.0326 | 0.066* | |
C2 | 0.2770 (3) | 0.7349 (9) | 0.9723 (2) | 0.0540 (10) | |
H2 | 0.3206 | 0.8552 | 0.9969 | 0.065* | |
C12 | −0.0534 (3) | −0.7544 (9) | 0.5885 (2) | 0.0574 (11) | |
H12 | −0.0568 | −0.8722 | 0.5452 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0569 (6) | 0.0590 (6) | 0.0373 (5) | −0.0007 (5) | 0.0142 (4) | −0.0071 (5) |
S2 | 0.0644 (7) | 0.0958 (10) | 0.0690 (7) | −0.0167 (7) | 0.0360 (6) | −0.0209 (7) |
O1 | 0.0584 (16) | 0.0575 (17) | 0.0423 (14) | −0.0015 (14) | 0.0132 (12) | −0.0078 (13) |
C14 | 0.053 (2) | 0.047 (2) | 0.0274 (16) | 0.0062 (19) | 0.0031 (15) | 0.0015 (17) |
N1 | 0.0464 (17) | 0.0520 (19) | 0.0331 (15) | 0.0008 (15) | 0.0099 (13) | 0.0005 (14) |
C9 | 0.052 (2) | 0.052 (2) | 0.0342 (18) | 0.0062 (19) | 0.0032 (16) | 0.0032 (18) |
C7 | 0.048 (2) | 0.050 (2) | 0.0316 (17) | 0.0049 (18) | 0.0099 (15) | 0.0058 (17) |
C11 | 0.058 (2) | 0.058 (3) | 0.040 (2) | 0.000 (2) | −0.0011 (17) | −0.003 (2) |
N2 | 0.0497 (17) | 0.0521 (19) | 0.0271 (14) | 0.0028 (15) | 0.0079 (13) | 0.0038 (14) |
C8 | 0.052 (2) | 0.056 (2) | 0.0347 (18) | 0.0025 (19) | 0.0132 (16) | −0.0015 (18) |
C13 | 0.060 (2) | 0.056 (3) | 0.0300 (17) | 0.009 (2) | 0.0082 (16) | 0.0036 (18) |
C6 | 0.049 (2) | 0.049 (2) | 0.0316 (17) | 0.0033 (19) | 0.0103 (15) | −0.0033 (17) |
C5 | 0.054 (2) | 0.040 (2) | 0.0389 (18) | 0.0017 (18) | 0.0157 (16) | 0.0063 (17) |
C3 | 0.055 (2) | 0.053 (3) | 0.0399 (19) | −0.003 (2) | 0.0102 (17) | −0.0020 (18) |
C10 | 0.057 (2) | 0.058 (3) | 0.0334 (18) | 0.004 (2) | 0.0020 (16) | 0.0011 (19) |
C4 | 0.055 (2) | 0.046 (2) | 0.0377 (19) | 0.0021 (19) | 0.0106 (16) | 0.0023 (18) |
C1 | 0.069 (3) | 0.055 (3) | 0.041 (2) | 0.003 (2) | 0.0097 (19) | −0.010 (2) |
C2 | 0.061 (2) | 0.057 (3) | 0.041 (2) | −0.006 (2) | 0.0041 (18) | −0.006 (2) |
C12 | 0.072 (3) | 0.059 (3) | 0.037 (2) | 0.013 (2) | −0.0003 (19) | −0.008 (2) |
S1—C8 | 1.739 (4) | C11—C10 | 1.388 (5) |
S1—C6 | 1.775 (3) | C11—H11 | 0.9300 |
S2—C8 | 1.612 (4) | C13—C12 | 1.376 (6) |
O1—C1 | 1.354 (5) | C13—H13 | 0.9300 |
O1—C4 | 1.372 (4) | C6—C5 | 1.320 (5) |
C14—C13 | 1.386 (5) | C5—C4 | 1.429 (5) |
C14—C9 | 1.397 (5) | C5—H5 | 0.9300 |
C14—N2 | 1.397 (5) | C3—C4 | 1.336 (5) |
N1—C7 | 1.384 (4) | C3—C2 | 1.407 (5) |
N1—C8 | 1.392 (4) | C3—H3 | 0.9300 |
N1—C9 | 1.394 (5) | C10—H10 | 0.9300 |
C9—C10 | 1.368 (5) | C1—C2 | 1.326 (5) |
C7—N2 | 1.302 (4) | C1—H1 | 0.9300 |
C7—C6 | 1.438 (5) | C2—H2 | 0.9300 |
C11—C12 | 1.378 (5) | C12—H12 | 0.9300 |
C8—S1—C6 | 94.40 (17) | C5—C6—C7 | 125.8 (3) |
C1—O1—C4 | 105.1 (3) | C5—C6—S1 | 126.6 (3) |
C13—C14—C9 | 119.3 (4) | C7—C6—S1 | 107.6 (3) |
C13—C14—N2 | 128.7 (3) | C6—C5—C4 | 128.6 (3) |
C9—C14—N2 | 112.0 (3) | C6—C5—H5 | 115.7 |
C7—N1—C8 | 117.4 (3) | C4—C5—H5 | 115.7 |
C7—N1—C9 | 106.9 (3) | C4—C3—C2 | 106.7 (3) |
C8—N1—C9 | 135.7 (3) | C4—C3—H3 | 126.6 |
C10—C9—N1 | 132.9 (3) | C2—C3—H3 | 126.6 |
C10—C9—C14 | 123.5 (3) | C9—C10—C11 | 116.5 (4) |
N1—C9—C14 | 103.6 (3) | C9—C10—H10 | 121.8 |
N2—C7—N1 | 113.7 (3) | C11—C10—H10 | 121.8 |
N2—C7—C6 | 133.7 (3) | C3—C4—O1 | 110.3 (3) |
N1—C7—C6 | 112.6 (3) | C3—C4—C5 | 133.8 (3) |
C12—C11—C10 | 120.5 (4) | O1—C4—C5 | 115.9 (3) |
C12—C11—H11 | 119.7 | C2—C1—O1 | 111.6 (3) |
C10—C11—H11 | 119.7 | C2—C1—H1 | 124.2 |
C7—N2—C14 | 103.8 (3) | O1—C1—H1 | 124.2 |
N1—C8—S2 | 126.5 (3) | C1—C2—C3 | 106.3 (4) |
N1—C8—S1 | 108.0 (3) | C1—C2—H2 | 126.8 |
S2—C8—S1 | 125.5 (2) | C3—C2—H2 | 126.8 |
C12—C13—C14 | 117.1 (4) | C13—C12—C11 | 123.0 (4) |
C12—C13—H13 | 121.4 | C13—C12—H12 | 118.5 |
C14—C13—H13 | 121.4 | C11—C12—H12 | 118.5 |
C7—N1—C9—C10 | 179.5 (4) | N2—C14—C13—C12 | 178.0 (4) |
C8—N1—C9—C10 | −3.1 (7) | N2—C7—C6—C5 | −0.5 (7) |
C7—N1—C9—C14 | 0.3 (4) | N1—C7—C6—C5 | 178.3 (4) |
C8—N1—C9—C14 | 177.7 (4) | N2—C7—C6—S1 | 179.8 (4) |
C13—C14—C9—C10 | 1.7 (6) | N1—C7—C6—S1 | −1.4 (4) |
N2—C14—C9—C10 | −178.7 (3) | C8—S1—C6—C5 | −179.0 (4) |
C13—C14—C9—N1 | −179.0 (3) | C8—S1—C6—C7 | 0.7 (3) |
N2—C14—C9—N1 | 0.6 (4) | C7—C6—C5—C4 | 179.5 (4) |
C8—N1—C7—N2 | −179.2 (3) | S1—C6—C5—C4 | −0.9 (6) |
C9—N1—C7—N2 | −1.2 (4) | N1—C9—C10—C11 | −179.7 (4) |
C8—N1—C7—C6 | 1.8 (5) | C14—C9—C10—C11 | −0.7 (6) |
C9—N1—C7—C6 | 179.7 (3) | C12—C11—C10—C9 | 0.5 (6) |
N1—C7—N2—C14 | 1.5 (4) | C2—C3—C4—O1 | 0.7 (4) |
C6—C7—N2—C14 | −179.7 (4) | C2—C3—C4—C5 | −179.5 (4) |
C13—C14—N2—C7 | 178.2 (4) | C1—O1—C4—C3 | −0.6 (4) |
C9—C14—N2—C7 | −1.3 (4) | C1—O1—C4—C5 | 179.5 (3) |
C7—N1—C8—S2 | 177.2 (3) | C6—C5—C4—C3 | 175.6 (4) |
C9—N1—C8—S2 | 0.0 (6) | C6—C5—C4—O1 | −4.5 (6) |
C7—N1—C8—S1 | −1.2 (4) | C4—O1—C1—C2 | 0.2 (4) |
C9—N1—C8—S1 | −178.4 (3) | O1—C1—C2—C3 | 0.2 (5) |
C6—S1—C8—N1 | 0.3 (3) | C4—C3—C2—C1 | −0.5 (5) |
C6—S1—C8—S2 | −178.1 (3) | C14—C13—C12—C11 | 2.4 (6) |
C9—C14—C13—C12 | −2.5 (5) | C10—C11—C12—C13 | −1.4 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···S2 | 0.93 | 2.94 | 3.476 (4) | 119 |
C3—H3···N2i | 0.93 | 2.62 | 3.474 (5) | 154 |
C1—H1···S2ii | 0.93 | 2.89 | 3.788 (4) | 163 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x, −y+1, −z+2. |
Parameter | Calculated energy |
EHOMO | -7.23 |
ELUMO | -1.87 |
EHOMO-1 | -8.29 |
ELUMO+1 | -0.40 |
EHOMO–ELUMO (gap) | 5.36 |
EHOMO-1 - ELUMO+1 (gap) | 7.89 |
Ionization potential (I) | 7.23 |
Electron affinity (A) | 1.87 |
Chemical hardness (η) | 2.68 |
Chemical potential (µ) | –4.55 |
Electronegativity (χ) | 4.55 |
Electrophilicity (ω) | 3.86 |
Hyper-hardness (Γ) | 4.30 |
Funding information
The authors gratefully acknowledge financial support via the PRFU project from the Algerian Ministry of Higher Education and Scientific Research, the Directorate General of Scientific Research and Technological Development (DGRSDT), Thematic Research Agency in Science and Technology (ATRST) and Abdelhamid Ibn Badis University of Mostaganem.
References
Alper, A. E. & Taurins, A. (1967). Can. J. Chem. 45, 2903–2912. CrossRef CAS Web of Science Google Scholar
Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815. Web of Science CAS PubMed Google Scholar
Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Belkafouf, N. E. H., Triki Baara, F., Altomare, A., Rizzi, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1189, 8–20. Web of Science CrossRef CAS Google Scholar
Bender, P. E., Hill, D., Offen, P. H., Razgaitis, K., Lavanchy, P., Stringer, O. D., Sutton, B. M., Griswold, D. E., DiMartino, M. & Walz, D. T. (1985). J. Med. Chem. 28, 1169–1177. CrossRef CAS PubMed Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bodedla, G. B., Justin Thomas, K. R., Fan, M. S. & Ho, K. C. (2016). J. Org. Chem. 81, 640–653. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruno, G., Chimirri, A., Monforte, A. M., Nicoló, F. & Scopelliti, R. (1996). Acta Cryst. C52, 2531–2533. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chimirri, A., Grasso, S., Monforte, P., Rao, A., Zappalà, M., Monforte, A. M., Pannecouque, C., Witvrouw, M., Balzarini, J. & De Clercq, E. (1999). Antivir. Chem. Chemother. 10, 211–217. Web of Science CrossRef PubMed CAS Google Scholar
Djafri, A., Chouaih, A., Daran, J.-C., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 511–514. Web of Science CSD CrossRef IUCr Journals Google Scholar
El-Shorbagi, A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). Bull. Pharm. Sci. Assiut, 24, 7–20. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, A., Nielson, A. B. & Holder, A. J. (2000). GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Ghanavatkar, C. W., Mishra, V. R., Sekar, N., Mathew, E., Thomas, S. S. & Joe, I. H. (2020). J. Mol. Struct. 1203, 127401. Web of Science CrossRef Google Scholar
Gong, S., Zhao, Y., Yang, C., Zhong, C., Qin, J. & Ma, D. (2010). J. Phys. Chem. C114, 5193–5198. Google Scholar
Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626. Web of Science CrossRef CAS PubMed Google Scholar
Kourat, O., Djafri, A., Benhalima, N., Megrouss, Y., Belkafouf, N. E. H., Rahmani, R., Daran, J.-C., Djafri, A. & Chouaih, A. (2020). J. Mol. Struct. 1222, 128952. CSD CrossRef Google Scholar
Krasovskii, A. N. & Kochergin, P. M. (1972). Chem. Heterocycl. Compd. 5, 243–245. CrossRef Google Scholar
Liang, Y., He, H.-W. & Yang, Z.-W. (2009). Acta Cryst. E65, o3098. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miller, L. F. & Bambury, R. E. (1972). J. Med. Chem. 15, 415–417. CrossRef CAS PubMed Web of Science Google Scholar
Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands. Google Scholar
Ogura, H., Itoh, T. & Tajika, T. (1968). J. Heterocycl. Chem. 5, 319–322. CrossRef CAS Web of Science Google Scholar
Oh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289–291. CrossRef CAS Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Park, Y. J., Such, K. H., Kang, E. C., Yoon, H. S., Kim, Y. H., Kang, D. P. & Chang, M. S. (1993). Korean J. Med. Chem. 3, 124–129. CAS Google Scholar
Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. Jr & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207. Web of Science CrossRef CAS PubMed Google Scholar
Sharpe, C. J., Shadbolt, R. S., Ashford, A. & Ross, J. W. (1971). J. Med. Chem. 14, 977–982. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, J. M. (1970). J. Med. Chem. 13, 1018. CrossRef PubMed Web of Science Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Vijayan, N., Ramesh Babu, R., Gopalakrishnan, R., Ramasamy, P. & Harrison, W. T. A. (2004). J. Cryst. Growth, 262, 490–498. Web of Science CrossRef CAS Google Scholar
Wang, Z.-M., Yu, B., Cui, Y., Zhang, X.-Q. & Sun, X.-Q. (2011). Acta Cryst. E67, o2540. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yahiaoui, S., Moliterni, A., Corriero, N., Cuocci, C., Toubal, K., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1177, 186–192. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.