research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular and crystal structure, Hirshfeld analysis and DFT investigation of 5-(furan-2-yl­methyl­­idene)thia­zolo[3,4-a]benzimidazole-2-thione

CROSSMARK_Color_square_no_text.svg

aLaboratory of Organic Applied Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1, Ahmed Ben Bella, 31000 Oran, Algeria, bCentre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, and cLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria
*Correspondence e-mail: achouaih@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 October 2020; accepted 11 November 2020; online 13 November 2020)

The thia­zolo[3,4-a]benzimidazole fused-ring system in the title compound, C14H8N2OS2, is nearly planar, the r.m.s. deviation being 0.0073 Å. The thia­zolo-benzimidazole-2-thione system is almost in the same plane as the furan-2-yl-methyl­ene moiety, with a dihedral angle of 5.6 (2)° between the two least-squares planes. In the crystal, adjacent mol­ecules are connected by weak inter­molecular inter­actions (C—H⋯N and slipped ππ stacking) into a three-dimensional network. The nature of the inter­molecular inter­actions was also qu­anti­fied by Hirshfeld surface analysis. DFT analysis indicates a good agreement of the experimentally determined and the theoretically calculated mol­ecular structures.

1. Chemical context

The synthesis and biological activity of thia­zolo­benz­imid­azoles were first studied several decades ago (Ogura et al., 1968[Ogura, H., Itoh, T. & Tajika, T. (1968). J. Heterocycl. Chem. 5, 319-322.]; Krasovskii & Kochergin, 1972[Krasovskii, A. N. & Kochergin, P. M. (1972). Chem. Heterocycl. Compd. 5, 243-245.]; Alper & Taurins, 1967[Alper, A. E. & Taurins, A. (1967). Can. J. Chem. 45, 2903-2912.]). With regard to their biological activity, thia­zolobenzimidazole derivatives have been evaluated in particular for their inhibitory effects on HIV-1 (Chimirri et al., 1999[Chimirri, A., Grasso, S., Monforte, P., Rao, A., Zappalà, M., Monforte, A. M., Pannecouque, C., Witvrouw, M., Balzarini, J. & De Clercq, E. (1999). Antivir. Chem. Chemother. 10, 211-217.]; Roth et al., 1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. Jr & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]) and their use as anti­bacterial (Oh et al., 1995[Oh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289-291.]), anti-inflammatory (Bender et al., 1985[Bender, P. E., Hill, D., Offen, P. H., Razgaitis, K., Lavanchy, P., Stringer, O. D., Sutton, B. M., Griswold, D. E., DiMartino, M. & Walz, D. T. (1985). J. Med. Chem. 28, 1169-1177.]), anti­diabetic (El-Shorbagi et al., 2001[El-Shorbagi, A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). Bull. Pharm. Sci. Assiut, 24, 7-20.]), broncholytic (Park et al., 1993[Park, Y. J., Such, K. H., Kang, E. C., Yoon, H. S., Kim, Y. H., Kang, D. P. & Chang, M. S. (1993). Korean J. Med. Chem. 3, 124-129.]), anti­protozoal (Singh, 1970[Singh, J. M. (1970). J. Med. Chem. 13, 1018.]), anti­convulsant (Sharpe et al., 1971[Sharpe, C. J., Shadbolt, R. S., Ashford, A. & Ross, J. W. (1971). J. Med. Chem. 14, 977-982.]) and anti­depressant (Miller & Bambury, 1972[Miller, L. F. & Bambury, R. E. (1972). J. Med. Chem. 15, 415-417.]) agents. Some thia­zolo­benz­imid­azole derivatives are also used for the treatment of cancer and bone diseases (Al-Rashood & Abdel-Aziz, 2010[Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775-3815.]). Furthermore, compounds with the benzimidazole moiety have been developed into useful materials for usage in non-linear optical fields (Vijayan et al., 2004[Vijayan, N., Ramesh Babu, R., Gopalakrishnan, R., Ramasamy, P. & Harrison, W. T. A. (2004). J. Cryst. Growth, 262, 490-498.]) or photovoltaic cells (Bodedla et al., 2016[Bodedla, G. B., Justin Thomas, K. R., Fan, M. S. & Ho, K. C. (2016). J. Org. Chem. 81, 640-653.]; Gong et al., 2010[Gong, S., Zhao, Y., Yang, C., Zhong, C., Qin, J. & Ma, D. (2010). J. Phys. Chem. C114, 5193-5198.]).

[Scheme 1]

We report in this communication the synthesis, mol­ecular and crystal structures and Hirshfeld surface analysis of the title thia­zolo derivative. In addition, the HOMO–LUMO energies, mol­ecular electrostatic potential and chemical reactivity descriptors are described on the basis of theoretical calculations.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The tricyclic thia­zolobenzimidazole group, consisting of a benzimidazole unit fused to a thia­zole ring, is bonded to a furan-2-yl-methyl­ene moiety at carbon atom C6. As expected, the thia­zolo[3,4-a]benzimidazole group is planar with an r.m.s. deviation of 0.0073 Å for the thirteen (C6–C14/N1/N2/S1/S2) non H-atoms. The furan-2-yl-methyl­ene moiety is also planar, with an r.m.s deviation of 0.0028 Å for the six (C1–C5/O1) non H-atoms. The two ring systems are almost in the same plane, their least-squares planes subtending a dihedral angle of 5.6 (2)°. The mol­ecule exists in a Z configuration with respect to the C5=C6 bond. The S1—C8 and S1—C6 distances, 1.739 (4) and 1.775 (3) Å, respectively, are in agreement with a C—S single bond of a thia­zole ring (Rahmani et al., 2016[Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155-157.]). In comparison, the S2—C8 bond [1.612 (4) Å] of the thione moiety is much shorter as a result of its double-bond character and the presence of a delocalized π-electronic system throughout the entire thia­zolo­benz­imid­azole ring system (Liang et al., 2009[Liang, Y., He, H.-W. & Yang, Z.-W. (2009). Acta Cryst. E65, o3098.]). The bond lengths of the thia­zolobenzimidazole and furan rings are similar than those in a series of thia­zolo[3,2-a]benzimidazole and thia­zolo[3,4-a]benzimidazole compounds (Bruno et al., 1996[Bruno, G., Chimirri, A., Monforte, A. M., Nicoló, F. & Scopelliti, R. (1996). Acta Cryst. C52, 2531-2533.]; Wang et al., 2011[Wang, Z.-M., Yu, B., Cui, Y., Zhang, X.-Q. & Sun, X.-Q. (2011). Acta Cryst. E67, o2540.]). The intra­molecular C10—H10⋯S2 hydrogen-bonding inter­action (Table 1[link]) helps to stabilize the mol­ecular conformation.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯S2 0.93 2.94 3.476 (4) 119
C3—H3⋯N2i 0.93 2.62 3.474 (5) 154
C1—H1⋯S2ii 0.93 2.89 3.788 (4) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, -y+1, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In similar reported structures containing thia­zole ring systems, the crystal packing is mainly based on short contacts and weak ππ inter­actions (Djafri et al., 2017[Djafri, A., Chouaih, A., Daran, J.-C., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 511-514.]). In the crystal packing of the title compound, weak C3—H3aromatic⋯N2i hydrogen bonds (Table 1[link]) connect the mol­ecules into dimers (Fig. 2[link]). Additional ππ stacking inter­actions between adjacent thia­zolobenzimidazole ring systems link the dimers into a three-dimensional network structure, with centroid-to-centroid distances of 3.6523 (18) Å (slippage 1.141 Å) and 3.6515 (1) Å (slippage 1.137 Å) between the thia­zole ring and the benzene ring of one thia­zolobenzimidazole ring system, and between the imidazole ring and the benzene ring of another thia­zolo­benz­imid­azole ring system, respectively.

[Figure 2]
Figure 2
Crystal packing diagram of the title compound with hydrogen bonds (dashed lines) viewed along the b axis.

Hirshfeld surface (HS) analysis of the title compound was performed using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) with the surface mapped over dnorm as described in the literature (Yahiaoui et al., 2019[Yahiaoui, S., Moliterni, A., Corriero, N., Cuocci, C., Toubal, K., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1177, 186-192.]). In the dnorm surface, strong inter­molecular inter­actions appear as red spots (Bahoussi et al., 2017[Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173-176.]; Khelloul et al., 2016[Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619-626.]) as depicted in Fig. 3[link]a (here origin­ating particularly from the C—H⋯N hydrogen bond). The presence of ππ stacking inter­actions is indicated by red and blue triangles on the shape-index surface as can be seen in Fig. 3[link]b. In Fig. 3[link]c, the other red spots indicate also the presence of a weaker C—H⋯S hydrogen bond (between H3 and S2) and C—H⋯N (between H1 and N2). The overall two-dimensional fingerprint (FP) plots, and those delineated into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, N⋯H/H⋯N and C⋯C contacts are shown in Fig. 4[link]. H⋯H contacts are the dominant inter­actions with a contribution of 29.8% to the overall HS. The S⋯H/H⋯S inter­actions appear as the next largest region of the FP plot, highly concentrated at the edges, characteristic of hydrogen-bond inter­actions with an overall HS contribution of 19.6%. The C⋯H/H⋯C inter­actions are illustrated by two symmetrical wings on the left and right sides (16.5% contribution). The C⋯C contacts, which are the measure of ππ stacking inter­actions, occupy 9.1% of the HS and appear as a unique triangle. The N⋯H/H⋯N contacts are represented by a pair of sharp spikes and make a contribution of 6.6%. Other inter­molecular contacts in the HS mapping contribution less than 5%.

[Figure 3]
Figure 3
Hirshfeld surfaces for visualizing the inter­molecular contacts of the title compound: (a) dnorm Hirshfeld surface, (b) shape-index and (c) dnorm highlighting the regions of the C—H⋯S and C—H⋯N hydrogen bonds.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots showing the contributions of different types of inter­actions: (a) all inter­molecular contacts, (b) H⋯H contacts, (c) S⋯H/H⋯S contacts, (d) C⋯H/H⋯C contacts, (e) C⋯C contacts and (f) N⋯H/H⋯N contacts.

4. Theoretical calculations

The hybrid functional B3LYP (Becke's three-parameter hybrid model using the Lee-Yang Parr correlation functional) with the 6-311G (d, p) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) were used in all calculations as implemented in Gaussian 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). Theoretical calculations were performed to obtain the optimized mol­ecular structure of the title compound in the gas phase. The crystallographic information file was used as an input file in the GaussView 5 program (Frisch et al., 2000[Frisch, A., Nielson, A. B. & Holder, A. J. (2000). GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh.]) to start structure optimization of the title compound. Comparison of the DFT-optimized mol­ecular structure with the refined structure based on single crystal X-ray data revealed a good agreement (see supporting information for a detailed comparison of bond lengths and angles). Frontier mol­ecular orbitals and the mol­ecular electrostatic potential were calculated using the same level of theory.

5. Frontier mol­ecular orbital and chemical reactivity

The frontier mol­ecular orbitals, HOMO (highest occupied mol­ecular orbital) and LUMO (lowest-unoccupied mol­ecular orbital), are plotted to specify the distribution of electronic densities. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 5[link]. As can be seen from the figure, the HOMO and LUMO are localized in the plane extending from the whole furan ring to the thia­zolo-benzimidazole ring system. The frontier mol­ecular orbital energies, EHOMO and ELUMO are −7.23 and −1.87 eV, respectively, and the HOMO–LUMO gap is 5.36 eV. Since the gap energy is considered to be small, the mol­ecule is defined as soft.

[Figure 5]
Figure 5
Mol­ecular orbitals plot showing the frontier orbitals.

Global chemical reactivity descriptor (GCRD) parameters can be obtained as reported in the literature (Belkafouf et al., 2019[Belkafouf, N. E. H., Triki Baara, F., Altomare, A., Rizzi, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1189, 8-20.]). The calculated values of the GCRD parameters for the title mol­ecule are summarized in Table 2[link]. The chemical stability of the title mol­ecule is explained by the chemical potential (μ) value, which is −4.55 eV. On the other hand, the chemical hardness (η) value is 2.68 eV, indicating that the charge transfer occurs within the mol­ecule. From Table 2[link], the electrophilic behaviour of the mol­ecule is confirmed by the global electrophilicity (ω), which has a value of 3.86 eV. The structure–property relationship can be also described by the hyper-hardness descriptor (Γ), which was introduced to investigate the reactivity or stability of mol­ecules theoretically (Ghanavatkar et al., 2020[Ghanavatkar, C. W., Mishra, V. R., Sekar, N., Mathew, E., Thomas, S. S. & Joe, I. H. (2020). J. Mol. Struct. 1203, 127401.]). According to the results, the positive value of Γ (+4.30 eV) indicates stability of the mol­ecule.

Table 2
Frontier mol­ecular orbital energies (eV) and global chemical reactivity descriptors calculated using B3LYP/6–311G(d,p) level of theory

Parameter Calculated energy
EHOMO −7.23
ELUMO −1.87
EHOMO−1 −8.29
ELUMO+1 −0.40
EHOMO–ELUMO (gap) 5.36
EHOMO−1 − ELUMO+1 (gap) 7.89
Ionization potential (I) 7.23
Electron affinity (A) 1.87
Chemical hardness (η) 2.68
Chemical potential (μ) –4.55
Electronegativity (χ) 4.55
Electrophilicity (ω) 3.86
Hyper-hardness (Γ) 4.30

6. Mol­ecular electrostatic potential analysis

To predict reactive sites for electrophilic and nucleophilic attack, mol­ecular electrostatic potential (MEP) surfaces were computed at the B3LYP/6-311G (d,p) level with the optimized structure using GaussView (Frisch et al., 2000[Frisch, A., Nielson, A. B. & Holder, A. J. (2000). GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh.]). The different values of the electrostatic potential at the MEP surface are represented by red, blue and green (Kourat et al., 2020[Kourat, O., Djafri, A., Benhalima, N., Megrouss, Y., Belkafouf, N. E. H., Rahmani, R., Daran, J.-C., Djafri, A. & Chouaih, A. (2020). J. Mol. Struct. 1222, 128952.]). From Fig. 6[link], it is obvious that the negative potential regions (red) are associated with sulfur and nitro­gen atoms whereas the positive potential regions (blue) are on the side of hydrogen atoms. It may also be seen in Fig. 6[link] that green areas cover parts of the mol­ecule enveloping the π system of the aromatic rings.

[Figure 6]
Figure 6
Mol­ecular electrostatic potential map of the title mol­ecule.

7. Synthesis and spectral characterization

The synthetic route preparation of the title compound is illustrated in Fig. 7[link]. Initially, the tricyclic thia­zolo(3,4-a)benzimidazole (1) was obtained from amino phenyl­ene di­thio­carbamate and chloro­acetic acid by the Hanztsch reaction. The title compound (3) was prepared by Knoevenagel condensation of furaldehyde 2 (2; 0.01 mol) and the tricyclic compound (1; 0.02 mol) in acetic acid (10 ml) buffered by sodium acetate (0.02 mol). The reaction was monitored by TLC (petroleum ether/ethyl acetate, 8/2). After 4 h of refluxing and stirring, the brown solid obtained was filtered off, dried and recrystallized from ethanol to give the title compound, m.p. 493 K, in a yield of 85%.

[Figure 7]
Figure 7
Synthetic route for the title compound (3).

Spectroscopic data (FT–IR, 1H NMR and 13C NMR) for (3). IR (KBr, cm−1): 3099, 3076 and 3026 (Csp2—Harom), 1602 (C=N), 1555–1464 (C=C), 1390 (C=S), 1324 (–C—S–), 1259 (C—N) and 815, 759 (C—Har­yl). 1H NMR (300 MHz, CDCl3, δ ppm) J (Hz): 6,6 (q, 1H, J3 = 1.76 Hz, furan), 6.80 (d, 1H, J = 3.48 Hz, furan), 7.45 (m, 2H, J3 = 1.66 Hz, J4 = 5,60 phen­yl), 7.60 (s, 1H, C=CH), 7.70 (s, 1H, furan) , 7.80 (d, 1H, J3 = 8.56 Hz, phen­yl), 8.50 (d, 1H, J3 = 8.72 Hz, phen­yl). 13C NMR (75 MHz, CDCl3, δ ppm): 113.46, 113.51, 113.90, 117.15, 118.81, 120.65, 121.32, 125.59, 126.55, 131.00, 146.63, 149.48, 150.42 (C=N), 187.15 (C=S).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C14H8N2OS2
Mr 284.34
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 15.768 (5), 4.7583 (15), 17.316 (6)
β (°) 101.572 (8)
V3) 1272.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.58 × 0.21 × 0.20
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.856, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 10879, 2281, 1835
Rint 0.020
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.113, 0.96
No. of reflections 2281
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Computer programs: KappaCCD (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: KappaCCD (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

5-(Furan-2-ylmethylidene)thiazolo[3,4-a]benzimidazole-2-thione top
Crystal data top
C14H8N2OS2F(000) = 584
Mr = 284.34Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.768 (5) ÅCell parameters from 100 reflections
b = 4.7583 (15) Åθ = 2.0–25.3°
c = 17.316 (6) ŵ = 0.41 mm1
β = 101.572 (8)°T = 295 K
V = 1272.8 (7) Å3Prism, colourless
Z = 40.58 × 0.21 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
1835 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.020
θ/2θ scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1818
Tmin = 0.856, Tmax = 0.919k = 55
10879 measured reflectionsl = 2020
2281 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0089P)2 + 4.0499P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2281 reflectionsΔρmax = 0.17 e Å3
172 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01611 (6)0.1179 (2)0.89016 (5)0.0504 (3)
S20.14717 (8)0.2152 (3)0.85975 (7)0.0732 (4)
O10.15244 (16)0.5043 (6)0.94349 (14)0.0523 (7)
C140.0218 (2)0.4142 (8)0.67488 (18)0.0432 (9)
N10.01982 (18)0.2326 (7)0.77765 (15)0.0436 (7)
C90.0453 (2)0.4245 (9)0.71658 (19)0.0467 (9)
C70.0587 (2)0.1218 (8)0.76838 (19)0.0427 (9)
C110.1192 (3)0.7634 (9)0.6302 (2)0.0536 (10)
H110.16610.88250.61390.064*
N20.08686 (18)0.2264 (7)0.70874 (15)0.0430 (7)
C80.0552 (2)0.1294 (9)0.83946 (19)0.0467 (9)
C130.0170 (2)0.5792 (9)0.60819 (19)0.0485 (10)
H130.05950.57180.57800.058*
C60.0923 (2)0.0822 (8)0.82795 (19)0.0430 (9)
C50.1667 (2)0.2165 (8)0.8349 (2)0.0433 (9)
H50.19960.17130.79760.052*
C30.2789 (2)0.5589 (8)0.9074 (2)0.0490 (9)
H30.32400.54110.88040.059*
C100.1160 (2)0.5960 (9)0.6964 (2)0.0503 (10)
H100.15950.60020.72550.060*
C40.2034 (2)0.4222 (8)0.8920 (2)0.0462 (9)
C10.2005 (3)0.6951 (9)0.9914 (2)0.0551 (10)
H10.18220.78671.03260.066*
C20.2770 (3)0.7349 (9)0.9723 (2)0.0540 (10)
H20.32060.85520.99690.065*
C120.0534 (3)0.7544 (9)0.5885 (2)0.0574 (11)
H120.05680.87220.54520.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0569 (6)0.0590 (6)0.0373 (5)0.0007 (5)0.0142 (4)0.0071 (5)
S20.0644 (7)0.0958 (10)0.0690 (7)0.0167 (7)0.0360 (6)0.0209 (7)
O10.0584 (16)0.0575 (17)0.0423 (14)0.0015 (14)0.0132 (12)0.0078 (13)
C140.053 (2)0.047 (2)0.0274 (16)0.0062 (19)0.0031 (15)0.0015 (17)
N10.0464 (17)0.0520 (19)0.0331 (15)0.0008 (15)0.0099 (13)0.0005 (14)
C90.052 (2)0.052 (2)0.0342 (18)0.0062 (19)0.0032 (16)0.0032 (18)
C70.048 (2)0.050 (2)0.0316 (17)0.0049 (18)0.0099 (15)0.0058 (17)
C110.058 (2)0.058 (3)0.040 (2)0.000 (2)0.0011 (17)0.003 (2)
N20.0497 (17)0.0521 (19)0.0271 (14)0.0028 (15)0.0079 (13)0.0038 (14)
C80.052 (2)0.056 (2)0.0347 (18)0.0025 (19)0.0132 (16)0.0015 (18)
C130.060 (2)0.056 (3)0.0300 (17)0.009 (2)0.0082 (16)0.0036 (18)
C60.049 (2)0.049 (2)0.0316 (17)0.0033 (19)0.0103 (15)0.0033 (17)
C50.054 (2)0.040 (2)0.0389 (18)0.0017 (18)0.0157 (16)0.0063 (17)
C30.055 (2)0.053 (3)0.0399 (19)0.003 (2)0.0102 (17)0.0020 (18)
C100.057 (2)0.058 (3)0.0334 (18)0.004 (2)0.0020 (16)0.0011 (19)
C40.055 (2)0.046 (2)0.0377 (19)0.0021 (19)0.0106 (16)0.0023 (18)
C10.069 (3)0.055 (3)0.041 (2)0.003 (2)0.0097 (19)0.010 (2)
C20.061 (2)0.057 (3)0.041 (2)0.006 (2)0.0041 (18)0.006 (2)
C120.072 (3)0.059 (3)0.037 (2)0.013 (2)0.0003 (19)0.008 (2)
Geometric parameters (Å, º) top
S1—C81.739 (4)C11—C101.388 (5)
S1—C61.775 (3)C11—H110.9300
S2—C81.612 (4)C13—C121.376 (6)
O1—C11.354 (5)C13—H130.9300
O1—C41.372 (4)C6—C51.320 (5)
C14—C131.386 (5)C5—C41.429 (5)
C14—C91.397 (5)C5—H50.9300
C14—N21.397 (5)C3—C41.336 (5)
N1—C71.384 (4)C3—C21.407 (5)
N1—C81.392 (4)C3—H30.9300
N1—C91.394 (5)C10—H100.9300
C9—C101.368 (5)C1—C21.326 (5)
C7—N21.302 (4)C1—H10.9300
C7—C61.438 (5)C2—H20.9300
C11—C121.378 (5)C12—H120.9300
C8—S1—C694.40 (17)C5—C6—C7125.8 (3)
C1—O1—C4105.1 (3)C5—C6—S1126.6 (3)
C13—C14—C9119.3 (4)C7—C6—S1107.6 (3)
C13—C14—N2128.7 (3)C6—C5—C4128.6 (3)
C9—C14—N2112.0 (3)C6—C5—H5115.7
C7—N1—C8117.4 (3)C4—C5—H5115.7
C7—N1—C9106.9 (3)C4—C3—C2106.7 (3)
C8—N1—C9135.7 (3)C4—C3—H3126.6
C10—C9—N1132.9 (3)C2—C3—H3126.6
C10—C9—C14123.5 (3)C9—C10—C11116.5 (4)
N1—C9—C14103.6 (3)C9—C10—H10121.8
N2—C7—N1113.7 (3)C11—C10—H10121.8
N2—C7—C6133.7 (3)C3—C4—O1110.3 (3)
N1—C7—C6112.6 (3)C3—C4—C5133.8 (3)
C12—C11—C10120.5 (4)O1—C4—C5115.9 (3)
C12—C11—H11119.7C2—C1—O1111.6 (3)
C10—C11—H11119.7C2—C1—H1124.2
C7—N2—C14103.8 (3)O1—C1—H1124.2
N1—C8—S2126.5 (3)C1—C2—C3106.3 (4)
N1—C8—S1108.0 (3)C1—C2—H2126.8
S2—C8—S1125.5 (2)C3—C2—H2126.8
C12—C13—C14117.1 (4)C13—C12—C11123.0 (4)
C12—C13—H13121.4C13—C12—H12118.5
C14—C13—H13121.4C11—C12—H12118.5
C7—N1—C9—C10179.5 (4)N2—C14—C13—C12178.0 (4)
C8—N1—C9—C103.1 (7)N2—C7—C6—C50.5 (7)
C7—N1—C9—C140.3 (4)N1—C7—C6—C5178.3 (4)
C8—N1—C9—C14177.7 (4)N2—C7—C6—S1179.8 (4)
C13—C14—C9—C101.7 (6)N1—C7—C6—S11.4 (4)
N2—C14—C9—C10178.7 (3)C8—S1—C6—C5179.0 (4)
C13—C14—C9—N1179.0 (3)C8—S1—C6—C70.7 (3)
N2—C14—C9—N10.6 (4)C7—C6—C5—C4179.5 (4)
C8—N1—C7—N2179.2 (3)S1—C6—C5—C40.9 (6)
C9—N1—C7—N21.2 (4)N1—C9—C10—C11179.7 (4)
C8—N1—C7—C61.8 (5)C14—C9—C10—C110.7 (6)
C9—N1—C7—C6179.7 (3)C12—C11—C10—C90.5 (6)
N1—C7—N2—C141.5 (4)C2—C3—C4—O10.7 (4)
C6—C7—N2—C14179.7 (4)C2—C3—C4—C5179.5 (4)
C13—C14—N2—C7178.2 (4)C1—O1—C4—C30.6 (4)
C9—C14—N2—C71.3 (4)C1—O1—C4—C5179.5 (3)
C7—N1—C8—S2177.2 (3)C6—C5—C4—C3175.6 (4)
C9—N1—C8—S20.0 (6)C6—C5—C4—O14.5 (6)
C7—N1—C8—S11.2 (4)C4—O1—C1—C20.2 (4)
C9—N1—C8—S1178.4 (3)O1—C1—C2—C30.2 (5)
C6—S1—C8—N10.3 (3)C4—C3—C2—C10.5 (5)
C6—S1—C8—S2178.1 (3)C14—C13—C12—C112.4 (6)
C9—C14—C13—C122.5 (5)C10—C11—C12—C131.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···S20.932.943.476 (4)119
C3—H3···N2i0.932.623.474 (5)154
C1—H1···S2ii0.932.893.788 (4)163
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+2.
Frontier molecular orbital energies (eV) and global chemical reactivity descriptors calculated using B3LYP/6-311G(d,p) level of theory top
ParameterCalculated energy
EHOMO-7.23
ELUMO-1.87
EHOMO-1-8.29
ELUMO+1-0.40
EHOMO–ELUMO (gap)5.36
EHOMO-1 - ELUMO+1 (gap)7.89
Ionization potential (I)7.23
Electron affinity (A)1.87
Chemical hardness (η)2.68
Chemical potential (µ)–4.55
Electronegativity (χ)4.55
Electrophilicity (ω)3.86
Hyper-hardness (Γ)4.30
 

Funding information

The authors gratefully acknowledge financial support via the PRFU project from the Algerian Ministry of Higher Education and Scientific Research, the Directorate General of Scientific Research and Technological Development (DGRSDT), Thematic Research Agency in Science and Technology (ATRST) and Abdelhamid Ibn Badis University of Mostaganem.

References

First citationAlper, A. E. & Taurins, A. (1967). Can. J. Chem. 45, 2903–2912.  CrossRef CAS Web of Science Google Scholar
First citationAl-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815.  Web of Science CAS PubMed Google Scholar
First citationBahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBelkafouf, N. E. H., Triki Baara, F., Altomare, A., Rizzi, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1189, 8–20.  Web of Science CrossRef CAS Google Scholar
First citationBender, P. E., Hill, D., Offen, P. H., Razgaitis, K., Lavanchy, P., Stringer, O. D., Sutton, B. M., Griswold, D. E., DiMartino, M. & Walz, D. T. (1985). J. Med. Chem. 28, 1169–1177.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBodedla, G. B., Justin Thomas, K. R., Fan, M. S. & Ho, K. C. (2016). J. Org. Chem. 81, 640–653.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruno, G., Chimirri, A., Monforte, A. M., Nicoló, F. & Scopelliti, R. (1996). Acta Cryst. C52, 2531–2533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChimirri, A., Grasso, S., Monforte, P., Rao, A., Zappalà, M., Monforte, A. M., Pannecouque, C., Witvrouw, M., Balzarini, J. & De Clercq, E. (1999). Antivir. Chem. Chemother. 10, 211–217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDjafri, A., Chouaih, A., Daran, J.-C., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 511–514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Shorbagi, A., Hayallah, A. A., Omar, N. M. & Ahmed, A. N. (2001). Bull. Pharm. Sci. Assiut, 24, 7–20.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, A., Nielson, A. B. & Holder, A. J. (2000). GAUSSVIEW User Manual. Gaussian Inc, Pittsburgh.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGhanavatkar, C. W., Mishra, V. R., Sekar, N., Mathew, E., Thomas, S. S. & Joe, I. H. (2020). J. Mol. Struct. 1203, 127401.  Web of Science CrossRef Google Scholar
First citationGong, S., Zhao, Y., Yang, C., Zhong, C., Qin, J. & Ma, D. (2010). J. Phys. Chem. C114, 5193–5198.  Google Scholar
First citationKhelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKourat, O., Djafri, A., Benhalima, N., Megrouss, Y., Belkafouf, N. E. H., Rahmani, R., Daran, J.-C., Djafri, A. & Chouaih, A. (2020). J. Mol. Struct. 1222, 128952.  CSD CrossRef Google Scholar
First citationKrasovskii, A. N. & Kochergin, P. M. (1972). Chem. Heterocycl. Compd. 5, 243–245.  CrossRef Google Scholar
First citationLiang, Y., He, H.-W. & Yang, Z.-W. (2009). Acta Cryst. E65, o3098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiller, L. F. & Bambury, R. E. (1972). J. Med. Chem. 15, 415–417.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOgura, H., Itoh, T. & Tajika, T. (1968). J. Heterocycl. Chem. 5, 319–322.  CrossRef CAS Web of Science Google Scholar
First citationOh, C., Ham, Y., Hong, S. & Cho, J. (1995). Arch. Pharm. Pharm. Med. Chem. 328, 289–291.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPark, Y. J., Such, K. H., Kang, E. C., Yoon, H. S., Kim, Y. H., Kang, D. P. & Chang, M. S. (1993). Korean J. Med. Chem. 3, 124–129.  CAS Google Scholar
First citationRahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. Jr & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharpe, C. J., Shadbolt, R. S., Ashford, A. & Ross, J. W. (1971). J. Med. Chem. 14, 977–982.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, J. M. (1970). J. Med. Chem. 13, 1018.  CrossRef PubMed Web of Science Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVijayan, N., Ramesh Babu, R., Gopalakrishnan, R., Ramasamy, P. & Harrison, W. T. A. (2004). J. Cryst. Growth, 262, 490–498.  Web of Science CrossRef CAS Google Scholar
First citationWang, Z.-M., Yu, B., Cui, Y., Zhang, X.-Q. & Sun, X.-Q. (2011). Acta Cryst. E67, o2540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYahiaoui, S., Moliterni, A., Corriero, N., Cuocci, C., Toubal, K., Chouaih, A., Djafri, A. & Hamzaoui, F. (2019). J. Mol. Struct. 1177, 186–192.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds