research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the penta- and hexa­hydrate of thulium nitrate

CROSSMARK_Color_square_no_text.svg

aTechnische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany
*Correspondence e-mail: wilhelm.klein@tum.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 November 2020; accepted 20 November 2020; online 24 November 2020)

Tm(NO3)3·5H2O and Tm(NO3)3·6H2O, or more precisely [Tm(NO3)3(H2O)4]·H2O and [Tm(NO3)3(H2O)4]·2H2O, respectively, have been obtained from a concentrated solution of Tm2O3 in HNO3. The crystal structures of the two hydrates show strong similarities as both crystallize in space group P[\overline{1}] with all atoms at general positions and contain neutral, mol­ecular [Tm(NO3)3(H2O)4] complexes, i.e. ten-coordinated TmIII cations with three nitrate anions as bidentate ligands and four coordinating water mol­ecules, and one or two additional crystal water mol­ecules, respectively. All building units are connected by medium–strong to weak O—H⋯O hydrogen bonds. Tm(NO3)3·6H2O represents the maximally hydrated thulium nitrate as well as the heaviest rare earth nitrate hexa­hydrate known to date.

1. Chemical context

The nitrates of the rare earth metals have long been used to separate and purify these elements. For example, when thulium was discovered (Cleve, 1897[Cleve, P. T. (1897). C. R. Hebd. Seances Acad. Sci. 89, 328-329.]), fusion of nitrates was already used to separate the element from the erbium-containing earth, and a hydrate of thulium nitrate in substance was already described more than 100 years ago with four equivalents of water of crystallization and of highly hygroscopic nature (James, 1911[James, C. (1911). J. Am. Chem. Soc. 33, 1332-1344.]). Later, among others, double nitrates like Mg3Ln2(NO3)12·24H2O and (NH4)2Ln(NO3)5·4H2O (Ln = rare earth element) were used to separate the elements by means of fractional crystallization (Prandtl, 1938[Prandtl, W. (1938). Z. Anorg. Allg. Chem. 238, 321-334.]). Also, when more sophisticated separation procedures such as chromatographic methods and solvent extraction were developed (Bock, 1950[Bock, R. (1950). Angew. Chem. 62, 375-382.]), there was still considerable inter­est in these complex nitrates because of their high solubility even in organic solvents. Numerous structural investigations have been reported for this family, not least for the hydrated compounds (Wickleder, 2002[Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2088.]).

Considering the structural information for the maximally hydrated rare earth nitrates, a general tendency of a decreasing amount of water with increasing atomic number is obvious: for the lighter homologues La–Nd and Sm–Tb, the hexa­hydrates are found as maximally hydrated compounds for the nitrates (La: Eriksson et al., 1980[Eriksson, B., Larsson, L. O., Niinistö, L. & Valkonen, J. (1980). Inorg. Chem. 19, 1207-1210.]; Ce: Milinski et al., 1980[Milinski, N., Ribár, B. & Satarić, M. (1980). Cryst. Struct. Commun. 9, 473-476.]; Pr: Decadt et al., 2012[Decadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59-i60.]; Nd: Rogers et al., 1983[Rogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939-941.]; Sm: Kawashima et al., 2000[Kawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297-3303.]; Eu: Stumpf & Bolte, 2001[Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10-i11.]; Gd: Taha et al., 2012[Taha, Z. A., Ajlouni, A., Hijazi, A. K., Kühn, F. E. & Herdtweck, E. (2012). Acta Cryst. E68, i56-i57.]; Tb: Moret et al., 1990[Moret, E., Bünzli, J. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83-88.]) while for the heavier elements Dy–Er and Yb, only penta­hydrates have been reported (Ho: Rincke et al., 2017[Rincke, C., Schmidt, H. & Voigt, W. (2017). Z. Anorg. Allg. Chem. 643, 437-442.]; other: Junk et al., 1999[Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497-505.]). Confirming this trend, the highest hydrate of Lu nitrate is the tetra­hydrate (Junk et al., 1999[Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497-505.]), and for Tm the trihydrate exhibits the highest number of water mol­ecules reported so far (Riess, 2012[Riess, K. (2012). Dissertation. Carl von Ossietzky Universität, Oldenburg, Germany.]).

In the present research communication, the new penta- and hexa­hydrates of Tm(NO3)3 are reported. While the penta­hydrate of Tm(NO3)3 fills the gap within the known compounds containing Er and Yb, the hexa­hydrate indeed represents the highest hydrated nitrate including Tm and shifts the border of known stable compounds notably to heavier rare earth elements.

2. Structural commentary

Tm(NO3)3·5H2O crystallizes in the Y(NO3)3·5H2O type of structure (Eriksson, 1982[Eriksson, B. (1982). Acta Chem. Scand. A36, 186-188.]) in space group P[\overline{1}] with all atoms at general positions. The structure consists of isolated mol­ecular [Tm(NO3)3(H2O)4] complexes and one additional free water mol­ecule per formula unit (Fig. 1[link]). The nitrate anions act as bidentate ligands so the TmIII atom is tenfold coordinated. The nitrate ions form an equatorial belt separating one aqua ligand from the other three, and are slightly inclined in the same sense and form a propeller-like shape. The nitrate anions coordinate asymmetrically at one shorter [2.3980 (17)–2.4479 (16) Å] and one slightly longer distance [2.5081 (16)–2.6193 (18) Å] each. The shortest Tm—O bonds [2.3235 (17)–2.3526 (18) Å] are formed with the three aqua ligands on the same side of the plane, while the remaining Tm—O(H2) bond is in the range of the shorter bonds to the nitrate ions. The anions are almost planar with an O—N—O angular sum of 360.0° where the angle formed by the coordinating O atoms is significantly reduced. The N—O bond lengths are between 1.256 (3) and 1.290 (3) Å for coordinating and 1.213 (3) and 1.220 (3) Å for non-coordinating O atoms. Within the water mol­ecules, the O—H bond lengths are between 0.68 (6) and 0.86 (4) Å, and the H—O—H angles between 102 (4) and 111 (4)°. The structural entities, i.e. the mol­ecular [Tm(NO3)3(H2O)4] complexes and H2O mol­ecules, are inter­connected by almost linear hydrogen bonds (see Fig. 2[link]) of medium–strong to weak strength. In detail, eight of ten independent H atoms form hydrogen bonds shorter than 2.30 Å with O—H⋯O angles greater than 163°, while atoms H2 and H10 are part of bifurcated and slightly longer hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for Tm(NO3)3·5H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O1i 0.82 (4) 2.03 (4) 2.849 (2) 174 (3)
O10—H2⋯O13ii 0.78 (4) 2.32 (4) 2.996 (3) 145 (3)
O10—H2⋯O2ii 0.78 (4) 2.48 (4) 3.035 (3) 129 (3)
O11—H3⋯O14i 0.77 (5) 1.98 (5) 2.739 (3) 167 (5)
O11—H4⋯O2iii 0.85 (4) 2.03 (4) 2.874 (2) 171 (4)
O12—H5⋯O14iv 0.83 (4) 1.90 (4) 2.715 (3) 165 (4)
O12—H6⋯O7v 0.83 (4) 1.95 (4) 2.776 (2) 174 (4)
O13—H7⋯O5vi 0.82 (5) 1.98 (5) 2.784 (2) 166 (4)
O13—H8⋯O3vii 0.86 (4) 2.12 (4) 2.953 (3) 163 (4)
O14—H9⋯O3vii 0.84 (4) 2.27 (5) 3.095 (3) 167 (4)
O14—H10⋯O9 0.68 (6) 2.44 (6) 3.040 (3) 148 (5)
O14—H10⋯O6viii 0.68 (6) 2.62 (6) 3.132 (4) 134 (5)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-1, y, z]; (iii) [-x+1, -y, -z+1]; (iv) [x, y-1, z]; (v) [-x, -y+1, -z]; (vi) [-x+1, -y+1, -z]; (vii) [-x+1, -y+1, -z+1]; (viii) [x-1, y+1, z].
[Figure 1]
Figure 1
Asymmetric unit of Tm(NO3)3·5H2O with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal structure of Tm(NO3)3·5H2O in a view along [100]. Hydrogen bonds are shown as dotted lines up to an O⋯H distance of 2.45 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Tm(NO3)3·6H2O also crystallizes in space group P[\overline{1}] without occupying special positions and is isotypic with the respective Pr compound (Decadt et al., 2012[Decadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59-i60.]). In comparison with Tm(NO3)3·5H2O the volume (as determined at 223 K) increases by 34.4 Å3 for the two additional H2O mol­ecules per unit cell. Further structural similarities to the penta­hydrate include the presence of mol­ecular [Tm(NO3)3(H2O)4] complexes and free water mol­ecules, but here two per formula unit. The [Tm(NO3)3(H2O)4] complexes of the penta- and hexa­hydrates differ slightly, since in the latter the four water mol­ecules and the three nitrate ligands accumulate on opposite sides of the complex (Fig. 3[link]). With the nitrate anions as more or less bidentate ligands, again ten atoms are found in the first coordination sphere of the TmIII atom in Tm(NO3)3·6H2O. The resulting polyhedron can be described as a strongly distorted bicapped square anti­prism. The shortest Tm—O bonds are observed to the aqua ligands [2.2897 (18)–2.3360 (16) Å]. Similar to the penta­hydrate, the nitrate anions show an asymmetric coordination with one shorter [2.4039 (17)–2.4677 (17) Å] and one longer Tm—O distance [2.5034 (18), 2.5252 (18), 2.991 (2) Å] each. In one case, this is so severe that the corresponding Tm—O distance is even larger than the distance between the TmIII atom and the central N atoms of the two remaining anions, and the arrangement should therefore rather be described as a [9 + 1] coordination. The reason for this is probably the missing space in the coordination sphere of the TmIII atom, which makes such a distance increase necessary. A qualitatively analogous observation of a single extended Ln—N distance was made for all isotypic compounds of other rare earth elements, but the relative extension of the distance in the structure described here is much larger than in all other examples, as can be expected for the representative with the smallest ion radius so far. The consideration including a reduced coordination number for the TmIII atom is supported by the different shape of the respective nitrate ion. While two anions are very similar with two longer and one shorter N—O bonds for coordinating and non-coordinating O atoms, respectively, and one reduced O—N—O angle between the coordinating O atoms, the third anion exhibits only one longer N—O bond of 1.275 (2) Å, indicating the coordinating O atom, and two shorter and almost equal N—O distances of 1.232 (3) Å and 1.236 (3) Å with more regular O—N—O angles. However, all nitrate ions are planar with an O—N—O angular sum of 360.0°. The water mol­ecules show O—H bond lengths between 0.73 (5)and 0.85 (4) Å and H—O—H angles between 105 (5) and 112 (4)°. The metal complexes and the water mol­ecules build a three-dimensional network of hydrogen bonds, again of medium–strong to weak character (Table 2[link], Fig. 4[link]). Nine of twelve independent H atoms form hydrogen bonds shorter than 2.2 Å with O—H⋯O angles greater than 164° while H6, H10, and H12 are involved in weak and bifurcated hydrogen bonds.

Table 2
Hydrogen-bond geometry (Å, °) for Tm(NO3)3·6H2O

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O14 0.85 (4) 1.89 (4) 2.730 (3) 170 (4)
O10—H2⋯O15 0.73 (5) 2.00 (5) 2.714 (3) 164 (5)
O11—H4⋯O15i 0.74 (4) 1.93 (4) 2.666 (2) 174 (4)
O11—H3⋯O7ii 0.81 (4) 2.20 (4) 3.006 (2) 175 (4)
O12—H5⋯O8iii 0.80 (4) 2.15 (4) 2.943 (3) 172 (4)
O12—H6⋯O5iv 0.79 (4) 2.57 (4) 3.260 (3) 147 (4)
O12—H6⋯O7iv 0.79 (4) 2.61 (4) 3.269 (3) 142 (4)
O13—H7⋯O14v 0.78 (4) 1.93 (4) 2.713 (3) 174 (4)
O13—H8⋯O5vi 0.83 (5) 2.13 (5) 2.963 (2) 179 (5)
O14—H9⋯O6vi 0.80 (4) 2.01 (4) 2.804 (3) 176 (4)
O14—H10⋯O3iv 0.80 (5) 2.64 (5) 3.111 (3) 119 (4)
O14—H10⋯O3vii 0.80 (5) 2.24 (5) 2.885 (2) 138 (4)
O15—H11⋯O9ii 0.79 (5) 2.01 (5) 2.782 (3) 168 (4)
O15—H12⋯O4viii 0.79 (5) 2.29 (5) 2.926 (2) 137 (4)
O15—H12⋯O3iv 0.79 (5) 2.47 (5) 2.992 (3) 125 (4)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) x+1, y, z; (v) [-x+1, -y+1, -z]; (vi) [-x, -y+1, -z]; (vii) [-x, -y+2, -z]; (viii) x, y+1, z.
[Figure 3]
Figure 3
Asymmetric unit of Tm(NO3)3·6H2O with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 4]
Figure 4
Crystal structure of Tm(NO3)3·6H2O in a view along [100]. Hydrogen bonds are shown as dotted lines up to an O⋯H distance of 2.5 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Inter­estingly, the mol­ecular Tm complexes in both crystal structures exhibit an alleged higher symmetry, viz. a threefold rotation axis in the penta­hydrate and a mirror plane in the hexa­hydrate, as illustrated in Fig. 5[link]. However, these are pseudo-symmetries, with the higher symmetry violated at a mol­ecular level and in the first coordination sphere, and incompatible with the space-group symmetry.

[Figure 5]
Figure 5
Structural details to emphasize the mol­ecular pseudo-symmetry in the title compounds: (a) a pseudo-threefold rotation axis in the mol­ecular complex present in Tm(NO3)3·5H2O; (b) a pseudo-mirror plane in the mol­ecular complex present in Tm(NO3)3·6H2O. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

3. Database survey

The crystal structure of anhydrous Tm(NO3)3 was determined quite recently (Heinrichs, 2013[Heinrichs, C. (2013). Dissertation, Universität zu Köln, Köln, Germany.]), and one hydrated phase has been reported so far, i.e. the trihydrate (Riess, 2012[Riess, K. (2012). Dissertation. Carl von Ossietzky Universität, Oldenburg, Germany.]). In addition, basic oxo-hydroxo-nitrate hydrates are known with Tm (Giester et al., 2009[Giester, G., Žák, Z. & Unfried, P. (2009). J. Alloys Compd. 481, 116-128.]). The thulium nitrate penta­hydrate adopts the Y(NO3)3·5H2O type of structure (Eriksson, 1982[Eriksson, B. (1982). Acta Chem. Scand. A36, 186-188.]; Klein, 2020[Klein, W. (2020). Z. Kristallogr. New Cryst. Struct. 235, 801-802.]), and is isotypic with the respective Eu (Ribár et al., 1986[Ribár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). Acta Cryst. C42, 1450-1452.]), Gd (Stockhause & Meyer, 1997[Stockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.]), Dy, Er, Yb (Junk et al., 1999[Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497-505.]) and Ho compounds (Rincke et al., 2017[Rincke, C., Schmidt, H. & Voigt, W. (2017). Z. Anorg. Allg. Chem. 643, 437-442.]). Tm(NO3)3·6H2O is isotypic with the nitrate hexa­hydrates of Y (Ribár et al., 1980[Ribár, B., Milinski, N., Budovalcev, Z. & Krstanović, I. (1980). Cryst. Struct. Commun. 9, 203-206.]), Pr (Rumanova et al., 1964[Rumanova, I. M., Volodina, G. F. & Belov, N. V. (1964). Kristallografiya, 9, 642-654.]; Fuller & Jacobsen, 1976[Fuller, C. C. & Jacobsen, R. A. (1976). Cryst. Struct. Commun. 5, 349-352.]; Decadt et al., 2012[Decadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59-i60.]), Nd (Rogers et al., 1983[Rogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939-941.]; Shi & Wang, 1991[Shi, B. D. & Wang, J. Z. (1991). Xiamen Daxue Xuebao Ziran Kexueban 30, 55-58.]), Sm (Shi & Wang, 1990[Shi, B. D. & Wang, J. Z. (1990). Jiegou Huaxue, 9, 164-167.]; Kawashima et al., 2000[Kawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297-3303.]), Eu (Stumpf & Bolte, 2001[Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10-i11.]; Ananyev et al., 2016[Ananyev, I. V., Nelyubina, Yu. V., Puntus, L. N., Lyssenko, K. A. & Eremenko, I. L. (2016). Russ. Chem. Bull. 65, 1178-1188.]), Gd (Ma et al., 1991[Ma, H., Gao, S. & Yang, Z. (1991). Wuji Huaxue Xuebao, 7, 351-353.]; Taha et al., 2012[Taha, Z. A., Ajlouni, A., Hijazi, A. K., Kühn, F. E. & Herdtweck, E. (2012). Acta Cryst. E68, i56-i57.]) and Tb (Moret et al., 1990[Moret, E., Bünzli, J. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83-88.]).

4. Synthesis and crystallization

[Tm(NO3)3(H2O)4]·H2O was prepared by dissolving Tm2O3 (Fluka AG; 99.9%) in hot aqueous nitric acid (65%wt). From saturated solutions, crystals with sizes up to the millimetre range were grown at room temperature within one day. Single crystals were removed, cleansed from the mother liquor and placed on a microscope slide in air. For the single-crystal data collection, crystals were immersed into perfluoro­alkyl ether, which also acts as glue on a glass tip during the measurement. The remaining crystals were carefully ground to measure an X-ray powder pattern that, according to a comparison with the pattern simulated from the single-crystal structure determination, showed exclusively reflections of the penta­hydrate. The crystals are hygroscopic and usually deliquesce within hours under ambient conditions depending on air humidity. Rapid re-crystallization within minutes can be induced by scratching on the glass slide. Surprisingly, from one recrystallization the hexa­hydrate [Tm(NO3)3(H2O)4]·2H2O was obtained. All investigated crystals from this batch revealed the unit cell of the hexa­hydrate, so the crystallization seemed to result in a pure product in this case as well. Optically indistinguishable, the crystals of the hexa­hydrate showed the same deliquescence behaviour. It has not been possible to determine the exact conditions required to obtain the hexa­hydrate so far. According to EDX measurements, the crystals contain Tm as the only element heavier than oxygen.

5. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link]. In both structure refinements, all hydrogen atoms have been located from difference Fourier maps and refined with free atomic coordinates and isotropic displacement parameters.

Table 3
Experimental details

  Tm(NO3)3·5H2O Tm(NO3)3·6H2O
Crystal data
Chemical formula [Tm(NO3)3(H2O)4]·H2O [Tm(NO3)3(H2O)4]·2H2O
Mr 445.04 463.06
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 223 223
a, b, c (Å) 6.5782 (4), 9.5213 (5), 10.4848 (6) 6.7050 (3), 8.9733 (4), 11.4915 (6)
α, β, γ (°) 63.696 (4), 84.656 (5), 76.146 (4) 70.924 (4), 88.908 (4), 68.923 (4)
V3) 571.51 (6) 605.90 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.85 7.41
Crystal size (mm) 0.25 × 0.2 × 0.2 0.4 × 0.2 × 0.15
 
Data collection
Diffractometer Stoe StadiVari Stoe StadiVari
Absorption correction Empirical (using intensity measurements) (X-AREA; Stoe, 2015[Stoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Empirical (using intensity measurements) (X-AREA; Stoe, 2015[Stoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.798, 1.000 0.615, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18549, 4113, 3394 29880, 4385, 3899
Rint 0.038 0.031
(sin θ/λ)max−1) 0.756 0.756
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.029, 0.65 0.016, 0.035, 0.91
No. of reflections 4113 4385
No. of parameters 204 221
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.94, −0.92 1.11, −1.19
Computer programs: X-AREA (Stoe, 2015[Stoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe, 2015); cell refinement: X-AREA (Stoe, 2015); data reduction: X-AREA (Stoe, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Thulium nitrate (TONi-2_223K) top
Crystal data top
[Tm(NO3)3(H2O)4]·H2OZ = 2
Mr = 445.04F(000) = 424
Triclinic, P1Dx = 2.586 Mg m3
a = 6.5782 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5213 (5) ÅCell parameters from 15951 reflections
c = 10.4848 (6) Åθ = 3.2–36.9°
α = 63.696 (4)°µ = 7.85 mm1
β = 84.656 (5)°T = 223 K
γ = 76.146 (4)°Block, colourless
V = 571.51 (6) Å30.25 × 0.2 × 0.2 mm
Data collection top
STOE StadiVari
diffractometer
4113 independent reflections
Radiation source: Genix 3D HF Mo3394 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.038
Detector resolution: 5.81 pixels mm-1θmax = 32.5°, θmin = 3.2°
ω scansh = 99
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe, 2015)
k = 1314
Tmin = 0.798, Tmax = 1.000l = 1415
18549 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.029 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.65(Δ/σ)max = 0.001
4113 reflectionsΔρmax = 0.94 e Å3
204 parametersΔρmin = 0.92 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm0.24261 (2)0.34935 (2)0.29463 (2)0.01335 (4)
N10.4678 (3)0.2804 (2)0.5557 (2)0.0181 (4)
O10.2946 (3)0.38136 (19)0.50762 (18)0.0237 (3)
O20.5532 (3)0.21177 (19)0.47971 (17)0.0235 (3)
O30.5463 (4)0.2559 (3)0.6667 (2)0.0334 (5)
N20.5187 (3)0.2148 (2)0.1245 (2)0.0224 (4)
O40.4995 (3)0.1419 (2)0.25849 (18)0.0281 (4)
O50.4049 (3)0.35678 (19)0.06621 (17)0.0235 (3)
O60.6366 (4)0.1552 (2)0.0567 (2)0.0393 (5)
N30.0240 (3)0.6856 (2)0.1466 (2)0.0207 (4)
O70.0612 (3)0.58072 (19)0.09609 (18)0.0229 (4)
O80.1039 (3)0.63874 (19)0.26683 (17)0.0232 (3)
O90.0817 (4)0.8199 (2)0.0805 (2)0.0371 (5)
O100.0906 (3)0.3864 (2)0.39356 (19)0.0222 (3)
H10.150 (6)0.447 (4)0.428 (4)0.034 (8)*
H20.182 (6)0.374 (4)0.360 (4)0.028 (8)*
O110.1965 (3)0.1013 (2)0.46732 (19)0.0221 (3)
H30.124 (7)0.088 (5)0.532 (5)0.047 (11)*
H40.278 (6)0.014 (5)0.475 (4)0.035 (9)*
O120.0243 (3)0.2649 (2)0.19433 (18)0.0229 (3)
H50.038 (6)0.169 (5)0.212 (4)0.041 (10)*
H60.009 (6)0.311 (4)0.106 (4)0.035 (9)*
O130.5125 (3)0.5005 (2)0.22335 (18)0.0207 (3)
H70.556 (8)0.530 (5)0.141 (5)0.059 (12)*
H80.495 (7)0.586 (5)0.237 (4)0.045 (10)*
O140.0035 (5)0.9548 (2)0.2793 (2)0.0322 (5)
H90.120 (7)0.892 (5)0.285 (4)0.038 (9)*
H100.046 (9)0.956 (6)0.224 (6)0.066 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm0.01449 (5)0.01318 (5)0.01242 (4)0.00290 (3)0.00004 (3)0.00565 (3)
N10.0201 (10)0.0177 (8)0.0181 (8)0.0059 (7)0.0007 (7)0.0082 (7)
O10.0221 (9)0.0251 (8)0.0241 (8)0.0038 (7)0.0053 (6)0.0142 (7)
O20.0262 (9)0.0215 (7)0.0233 (8)0.0017 (7)0.0005 (7)0.0118 (6)
O30.0384 (12)0.0372 (10)0.0277 (10)0.0024 (9)0.0141 (9)0.0170 (8)
N20.0248 (11)0.0220 (9)0.0214 (9)0.0042 (8)0.0040 (8)0.0117 (8)
O40.0330 (10)0.0251 (8)0.0171 (8)0.0029 (7)0.0007 (7)0.0059 (6)
O50.0291 (10)0.0197 (7)0.0214 (8)0.0053 (7)0.0058 (7)0.0097 (6)
O60.0454 (13)0.0381 (10)0.0335 (10)0.0016 (9)0.0120 (9)0.0224 (8)
N30.0231 (10)0.0150 (8)0.0220 (9)0.0010 (7)0.0039 (7)0.0072 (7)
O70.0329 (10)0.0166 (7)0.0192 (8)0.0016 (7)0.0056 (7)0.0084 (6)
O80.0266 (9)0.0240 (8)0.0225 (8)0.0042 (7)0.0037 (7)0.0131 (6)
O90.0451 (13)0.0182 (8)0.0380 (10)0.0105 (8)0.0137 (9)0.0093 (8)
O100.0165 (9)0.0288 (8)0.0288 (9)0.0047 (7)0.0026 (7)0.0198 (7)
O110.0238 (9)0.0172 (7)0.0205 (8)0.0036 (7)0.0038 (7)0.0051 (6)
O120.0371 (10)0.0185 (8)0.0152 (8)0.0110 (7)0.0035 (7)0.0062 (6)
O130.0257 (9)0.0196 (7)0.0170 (8)0.0078 (6)0.0028 (6)0.0073 (6)
O140.0520 (15)0.0212 (9)0.0236 (10)0.0045 (9)0.0004 (9)0.0117 (8)
Geometric parameters (Å, º) top
Tm—O122.3235 (18)N3—O91.216 (3)
Tm—O112.3235 (17)N3—O81.256 (3)
Tm—O102.3526 (18)N3—O71.290 (2)
Tm—O72.3980 (17)O7—O82.153 (2)
Tm—O132.4089 (18)O7—O92.184 (2)
Tm—O42.4181 (17)O7—O12vii2.776 (2)
Tm—O12.4479 (16)O7—O122.778 (2)
Tm—O52.5081 (16)O7—O103.056 (3)
Tm—O82.5776 (15)O7—O133.150 (3)
Tm—O22.6193 (18)O8—O92.175 (2)
Tm—N22.9035 (19)O8—O102.738 (3)
Tm—N32.9212 (18)O8—O132.788 (2)
Tm—N12.9690 (19)O8—O3iv2.969 (3)
N1—O31.220 (3)O8—O142.982 (3)
N1—O21.257 (2)O9—O143.040 (3)
N1—O11.276 (3)O9—O6v3.153 (3)
O1—O22.144 (2)O9—O6viii3.199 (2)
O1—O32.180 (3)O10—O112.736 (2)
O1—O82.755 (2)O10—O122.775 (2)
O1—O10i2.849 (2)O10—O1i2.849 (2)
O1—O102.882 (3)O10—O13ix2.996 (3)
O1—O133.035 (2)O10—O2ix3.035 (3)
O1—O113.095 (2)O10—H10.82 (4)
O2—O32.174 (2)O10—H20.78 (4)
O2—O42.753 (2)O11—O14i2.739 (3)
O2—O112.827 (3)O11—O122.777 (2)
O2—O132.844 (2)O11—O2ii2.874 (2)
O2—O11ii2.874 (2)O11—O4ii3.253 (2)
O2—O10iii3.035 (3)O11—H30.77 (5)
O3—O13iv2.953 (3)O11—H40.85 (4)
O3—O8iv2.969 (3)O12—O14x2.715 (3)
O3—O14iv3.095 (3)O12—O7vii2.776 (2)
N2—O61.213 (3)O12—O9vii3.288 (3)
N2—O41.271 (3)O12—H50.83 (4)
N2—O51.277 (3)O12—H60.83 (4)
O4—O52.146 (2)O13—O5v2.784 (2)
O4—O62.184 (2)O13—O3iv2.953 (3)
O4—O112.779 (3)O13—O10iii2.996 (3)
O4—O123.088 (3)O13—O6v3.286 (3)
O5—O62.181 (2)O13—H70.82 (5)
O5—O13v2.784 (2)O13—H80.86 (4)
O5—O132.786 (2)O14—O12xi2.715 (3)
O5—O72.812 (2)O14—O11i2.739 (3)
O5—O122.867 (3)O14—O3iv3.095 (3)
O5—O5v2.981 (3)O14—O6viii3.132 (4)
O6—O14vi3.132 (4)O14—H90.84 (4)
O6—O9v3.153 (3)O14—H100.68 (6)
O6—O9vi3.199 (2)
O12—Tm—O1173.38 (6)N3—O8—O1146.83 (13)
O12—Tm—O1072.80 (7)O7—O8—O1114.60 (8)
O11—Tm—O1071.63 (6)O9—O8—O1171.15 (11)
O12—Tm—O772.07 (6)Tm—O8—O154.53 (5)
O11—Tm—O7140.36 (7)O10—O8—O163.30 (7)
O10—Tm—O780.06 (7)N3—O8—O13100.19 (13)
O12—Tm—O13139.17 (6)O7—O8—O1378.06 (8)
O11—Tm—O13137.72 (6)O9—O8—O13117.62 (10)
O10—Tm—O13133.41 (6)Tm—O8—O1353.17 (5)
O7—Tm—O1381.90 (6)O10—O8—O13104.61 (7)
O12—Tm—O481.26 (7)O1—O8—O1366.39 (6)
O11—Tm—O471.73 (6)N3—O8—O3iv127.07 (15)
O10—Tm—O4139.74 (7)O7—O8—O3iv130.96 (11)
O7—Tm—O4120.66 (6)O9—O8—O3iv113.90 (10)
O13—Tm—O485.91 (6)Tm—O8—O3iv107.97 (7)
O12—Tm—O1142.71 (7)O10—O8—O3iv137.66 (9)
O11—Tm—O180.83 (6)O1—O8—O3iv74.92 (7)
O10—Tm—O173.77 (7)O13—O8—O3iv61.63 (7)
O7—Tm—O1117.47 (5)N3—O8—O1497.81 (13)
O13—Tm—O177.34 (6)O7—O8—O14130.15 (10)
O4—Tm—O1115.79 (6)O9—O8—O1470.27 (8)
O12—Tm—O572.69 (6)Tm—O8—O14168.88 (9)
O11—Tm—O5116.78 (6)O10—O8—O14129.72 (9)
O10—Tm—O5139.64 (7)O1—O8—O14115.20 (8)
O7—Tm—O569.91 (6)O13—O8—O14120.95 (9)
O13—Tm—O569.01 (6)O3iv—O8—O1462.67 (8)
O4—Tm—O551.62 (5)N3—O9—O828.84 (12)
O1—Tm—O5144.29 (6)N3—O9—O730.33 (11)
O12—Tm—O8113.85 (6)O8—O9—O759.18 (7)
O11—Tm—O8132.83 (6)N3—O9—O1495.93 (15)
O10—Tm—O867.31 (6)O8—O9—O1467.39 (8)
O7—Tm—O851.11 (5)O7—O9—O14125.90 (11)
O13—Tm—O867.90 (6)N3—O9—O6v76.99 (16)
O4—Tm—O8152.92 (6)O8—O9—O6v82.55 (9)
O1—Tm—O866.42 (5)O7—O9—O6v74.67 (9)
O5—Tm—O8109.44 (5)O14—O9—O6v91.35 (9)
O12—Tm—O2136.38 (6)N3—O9—O6viii152.81 (17)
O11—Tm—O269.47 (6)O8—O9—O6viii124.77 (10)
O10—Tm—O2114.60 (6)O7—O9—O6viii170.46 (13)
O7—Tm—O2149.67 (6)O14—O9—O6viii60.20 (7)
O13—Tm—O268.73 (6)O6v—O9—O6viii113.72 (8)
O4—Tm—O266.13 (6)Tm—O10—O1153.69 (5)
O1—Tm—O249.93 (5)Tm—O10—O860.27 (6)
O5—Tm—O2104.73 (6)O11—O10—O8110.30 (8)
O8—Tm—O2108.01 (5)Tm—O10—O1253.11 (5)
O12—Tm—N275.56 (6)O11—O10—O1260.49 (6)
O11—Tm—N294.20 (6)O8—O10—O1296.36 (7)
O10—Tm—N2147.88 (7)Tm—O10—O1i130.59 (9)
O7—Tm—N295.49 (6)O11—O10—O1i143.50 (9)
O13—Tm—N276.27 (6)O8—O10—O1i73.51 (7)
O4—Tm—N225.62 (6)O12—O10—O1i155.76 (9)
O1—Tm—N2133.73 (6)Tm—O10—O154.63 (5)
O5—Tm—N226.00 (6)O11—O10—O166.79 (7)
O8—Tm—N2132.96 (6)O8—O10—O158.62 (6)
O2—Tm—N285.07 (6)O12—O10—O1106.09 (8)
O12—Tm—N392.45 (6)O1i—O10—O187.67 (7)
O11—Tm—N3142.15 (6)Tm—O10—O13ix122.60 (8)
O10—Tm—N370.66 (6)O11—O10—O13ix128.05 (9)
O7—Tm—N325.75 (6)O8—O10—O13ix103.81 (7)
O13—Tm—N374.57 (6)O12—O10—O13ix78.12 (7)
O4—Tm—N3141.95 (6)O1i—O10—O13ix82.96 (7)
O1—Tm—N391.72 (5)O1—O10—O13ix162.00 (8)
O5—Tm—N390.60 (5)Tm—O10—O2ix135.89 (8)
O8—Tm—N325.43 (5)O11—O10—O2ix90.74 (7)
O2—Tm—N3131.08 (5)O8—O10—O2ix158.09 (8)
N2—Tm—N3116.50 (6)O12—O10—O2ix88.57 (7)
O12—Tm—N1145.99 (6)O1i—O10—O2ix93.44 (7)
O11—Tm—N172.73 (6)O1—O10—O2ix140.06 (8)
O10—Tm—N193.76 (6)O13ix—O10—O2ix56.26 (6)
O7—Tm—N1137.60 (5)Tm—O10—O750.62 (5)
O13—Tm—N172.24 (6)O11—O10—O7100.01 (7)
O4—Tm—N190.89 (6)O8—O10—O743.18 (5)
O1—Tm—N124.96 (5)O12—O10—O756.67 (6)
O5—Tm—N1126.60 (6)O1i—O10—O7105.10 (7)
O8—Tm—N187.63 (5)O1—O10—O788.42 (7)
O2—Tm—N125.01 (5)O13ix—O10—O779.30 (7)
N2—Tm—N1109.73 (6)O2ix—O10—O7129.22 (8)
N3—Tm—N1112.83 (5)Tm—O10—H1133 (3)
O3—N1—O2122.7 (2)O11—O10—H1140 (2)
O3—N1—O1121.65 (19)O8—O10—H177 (3)
O2—N1—O1115.65 (18)O12—O10—H1159 (2)
O3—N1—Tm175.24 (17)O1i—O10—H15 (2)
O2—N1—Tm61.74 (11)O1—O10—H188 (3)
O1—N1—Tm54.03 (10)O13ix—O10—H184 (3)
N1—O1—O231.90 (10)O2ix—O10—H191 (3)
N1—O1—O328.46 (11)O7—O10—H1110 (2)
O2—O1—O360.35 (8)Tm—O10—H2117 (2)
N1—O1—Tm101.01 (12)O11—O10—H2103 (2)
O2—O1—Tm69.19 (6)O8—O10—H2125 (3)
O3—O1—Tm129.44 (9)O12—O10—H264 (2)
N1—O1—O8142.91 (14)O1i—O10—H2103 (2)
O2—O1—O8117.71 (9)O1—O10—H2169 (2)
O3—O1—O8152.42 (12)O13ix—O10—H226 (2)
Tm—O1—O859.05 (5)O2ix—O10—H239 (3)
N1—O1—O10i125.68 (13)O7—O10—H290 (3)
O2—O1—O10i155.65 (10)H1—O10—H2103 (4)
O3—O1—O10i97.77 (9)Tm—O11—O1054.68 (5)
Tm—O1—O10i132.31 (7)Tm—O11—O14i126.09 (8)
O8—O1—O10i76.13 (6)O10—O11—O14i79.46 (8)
N1—O1—O10136.42 (14)Tm—O11—O1253.31 (5)
O2—O1—O10111.95 (9)O10—O11—O1260.44 (6)
O3—O1—O10149.48 (11)O14i—O11—O12128.28 (10)
Tm—O1—O1051.60 (5)Tm—O11—O455.71 (5)
O8—O1—O1058.08 (6)O10—O11—O4108.60 (8)
O10i—O1—O1092.33 (7)O14i—O11—O4163.22 (11)
N1—O1—O1385.66 (12)O12—O11—O467.54 (7)
O2—O1—O1363.91 (7)Tm—O11—O260.20 (5)
O3—O1—O13105.20 (10)O10—O11—O297.60 (7)
Tm—O1—O1350.75 (5)O14i—O11—O2106.22 (9)
O8—O1—O1357.34 (6)O12—O11—O2110.01 (8)
O10i—O1—O13117.55 (8)O4—O11—O258.83 (7)
O10—O1—O1395.28 (7)Tm—O11—O2ii128.10 (9)
N1—O1—O1182.07 (12)O10—O11—O2ii169.77 (9)
O2—O1—O1162.22 (7)O14i—O11—O2ii102.25 (8)
O3—O1—O11101.73 (9)O12—O11—O2ii112.15 (8)
Tm—O1—O1147.83 (4)O4—O11—O2ii72.52 (7)
O8—O1—O11100.20 (7)O2—O11—O2ii91.62 (7)
O10i—O1—O11138.47 (9)Tm—O11—O151.34 (5)
O10—O1—O1154.35 (6)O10—O11—O158.86 (6)
O13—O1—O1192.12 (6)O14i—O11—O182.73 (7)
N1—O2—O132.45 (11)O12—O11—O1100.57 (7)
N1—O2—O328.19 (11)O4—O11—O188.96 (7)
O1—O2—O360.63 (8)O2—O11—O142.16 (5)
N1—O2—Tm93.26 (12)O2ii—O11—O1131.25 (8)
O1—O2—Tm60.88 (6)Tm—O11—O4ii126.48 (8)
O3—O2—Tm121.43 (9)O10—O11—O4ii135.39 (8)
N1—O2—O4145.77 (15)O14i—O11—O4ii67.19 (8)
O1—O2—O4114.04 (9)O12—O11—O4ii163.11 (9)
O3—O2—O4170.50 (12)O4—O11—O4ii98.00 (7)
Tm—O2—O453.43 (5)O2—O11—O4ii66.31 (6)
N1—O2—O1194.41 (14)O2ii—O11—O4ii52.98 (5)
O1—O2—O1175.62 (8)O1—O11—O4ii87.35 (6)
O3—O2—O11110.77 (10)Tm—O11—H3125 (3)
Tm—O2—O1150.33 (5)O10—O11—H375 (3)
O4—O2—O1159.72 (7)O14i—O11—H39 (3)
N1—O2—O1394.71 (12)O12—O11—H3120 (3)
O1—O2—O1373.45 (7)O4—O11—H3172 (3)
O3—O2—O13111.95 (9)O2—O11—H3114 (3)
Tm—O2—O1352.13 (5)O2ii—O11—H3105 (3)
O4—O2—O1371.96 (6)O1—O11—H387 (3)
O11—O2—O13102.24 (7)O4ii—O11—H375 (3)
N1—O2—O11ii135.37 (13)Tm—O11—H4122 (3)
O1—O2—O11ii156.10 (10)O10—O11—H4169 (2)
O3—O2—O11ii110.89 (9)O14i—O11—H4108 (2)
Tm—O2—O11ii121.11 (7)O12—O11—H4109 (2)
O4—O2—O11ii70.59 (6)O4—O11—H466 (2)
O11—O2—O11ii88.37 (7)O2—O11—H488 (3)
O13—O2—O11ii128.19 (8)O2ii—O11—H46 (3)
N1—O2—O10iii93.92 (13)O1—O11—H4129 (3)
O1—O2—O10iii103.88 (9)O4ii—O11—H456 (2)
O3—O2—O10iii83.51 (9)H3—O11—H4111 (4)
Tm—O2—O10iii113.27 (7)Tm—O12—O14x125.11 (10)
O4—O2—O10iii105.78 (8)Tm—O12—O1054.08 (5)
O11—O2—O10iii162.02 (8)O14x—O12—O10116.16 (9)
O13—O2—O10iii61.18 (6)Tm—O12—O7vii120.70 (8)
O11ii—O2—O10iii96.80 (7)O14x—O12—O7vii105.94 (8)
N1—O3—O229.13 (11)O10—O12—O7vii128.10 (8)
N1—O3—O129.90 (11)Tm—O12—O1153.31 (5)
O2—O3—O159.02 (8)O14x—O12—O1175.07 (8)
N1—O3—O13iv123.70 (15)O10—O12—O1159.06 (6)
O2—O3—O13iv146.33 (11)O7vii—O12—O11167.99 (10)
O1—O3—O13iv96.81 (9)Tm—O12—O755.21 (5)
N1—O3—O8iv133.41 (18)O14x—O12—O7176.85 (10)
O2—O3—O8iv120.98 (12)O10—O12—O766.77 (6)
O1—O3—O8iv132.24 (11)O7vii—O12—O772.20 (7)
O13iv—O3—O8iv56.18 (6)O11—O12—O7106.19 (8)
N1—O3—O14iv113.40 (16)Tm—O12—O556.63 (5)
O2—O3—O14iv84.49 (9)O14x—O12—O5117.49 (9)
O1—O3—O14iv142.73 (10)O10—O12—O5107.92 (8)
O13iv—O3—O14iv112.24 (8)O7vii—O12—O575.17 (7)
O8iv—O3—O14iv58.87 (6)O11—O12—O593.64 (8)
O6—N2—O4122.98 (19)O7—O12—O559.73 (6)
O6—N2—O5122.2 (2)Tm—O12—O450.70 (5)
O4—N2—O5114.76 (17)O14x—O12—O487.49 (9)
O6—N2—Tm178.28 (17)O10—O12—O499.49 (7)
O4—N2—Tm55.33 (10)O7vii—O12—O4111.72 (8)
O5—N2—Tm59.44 (10)O11—O12—O456.27 (6)
N2—O4—O532.70 (10)O7—O12—O490.85 (7)
N2—O4—O627.78 (11)O5—O12—O442.04 (5)
O5—O4—O660.48 (8)Tm—O12—O9vii131.81 (9)
N2—O4—Tm99.05 (12)O14x—O12—O9vii70.05 (7)
O5—O4—Tm66.35 (6)O10—O12—O9vii168.34 (9)
O6—O4—Tm126.84 (9)O7vii—O12—O9vii41.15 (5)
N2—O4—O2133.14 (15)O11—O12—O9vii132.43 (8)
O5—O4—O2111.36 (9)O7—O12—O9vii107.30 (7)
O6—O4—O2141.71 (12)O5—O12—O9vii75.57 (7)
Tm—O4—O260.45 (5)O4—O12—O9vii90.46 (7)
N2—O4—O11140.81 (15)Tm—O12—H5123 (3)
O5—O4—O11112.74 (9)O14x—O12—H510 (3)
O6—O4—O11156.42 (13)O10—O12—H5124 (3)
Tm—O4—O1152.55 (5)O7vii—O12—H5102 (3)
O2—O4—O1161.45 (6)O11—O12—H577 (3)
N2—O4—O1284.97 (14)O7—O12—H5166 (3)
O5—O4—O1263.46 (7)O5—O12—H5107 (3)
O6—O4—O12104.30 (10)O4—O12—H580 (3)
Tm—O4—O1248.04 (5)O9vii—O12—H563 (3)
O2—O4—O12103.44 (7)Tm—O12—H6118 (3)
O11—O4—O1256.19 (6)O14x—O12—H6107 (2)
N2—O5—O432.54 (11)O10—O12—H6130 (2)
N2—O5—O628.07 (11)O7vii—O12—H64 (3)
O4—O5—O660.61 (8)O11—O12—H6164 (3)
N2—O5—Tm94.56 (12)O7—O12—H671 (2)
O4—O5—Tm62.03 (6)O5—O12—H671 (3)
O6—O5—Tm122.63 (9)O4—O12—H6107 (3)
N2—O5—O13v109.94 (13)O9vii—O12—H640 (2)
O4—O5—O13v142.41 (9)H5—O12—H6102 (4)
O6—O5—O13v81.90 (8)Tm—O13—O5v116.85 (8)
Tm—O5—O13v155.31 (8)Tm—O13—O557.18 (5)
N2—O5—O13102.32 (14)O5v—O13—O564.70 (7)
O4—O5—O1382.54 (8)Tm—O13—O858.93 (5)
O6—O5—O13117.15 (11)O5v—O13—O8108.57 (8)
Tm—O5—O1353.82 (5)O5—O13—O896.27 (7)
O13v—O5—O13115.30 (7)Tm—O13—O259.14 (5)
N2—O5—O7146.29 (14)O5v—O13—O2147.07 (8)
O4—O5—O7114.45 (9)O5—O13—O292.32 (7)
O6—O5—O7170.40 (11)O8—O13—O296.59 (7)
Tm—O5—O753.21 (5)Tm—O13—O3iv113.42 (8)
O13v—O5—O7103.03 (7)O5v—O13—O3iv108.73 (8)
O13—O5—O768.48 (6)O5—O13—O3iv155.31 (9)
N2—O5—O1294.81 (14)O8—O13—O3iv62.20 (7)
O4—O5—O1274.50 (8)O2—O13—O3iv101.59 (7)
O6—O5—O12111.87 (10)Tm—O13—O10iii121.66 (7)
Tm—O5—O1250.68 (5)O5v—O13—O10iii110.19 (8)
O13v—O5—O12126.93 (9)O5—O13—O10iii124.94 (8)
O13—O5—O12103.34 (7)O8—O13—O10iii132.34 (8)
O7—O5—O1258.56 (6)O2—O13—O10iii62.57 (6)
N2—O5—O5v121.20 (17)O3iv—O13—O10iii79.74 (7)
O4—O5—O5v128.22 (13)Tm—O13—O151.90 (5)
O6—O5—O5v107.16 (11)O5v—O13—O1163.64 (9)
Tm—O5—O5v107.25 (8)O5—O13—O1108.19 (7)
O13v—O5—O5v57.69 (6)O8—O13—O156.27 (6)
O13—O5—O5v57.60 (7)O2—O13—O142.63 (5)
O7—O5—O5v82.40 (7)O3iv—O13—O171.17 (7)
O12—O5—O5v140.96 (9)O10iii—O13—O186.04 (6)
N2—O6—O529.68 (12)Tm—O13—O748.90 (5)
N2—O6—O429.23 (11)O5v—O13—O779.82 (7)
O5—O6—O458.91 (7)O5—O13—O756.15 (6)
N2—O6—O14vi99.61 (16)O8—O13—O741.95 (5)
O5—O6—O14vi122.89 (10)O2—O13—O7107.68 (8)
O4—O6—O14vi75.58 (9)O3iv—O13—O799.84 (7)
N2—O6—O9v136.91 (18)O10iii—O13—O7169.66 (8)
O5—O6—O9v124.28 (11)O1—O13—O784.06 (7)
O4—O6—O9v134.81 (12)Tm—O13—O6v111.12 (7)
O14vi—O6—O9v67.17 (7)O5v—O13—O6v41.08 (5)
N2—O6—O9vi142.10 (16)O5—O13—O6v86.61 (7)
O5—O6—O9vi169.33 (12)O8—O13—O6v71.96 (6)
O4—O6—O9vi113.34 (10)O2—O13—O6v168.28 (9)
O14vi—O6—O9vi57.38 (6)O3iv—O13—O6v75.62 (6)
O9v—O6—O9vi66.27 (8)O10iii—O13—O6v127.02 (8)
O9—N3—O8123.31 (19)O1—O13—O6v126.97 (7)
O9—N3—O7121.3 (2)O7—O13—O6v62.22 (6)
O8—N3—O7115.44 (17)Tm—O13—H7119 (3)
O9—N3—Tm173.32 (18)O5v—O13—H710 (3)
O8—N3—Tm61.80 (10)O5—O13—H764 (3)
O7—N3—Tm53.84 (10)O8—O13—H7119 (3)
N3—O7—O831.79 (10)O2—O13—H7138 (3)
N3—O7—O928.42 (11)O3iv—O13—H7114 (3)
O8—O7—O960.21 (8)O10iii—O13—H7102 (3)
N3—O7—Tm100.41 (12)O1—O13—H7171 (3)
O8—O7—Tm68.76 (6)O7—O13—H788 (3)
O9—O7—Tm128.67 (10)O6v—O13—H751 (3)
N3—O7—O12vii109.38 (13)Tm—O13—H8119 (3)
O8—O7—O12vii139.23 (9)O5v—O13—H897 (3)
O9—O7—O12vii82.11 (8)O5—O13—H8148 (3)
Tm—O7—O12vii148.08 (8)O8—O13—H863 (3)
N3—O7—O12135.69 (15)O2—O13—H8114 (3)
O8—O7—O12112.27 (9)O3iv—O13—H812 (3)
O9—O7—O12146.72 (12)O10iii—O13—H886 (3)
Tm—O7—O1252.72 (5)O1—O13—H882 (3)
O12vii—O7—O12107.80 (7)O7—O13—H896 (3)
N3—O7—O5138.14 (16)O6v—O13—H864 (3)
O8—O7—O5112.81 (9)H7—O13—H8103 (4)
O9—O7—O5151.26 (12)O12xi—O14—O11i99.62 (8)
Tm—O7—O556.88 (5)O12xi—O14—O8155.24 (10)
O12vii—O7—O592.35 (7)O11i—O14—O8104.73 (8)
O12—O7—O561.71 (6)O12xi—O14—O9124.30 (10)
N3—O7—O1079.13 (13)O11i—O14—O9123.04 (11)
O8—O7—O1060.53 (7)O8—O14—O942.34 (5)
O9—O7—O1097.66 (9)O12xi—O14—O3iv108.74 (10)
Tm—O7—O1049.32 (5)O11i—O14—O3iv109.99 (9)
O12vii—O7—O10146.96 (10)O8—O14—O3iv58.46 (7)
O12—O7—O1056.57 (6)O9—O14—O3iv89.88 (8)
O5—O7—O10101.99 (7)O12xi—O14—O6viii75.69 (8)
N3—O7—O1382.94 (13)O11i—O14—O6viii102.46 (10)
O8—O7—O1359.99 (7)O8—O14—O6viii103.01 (9)
O9—O7—O13104.46 (10)O9—O14—O6viii62.42 (7)
Tm—O7—O1349.20 (5)O3iv—O14—O6viii145.65 (9)
O12vii—O7—O13122.65 (9)O12xi—O14—H9114 (3)
O12—O7—O1396.65 (7)O11i—O14—H9115 (3)
O5—O7—O1355.37 (6)O8—O14—H950 (3)
O10—O7—O1389.60 (7)O9—O14—H980 (3)
N3—O8—O732.77 (10)O3iv—O14—H910 (3)
N3—O8—O927.84 (10)O6viii—O14—H9137 (3)
O7—O8—O960.61 (8)O12xi—O14—H10104 (5)
N3—O8—Tm92.77 (11)O11i—O14—H10120 (5)
O7—O8—Tm60.13 (6)O8—O14—H1067 (4)
O9—O8—Tm120.49 (8)O9—O14—H1025 (4)
N3—O8—O1093.66 (14)O3iv—O14—H10112 (5)
O7—O8—O1076.28 (8)O6viii—O14—H1037 (4)
O9—O8—O10107.87 (10)H9—O14—H10103 (5)
Tm—O8—O1052.43 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y1, z; (vii) x, y+1, z; (viii) x1, y+1, z; (ix) x1, y, z; (x) x, y1, z; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O1i0.82 (4)2.03 (4)2.849 (2)174 (3)
O10—H2···O13ix0.78 (4)2.32 (4)2.996 (3)145 (3)
O10—H2···O2ix0.78 (4)2.48 (4)3.035 (3)129 (3)
O11—H3···O14i0.77 (5)1.98 (5)2.739 (3)167 (5)
O11—H4···O2ii0.85 (4)2.03 (4)2.874 (2)171 (4)
O12—H5···O14x0.83 (4)1.90 (4)2.715 (3)165 (4)
O12—H6···O7vii0.83 (4)1.95 (4)2.776 (2)174 (4)
O13—H7···O5v0.82 (5)1.98 (5)2.784 (2)166 (4)
O13—H8···O3iv0.86 (4)2.12 (4)2.953 (3)163 (4)
O14—H9···O3iv0.84 (4)2.27 (5)3.095 (3)167 (4)
O14—H10···O90.68 (6)2.44 (6)3.040 (3)148 (5)
O14—H10···O6viii0.68 (6)2.62 (6)3.132 (4)134 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vii) x, y+1, z; (viii) x1, y+1, z; (ix) x1, y, z; (x) x, y1, z.
Thulium nitrate (TONii-3_223K) top
Crystal data top
[Tm(NO3)3(H2O)4]·2H2OZ = 2
Mr = 463.06F(000) = 444
Triclinic, P1Dx = 2.538 Mg m3
a = 6.7050 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9733 (4) ÅCell parameters from 47483 reflections
c = 11.4915 (6) Åθ = 2.6–36.6°
α = 70.924 (4)°µ = 7.41 mm1
β = 88.908 (4)°T = 223 K
γ = 68.923 (4)°Block, colourless
V = 605.90 (5) Å30.4 × 0.2 × 0.15 mm
Data collection top
STOE StadiVari
diffractometer
4385 independent reflections
Radiation source: Genix 3D HF Mo3899 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.031
Detector resolution: 5.81 pixels mm-1θmax = 32.5°, θmin = 3.3°
ω scansh = 1010
Absorption correction: empirical (using intensity measurements)
(X-AREA; Stoe, 2015)
k = 1313
Tmin = 0.615, Tmax = 1.000l = 1717
29880 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016All H-atom parameters refined
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4385 reflectionsΔρmax = 1.11 e Å3
221 parametersΔρmin = 1.18 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0687 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm0.19543 (2)0.41275 (2)0.27232 (2)0.01566 (4)
N10.1763 (3)0.7245 (2)0.18627 (18)0.0219 (3)
O10.1088 (3)0.6386 (2)0.29939 (16)0.0306 (4)
O20.0716 (3)0.6650 (2)0.10973 (17)0.0332 (4)
O30.3348 (3)0.8577 (2)0.15483 (19)0.0338 (4)
N20.0790 (3)0.1833 (2)0.18432 (18)0.0239 (4)
O40.2565 (3)0.1444 (2)0.24492 (17)0.0283 (3)
O50.0588 (3)0.3320 (2)0.16876 (17)0.0282 (3)
O60.0422 (4)0.0843 (2)0.14426 (19)0.0358 (4)
N30.0931 (3)0.1599 (2)0.50588 (18)0.0216 (3)
O70.0255 (3)0.2987 (2)0.42350 (16)0.0267 (3)
O80.2889 (3)0.1045 (3)0.4993 (2)0.0356 (4)
O90.0120 (3)0.0838 (2)0.59033 (18)0.0367 (4)
O100.3559 (3)0.6083 (2)0.22157 (17)0.0282 (4)
H10.361 (6)0.677 (5)0.151 (4)0.049 (10)*
H20.385 (7)0.637 (6)0.269 (4)0.051 (11)*
O110.2745 (3)0.4539 (2)0.45290 (15)0.0234 (3)
H30.200 (7)0.521 (5)0.484 (4)0.048 (11)*
H40.367 (6)0.390 (5)0.499 (3)0.034 (9)*
O120.5603 (3)0.2458 (2)0.32343 (18)0.0251 (3)
H50.606 (6)0.147 (5)0.366 (3)0.037 (9)*
H60.652 (7)0.283 (5)0.310 (4)0.049 (11)*
O130.3038 (3)0.4359 (2)0.07487 (15)0.0230 (3)
H70.400 (7)0.363 (5)0.063 (4)0.046 (10)*
H80.236 (7)0.500 (6)0.006 (4)0.059 (12)*
O140.3663 (3)0.8009 (2)0.01622 (17)0.0272 (3)
H90.252 (7)0.832 (5)0.055 (4)0.039 (10)*
H100.391 (7)0.883 (6)0.019 (4)0.058 (12)*
O150.4146 (3)0.7754 (2)0.36863 (17)0.0244 (3)
H110.301 (7)0.813 (6)0.390 (4)0.052 (12)*
H120.439 (8)0.856 (6)0.327 (4)0.066 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm0.01512 (5)0.01444 (4)0.01475 (5)0.00368 (3)0.00155 (2)0.00370 (3)
N10.0208 (8)0.0134 (7)0.0251 (9)0.0038 (6)0.0013 (7)0.0012 (6)
O10.0303 (9)0.0238 (8)0.0203 (8)0.0029 (7)0.0054 (6)0.0003 (6)
O20.0341 (9)0.0324 (9)0.0227 (8)0.0000 (7)0.0010 (7)0.0103 (7)
O30.0260 (8)0.0168 (7)0.0389 (10)0.0031 (6)0.0023 (7)0.0028 (7)
N20.0287 (9)0.0200 (8)0.0211 (8)0.0114 (7)0.0005 (7)0.0019 (7)
O40.0266 (8)0.0189 (7)0.0328 (9)0.0058 (6)0.0084 (7)0.0028 (6)
O50.0235 (8)0.0266 (8)0.0298 (8)0.0052 (6)0.0022 (6)0.0081 (7)
O60.0485 (12)0.0275 (9)0.0345 (10)0.0192 (8)0.0063 (8)0.0084 (7)
N30.0214 (8)0.0162 (7)0.0242 (9)0.0049 (6)0.0059 (7)0.0056 (6)
O70.0282 (8)0.0178 (7)0.0252 (8)0.0058 (6)0.0035 (6)0.0004 (6)
O80.0191 (8)0.0347 (10)0.0532 (12)0.0060 (7)0.0103 (8)0.0200 (9)
O90.0394 (10)0.0256 (8)0.0320 (9)0.0102 (8)0.0145 (8)0.0039 (7)
O100.0495 (11)0.0276 (8)0.0170 (7)0.0257 (8)0.0066 (7)0.0073 (6)
O110.0259 (8)0.0216 (7)0.0160 (7)0.0025 (6)0.0007 (6)0.0050 (6)
O120.0169 (7)0.0180 (7)0.0331 (9)0.0032 (6)0.0001 (6)0.0029 (6)
O130.0257 (8)0.0220 (7)0.0165 (7)0.0040 (6)0.0027 (6)0.0061 (6)
O140.0336 (9)0.0208 (8)0.0258 (8)0.0112 (7)0.0027 (7)0.0049 (6)
O150.0267 (8)0.0183 (7)0.0249 (8)0.0065 (6)0.0009 (7)0.0050 (6)
Geometric parameters (Å, º) top
Tm—O102.2897 (18)O7—O82.162 (3)
Tm—O112.3255 (17)O7—O92.171 (2)
Tm—O122.3276 (17)O7—O112.907 (3)
Tm—O132.3360 (16)O7—O11i3.006 (2)
Tm—O12.4039 (17)O8—O92.151 (3)
Tm—O42.4179 (18)O8—O8vii2.774 (4)
Tm—O72.4677 (17)O8—O12vii2.943 (3)
Tm—O22.5034 (18)O8—O112.969 (3)
Tm—O52.5252 (18)O8—O122.974 (3)
Tm—N12.8787 (18)O8—O15viii3.184 (3)
Tm—N22.902 (2)O9—O15i2.782 (3)
Tm—O82.991 (2)O9—O9vi2.970 (5)
Tm—N33.1452 (18)O9—O6vi3.009 (3)
N1—O31.227 (2)O10—O112.714 (2)
N1—O21.251 (3)O10—O152.714 (3)
N1—O11.267 (2)O10—O142.730 (3)
O1—O22.134 (2)O10—O132.734 (2)
O1—O32.177 (2)O10—O122.863 (3)
O1—O72.758 (2)O10—H10.85 (4)
O1—O112.768 (3)O10—H20.73 (5)
O1—O11i3.004 (2)O11—O15viii2.666 (2)
O1—O103.166 (3)O11—O122.917 (3)
O1—O15ii3.174 (3)O11—O1i3.004 (2)
O2—O32.175 (3)O11—O7i3.006 (2)
O2—O132.738 (3)O11—O153.199 (3)
O2—O52.809 (3)O11—H30.81 (4)
O2—O102.965 (3)O11—H40.74 (4)
O2—O6iii3.102 (3)O12—O8vii2.943 (3)
O2—O13iii3.184 (3)O12—O132.986 (3)
O3—O14iv2.885 (2)O12—O9vii3.170 (3)
O3—O15ii2.992 (3)O12—H50.80 (4)
O3—O14ii3.111 (3)O12—H60.79 (4)
N2—O61.221 (3)O13—O14ix2.713 (3)
N2—O41.263 (3)O13—O5iii2.963 (2)
N2—O51.277 (3)O13—O2iii3.184 (3)
O4—O52.148 (2)O13—H70.78 (4)
O4—O62.173 (3)O13—H80.83 (5)
O4—O122.781 (3)O14—O13ix2.713 (3)
O4—O132.827 (2)O14—O6iii2.804 (3)
O4—O82.829 (3)O14—O3iv2.885 (2)
O4—O15v2.926 (2)O14—O3x3.111 (3)
O4—O73.087 (3)O14—H90.80 (4)
O5—O62.190 (3)O14—H100.80 (5)
O5—O72.849 (3)O15—O11viii2.666 (2)
O5—O13iii2.963 (2)O15—O9i2.782 (3)
O5—O132.969 (2)O15—O4xi2.926 (2)
O6—O14iii2.804 (3)O15—O3x2.992 (3)
O6—O9vi3.009 (3)O15—O1x3.174 (3)
O6—O2iii3.102 (3)O15—O8viii3.184 (3)
N3—O91.232 (2)O15—H110.79 (5)
N3—O81.236 (3)O15—H120.79 (5)
N3—O71.275 (2)
O10—Tm—O1172.03 (6)O7—O8—O12100.29 (9)
O10—Tm—O1276.62 (7)O8vii—O8—O1261.49 (8)
O11—Tm—O1277.63 (7)O4—O8—O1257.20 (6)
O10—Tm—O1372.46 (6)O12vii—O8—O12124.10 (7)
O11—Tm—O13141.28 (6)O11—O8—O1258.78 (6)
O12—Tm—O1379.64 (7)N3—O8—Tm85.50 (14)
O10—Tm—O184.81 (7)O9—O8—Tm114.83 (9)
O11—Tm—O171.62 (6)O7—O8—Tm54.39 (6)
O12—Tm—O1147.76 (7)O8vii—O8—Tm106.06 (10)
O13—Tm—O1119.66 (6)O4—O8—Tm49.00 (5)
O10—Tm—O4136.37 (7)O12vii—O8—Tm164.48 (8)
O11—Tm—O4127.07 (6)O11—O8—Tm45.93 (4)
O12—Tm—O471.71 (6)O12—O8—Tm45.93 (5)
O13—Tm—O472.95 (6)N3—O8—O15viii118.44 (15)
O1—Tm—O4136.08 (7)O9—O8—O15viii114.99 (11)
O10—Tm—O7142.62 (6)O7—O8—O15viii113.47 (9)
O11—Tm—O774.59 (6)O8vii—O8—O15viii73.26 (9)
O12—Tm—O7112.05 (6)O4—O8—O15viii125.89 (8)
O13—Tm—O7143.65 (6)O12vii—O8—O15viii95.36 (8)
O1—Tm—O768.96 (6)O11—O8—O15viii51.20 (6)
O4—Tm—O778.37 (6)O12—O8—O15viii68.83 (7)
O10—Tm—O276.28 (7)Tm—O8—O15viii90.93 (6)
O11—Tm—O2116.27 (6)N3—O9—O829.45 (12)
O12—Tm—O2143.26 (7)N3—O9—O730.60 (11)
O13—Tm—O268.82 (6)O8—O9—O760.05 (9)
O1—Tm—O251.50 (6)N3—O9—O15i122.54 (15)
O4—Tm—O2114.16 (6)O8—O9—O15i151.29 (11)
O7—Tm—O2104.56 (6)O7—O9—O15i92.26 (9)
O10—Tm—O5138.32 (6)N3—O9—O9vi81.16 (15)
O11—Tm—O5143.50 (6)O8—O9—O9vi81.92 (10)
O12—Tm—O5122.22 (6)O7—O9—O9vi82.92 (10)
O13—Tm—O575.17 (6)O15i—O9—O9vi103.45 (11)
O1—Tm—O589.05 (6)N3—O9—O6vi155.54 (18)
O4—Tm—O551.46 (6)O8—O9—O6vi132.39 (12)
O7—Tm—O569.56 (6)O7—O9—O6vi154.89 (11)
O2—Tm—O567.92 (6)O15i—O9—O6vi70.34 (7)
O10—Tm—N179.34 (6)O9vi—O9—O6vi117.98 (10)
O11—Tm—N194.01 (6)Tm—O10—O1154.60 (5)
O12—Tm—N1155.94 (6)Tm—O10—O15125.53 (8)
O13—Tm—N194.17 (6)O11—O10—O1572.21 (7)
O1—Tm—N125.80 (6)Tm—O10—O14123.63 (9)
O4—Tm—N1128.96 (6)O11—O10—O14170.18 (10)
O7—Tm—N186.74 (5)O15—O10—O14106.61 (8)
O2—Tm—N125.70 (6)Tm—O10—O1354.55 (5)
O5—Tm—N177.55 (6)O11—O10—O13107.65 (8)
O10—Tm—N2143.67 (6)O15—O10—O13179.02 (11)
O11—Tm—N2142.17 (6)O14—O10—O1373.69 (7)
O12—Tm—N296.51 (6)Tm—O10—O1252.28 (5)
O13—Tm—N271.21 (6)O11—O10—O1263.00 (7)
O1—Tm—N2113.66 (7)O15—O10—O12114.74 (9)
O4—Tm—N225.46 (6)O14—O10—O12124.80 (9)
O7—Tm—N273.26 (6)O13—O10—O1264.45 (7)
O2—Tm—N290.88 (6)Tm—O10—O255.11 (6)
O5—Tm—N226.04 (6)O11—O10—O292.39 (8)
N1—Tm—N2103.50 (6)O15—O10—O2123.68 (9)
O10—Tm—O8128.95 (6)O14—O10—O280.12 (8)
O11—Tm—O866.54 (6)O13—O10—O257.26 (6)
O12—Tm—O866.66 (6)O12—O10—O2103.77 (8)
O13—Tm—O8129.82 (6)Tm—O10—O149.12 (5)
O1—Tm—O8108.14 (5)O11—O10—O155.52 (6)
O4—Tm—O862.01 (6)O15—O10—O193.03 (8)
O7—Tm—O845.43 (5)O14—O10—O1115.31 (9)
O2—Tm—O8149.59 (6)O13—O10—O187.66 (7)
O5—Tm—O892.10 (6)O12—O10—O197.74 (7)
N1—Tm—O8130.80 (5)O2—O10—O140.57 (5)
N2—Tm—O876.75 (5)Tm—O10—H1130 (3)
O10—Tm—N3140.57 (6)O11—O10—H1167 (3)
O11—Tm—N368.94 (6)O15—O10—H1100 (3)
O12—Tm—N389.70 (6)O14—O10—H17 (3)
O13—Tm—N3141.77 (6)O13—O10—H181 (3)
O1—Tm—N388.19 (5)O12—O10—H1130 (3)
O4—Tm—N368.85 (6)O2—O10—H184 (3)
O7—Tm—N322.36 (5)O1—O10—H1116 (3)
O2—Tm—N3126.79 (6)Tm—O10—H2120 (3)
O5—Tm—N380.10 (6)O11—O10—H265 (3)
N1—Tm—N3108.51 (5)O15—O10—H211 (3)
N2—Tm—N373.74 (5)O14—O10—H2115 (3)
O8—Tm—N323.07 (5)O13—O10—H2168 (3)
O3—N1—O2122.6 (2)O12—O10—H2103 (3)
O3—N1—O1121.5 (2)O2—O10—H2131 (3)
O2—N1—O1115.82 (18)O1—O10—H296 (3)
O3—N1—Tm177.14 (17)H1—O10—H2108 (4)
O2—N1—Tm60.15 (11)Tm—O11—O15viii123.70 (8)
O1—N1—Tm55.68 (10)Tm—O11—O1053.37 (5)
N1—O1—O231.87 (11)O15viii—O11—O10122.60 (9)
N1—O1—O328.72 (11)Tm—O11—O155.51 (5)
O2—O1—O360.58 (9)O15viii—O11—O1164.63 (9)
N1—O1—Tm98.52 (12)O10—O11—O170.56 (7)
O2—O1—Tm66.66 (7)Tm—O11—O754.93 (5)
O3—O1—Tm127.24 (9)O15viii—O11—O7107.83 (8)
N1—O1—O7128.53 (15)O10—O11—O7106.57 (8)
O2—O1—O7106.29 (10)O1—O11—O758.11 (6)
O3—O1—O7140.60 (12)Tm—O11—O1251.22 (5)
Tm—O1—O756.61 (5)O15viii—O11—O1277.11 (7)
N1—O1—O11139.90 (14)O10—O11—O1260.99 (6)
O2—O1—O11112.99 (9)O1—O11—O12106.16 (7)
O3—O1—O11155.01 (11)O7—O11—O1286.16 (7)
Tm—O1—O1152.87 (5)Tm—O11—O867.52 (6)
O7—O1—O1163.47 (6)O15viii—O11—O868.58 (7)
N1—O1—O11i140.49 (14)O10—O11—O8114.24 (8)
O2—O1—O11i158.78 (12)O1—O11—O899.54 (8)
O3—O1—O11i115.14 (9)O7—O11—O843.17 (6)
Tm—O1—O11i114.13 (7)O12—O11—O860.70 (6)
O7—O1—O11i62.71 (6)Tm—O11—O1i129.79 (8)
O11—O1—O11i79.48 (7)O15viii—O11—O1i67.77 (7)
N1—O1—O1086.14 (13)O10—O11—O1i167.02 (9)
O2—O1—O1064.64 (8)O1—O11—O1i100.52 (7)
O3—O1—O10106.16 (9)O7—O11—O1i74.86 (7)
Tm—O1—O1046.07 (5)O12—O11—O1i131.78 (8)
O7—O1—O1098.82 (7)O8—O11—O1i75.93 (7)
O11—O1—O1053.92 (6)Tm—O11—O7i132.35 (8)
O11i—O1—O10132.50 (8)O15viii—O11—O7i102.34 (7)
N1—O1—O15ii89.65 (13)O10—O11—O7i113.06 (8)
O2—O1—O15ii117.05 (9)O1—O11—O7i76.86 (7)
O3—O1—O15ii64.92 (7)O7—O11—O7i102.68 (7)
Tm—O1—O15ii150.29 (9)O12—O11—O7i170.75 (9)
O7—O1—O15ii96.18 (7)O8—O11—O7i127.94 (8)
O11—O1—O15ii129.57 (8)O1i—O11—O7i54.64 (5)
O11i—O1—O15ii51.03 (5)Tm—O11—O15106.37 (7)
O10—O1—O15ii163.64 (8)O15viii—O11—O15102.98 (7)
N1—O2—O132.31 (11)O10—O11—O1553.90 (6)
N1—O2—O328.38 (11)O1—O11—O1591.32 (7)
O1—O2—O360.69 (8)O7—O11—O15149.18 (8)
N1—O2—Tm94.15 (13)O12—O11—O15100.27 (7)
O1—O2—Tm61.84 (6)O8—O11—O15160.04 (8)
O3—O2—Tm122.53 (9)O1i—O11—O15118.68 (7)
N1—O2—O13145.64 (15)O7i—O11—O1570.75 (6)
O1—O2—O13113.94 (9)Tm—O11—H3129 (3)
O3—O2—O13170.33 (12)O15viii—O11—H3105 (3)
Tm—O2—O1352.70 (5)O10—O11—H3113 (3)
N1—O2—O5107.14 (15)O1—O11—H374 (3)
O1—O2—O587.66 (9)O7—O11—H399 (3)
O3—O2—O5121.17 (11)O12—O11—H3173 (3)
Tm—O2—O556.41 (5)O8—O11—H3126 (3)
O13—O2—O564.70 (7)O1i—O11—H354 (3)
N1—O2—O1095.68 (14)O7i—O11—H34 (3)
O1—O2—O1074.80 (8)O15—O11—H373 (3)
O3—O2—O10113.21 (10)Tm—O11—H4121 (3)
Tm—O2—O1048.61 (5)O15viii—O11—H44 (3)
O13—O2—O1057.13 (6)O10—O11—H4118 (3)
O5—O2—O10102.39 (8)O1—O11—H4168 (3)
N1—O2—O6iii118.54 (14)O7—O11—H4110 (3)
O1—O2—O6iii143.35 (11)O12—O11—H474 (3)
O3—O2—O6iii93.77 (9)O8—O11—H469 (3)
Tm—O2—O6iii134.73 (9)O1i—O11—H472 (3)
O13—O2—O6iii86.94 (7)O7i—O11—H4105 (3)
O5—O2—O6iii128.98 (8)O15—O11—H4101 (3)
O10—O2—O6iii94.82 (8)H3—O11—H4108 (4)
N1—O2—O13iii119.36 (15)Tm—O12—O455.65 (5)
O1—O2—O13iii129.73 (11)Tm—O12—O1051.09 (5)
O3—O2—O13iii103.41 (9)O4—O12—O10101.51 (7)
Tm—O2—O13iii113.12 (7)Tm—O12—O1151.15 (5)
O13—O2—O13iii86.20 (7)O4—O12—O1196.35 (7)
O5—O2—O13iii58.87 (6)O10—O12—O1156.01 (6)
O10—O2—O13iii143.20 (8)Tm—O12—O8vii121.45 (8)
O6iii—O2—O13iii78.86 (6)O4—O12—O8vii81.85 (7)
N1—O3—O228.99 (12)O10—O12—O8vii161.11 (9)
N1—O3—O129.74 (11)O11—O12—O8vii105.28 (8)
O2—O3—O158.73 (8)Tm—O12—O867.41 (6)
N1—O3—O14iv129.45 (15)O4—O12—O858.77 (7)
O2—O3—O14iv112.88 (10)O10—O12—O8109.76 (8)
O1—O3—O14iv136.24 (11)O11—O12—O860.52 (6)
N1—O3—O15ii99.15 (14)O8vii—O12—O855.90 (7)
O2—O3—O15ii123.07 (9)Tm—O12—O1350.30 (5)
O1—O3—O15ii73.86 (8)O4—O12—O1358.57 (6)
O14iv—O3—O15ii123.21 (8)O10—O12—O1355.69 (6)
N1—O3—O14ii103.78 (16)O11—O12—O1396.31 (7)
O2—O3—O14ii86.31 (9)O8vii—O12—O13136.79 (9)
O1—O3—O14ii119.12 (10)O8—O12—O13108.33 (8)
O14iv—O3—O14ii101.62 (7)Tm—O12—O9vii159.42 (9)
O15ii—O3—O14ii91.31 (7)O4—O12—O9vii105.31 (8)
O6—N2—O4122.0 (2)O10—O12—O9vii149.31 (9)
O6—N2—O5122.5 (2)O11—O12—O9vii133.55 (8)
O4—N2—O5115.49 (19)O8vii—O12—O9vii40.99 (5)
O6—N2—Tm175.95 (18)O8—O12—O9vii96.86 (7)
O4—N2—Tm55.34 (11)O13—O12—O9vii130.07 (8)
O5—N2—Tm60.28 (11)Tm—O12—H5124 (3)
N2—O4—O532.44 (11)O4—O12—H580 (3)
N2—O4—O628.47 (12)O10—O12—H5167 (3)
O5—O4—O660.91 (9)O11—O12—H5111 (3)
N2—O4—Tm99.20 (13)O8vii—O12—H56 (3)
O5—O4—Tm66.85 (7)O8—O12—H560 (3)
O6—O4—Tm127.60 (9)O13—O12—H5133 (3)
N2—O4—O12149.28 (14)O9vii—O12—H538 (3)
O5—O4—O12118.57 (9)Tm—O12—H6124 (3)
O6—O4—O12167.51 (11)O4—O12—H6151 (3)
Tm—O4—O1252.63 (5)O10—O12—H673 (3)
N2—O4—O1389.39 (12)O11—O12—H6103 (3)
O5—O4—O1371.81 (8)O8vii—O12—H6113 (3)
O6—O4—O13105.26 (9)O8—O12—H6150 (3)
Tm—O4—O1352.19 (5)O13—O12—H698 (3)
O12—O4—O1364.35 (6)O9vii—O12—H676 (3)
N2—O4—O8121.99 (15)H5—O12—H6112 (4)
O5—O4—O8105.54 (10)Tm—O13—O14ix126.06 (8)
O6—O4—O8128.45 (10)Tm—O13—O1052.99 (5)
Tm—O4—O868.99 (6)O14ix—O13—O10123.85 (9)
O12—O4—O864.03 (7)Tm—O13—O258.48 (5)
O13—O4—O8117.39 (8)O14ix—O13—O2170.54 (10)
N2—O4—O15v105.48 (13)O10—O13—O265.61 (7)
O5—O4—O15v132.47 (10)Tm—O13—O454.86 (5)
O6—O4—O15v80.38 (8)O14ix—O13—O482.46 (7)
Tm—O4—O15v144.77 (8)O10—O13—O4103.61 (7)
O12—O4—O15v105.17 (7)O2—O13—O495.85 (8)
O13—O4—O15v150.26 (9)Tm—O13—O5iii128.52 (8)
O8—O4—O15v76.65 (7)O14ix—O13—O5iii103.47 (7)
N2—O4—O784.55 (14)O10—O13—O5iii112.21 (8)
O5—O4—O762.95 (8)O2—O13—O5iii70.49 (7)
O6—O4—O7104.27 (9)O4—O13—O5iii130.25 (8)
Tm—O4—O751.53 (5)Tm—O13—O555.31 (5)
O12—O4—O785.18 (7)O14ix—O13—O5115.55 (8)
O13—O4—O7100.94 (7)O10—O13—O5104.14 (7)
O8—O4—O742.60 (6)O2—O13—O558.80 (7)
O15v—O4—O7105.93 (7)O4—O13—O543.43 (6)
N2—O5—O432.07 (11)O5iii—O13—O593.63 (7)
N2—O5—O628.04 (11)Tm—O13—O1250.06 (5)
O4—O5—O660.10 (8)O14ix—O13—O1280.61 (7)
N2—O5—Tm93.68 (13)O10—O13—O1259.86 (6)
O4—O5—Tm61.69 (7)O2—O13—O12106.36 (7)
O6—O5—Tm121.66 (9)O4—O13—O1257.07 (6)
N2—O5—O2138.74 (15)O5iii—O13—O12171.66 (8)
O4—O5—O2112.22 (9)O5—O13—O1291.06 (7)
O6—O5—O2153.44 (11)Tm—O13—O2iii119.90 (8)
Tm—O5—O255.67 (5)O14ix—O13—O2iii76.74 (7)
N2—O5—O795.06 (13)O10—O13—O2iii159.18 (9)
O4—O5—O774.85 (8)O2—O13—O2iii93.80 (7)
O6—O5—O7111.87 (9)O4—O13—O2iii80.58 (7)
Tm—O5—O754.27 (5)O5iii—O13—O2iii54.24 (6)
O2—O5—O788.06 (7)O5—O13—O2iii64.66 (6)
N2—O5—O13iii122.46 (14)O12—O13—O2iii134.09 (8)
O4—O5—O13iii139.71 (10)Tm—O13—H7122 (3)
O6—O5—O13iii101.74 (9)O14ix—O13—H75 (3)
Tm—O5—O13iii120.11 (8)O10—O13—H7122 (3)
O2—O5—O13iii66.89 (6)O2—O13—H7171 (3)
O7—O5—O13iii142.29 (8)O4—O13—H778 (3)
N2—O5—O1382.93 (13)O5iii—O13—H7108 (3)
O4—O5—O1364.76 (7)O5—O13—H7113 (3)
O6—O5—O13100.34 (9)O12—O13—H777 (3)
Tm—O5—O1349.52 (5)O2iii—O13—H778 (3)
O2—O5—O1356.50 (6)Tm—O13—H8129 (3)
O7—O5—O13103.35 (7)O14ix—O13—H8103 (3)
O13iii—O5—O1386.37 (7)O10—O13—H8113 (3)
N2—O6—O429.55 (12)O2—O13—H871 (3)
N2—O6—O529.44 (12)O4—O13—H8130 (3)
O4—O6—O558.99 (8)O5iii—O13—H81 (3)
N2—O6—O14iii116.45 (16)O5—O13—H894 (3)
O4—O6—O14iii146.00 (11)O12—O13—H8172 (3)
O5—O6—O14iii87.01 (9)O2iii—O13—H854 (3)
N2—O6—O9vi83.84 (14)H7—O13—H8107 (4)
O4—O6—O9vi77.76 (9)O13ix—O14—O1098.12 (8)
O5—O6—O9vi91.17 (9)O13ix—O14—O6iii118.03 (9)
O14iii—O6—O9vi104.35 (9)O10—O14—O6iii107.66 (9)
N2—O6—O2iii83.25 (14)O13ix—O14—O3iv112.05 (8)
O4—O6—O2iii93.56 (9)O10—O14—O3iv139.09 (9)
O5—O6—O2iii74.80 (8)O6iii—O14—O3iv82.46 (7)
O14iii—O6—O2iii76.63 (7)O13ix—O14—O3x93.53 (8)
O9vi—O6—O2iii165.92 (9)O10—O14—O3x72.61 (7)
O9—N3—O8121.2 (2)O6iii—O14—O3x147.52 (9)
O9—N3—O7119.94 (19)O3iv—O14—O3x78.38 (7)
O8—N3—O7118.84 (19)O13ix—O14—O1369.68 (7)
O9—N3—Tm167.34 (15)O10—O14—O1353.22 (6)
O8—N3—Tm71.43 (13)O6iii—O14—O1382.55 (7)
O7—N3—Tm47.41 (10)O3iv—O14—O13163.54 (9)
N3—O7—O830.06 (11)O3x—O14—O13118.06 (7)
N3—O7—O929.46 (11)O13ix—O14—H9116 (3)
O8—O7—O959.52 (9)O10—O14—H9109 (3)
N3—O7—Tm110.23 (13)O6iii—O14—H93 (3)
O8—O7—Tm80.17 (8)O3iv—O14—H983 (3)
O9—O7—Tm139.69 (10)O3x—O14—H9150 (3)
N3—O7—O1147.87 (15)O13—O14—H982 (3)
O8—O7—O1125.43 (10)O13ix—O14—H10114 (3)
O9—O7—O1152.51 (11)O10—O14—H10111 (3)
Tm—O7—O154.43 (5)O6iii—O14—H10108 (3)
N3—O7—O5121.52 (14)O3iv—O14—H1031 (3)
O8—O7—O5104.49 (9)O3x—O14—H1048 (3)
O9—O7—O5130.94 (10)O13—O14—H10164 (3)
Tm—O7—O556.17 (5)H9—O14—H10109 (4)
O1—O7—O576.12 (7)O11viii—O15—O10105.91 (8)
N3—O7—O1189.75 (13)O11viii—O15—O9i123.52 (9)
O8—O7—O1169.95 (8)O10—O15—O9i97.93 (9)
O9—O7—O11109.13 (10)O11viii—O15—O4xi135.84 (8)
Tm—O7—O1150.47 (5)O10—O15—O4xi113.20 (8)
O1—O7—O1158.42 (6)O9i—O15—O4xi71.01 (7)
O5—O7—O11106.35 (7)O11viii—O15—O3x101.79 (8)
N3—O7—O11i109.28 (13)O10—O15—O3x74.76 (7)
O8—O7—O11i123.31 (10)O9i—O15—O3x133.98 (8)
O9—O7—O11i91.56 (9)O4xi—O15—O3x70.82 (7)
Tm—O7—O11i112.11 (7)O11viii—O15—O1x61.19 (6)
O1—O7—O11i62.65 (6)O10—O15—O1x80.98 (7)
O5—O7—O11i128.92 (7)O9i—O15—O1x175.19 (8)
O11—O7—O11i77.32 (7)O4xi—O15—O1x105.04 (8)
N3—O7—O483.39 (12)O3x—O15—O1x41.22 (5)
O8—O7—O462.31 (8)O11viii—O15—O8viii60.23 (6)
O9—O7—O4105.04 (9)O10—O15—O8viii151.59 (9)
Tm—O7—O450.10 (4)O9i—O15—O8viii110.39 (8)
O1—O7—O499.67 (7)O4xi—O15—O8viii75.62 (6)
O5—O7—O442.20 (5)O3x—O15—O8viii83.73 (7)
O11—O7—O490.17 (7)O1x—O15—O8viii70.61 (6)
O11i—O7—O4161.88 (7)O11viii—O15—O1177.02 (7)
N3—O8—O929.33 (11)O10—O15—O1153.89 (6)
N3—O8—O731.10 (11)O9i—O15—O1177.44 (7)
O9—O8—O760.43 (8)O4xi—O15—O11143.83 (8)
N3—O8—O8vii164.0 (2)O3x—O15—O11124.74 (8)
O9—O8—O8vii137.71 (14)O1x—O15—O11105.40 (7)
O7—O8—O8vii157.96 (15)O8viii—O15—O11133.51 (8)
N3—O8—O495.90 (15)O11viii—O15—H11116 (3)
O9—O8—O4114.74 (11)O10—O15—H11105 (3)
O7—O8—O475.09 (9)O9i—O15—H118 (3)
O8vii—O8—O484.07 (10)O4xi—O15—H1173 (3)
N3—O8—O12vii103.77 (15)O3x—O15—H11140 (3)
O9—O8—O12vii75.16 (9)O1x—O15—H11174 (3)
O7—O8—O12vii133.87 (10)O8viii—O15—H11104 (3)
O8vii—O8—O12vii62.61 (9)O11—O15—H1178 (3)
O4—O8—O12vii116.75 (8)O11viii—O15—H12116 (3)
N3—O8—O1187.65 (14)O10—O15—H12108 (3)
O9—O8—O11107.57 (9)O9i—O15—H12103 (3)
O7—O8—O1166.87 (8)O4xi—O15—H1232 (3)
O8vii—O8—O11108.35 (11)O3x—O15—H1243 (3)
O4—O8—O1194.14 (8)O1x—O15—H1273 (3)
O12vii—O8—O11145.13 (10)O8viii—O15—H1264 (3)
N3—O8—O12131.37 (16)O11—O15—H12162 (3)
O9—O8—O12160.61 (11)H11—O15—H12105 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+2, z; (v) x, y1, z; (vi) x, y, z+1; (vii) x+1, y, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y+1, z; (x) x+1, y, z; (xi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O140.85 (4)1.89 (4)2.730 (3)170 (4)
O10—H2···O150.73 (5)2.00 (5)2.714 (3)164 (5)
O11—H4···O15viii0.74 (4)1.93 (4)2.666 (2)174 (4)
O11—H3···O7i0.81 (4)2.20 (4)3.006 (2)175 (4)
O12—H5···O8vii0.80 (4)2.15 (4)2.943 (3)172 (4)
O12—H6···O5x0.79 (4)2.57 (4)3.260 (3)147 (4)
O12—H6···O7x0.79 (4)2.61 (4)3.269 (3)142 (4)
O13—H7···O14ix0.78 (4)1.93 (4)2.713 (3)174 (4)
O13—H8···O5iii0.83 (5)2.13 (5)2.963 (2)179 (5)
O14—H9···O6iii0.80 (4)2.01 (4)2.804 (3)176 (4)
O14—H10···O3x0.80 (5)2.64 (5)3.111 (3)119 (4)
O14—H10···O3iv0.80 (5)2.24 (5)2.885 (2)138 (4)
O15—H11···O9i0.79 (5)2.01 (5)2.782 (3)168 (4)
O15—H12···O4xi0.79 (5)2.29 (5)2.926 (2)137 (4)
O15—H12···O3x0.79 (5)2.47 (5)2.992 (3)125 (4)
Symmetry codes: (i) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+2, z; (vii) x+1, y, z+1; (viii) x+1, y+1, z+1; (ix) x+1, y+1, z; (x) x+1, y, z; (xi) x, y+1, z.
 

References

First citationAnanyev, I. V., Nelyubina, Yu. V., Puntus, L. N., Lyssenko, K. A. & Eremenko, I. L. (2016). Russ. Chem. Bull. 65, 1178–1188.  Web of Science CSD CrossRef CAS Google Scholar
First citationBock, R. (1950). Angew. Chem. 62, 375–382.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCleve, P. T. (1897). C. R. Hebd. Seances Acad. Sci. 89, 328–329.  Google Scholar
First citationDecadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59–i60.  CrossRef ICSD IUCr Journals Google Scholar
First citationEriksson, B. (1982). Acta Chem. Scand. A36, 186–188.  Google Scholar
First citationEriksson, B., Larsson, L. O., Niinistö, L. & Valkonen, J. (1980). Inorg. Chem. 19, 1207–1210.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFuller, C. C. & Jacobsen, R. A. (1976). Cryst. Struct. Commun. 5, 349–352.  CAS Google Scholar
First citationGiester, G., Žák, Z. & Unfried, P. (2009). J. Alloys Compd. 481, 116–128.  CrossRef ICSD CAS Google Scholar
First citationHeinrichs, C. (2013). Dissertation, Universität zu Köln, Köln, Germany.  Google Scholar
First citationJames, C. (1911). J. Am. Chem. Soc. 33, 1332–1344.  CrossRef CAS Google Scholar
First citationJunk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497–505.  CAS Google Scholar
First citationKawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297–3303.  Web of Science CrossRef ICSD CAS Google Scholar
First citationKlein, W. (2020). Z. Kristallogr. New Cryst. Struct. 235, 801–802.  CrossRef ICSD CAS Google Scholar
First citationMa, H., Gao, S. & Yang, Z. (1991). Wuji Huaxue Xuebao, 7, 351–353.  CAS Google Scholar
First citationMilinski, N., Ribár, B. & Satarić, M. (1980). Cryst. Struct. Commun. 9, 473–476.  CAS Google Scholar
First citationMoret, E., Bünzli, J. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83–88.  CrossRef ICSD CAS Google Scholar
First citationPrandtl, W. (1938). Z. Anorg. Allg. Chem. 238, 321–334.  CrossRef CAS Google Scholar
First citationRibár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). Acta Cryst. C42, 1450–1452.  CrossRef ICSD Web of Science IUCr Journals Google Scholar
First citationRibár, B., Milinski, N., Budovalcev, Z. & Krstanović, I. (1980). Cryst. Struct. Commun. 9, 203–206.  Google Scholar
First citationRiess, K. (2012). Dissertation. Carl von Ossietzky Universität, Oldenburg, Germany.  Google Scholar
First citationRincke, C., Schmidt, H. & Voigt, W. (2017). Z. Anorg. Allg. Chem. 643, 437–442.  CrossRef ICSD CAS Google Scholar
First citationRogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939–941.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationRumanova, I. M., Volodina, G. F. & Belov, N. V. (1964). Kristallografiya, 9, 642–654.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, B. D. & Wang, J. Z. (1990). Jiegou Huaxue, 9, 164–167.  CAS Google Scholar
First citationShi, B. D. & Wang, J. Z. (1991). Xiamen Daxue Xuebao Ziran Kexueban 30, 55–58.  CAS Google Scholar
First citationStockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.  CrossRef Google Scholar
First citationStoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10–i11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaha, Z. A., Ajlouni, A., Hijazi, A. K., Kühn, F. E. & Herdtweck, E. (2012). Acta Cryst. E68, i56–i57.  CrossRef ICSD IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWickleder, M. S. (2002). Chem. Rev. 102, 2011–2088.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds