research communications
Unexpected synthesis and N-{2-[2-(2-acetylethenyl)phenoxy]ethyl}-N-ethenyl-4-methylbenzenesulfonamide
ofaDepartment of Chemistry, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 100000, Vietnam, cFaculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow, 117198, Russian Federation, dInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc, Viet, Hanoi, Vietnam, eN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of, Sciences, Kosygina 4, Moscow, Russian Federation, and fN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: ayalew.temesgen@uog.edu.et
The title compound, C21H23NO4S, obtained by alkaline treatment of 1,5-bis(1-phenoxy)-3-azapentane at moderate heating, is a N-tosylated secondary vinylamine. An intramolecular S=O⋯H—C hydrogen bond generates a 13-membered ring. The benzalacetone moiety adopts a trans conformation with respect to the C=C double bond, which is slightly longer than usual due to the conjugation with a neighbouring acetyl group. Theoretical predictions of potential biological activities were performed, suggesting that the title compound can inhibit gluconate 2-dehydrogenase (85% probability), as well as to act as a mucomembranous protector (73%).
Keywords: crystal structure; Petrenko–Kristchenko reaction; enamine; PASS software.
CCDC reference: 2044436
1. Chemical context
In our previous publications, we have reported the synthesis of new aza-crown γ-piperidone via the Petrenko–Kritschenko reaction (Levov et al., 2006a,b, 2008; Anh et al., 2012; Hieu et al., 2016, 2019; Nguyen et al., 2017; Dao et al., 2019), diazine (Hieu et al., 2012, 2013), or triazine (Hieu et al., 2009, 2012; Khieu et al., 2011). Among them, several obtained azacrown exhibited cytotoxicity to human cancer cell lines: Hepatocellular carcinoma (Hep-G2), Human lung adenocarcinoma (Lu1), Rhabdosarcoma (RD), Human breast adenocarcinoma (MCF-7) (Dao et al., 2019; Anh et al., 2019). For further syntheses of new aza-crown derivatives, a modification of multi-component condensation reactions based on the Petrenko–Kritschenko reaction was studied. After stirring the reaction mixture for 48 h at 323 K in the ethanol/sodium hydroxide system (pH = 10, reaction progress controlled by TLC), the title compound was obtained instead of expected azacrown ether.
containing various fragments:According to the PASS program (Filimonov et al., 2014), which makes a computer prediction of biological activities, the title compound is expected to inhibit gluconate 2-dehydrogenase activity (85% probability), as well as to be a mucomembranous protector (73%).
2. Structural commentary
The title compound is the product of an unexpected transformation starting from 1,5-bis(1-phenoxy)-3-azapentane. Its molecular structure is presented in Fig. 1. The molecule contains a tosylated secondary vinylamine and a benzalacetone fragment. The benzalacetone fragment adopts a trans conformation with respect to the C9=C10 double bond of 1.3432 (14) Å; this is slightly longer than the vinylic C13=C14 bond [1.3278 (16) Å] due to the conjugation with the neighbouring acetyl group. The amine N atom is significantly flattened due to conjugation with a vinyl group, the C1—S1—N1—C13 torsion angle being 28.46 (13)°. The N1—C13 bond distance [1.4138 (13) Å] is slightly shorter than that of a standard C—N single bond in similar compounds (Tskhovrebov et al., 2012, 2014, 2018; Repina et al., 2020). The molecular structure features an intramolecular S1=O4⋯H12B—C12 hydrogen bond (Table 1), leading to the formation of an S(13) macrocycle in the crystal.
3. Supramolecular features
In the crystal, the molecules of the title enamine are linked by pairs of intermolecular C—H⋯O contacts into chains stretched along the [011] direction (Fig. 2, Table 1). A similar supramolecular motif has previously been observed by our group (Tskhovrebov et al., 2019; Repina et al., 2020).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) revealed that this is the first example of a structurally characterized compound that contains an N-tosylated vinylamine fragment. At the same time, the CSD revealed the existence of some examples of structurally similar vinyl viz. 1-(4-chlorophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Teh et al., 2006), (2E)-1-(pyridin-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (Fun et al., 2011), (2E)-1-(pyridin-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2013) and (1E,4Z,6E)-5-hydroxy-1,7-bis(2-methoxyphenyl)-1,4,6- heptatrien-3-one (Zhao et al., 2011).
5. Synthesis and crystallization
Equimolar amounts of 1,5-bis(1-phenoxy)-3-azapentane (0.34 mmol, 0.16 g) and guanidine hydrochloride (0.34 mmol, 0.03 g) were stirred in an ethanol/sodium hydroxide mixture at 313–323 K in the presence of ammonium acetate (3.38 mmol, 0.26 g). The reaction was monitored by TLC and completed after 48 h. The reaction mixture was allowed to cool to room temperature (298 K). Then, the product was extracted with dichloromethane (3 × 30 ml) and dried with Na2SO4. The solvent was evaporated under reduced pressure, the residue was purified by and recrystallized from dichloromethane to obtain single crystals of the unexpected enamine. Tmlt = 403–404 K; Rf = 0.53, hexane/ethylacetate = 2:1, silufol. 1H NMR (CDCl3, 500 MHz, 300 K), δ, ppm: 9.79–9.81 (m, 1H, –C6H4—CH=CH–), 7.76–7.81 (m, 3H), 7.53 (d, 1H, J = 7.5 Hz), 7.29–7.34 (m, 3H), 6.99 (t, 1H, J = 7.5 Hz), 6.82 (d, 1H, J = 8.5 Hz), 6.70 (d, 1H, J = 16.5 Hz), 4.10 (t, 2H, J = 5.5 Hz, –O—CH2–), 3.41–3.44 (m, 2H, –N—CH2–), 2.41 (s, 3H, CH3—C6H4–); 2.36 (s, 3H, CH3—C=O), 2.20 (d, 2H, J = 3 Hz).
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C)].
details are summarized in Table 2Supporting information
CCDC reference: 2044436
https://doi.org/10.1107/S2056989020015194/yk2141sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015194/yk2141Isup2.hkl
1H NMR Spetrum of unexpected product. DOI: https://doi.org/10.1107/S2056989020015194/yk2141sup3.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015194/yk2141Isup4.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).C21H23NO4S | Z = 2 |
Mr = 385.46 | F(000) = 408 |
Triclinic, P1 | Dx = 1.343 Mg m−3 |
a = 8.9428 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5089 (4) Å | Cell parameters from 9902 reflections |
c = 12.1090 (5) Å | θ = 2.8–32.6° |
α = 100.395 (1)° | µ = 0.20 mm−1 |
β = 91.739 (1)° | T = 100 K |
γ = 108.970 (1)° | Prism, colourless |
V = 953.40 (7) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker D8 QUEST PHOTON-III CCD diffractometer | 6035 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 32.6°, θmin = 2.6° |
Tmin = 0.936, Tmax = 0.954 | h = −13→13 |
22783 measured reflections | k = −14→14 |
6917 independent reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3812P] where P = (Fo2 + 2Fc2)/3 |
6917 reflections | (Δ/σ)max = 0.001 |
246 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.58516 (3) | 0.27374 (3) | 0.35034 (2) | 0.01970 (7) | |
O1 | 0.77929 (9) | 0.44036 (9) | 0.10904 (6) | 0.02095 (15) | |
O2 | 0.16458 (10) | 0.00224 (10) | −0.17227 (7) | 0.02659 (17) | |
O4 | 0.56420 (10) | 0.17414 (10) | 0.24326 (6) | 0.02473 (16) | |
O5 | 0.45799 (10) | 0.32396 (11) | 0.38963 (7) | 0.02719 (17) | |
N1 | 0.73561 (10) | 0.42912 (10) | 0.34653 (7) | 0.01924 (16) | |
C1 | 0.87112 (12) | 0.41498 (12) | 0.28577 (8) | 0.01923 (17) | |
H1A | 0.848514 | 0.307849 | 0.248005 | 0.023* | |
H1B | 0.966656 | 0.445383 | 0.339898 | 0.023* | |
C2 | 0.90243 (12) | 0.51458 (12) | 0.19871 (8) | 0.01925 (17) | |
H2A | 0.899686 | 0.616788 | 0.231586 | 0.023* | |
H2B | 1.007800 | 0.525374 | 0.170965 | 0.023* | |
C3 | 0.77421 (11) | 0.50949 (11) | 0.02042 (8) | 0.01681 (16) | |
C4 | 0.88959 (12) | 0.64411 (12) | 0.00796 (9) | 0.01946 (18) | |
H4 | 0.977426 | 0.693521 | 0.063383 | 0.023* | |
C5 | 0.87526 (13) | 0.70560 (12) | −0.08612 (9) | 0.02104 (18) | |
H5 | 0.954362 | 0.796595 | −0.095238 | 0.025* | |
C6 | 0.74632 (13) | 0.63502 (12) | −0.16670 (9) | 0.02164 (19) | |
H6 | 0.736959 | 0.677639 | −0.230659 | 0.026* | |
C7 | 0.63121 (12) | 0.50205 (12) | −0.15349 (8) | 0.01962 (18) | |
H7 | 0.542447 | 0.455152 | −0.208445 | 0.024* | |
C8 | 0.64272 (11) | 0.43520 (11) | −0.06096 (8) | 0.01636 (16) | |
C9 | 0.52332 (12) | 0.29496 (11) | −0.04462 (8) | 0.01731 (17) | |
H9 | 0.533444 | 0.264425 | 0.024932 | 0.021* | |
C10 | 0.40059 (12) | 0.20569 (12) | −0.11953 (8) | 0.01997 (18) | |
H10 | 0.392242 | 0.234084 | −0.190162 | 0.024* | |
C11 | 0.27812 (12) | 0.06751 (12) | −0.10098 (8) | 0.01966 (18) | |
C12 | 0.29034 (15) | 0.00462 (13) | 0.00273 (10) | 0.0269 (2) | |
H12A | 0.190753 | −0.012441 | 0.038377 | 0.040* | |
H12B | 0.378057 | 0.076981 | 0.055774 | 0.040* | |
H12C | 0.310181 | −0.091767 | −0.018228 | 0.040* | |
C13 | 0.76139 (13) | 0.55211 (12) | 0.43844 (9) | 0.02207 (19) | |
H13 | 0.671419 | 0.559367 | 0.475690 | 0.026* | |
C14 | 0.90037 (15) | 0.65837 (13) | 0.47723 (10) | 0.0261 (2) | |
H14A | 0.993489 | 0.655552 | 0.442516 | 0.031* | |
H14B | 0.906687 | 0.737205 | 0.539687 | 0.031* | |
C15 | 0.64829 (12) | 0.19288 (12) | 0.45430 (8) | 0.01979 (18) | |
C16 | 0.64349 (13) | 0.25213 (14) | 0.56761 (9) | 0.0244 (2) | |
H16 | 0.599326 | 0.330349 | 0.588562 | 0.029* | |
C17 | 0.70433 (14) | 0.19488 (14) | 0.64927 (9) | 0.0253 (2) | |
H17 | 0.701353 | 0.234515 | 0.726703 | 0.030* | |
C18 | 0.76971 (13) | 0.08036 (12) | 0.61987 (9) | 0.0235 (2) | |
C19 | 0.77088 (15) | 0.02169 (13) | 0.50596 (10) | 0.0257 (2) | |
H19 | 0.813180 | −0.057844 | 0.484864 | 0.031* | |
C20 | 0.71119 (14) | 0.07763 (12) | 0.42281 (9) | 0.02283 (19) | |
H20 | 0.713379 | 0.037533 | 0.345344 | 0.027* | |
C21 | 0.84096 (17) | 0.02345 (15) | 0.70901 (10) | 0.0315 (3) | |
H21A | 0.803334 | −0.087790 | 0.691599 | 0.047* | |
H21B | 0.809001 | 0.058972 | 0.782650 | 0.047* | |
H21C | 0.957032 | 0.062056 | 0.710939 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01717 (11) | 0.02807 (13) | 0.01380 (11) | 0.00833 (9) | −0.00154 (8) | 0.00327 (8) |
O1 | 0.0210 (3) | 0.0247 (3) | 0.0154 (3) | 0.0037 (3) | −0.0028 (3) | 0.0078 (3) |
O2 | 0.0215 (4) | 0.0302 (4) | 0.0219 (4) | 0.0013 (3) | −0.0035 (3) | 0.0047 (3) |
O4 | 0.0261 (4) | 0.0307 (4) | 0.0148 (3) | 0.0086 (3) | −0.0042 (3) | 0.0010 (3) |
O5 | 0.0184 (3) | 0.0418 (5) | 0.0228 (4) | 0.0135 (3) | −0.0004 (3) | 0.0041 (3) |
N1 | 0.0204 (4) | 0.0247 (4) | 0.0148 (3) | 0.0103 (3) | 0.0020 (3) | 0.0040 (3) |
C1 | 0.0202 (4) | 0.0253 (4) | 0.0153 (4) | 0.0112 (4) | 0.0017 (3) | 0.0055 (3) |
C2 | 0.0184 (4) | 0.0241 (4) | 0.0150 (4) | 0.0070 (3) | −0.0009 (3) | 0.0042 (3) |
C3 | 0.0183 (4) | 0.0193 (4) | 0.0141 (4) | 0.0078 (3) | 0.0012 (3) | 0.0039 (3) |
C4 | 0.0179 (4) | 0.0210 (4) | 0.0188 (4) | 0.0053 (3) | 0.0005 (3) | 0.0048 (3) |
C5 | 0.0212 (4) | 0.0204 (4) | 0.0225 (4) | 0.0066 (3) | 0.0028 (4) | 0.0075 (4) |
C6 | 0.0246 (5) | 0.0224 (4) | 0.0203 (4) | 0.0090 (4) | 0.0006 (4) | 0.0084 (4) |
C7 | 0.0217 (4) | 0.0211 (4) | 0.0173 (4) | 0.0085 (3) | −0.0013 (3) | 0.0052 (3) |
C8 | 0.0182 (4) | 0.0171 (4) | 0.0149 (4) | 0.0076 (3) | 0.0009 (3) | 0.0030 (3) |
C9 | 0.0189 (4) | 0.0175 (4) | 0.0166 (4) | 0.0075 (3) | 0.0009 (3) | 0.0036 (3) |
C10 | 0.0210 (4) | 0.0214 (4) | 0.0161 (4) | 0.0051 (3) | −0.0001 (3) | 0.0043 (3) |
C11 | 0.0195 (4) | 0.0211 (4) | 0.0172 (4) | 0.0059 (3) | 0.0006 (3) | 0.0029 (3) |
C12 | 0.0305 (5) | 0.0237 (5) | 0.0228 (5) | 0.0033 (4) | −0.0039 (4) | 0.0079 (4) |
C13 | 0.0263 (5) | 0.0258 (5) | 0.0176 (4) | 0.0135 (4) | 0.0024 (4) | 0.0042 (4) |
C14 | 0.0310 (5) | 0.0255 (5) | 0.0220 (5) | 0.0107 (4) | 0.0006 (4) | 0.0036 (4) |
C15 | 0.0177 (4) | 0.0251 (4) | 0.0145 (4) | 0.0042 (3) | −0.0007 (3) | 0.0047 (3) |
C16 | 0.0238 (5) | 0.0358 (6) | 0.0151 (4) | 0.0124 (4) | 0.0021 (3) | 0.0044 (4) |
C17 | 0.0246 (5) | 0.0354 (6) | 0.0141 (4) | 0.0071 (4) | 0.0010 (3) | 0.0060 (4) |
C18 | 0.0254 (5) | 0.0222 (4) | 0.0186 (4) | 0.0007 (4) | −0.0025 (4) | 0.0076 (4) |
C19 | 0.0352 (6) | 0.0203 (4) | 0.0203 (4) | 0.0079 (4) | −0.0023 (4) | 0.0044 (4) |
C20 | 0.0293 (5) | 0.0205 (4) | 0.0158 (4) | 0.0053 (4) | −0.0019 (4) | 0.0029 (3) |
C21 | 0.0394 (6) | 0.0303 (6) | 0.0234 (5) | 0.0072 (5) | −0.0050 (5) | 0.0120 (4) |
S1—O4 | 1.4284 (8) | C9—H9 | 0.9500 |
S1—O5 | 1.4323 (8) | C10—C11 | 1.4705 (14) |
S1—N1 | 1.6527 (10) | C10—H10 | 0.9500 |
S1—C15 | 1.7559 (10) | C11—C12 | 1.5006 (15) |
O1—C3 | 1.3625 (12) | C12—H12A | 0.9800 |
O1—C2 | 1.4267 (12) | C12—H12B | 0.9800 |
O2—C11 | 1.2268 (12) | C12—H12C | 0.9800 |
N1—C13 | 1.4138 (13) | C13—C14 | 1.3278 (16) |
N1—C1 | 1.4671 (13) | C13—H13 | 0.9500 |
C1—C2 | 1.5142 (14) | C14—H14A | 0.9500 |
C1—H1A | 0.9900 | C14—H14B | 0.9500 |
C1—H1B | 0.9900 | C15—C20 | 1.3878 (16) |
C2—H2A | 0.9900 | C15—C16 | 1.3936 (14) |
C2—H2B | 0.9900 | C16—C17 | 1.3871 (16) |
C3—C4 | 1.3952 (14) | C16—H16 | 0.9500 |
C3—C8 | 1.4111 (13) | C17—C18 | 1.3933 (17) |
C4—C5 | 1.3915 (14) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | C18—C19 | 1.3931 (16) |
C5—C6 | 1.3872 (15) | C18—C21 | 1.5024 (16) |
C5—H5 | 0.9500 | C19—C20 | 1.3881 (15) |
C6—C7 | 1.3859 (15) | C19—H19 | 0.9500 |
C6—H6 | 0.9500 | C20—H20 | 0.9500 |
C7—C8 | 1.4009 (13) | C21—H21A | 0.9800 |
C7—H7 | 0.9500 | C21—H21B | 0.9800 |
C8—C9 | 1.4628 (13) | C21—H21C | 0.9800 |
C9—C10 | 1.3432 (14) | ||
O4—S1—O5 | 120.10 (5) | C9—C10—C11 | 125.23 (9) |
O4—S1—N1 | 107.17 (5) | C9—C10—H10 | 117.4 |
O5—S1—N1 | 106.02 (5) | C11—C10—H10 | 117.4 |
O4—S1—C15 | 109.04 (5) | O2—C11—C10 | 119.11 (9) |
O5—S1—C15 | 108.29 (5) | O2—C11—C12 | 119.63 (10) |
N1—S1—C15 | 105.22 (5) | C10—C11—C12 | 121.26 (9) |
C3—O1—C2 | 118.61 (8) | C11—C12—H12A | 109.5 |
C13—N1—C1 | 118.85 (9) | C11—C12—H12B | 109.5 |
C13—N1—S1 | 116.22 (7) | H12A—C12—H12B | 109.5 |
C1—N1—S1 | 118.83 (7) | C11—C12—H12C | 109.5 |
N1—C1—C2 | 110.33 (8) | H12A—C12—H12C | 109.5 |
N1—C1—H1A | 109.6 | H12B—C12—H12C | 109.5 |
C2—C1—H1A | 109.6 | C14—C13—N1 | 125.70 (10) |
N1—C1—H1B | 109.6 | C14—C13—H13 | 117.2 |
C2—C1—H1B | 109.6 | N1—C13—H13 | 117.2 |
H1A—C1—H1B | 108.1 | C13—C14—H14A | 120.0 |
O1—C2—C1 | 106.03 (8) | C13—C14—H14B | 120.0 |
O1—C2—H2A | 110.5 | H14A—C14—H14B | 120.0 |
C1—C2—H2A | 110.5 | C20—C15—C16 | 121.03 (10) |
O1—C2—H2B | 110.5 | C20—C15—S1 | 119.58 (8) |
C1—C2—H2B | 110.5 | C16—C15—S1 | 119.27 (9) |
H2A—C2—H2B | 108.7 | C17—C16—C15 | 118.83 (11) |
O1—C3—C4 | 123.68 (9) | C17—C16—H16 | 120.6 |
O1—C3—C8 | 115.50 (8) | C15—C16—H16 | 120.6 |
C4—C3—C8 | 120.82 (9) | C16—C17—C18 | 121.25 (10) |
C5—C4—C3 | 119.62 (9) | C16—C17—H17 | 119.4 |
C5—C4—H4 | 120.2 | C18—C17—H17 | 119.4 |
C3—C4—H4 | 120.2 | C19—C18—C17 | 118.70 (10) |
C6—C5—C4 | 120.49 (9) | C19—C18—C21 | 120.51 (11) |
C6—C5—H5 | 119.8 | C17—C18—C21 | 120.78 (10) |
C4—C5—H5 | 119.8 | C20—C19—C18 | 121.03 (11) |
C7—C6—C5 | 119.71 (9) | C20—C19—H19 | 119.5 |
C7—C6—H6 | 120.1 | C18—C19—H19 | 119.5 |
C5—C6—H6 | 120.1 | C15—C20—C19 | 119.14 (10) |
C6—C7—C8 | 121.52 (9) | C15—C20—H20 | 120.4 |
C6—C7—H7 | 119.2 | C19—C20—H20 | 120.4 |
C8—C7—H7 | 119.2 | C18—C21—H21A | 109.5 |
C7—C8—C3 | 117.82 (9) | C18—C21—H21B | 109.5 |
C7—C8—C9 | 122.84 (9) | H21A—C21—H21B | 109.5 |
C3—C8—C9 | 119.32 (8) | C18—C21—H21C | 109.5 |
C10—C9—C8 | 125.58 (9) | H21A—C21—H21C | 109.5 |
C10—C9—H9 | 117.2 | H21B—C21—H21C | 109.5 |
C8—C9—H9 | 117.2 | ||
O4—S1—N1—C13 | 170.89 (7) | C7—C8—C9—C10 | 7.68 (16) |
O5—S1—N1—C13 | 41.49 (8) | C3—C8—C9—C10 | −173.69 (10) |
C15—S1—N1—C13 | −73.13 (8) | C8—C9—C10—C11 | −177.90 (9) |
O4—S1—N1—C1 | −36.83 (9) | C9—C10—C11—O2 | 174.10 (11) |
O5—S1—N1—C1 | −166.24 (7) | C9—C10—C11—C12 | −6.41 (16) |
C15—S1—N1—C1 | 79.15 (8) | C1—N1—C13—C14 | −0.80 (16) |
C13—N1—C1—C2 | −83.12 (11) | S1—N1—C13—C14 | 151.47 (10) |
S1—N1—C1—C2 | 125.34 (8) | O4—S1—C15—C20 | 17.84 (10) |
C3—O1—C2—C1 | 177.09 (8) | O5—S1—C15—C20 | 150.13 (9) |
N1—C1—C2—O1 | −74.11 (10) | N1—S1—C15—C20 | −96.84 (9) |
C2—O1—C3—C4 | 4.89 (14) | O4—S1—C15—C16 | −166.14 (9) |
C2—O1—C3—C8 | −175.48 (8) | O5—S1—C15—C16 | −33.85 (10) |
O1—C3—C4—C5 | 179.33 (9) | N1—S1—C15—C16 | 79.18 (9) |
C8—C3—C4—C5 | −0.28 (15) | C20—C15—C16—C17 | 0.61 (17) |
C3—C4—C5—C6 | 0.77 (16) | S1—C15—C16—C17 | −175.35 (9) |
C4—C5—C6—C7 | −0.18 (16) | C15—C16—C17—C18 | 0.11 (17) |
C5—C6—C7—C8 | −0.92 (16) | C16—C17—C18—C19 | −1.03 (17) |
C6—C7—C8—C3 | 1.37 (15) | C16—C17—C18—C21 | 177.61 (11) |
C6—C7—C8—C9 | −179.99 (9) | C17—C18—C19—C20 | 1.27 (17) |
O1—C3—C8—C7 | 179.59 (9) | C21—C18—C19—C20 | −177.38 (11) |
C4—C3—C8—C7 | −0.76 (14) | C16—C15—C20—C19 | −0.38 (17) |
O1—C3—C8—C9 | 0.90 (13) | S1—C15—C20—C19 | 175.57 (9) |
C4—C3—C8—C9 | −179.46 (9) | C18—C19—C20—C15 | −0.58 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12B···O4 | 0.98 | 2.61 | 3.5193 (14) | 155 |
C13—H13···O5i | 0.95 | 2.35 | 3.2307 (13) | 154 |
C20—H20···O2ii | 0.95 | 2.42 | 3.3070 (14) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z. |
Funding information
This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2017.318. AGT is grateful to the FRCCP RAS State task AAAA-A19–119012990175-9. We also acknowledge the RUDN University Program 5–100.
References
Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2165–o2166. CSD CrossRef IUCr Journals Google Scholar
Anh, L. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375–377. Google Scholar
Bruker (2018). SADABS, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076–o1077. CSD CrossRef IUCr Journals Google Scholar
Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Cmpd, 55, 654–659. CSD CrossRef CAS Google Scholar
Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Cmpd, 50, 444–457. CrossRef CAS Google Scholar
Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789–o2790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hieu, C. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Cmpd, 45, 1406–1407. CrossRef CAS Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2848–o2849. CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829–832. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566. CSD CrossRef IUCr Journals Google Scholar
Hieu, T. H., Komarova, A. I., Levov, A. N., Soldatenkov, A. T., Polyakova, E. I., Tuyen, N. V., Anh, D. T. T., Kulakova, A. N., Khrustalev, V. N. & Anh, L. T. (2019). Macroheterocycles 12, 409–414. CSD CrossRef CAS Google Scholar
Hieu, T. H., Soldatenkov, A. T., Anh, L. T., Tung, T. H. & Soldatova, S. A. (2012). Chem. Heterocycl. Compd. 47, 1315–1316. CrossRef CAS Google Scholar
Khieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770. Web of Science CrossRef CAS Google Scholar
Levov, A. N., Le, T. A., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 456–461. CrossRef CAS Google Scholar
Levov, A. N., Strokina, V. M., Le, T. A., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006a). Mendeleev Commun. 16, 35–36. CSD CrossRef Google Scholar
Levov, A. N., Strokina, V. M., Komarova, A. I., Le, T. A. & Soldatenkov, A. T. (2006b). Chem. Heterocycl. Compd. 42, 125–126. CrossRef CAS Google Scholar
Nguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118–121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991–o2992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 1170–1175. CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71–75. CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405–2408. CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930–934. CSD CrossRef CAS PubMed Google Scholar
Zhao, Y.-L., Groundwater, P. W., Hibbs, D. E., Nguyen, P. K. & Narlawar, R. (2011). Acta Cryst. E67, o1885. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.