research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Unexpected synthesis and crystal structure of N-{2-[2-(2-acetyl­ethen­yl)phen­­oxy]eth­yl}-N-ethenyl-4-methyl­benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 100000, Vietnam, cFaculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya, Moscow, 117198, Russian Federation, dInstitute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc, Viet, Hanoi, Vietnam, eN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of, Sciences, Kosygina 4, Moscow, Russian Federation, and fN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: ayalew.temesgen@uog.edu.et

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 26 October 2020; accepted 15 November 2020; online 20 November 2020)

The title compound, C21H23NO4S, obtained by alkaline treatment of 1,5-bis­(1-phen­oxy)-3-aza­pentane at moderate heating, is a N-tosyl­ated secondary vinyl­amine. An intra­molecular S=O⋯H—C hydrogen bond generates a 13-membered ring. The benzalacetone moiety adopts a trans conformation with respect to the C=C double bond, which is slightly longer than usual due to the conjugation with a neighbouring acetyl group. Theoretical predictions of potential biological activities were performed, suggesting that the title compound can inhibit gluconate 2-de­hydrogenase (85% probability), as well as to act as a mucomembranous protector (73%).

1. Chemical context

In our previous publications, we have reported the synthesis of new aza-crown ethers containing various fragments: γ-piperidone via the Petrenko–Kritschenko reaction (Levov et al., 2006a[Levov, A. N., Strokina, V. M., Le, T. A., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006a). Mendeleev Commun. 16, 35-36.],b[Levov, A. N., Strokina, V. M., Komarova, A. I., Le, T. A. & Soldatenkov, A. T. (2006b). Chem. Heterocycl. Compd. 42, 125-126.], 2008[Levov, A. N., Le, T. A., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 456-461.]; Anh et al., 2012[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2165-o2166.]; Hieu et al., 2016[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829-832.], 2019[Hieu, T. H., Komarova, A. I., Levov, A. N., Soldatenkov, A. T., Polyakova, E. I., Tuyen, N. V., Anh, D. T. T., Kulakova, A. N., Khrustalev, V. N. & Anh, L. T. (2019). Macroheterocycles 12, 409-414.]; Nguyen et al., 2017[Nguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118-121.]; Dao et al., 2019[Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Cmpd, 55, 654-659.]), diazine (Hieu et al., 2012[Hieu, T. H., Soldatenkov, A. T., Anh, L. T., Tung, T. H. & Soldatova, S. A. (2012). Chem. Heterocycl. Compd. 47, 1315-1316.], 2013[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565-o566.]), or triazine (Hieu et al., 2009[Hieu, C. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Cmpd, 45, 1406-1407.], 2012[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2848-o2849.]; Khieu et al., 2011[Khieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]). Among them, several obtained aza­crown ethers exhibited cytotoxicity to human cancer cell lines: Hepatocellular carcinoma (Hep-G2), Human lung adenocarcinoma (Lu1), Rhabdosarcoma (RD), Human breast adenocarcinoma (MCF-7) (Dao et al., 2019[Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Cmpd, 55, 654-659.]; Anh et al., 2019[Anh, L. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375-377.]). For further syntheses of new aza-crown derivatives, a modification of multi-component condensation reactions based on the Petrenko–Kritschenko reaction was studied. After stirring the reaction mixture for 48 h at 323 K in the ethanol/sodium hydroxide system (pH = 10, reaction progress controlled by TLC), the title compound was obtained instead of expected aza­crown ether.

According to the PASS program (Filimonov et al., 2014[Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Cmpd, 50, 444-457.]), which makes a computer prediction of biological activities, the title compound is expected to inhibit gluconate 2-de­hydrogenase activity (85% probability), as well as to be a mucomembranous protector (73%).

[Scheme 1]

2. Structural commentary

The title compound is the product of an unexpected transformation starting from 1,5-bis­(1-phen­oxy)-3-aza­pentane. Its mol­ecular structure is presented in Fig. 1[link]. The mol­ecule contains a tosyl­ated secondary vinyl­amine and a benzalacetone fragment. The benzalacetone fragment adopts a trans conformation with respect to the C9=C10 double bond of 1.3432 (14) Å; this is slightly longer than the vinylic C13=C14 bond [1.3278 (16) Å] due to the conjugation with the neighbouring acetyl group. The amine N atom is significantly flattened due to conjugation with a vinyl group, the C1—S1—N1—C13 torsion angle being 28.46 (13)°. The N1—C13 bond distance [1.4138 (13) Å] is slightly shorter than that of a standard C—N single bond in similar compounds (Tskhovrebov et al., 2012[Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 1170-1175.], 2014[Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405-2408.], 2018[Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930-934.]; Repina et al., 2020[Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378.]). The mol­ecular structure features an intra­molecular S1=O4⋯H12B—C12 hydrogen bond (Table 1[link]), leading to the formation of an S(13) macrocycle in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O4 0.98 2.61 3.5193 (14) 155
C13—H13⋯O5i 0.95 2.35 3.2307 (13) 154
C20—H20⋯O2ii 0.95 2.42 3.3070 (14) 156
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y, -z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. The dashed line indicates the intra­molecular CH2—H⋯O hydrogen bond.

3. Supra­molecular features

In the crystal, the mol­ecules of the title enamine are linked by pairs of inter­molecular C—H⋯O contacts into chains stretched along the [011] direction (Fig. 2[link], Table 1[link]). A similar supra­molecular motif has previously been observed by our group (Tskhovrebov et al., 2019[Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71-75.]; Repina et al., 2020[Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378.]).

[Figure 2]
Figure 2
Crystal packing of the title compound illustrating its self-assembly into a hydrogen-bonded framework.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that this is the first example of a structurally characterized compound that contains an N-tosyl­ated vinyl­amine fragment. At the same time, the CSD revealed the existence of some examples of structurally similar vinyl ketones, viz. 1-(4-chloro­phen­yl)-3-(2,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one (Teh et al., 2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991-o2992.]), (2E)-1-(pyridin-2-yl)-3-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2011[Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789-o2790.]), (2E)-1-(pyridin-2-yl)-3-(2,4,5-tri­meth­oxy­phen­yl)prop-2-en-1-one (Chantra­prom­ma et al., 2013[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076-o1077.]) and (1E,4Z,6E)-5-hy­droxy-1,7-bis­(2-meth­oxy­phen­yl)-1,4,6- hepta­trien-3-one (Zhao et al., 2011[Zhao, Y.-L., Groundwater, P. W., Hibbs, D. E., Nguyen, P. K. & Narlawar, R. (2011). Acta Cryst. E67, o1885.]).

5. Synthesis and crystallization

Equimolar amounts of 1,5-bis­(1-phen­oxy)-3-aza­pentane (0.34 mmol, 0.16 g) and guanidine hydro­chloride (0.34 mmol, 0.03 g) were stirred in an ethanol/sodium hydroxide mixture at 313–323 K in the presence of ammonium acetate (3.38 mmol, 0.26 g). The reaction was monitored by TLC and completed after 48 h. The reaction mixture was allowed to cool to room temperature (298 K). Then, the product was extracted with di­chloro­methane (3 × 30 ml) and dried with Na2SO4. The solvent was evaporated under reduced pressure, the residue was purified by column chromatography and recrystallized from di­chloro­methane to obtain single crystals of the unexpected enamine. Tmlt = 403–404 K; Rf = 0.53, eluent: hexa­ne/ethyl­acetate = 2:1, silufol. 1H NMR (CDCl3, 500 MHz, 300 K), δ, ppm: 9.79–9.81 (m, 1H, –C6H4—CH=CH–), 7.76–7.81 (m, 3H), 7.53 (d, 1H, J = 7.5 Hz), 7.29–7.34 (m, 3H), 6.99 (t, 1H, J = 7.5 Hz), 6.82 (d, 1H, J = 8.5 Hz), 6.70 (d, 1H, J = 16.5 Hz), 4.10 (t, 2H, J = 5.5 Hz, –O—CH2–), 3.41–3.44 (m, 2H, –N—CH2–), 2.41 (s, 3H, CH3—C6H4–); 2.36 (s, 3H, CH3—C=O), 2.20 (d, 2H, J = 3 Hz).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with fixed isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C21H23NO4S
Mr 385.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.9428 (4), 9.5089 (4), 12.1090 (5)
α, β, γ (°) 100.395 (1), 91.739 (1), 108.970 (1)
V3) 953.40 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). SADABS, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.936, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 22783, 6917, 6035
Rint 0.025
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.03
No. of reflections 6917
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.59
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). SADABS, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2015b); software used to prepare material for publication: SHELXTL (Sheldrick, 2015b).

N-{2-[2-(2-Acetylethenyl)phenoxy]ethyl}-N-ethenyl-4-methylbenzenesulfonamide top
Crystal data top
C21H23NO4SZ = 2
Mr = 385.46F(000) = 408
Triclinic, P1Dx = 1.343 Mg m3
a = 8.9428 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5089 (4) ÅCell parameters from 9902 reflections
c = 12.1090 (5) Åθ = 2.8–32.6°
α = 100.395 (1)°µ = 0.20 mm1
β = 91.739 (1)°T = 100 K
γ = 108.970 (1)°Prism, colourless
V = 953.40 (7) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
6035 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 32.6°, θmin = 2.6°
Tmin = 0.936, Tmax = 0.954h = 1313
22783 measured reflectionsk = 1414
6917 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3812P]
where P = (Fo2 + 2Fc2)/3
6917 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58516 (3)0.27374 (3)0.35034 (2)0.01970 (7)
O10.77929 (9)0.44036 (9)0.10904 (6)0.02095 (15)
O20.16458 (10)0.00224 (10)0.17227 (7)0.02659 (17)
O40.56420 (10)0.17414 (10)0.24326 (6)0.02473 (16)
O50.45799 (10)0.32396 (11)0.38963 (7)0.02719 (17)
N10.73561 (10)0.42912 (10)0.34653 (7)0.01924 (16)
C10.87112 (12)0.41498 (12)0.28577 (8)0.01923 (17)
H1A0.8485140.3078490.2480050.023*
H1B0.9666560.4453830.3398980.023*
C20.90243 (12)0.51458 (12)0.19871 (8)0.01925 (17)
H2A0.8996860.6167880.2315860.023*
H2B1.0078000.5253740.1709650.023*
C30.77421 (11)0.50949 (11)0.02042 (8)0.01681 (16)
C40.88959 (12)0.64411 (12)0.00796 (9)0.01946 (18)
H40.9774260.6935210.0633830.023*
C50.87526 (13)0.70560 (12)0.08612 (9)0.02104 (18)
H50.9543620.7965950.0952380.025*
C60.74632 (13)0.63502 (12)0.16670 (9)0.02164 (19)
H60.7369590.6776390.2306590.026*
C70.63121 (12)0.50205 (12)0.15349 (8)0.01962 (18)
H70.5424470.4551520.2084450.024*
C80.64272 (11)0.43520 (11)0.06096 (8)0.01636 (16)
C90.52332 (12)0.29496 (11)0.04462 (8)0.01731 (17)
H90.5334440.2644250.0249320.021*
C100.40059 (12)0.20569 (12)0.11953 (8)0.01997 (18)
H100.3922420.2340840.1901620.024*
C110.27812 (12)0.06751 (12)0.10098 (8)0.01966 (18)
C120.29034 (15)0.00462 (13)0.00273 (10)0.0269 (2)
H12A0.1907530.0124410.0383770.040*
H12B0.3780570.0769810.0557740.040*
H12C0.3101810.0917670.0182280.040*
C130.76139 (13)0.55211 (12)0.43844 (9)0.02207 (19)
H130.6714190.5593670.4756900.026*
C140.90037 (15)0.65837 (13)0.47723 (10)0.0261 (2)
H14A0.9934890.6555520.4425160.031*
H14B0.9066870.7372050.5396870.031*
C150.64829 (12)0.19288 (12)0.45430 (8)0.01979 (18)
C160.64349 (13)0.25213 (14)0.56761 (9)0.0244 (2)
H160.5993260.3303490.5885620.029*
C170.70433 (14)0.19488 (14)0.64927 (9)0.0253 (2)
H170.7013530.2345150.7267030.030*
C180.76971 (13)0.08036 (12)0.61987 (9)0.0235 (2)
C190.77088 (15)0.02169 (13)0.50596 (10)0.0257 (2)
H190.8131800.0578440.4848640.031*
C200.71119 (14)0.07763 (12)0.42281 (9)0.02283 (19)
H200.7133790.0375330.3453440.027*
C210.84096 (17)0.02345 (15)0.70901 (10)0.0315 (3)
H21A0.8033340.0877900.6915990.047*
H21B0.8090010.0589720.7826500.047*
H21C0.9570320.0620560.7109390.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01717 (11)0.02807 (13)0.01380 (11)0.00833 (9)0.00154 (8)0.00327 (8)
O10.0210 (3)0.0247 (3)0.0154 (3)0.0037 (3)0.0028 (3)0.0078 (3)
O20.0215 (4)0.0302 (4)0.0219 (4)0.0013 (3)0.0035 (3)0.0047 (3)
O40.0261 (4)0.0307 (4)0.0148 (3)0.0086 (3)0.0042 (3)0.0010 (3)
O50.0184 (3)0.0418 (5)0.0228 (4)0.0135 (3)0.0004 (3)0.0041 (3)
N10.0204 (4)0.0247 (4)0.0148 (3)0.0103 (3)0.0020 (3)0.0040 (3)
C10.0202 (4)0.0253 (4)0.0153 (4)0.0112 (4)0.0017 (3)0.0055 (3)
C20.0184 (4)0.0241 (4)0.0150 (4)0.0070 (3)0.0009 (3)0.0042 (3)
C30.0183 (4)0.0193 (4)0.0141 (4)0.0078 (3)0.0012 (3)0.0039 (3)
C40.0179 (4)0.0210 (4)0.0188 (4)0.0053 (3)0.0005 (3)0.0048 (3)
C50.0212 (4)0.0204 (4)0.0225 (4)0.0066 (3)0.0028 (4)0.0075 (4)
C60.0246 (5)0.0224 (4)0.0203 (4)0.0090 (4)0.0006 (4)0.0084 (4)
C70.0217 (4)0.0211 (4)0.0173 (4)0.0085 (3)0.0013 (3)0.0052 (3)
C80.0182 (4)0.0171 (4)0.0149 (4)0.0076 (3)0.0009 (3)0.0030 (3)
C90.0189 (4)0.0175 (4)0.0166 (4)0.0075 (3)0.0009 (3)0.0036 (3)
C100.0210 (4)0.0214 (4)0.0161 (4)0.0051 (3)0.0001 (3)0.0043 (3)
C110.0195 (4)0.0211 (4)0.0172 (4)0.0059 (3)0.0006 (3)0.0029 (3)
C120.0305 (5)0.0237 (5)0.0228 (5)0.0033 (4)0.0039 (4)0.0079 (4)
C130.0263 (5)0.0258 (5)0.0176 (4)0.0135 (4)0.0024 (4)0.0042 (4)
C140.0310 (5)0.0255 (5)0.0220 (5)0.0107 (4)0.0006 (4)0.0036 (4)
C150.0177 (4)0.0251 (4)0.0145 (4)0.0042 (3)0.0007 (3)0.0047 (3)
C160.0238 (5)0.0358 (6)0.0151 (4)0.0124 (4)0.0021 (3)0.0044 (4)
C170.0246 (5)0.0354 (6)0.0141 (4)0.0071 (4)0.0010 (3)0.0060 (4)
C180.0254 (5)0.0222 (4)0.0186 (4)0.0007 (4)0.0025 (4)0.0076 (4)
C190.0352 (6)0.0203 (4)0.0203 (4)0.0079 (4)0.0023 (4)0.0044 (4)
C200.0293 (5)0.0205 (4)0.0158 (4)0.0053 (4)0.0019 (4)0.0029 (3)
C210.0394 (6)0.0303 (6)0.0234 (5)0.0072 (5)0.0050 (5)0.0120 (4)
Geometric parameters (Å, º) top
S1—O41.4284 (8)C9—H90.9500
S1—O51.4323 (8)C10—C111.4705 (14)
S1—N11.6527 (10)C10—H100.9500
S1—C151.7559 (10)C11—C121.5006 (15)
O1—C31.3625 (12)C12—H12A0.9800
O1—C21.4267 (12)C12—H12B0.9800
O2—C111.2268 (12)C12—H12C0.9800
N1—C131.4138 (13)C13—C141.3278 (16)
N1—C11.4671 (13)C13—H130.9500
C1—C21.5142 (14)C14—H14A0.9500
C1—H1A0.9900C14—H14B0.9500
C1—H1B0.9900C15—C201.3878 (16)
C2—H2A0.9900C15—C161.3936 (14)
C2—H2B0.9900C16—C171.3871 (16)
C3—C41.3952 (14)C16—H160.9500
C3—C81.4111 (13)C17—C181.3933 (17)
C4—C51.3915 (14)C17—H170.9500
C4—H40.9500C18—C191.3931 (16)
C5—C61.3872 (15)C18—C211.5024 (16)
C5—H50.9500C19—C201.3881 (15)
C6—C71.3859 (15)C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.4009 (13)C21—H21A0.9800
C7—H70.9500C21—H21B0.9800
C8—C91.4628 (13)C21—H21C0.9800
C9—C101.3432 (14)
O4—S1—O5120.10 (5)C9—C10—C11125.23 (9)
O4—S1—N1107.17 (5)C9—C10—H10117.4
O5—S1—N1106.02 (5)C11—C10—H10117.4
O4—S1—C15109.04 (5)O2—C11—C10119.11 (9)
O5—S1—C15108.29 (5)O2—C11—C12119.63 (10)
N1—S1—C15105.22 (5)C10—C11—C12121.26 (9)
C3—O1—C2118.61 (8)C11—C12—H12A109.5
C13—N1—C1118.85 (9)C11—C12—H12B109.5
C13—N1—S1116.22 (7)H12A—C12—H12B109.5
C1—N1—S1118.83 (7)C11—C12—H12C109.5
N1—C1—C2110.33 (8)H12A—C12—H12C109.5
N1—C1—H1A109.6H12B—C12—H12C109.5
C2—C1—H1A109.6C14—C13—N1125.70 (10)
N1—C1—H1B109.6C14—C13—H13117.2
C2—C1—H1B109.6N1—C13—H13117.2
H1A—C1—H1B108.1C13—C14—H14A120.0
O1—C2—C1106.03 (8)C13—C14—H14B120.0
O1—C2—H2A110.5H14A—C14—H14B120.0
C1—C2—H2A110.5C20—C15—C16121.03 (10)
O1—C2—H2B110.5C20—C15—S1119.58 (8)
C1—C2—H2B110.5C16—C15—S1119.27 (9)
H2A—C2—H2B108.7C17—C16—C15118.83 (11)
O1—C3—C4123.68 (9)C17—C16—H16120.6
O1—C3—C8115.50 (8)C15—C16—H16120.6
C4—C3—C8120.82 (9)C16—C17—C18121.25 (10)
C5—C4—C3119.62 (9)C16—C17—H17119.4
C5—C4—H4120.2C18—C17—H17119.4
C3—C4—H4120.2C19—C18—C17118.70 (10)
C6—C5—C4120.49 (9)C19—C18—C21120.51 (11)
C6—C5—H5119.8C17—C18—C21120.78 (10)
C4—C5—H5119.8C20—C19—C18121.03 (11)
C7—C6—C5119.71 (9)C20—C19—H19119.5
C7—C6—H6120.1C18—C19—H19119.5
C5—C6—H6120.1C15—C20—C19119.14 (10)
C6—C7—C8121.52 (9)C15—C20—H20120.4
C6—C7—H7119.2C19—C20—H20120.4
C8—C7—H7119.2C18—C21—H21A109.5
C7—C8—C3117.82 (9)C18—C21—H21B109.5
C7—C8—C9122.84 (9)H21A—C21—H21B109.5
C3—C8—C9119.32 (8)C18—C21—H21C109.5
C10—C9—C8125.58 (9)H21A—C21—H21C109.5
C10—C9—H9117.2H21B—C21—H21C109.5
C8—C9—H9117.2
O4—S1—N1—C13170.89 (7)C7—C8—C9—C107.68 (16)
O5—S1—N1—C1341.49 (8)C3—C8—C9—C10173.69 (10)
C15—S1—N1—C1373.13 (8)C8—C9—C10—C11177.90 (9)
O4—S1—N1—C136.83 (9)C9—C10—C11—O2174.10 (11)
O5—S1—N1—C1166.24 (7)C9—C10—C11—C126.41 (16)
C15—S1—N1—C179.15 (8)C1—N1—C13—C140.80 (16)
C13—N1—C1—C283.12 (11)S1—N1—C13—C14151.47 (10)
S1—N1—C1—C2125.34 (8)O4—S1—C15—C2017.84 (10)
C3—O1—C2—C1177.09 (8)O5—S1—C15—C20150.13 (9)
N1—C1—C2—O174.11 (10)N1—S1—C15—C2096.84 (9)
C2—O1—C3—C44.89 (14)O4—S1—C15—C16166.14 (9)
C2—O1—C3—C8175.48 (8)O5—S1—C15—C1633.85 (10)
O1—C3—C4—C5179.33 (9)N1—S1—C15—C1679.18 (9)
C8—C3—C4—C50.28 (15)C20—C15—C16—C170.61 (17)
C3—C4—C5—C60.77 (16)S1—C15—C16—C17175.35 (9)
C4—C5—C6—C70.18 (16)C15—C16—C17—C180.11 (17)
C5—C6—C7—C80.92 (16)C16—C17—C18—C191.03 (17)
C6—C7—C8—C31.37 (15)C16—C17—C18—C21177.61 (11)
C6—C7—C8—C9179.99 (9)C17—C18—C19—C201.27 (17)
O1—C3—C8—C7179.59 (9)C21—C18—C19—C20177.38 (11)
C4—C3—C8—C70.76 (14)C16—C15—C20—C190.38 (17)
O1—C3—C8—C90.90 (13)S1—C15—C20—C19175.57 (9)
C4—C3—C8—C9179.46 (9)C18—C19—C20—C150.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O40.982.613.5193 (14)155
C13—H13···O5i0.952.353.2307 (13)154
C20—H20···O2ii0.952.423.3070 (14)156
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Funding information

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2017.318. AGT is grateful to the FRCCP RAS State task AAAA-A19–119012990175-9. We also acknowledge the RUDN University Program 5–100.

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). Mendeleev Commun. 29, 375–377.  Google Scholar
First citationBruker (2018). SADABS, SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1076–o1077.  CSD CrossRef IUCr Journals Google Scholar
First citationDao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). Chem. Heterocycl. Cmpd, 55, 654–659.  CSD CrossRef CAS Google Scholar
First citationFilimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Cmpd, 50, 444–457.  CrossRef CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHieu, C. H., Anh, L. T., Levov, A. N., Nikitina, E. V. & Soldatenkov, A. T. (2009). Chem. Heterocycl. Cmpd, 45, 1406–1407.  CrossRef CAS Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829–832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, o565–o566.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Komarova, A. I., Levov, A. N., Soldatenkov, A. T., Polyakova, E. I., Tuyen, N. V., Anh, D. T. T., Kulakova, A. N., Khrustalev, V. N. & Anh, L. T. (2019). Macroheterocycles 12, 409–414.  CSD CrossRef CAS Google Scholar
First citationHieu, T. H., Soldatenkov, A. T., Anh, L. T., Tung, T. H. & Soldatova, S. A. (2012). Chem. Heterocycl. Compd. 47, 1315–1316.  CrossRef CAS Google Scholar
First citationKhieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Le, T. A., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 456–461.  CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Le, T. A., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006a). Mendeleev Commun. 16, 35–36.  CSD CrossRef Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Le, T. A. & Soldatenkov, A. T. (2006b). Chem. Heterocycl. Compd. 42, 125–126.  CrossRef CAS Google Scholar
First citationNguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). Acta Cryst. E73, 118–121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRepina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 Article 119378.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2991–o2992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 1170–1175.  CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71–75.  CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405–2408.  CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930–934.  CSD CrossRef CAS PubMed Google Scholar
First citationZhao, Y.-L., Groundwater, P. W., Hibbs, D. E., Nguyen, P. K. & Narlawar, R. (2011). Acta Cryst. E67, o1885.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds