research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld analysis of di-tert-butyl 2,2′-[(ethyl­aza­nedi­yl)bis­­(methyl­ene)]bis­­(1H-pyrrole-1-carboxyl­ate)

CROSSMARK_Color_square_no_text.svg

aFaculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991 , Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by C. Schulzke, Universität Greifswald, Germany (Received 27 October 2020; accepted 10 November 2020; online 13 November 2020)

The title compound, C22H33N3O4, crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules in a unit cell. The two pyrrole rings are essentially planar (r.m.s. deviation = 0.002 Å) and they form a dihedral angle of 81.24 (10)° with each other. The crystal packing is stabilized by C—H⋯π inter­actions and ππ stacking inter­actions, forming a three-dimensional network. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H⋯H (74.3%), C⋯H/H⋯C (11.5%) and O⋯H/H⋯O (9.1%) contacts.

1. Chemical context

This work is a continuation of the study of Diels–Alder reactions on bis-diene systems, which was previously carried out on the example of the tandem [4 + 2]/[4 + 2] cyclo­addition between bis-furyl dienes similar to 1 and activated alkynes, leading to adducts such as 2, as shown in Fig. 1[link] (Borisova et al., 2018a[Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840-4850.],b[Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850-2853.]; Kvyatkovskaya et al., 2020[Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmes, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156-161.]; Lautens & Fillion, 1997[Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418-4427.]; Domingo et al., 2000[Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473-3477.]). Here we aimed to investigate substrates containing two pyrrole moieties under the same reaction conditions. For this reason, N,N-bis(1H-pyrrol-2-ylmeth­yl) ethanamine (3) was synthesized using a Mannich reaction according to the described procedure (Raines & Kovacs, 1970[Raines, S. & Kovacs, C. A. (1970). J. Heterocycl. Chem. 7, 223-225.]). It is known that pyrrole fragments are capable of reacting with the most active dienophiles in the [4 + 2] cyclo­addition reaction, which requires the presence of electron-deficient groups at the nitro­gen atom (Winkler, 1996[Winkler, J. D. (1996). Chem. Rev. 96, 167-176.]; Visnick & Battiste, 1985[Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621-1622.]; Butler et al., 2000[Butler, D. N., Hammond, M. L. A., Johnston, M. R., Sun, G., Malpass, J. R., Fawcett, J. & Warrener, R. N. (2000). Org. Lett. 2, 721-724.]; Warrener et al., 2003[Warrener, R. N., Margetic, D., Sun, G. & Russell, R. A. (2003). Aust. J. Chem. 56, 263-267.]). Thus, the pyrrole rings of amine 3 were activated by Boc-protecting groups to give the title substance 4. Considering that a single example of a successful domino [4 + 2] cyclo­addition between hexa­fluoro­but-2-yne and N,N′-dipyrrolyl­methane is reported in the literature (Visnick & Battiste, 1985[Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621-1622.]), we tested amine 4 in the reaction with such an active dienophile as dimethyl acetyl­enedi­carboxyl­ate (DMAD). The experiments were performed in a wide temperature range (from room temperature to 413 K) and led to multicomponent mixtures of products at elevated temperatures, from which we were unable to isolate the target adduct 5.

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme including the title compound 4 as inter­mediate.

However, taking into account the importance of the non-covalent bond-donor/acceptor properties of the nitro­gen atom in N-heterocycles for synthesis, catalysis and the design of new materials (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018a[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190-194.],b[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130-136.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]), we describe in this work the structural features of compound 4.

2. Structural commentary

As shown in Fig. 2[link], the two pyrrole rings (N1/C2–C5 and N3/C8–C11) in the title compound 4 form a dihedral angle of 81.24 (10)°. The C6—N2—C17—C18 and C7—N2—C17—C18, C5—C6—N2—C17, C8—C7—N2—C17 and C6—N2—C7—C8 torsion angles are −163.52 (15), 71.9 (2), −87.35 (17), −155.20 (14) and 80.67 (16)°, respectively. All of the bond lengths and angles in the title compound 4 are of usual values.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound 4 with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

3. Supra­molecular features

The supra­molecular structure of the title compound 4 is defined by ππ stacking [Cg1⋯Cg1i = 3.6892 (13) Å, symmetry code (i): 2 − x, 2 − y, 1 − z, slippage = 1.794 Å, where Cg1 is the centroid of the N1/C2–C5 pyrrole ring] and C—H⋯π [C16—H16BCg2ii, symmetry code (ii): x, y, −1 + z, where Cg2 is the centroid of the N3/C8–C11 pyrrole ring] inter­actions, forming a three-dimensional network (Fig. 3[link]; Table 1[link]). There are no conventional hydrogen bonds in the structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3/C8–C11 pyrrole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16BCg2i 0.98 2.85 3.779 (2) 158
Symmetry code: (i) [x, y, z-1].
[Figure 3]
Figure 3
A view of the inter­molecular C—H⋯π inter­actions and ππ- stacking inter­actions of the title compound 4. Symmetry codes: (i) 2 − x, 2 − y, 1 − z; (ii) x, y, −1 + z.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were obtained with Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) to investigate the inter­molecular inter­actions and surface morphology. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.0919 (red) to 1.6027 (blue) a.u. is shown in Fig. 4[link].

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface for the title compound 4, plotted over dnorm in the range −0.0919 to 1.6027 a.u.

The percentage contributions of various contacts (Table 2[link]) to the total Hirshfeld surface are listed in Table 3[link] and shown in the two-dimensional fingerprint plots in Fig. 5[link], revealing that the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (74.3% contribution to the overall surface), followed by C⋯H/H⋯C and O⋯H/H⋯O inter­actions, which contribute 11.5% and 9.1%, respectively.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound 4

Contact Distance Symmetry operation
H17A⋯O1 2.73 1 − x, 2 − y, 1 − z
H22B⋯O1 2.72 x, 1 − y, 1 − z
H22A⋯H2 2.59 1 − x, 1 − y, 1 − z
H20B⋯H10 2.48 −1 + x, y, z
C8⋯H16B 2.75 x, y, 1 + z
H16A⋯C18 3.06 2 − x, 2 − y, 1 − z
H18C⋯C21 2.96 1 − x, 2 − y, 2 − z
H18A⋯H18A 2.58 2 − x, 2 − y, 2 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound 4

Contact Percentage contribution
H⋯H 74.3
C⋯H/H⋯C 11.5
O⋯H/H⋯O 9.1
N⋯H/H⋯N 3.4
N⋯C/C⋯N 0.7
O⋯C/C⋯O 0.5
C⋯C 0.5
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound 4, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using Conquest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for the di-tert-butyl 2,2′-[(ethyl­aza­nedi­yl)bis­(methyl­ene)[bis­(1H-pyrrole-1-carboxyl­ate)] skeleton revealed 37 structures similar to the title compound 4. Only three of them are closely related to the title compound, viz. di-tert-butyl 2,2′-(anthracene-9,10-di­yl)bis(1H-pyrrole-1-carboxyl­ate) in the space group P21/n (CSD refcode PUKKEO; Wang et al., 2020[Wang, R., Liang, Y., Liu, G. & Pu, S. (2020). RSC Adv. 10, 2170-2179.]), tert-butyl 2-{4-[1-(tert-but­oxy­carbon­yl)-1H-pyrrol-2-yl]-2,5-bis (2,2-di­cyano­vin­yl)phen­yl}-1H-pyrrole-1-carboxyl­ate in the space group C2/c (IVIJAA; Zhang et al., 2017[Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577-582.]) and bis­(3-bromo-1- (tert-butyl­oxycarbon­yl)-5-(meth­oxy­carbon­yl)-pyrrol-2-yl)methane in the space group P[\overline{1}] (NANLAP; Kitamura & Yamashita, 1997[Kitamura, C. & Yamashita, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1443-1448.]).

In the crystal of PUKKEO, the distance between two parallel mol­ecules within one column was measured to be 9.333 Å, indicating that ππ inter­actions cannot be formed in the mol­ecule. In the crystal structure of IVIJAA, multiple inter­molecular C—H⋯N (or C—H⋯O) and C—H⋯π inter­actions were found, which could help to rigidify the mol­ecular conformation. In NANLAP, the dihedral angle between the two pyrrole ring is 82.77°.

In the three structures closely related to the title compound, the different linkers between the two pyrrole units (aromatic vs aliphatic, large vs small) may account for the distinct inter­molecular inter­actions in the crystals.

6. Synthesis and crystallization

Di-tert-butyl dicarbonate [(Boc)2O, 27.8 mL, 0.13 mol] was added to a solution of N,N-bis(1H-pyrrol-2-ylmeth­yl)ethanamine (12.0 g, 0.06 mol) and DMAP (1.1 g, 0.009 mol) in CH3CN (50 mL) at room temperature under an argon atmosphere. The mixture was stirred for 6 h at room temperature. The reaction mixture was poured into a 5% solution of NH3 in H2O (300 mL) and extracted with CH2Cl2 (3 × 50 mL). The combined organic layers were dried over MgSO4, filtered and concentrated. Flash chromatography purification on alumin­ium oxide (hexa­ne) of the residue yielded the title compound as colourless crystals. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an EtOAc/hexane solution at room temperature. Colourless prisms. Yield 14.25 g (60%). M.p. = 349.8–351.5 K (hexane, Al2O3). IR (KBr), ν (cm−1): 3112, 3172. 1H NMR (CDCl3, 600.1 MHz): δ = 1.08 (t, 3H, NCH2CH3, J = 6.6), 1.57 (s, 18H, 2 × tBu), 2.67 (q, 2H, N–CH2–CH3, J = 6.6), 3.90 (s, 4H, 2 × N–CH2), 6.09 (t, 2H, H-4, pyrrole, J = 3.3), 6.31 (m, 2H, H-3, pyrrole), 7.16 (dd, 2H, H-5, pyrrole, J = 1.7, J = 3.3). 13C NMR (100.6 MHz, CDCl3): δ = 12.6 (NCH2CH3), 28.1 [2C, 2 × C(CH3)3], 48.9 (N–CH2–CH3), 52.8 (2C, CH2–N–CH2), 83.3 [2C, 2 × O–C(CH3)3], 110.2 (2C, 2 × C-3, pyrrole), 111.7 (2C, 2 × C-4, pyrrole), 120.9 (2C, 2 × C-5, pyrrole), 134.9 (2C, 2 × C-2, pyrrole), 149.5 (2C, 2 × CO). Elemental analysis calculated for C22H33N3O4 (%): C 65.12, H 7.88, N 10.73; found (%): C 65.48, H 8.24, N 10.41.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C22H33N3O4
Mr 403.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6579 (19), 11.798 (2), 12.216 (2)
α, β, γ (°) 100.95 (3), 109.41 (3), 111.12 (3)
V3) 1146.3 (7)
Z 2
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.17
Crystal size (mm) 0.25 × 0.15 × 0.12
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.950, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 14236, 4609, 3323
Rint 0.081
(sin θ/λ)max−1) 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.180, 1.04
No. of reflections 4609
No. of parameters 270
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.32
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

Di-tert-butyl 2,2'-[(ethylazanediyl)bis(methylene)]bis(1H-pyrrole-1-carboxylate) top
Crystal data top
C22H33N3O4Z = 2
Mr = 403.51F(000) = 436
Triclinic, P1Dx = 1.169 Mg m3
a = 9.6579 (19) ÅSynchrotron radiation, λ = 0.96990 Å
b = 11.798 (2) ÅCell parameters from 600 reflections
c = 12.216 (2) Åθ = 3.4–34.0°
α = 100.95 (3)°µ = 0.17 mm1
β = 109.41 (3)°T = 100 K
γ = 111.12 (3)°Prism, colourless
V = 1146.3 (7) Å30.25 × 0.15 × 0.12 mm
Data collection top
Rayonix SX165 CCD
diffractometer
3323 reflections with I > 2σ(I)
/f scanRint = 0.081
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 38.5°, θmin = 3.4°
Tmin = 0.950, Tmax = 0.970h = 1111
14236 measured reflectionsk = 1515
4609 independent reflectionsl = 1510
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4609 reflectionsΔρmax = 0.36 e Å3
270 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.039 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54208 (15)0.82396 (12)0.31750 (10)0.0262 (4)
O20.71965 (15)0.80484 (11)0.23867 (10)0.0227 (3)
O30.22197 (15)0.72623 (11)0.74478 (11)0.0245 (3)
O40.11894 (14)0.51479 (10)0.73408 (11)0.0222 (3)
N10.79450 (17)0.84298 (12)0.44180 (12)0.0172 (4)
N20.67247 (17)0.89738 (12)0.70376 (12)0.0194 (4)
N30.35254 (17)0.60263 (12)0.71412 (12)0.0179 (4)
C10.6716 (2)0.82405 (15)0.32830 (15)0.0196 (4)
C20.9456 (2)0.84337 (15)0.45916 (15)0.0194 (4)
H20.98350.83290.39720.023*
C31.0283 (2)0.86130 (15)0.58039 (16)0.0221 (4)
H31.13400.86510.61820.027*
C40.9274 (2)0.87346 (15)0.64092 (15)0.0212 (4)
H40.95530.88710.72620.025*
C50.7845 (2)0.86223 (14)0.55571 (15)0.0187 (4)
C60.6378 (2)0.86467 (16)0.57186 (15)0.0218 (4)
H6A0.61240.92980.54080.026*
H6B0.54040.77860.52300.026*
C70.5214 (2)0.83163 (15)0.71812 (15)0.0198 (4)
H7A0.42700.83260.65410.024*
H7B0.53530.87770.80070.024*
C80.4879 (2)0.69338 (15)0.70485 (14)0.0177 (4)
C90.5758 (2)0.63131 (16)0.68252 (15)0.0218 (4)
H90.67360.66840.67210.026*
C100.4954 (2)0.50002 (16)0.67744 (16)0.0253 (5)
H100.53080.43550.66330.030*
C110.3603 (2)0.48460 (15)0.69642 (16)0.0230 (5)
H110.28410.40720.69750.028*
C120.2268 (2)0.62378 (15)0.73226 (14)0.0177 (4)
C130.6074 (2)0.77552 (16)0.10726 (15)0.0235 (5)
C140.5794 (3)0.89213 (19)0.09584 (17)0.0336 (5)
H14A0.52060.90740.14420.050*
H14B0.51350.87550.00850.050*
H14C0.68610.96880.12740.050*
C150.4477 (2)0.65187 (18)0.06423 (17)0.0341 (5)
H15A0.47400.58430.08700.051*
H15B0.38520.62210.02600.051*
H15C0.38120.66990.10410.051*
C160.7089 (3)0.7536 (2)0.04130 (17)0.0363 (6)
H16A0.81460.83180.07520.055*
H16B0.64860.73440.04750.055*
H16C0.72920.68030.05360.055*
C170.7538 (2)1.03940 (15)0.76618 (16)0.0247 (5)
H17A0.67061.07160.74200.030*
H17B0.83781.08010.73770.030*
C180.8364 (2)1.08057 (17)0.90690 (16)0.0323 (5)
H18A0.90611.03790.93080.048*
H18B0.75171.05540.93710.048*
H18C0.90471.17500.94330.048*
C190.0459 (2)0.49847 (16)0.72438 (15)0.0208 (4)
C200.1389 (2)0.50783 (18)0.60138 (16)0.0284 (5)
H20A0.08580.59700.60370.043*
H20B0.25340.48390.58700.043*
H20C0.13730.44860.53420.043*
C210.0258 (2)0.59732 (18)0.83598 (17)0.0304 (5)
H21A0.04320.59180.91230.046*
H21B0.13450.57910.83320.046*
H21C0.02670.68480.83430.046*
C220.1245 (2)0.36136 (17)0.72450 (19)0.0353 (5)
H22A0.13130.30030.65390.053*
H22B0.23570.33920.71790.053*
H22C0.05720.35620.80180.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (8)0.0387 (8)0.0215 (7)0.0145 (6)0.0118 (6)0.0133 (6)
O20.0238 (7)0.0281 (7)0.0129 (6)0.0086 (5)0.0090 (5)0.0056 (5)
O30.0240 (7)0.0220 (6)0.0296 (7)0.0103 (5)0.0139 (6)0.0099 (5)
O40.0179 (7)0.0214 (6)0.0287 (7)0.0063 (5)0.0134 (6)0.0110 (5)
N10.0181 (8)0.0174 (7)0.0145 (8)0.0058 (6)0.0084 (6)0.0053 (6)
N20.0220 (8)0.0167 (7)0.0179 (8)0.0044 (6)0.0127 (6)0.0049 (6)
N30.0179 (8)0.0159 (7)0.0203 (8)0.0055 (6)0.0113 (6)0.0063 (6)
C10.0212 (10)0.0187 (8)0.0155 (9)0.0048 (7)0.0093 (8)0.0049 (7)
C20.0197 (10)0.0190 (8)0.0192 (9)0.0066 (7)0.0111 (8)0.0056 (7)
C30.0197 (10)0.0198 (8)0.0243 (10)0.0075 (7)0.0084 (8)0.0080 (7)
C40.0221 (10)0.0230 (9)0.0146 (9)0.0064 (7)0.0080 (8)0.0070 (7)
C50.0234 (10)0.0152 (8)0.0172 (9)0.0052 (7)0.0126 (8)0.0058 (7)
C60.0251 (10)0.0213 (9)0.0183 (9)0.0075 (8)0.0115 (8)0.0080 (7)
C70.0210 (10)0.0212 (9)0.0183 (9)0.0076 (7)0.0115 (8)0.0081 (7)
C80.0181 (9)0.0172 (8)0.0142 (8)0.0036 (7)0.0083 (7)0.0048 (7)
C90.0204 (10)0.0219 (9)0.0240 (10)0.0075 (7)0.0132 (8)0.0083 (7)
C100.0256 (11)0.0209 (9)0.0336 (11)0.0119 (8)0.0167 (9)0.0085 (8)
C110.0227 (10)0.0167 (8)0.0283 (10)0.0064 (7)0.0124 (8)0.0084 (7)
C120.0169 (10)0.0192 (8)0.0130 (9)0.0045 (7)0.0063 (7)0.0056 (7)
C130.0251 (11)0.0303 (10)0.0111 (9)0.0103 (8)0.0070 (8)0.0054 (7)
C140.0429 (13)0.0428 (11)0.0246 (10)0.0239 (10)0.0172 (9)0.0183 (9)
C150.0314 (12)0.0355 (11)0.0197 (10)0.0059 (9)0.0059 (9)0.0058 (8)
C160.0389 (13)0.0514 (13)0.0177 (10)0.0198 (10)0.0150 (9)0.0072 (9)
C170.0285 (11)0.0173 (8)0.0279 (10)0.0060 (8)0.0174 (9)0.0070 (8)
C180.0308 (12)0.0261 (10)0.0265 (11)0.0027 (8)0.0141 (9)0.0002 (8)
C190.0157 (10)0.0258 (9)0.0222 (9)0.0084 (7)0.0115 (8)0.0072 (7)
C200.0225 (11)0.0332 (10)0.0230 (10)0.0087 (8)0.0094 (8)0.0057 (8)
C210.0290 (11)0.0392 (11)0.0231 (10)0.0138 (9)0.0153 (9)0.0076 (9)
C220.0283 (12)0.0315 (10)0.0507 (13)0.0098 (9)0.0239 (10)0.0193 (10)
Geometric parameters (Å, º) top
O1—C11.213 (2)C11—H110.9500
O2—C11.336 (2)C13—C141.517 (3)
O2—C131.495 (2)C13—C161.519 (3)
O3—C121.209 (2)C13—C151.527 (3)
O4—C121.3415 (19)C14—H14A0.9800
O4—C191.494 (2)C14—H14B0.9800
N1—C21.401 (2)C14—H14C0.9800
N1—C11.407 (2)C15—H15A0.9800
N1—C51.408 (2)C15—H15B0.9800
N2—C71.472 (2)C15—H15C0.9800
N2—C61.473 (2)C16—H16A0.9800
N2—C171.475 (2)C16—H16B0.9800
N3—C121.401 (2)C16—H16C0.9800
N3—C111.401 (2)C17—C181.523 (3)
N3—C81.415 (2)C17—H17A0.9900
C2—C31.360 (2)C17—H17B0.9900
C2—H20.9500C18—H18A0.9800
C3—C41.434 (3)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
C4—C51.366 (2)C19—C221.520 (2)
C4—H40.9500C19—C211.521 (3)
C5—C61.503 (2)C19—C201.521 (2)
C6—H6A0.9900C20—H20A0.9800
C6—H6B0.9900C20—H20B0.9800
C7—C81.508 (2)C20—H20C0.9800
C7—H7A0.9900C21—H21A0.9800
C7—H7B0.9900C21—H21B0.9800
C8—C91.364 (3)C21—H21C0.9800
C9—C101.439 (2)C22—H22A0.9800
C9—H90.9500C22—H22B0.9800
C10—C111.354 (3)C22—H22C0.9800
C10—H100.9500
C1—O2—C13120.54 (15)C14—C13—C15113.23 (17)
C12—O4—C19121.12 (14)C16—C13—C15111.00 (16)
C2—N1—C1125.39 (14)C13—C14—H14A109.5
C2—N1—C5109.01 (14)C13—C14—H14B109.5
C1—N1—C5125.59 (15)H14A—C14—H14B109.5
C7—N2—C6111.01 (13)C13—C14—H14C109.5
C7—N2—C17112.51 (14)H14A—C14—H14C109.5
C6—N2—C17110.28 (13)H14B—C14—H14C109.5
C12—N3—C11125.04 (14)C13—C15—H15A109.5
C12—N3—C8126.37 (14)C13—C15—H15B109.5
C11—N3—C8108.54 (14)H15A—C15—H15B109.5
O1—C1—O2127.13 (16)C13—C15—H15C109.5
O1—C1—N1123.13 (15)H15A—C15—H15C109.5
O2—C1—N1109.73 (16)H15B—C15—H15C109.5
C3—C2—N1107.86 (15)C13—C16—H16A109.5
C3—C2—H2126.1C13—C16—H16B109.5
N1—C2—H2126.1H16A—C16—H16B109.5
C2—C3—C4107.70 (17)C13—C16—H16C109.5
C2—C3—H3126.2H16A—C16—H16C109.5
C4—C3—H3126.2H16B—C16—H16C109.5
C5—C4—C3108.77 (15)N2—C17—C18112.62 (15)
C5—C4—H4125.6N2—C17—H17A109.1
C3—C4—H4125.6C18—C17—H17A109.1
C4—C5—N1106.67 (16)N2—C17—H17B109.1
C4—C5—C6129.41 (15)C18—C17—H17B109.1
N1—C5—C6123.90 (15)H17A—C17—H17B107.8
N2—C6—C5110.12 (14)C17—C18—H18A109.5
N2—C6—H6A109.6C17—C18—H18B109.5
C5—C6—H6A109.6H18A—C18—H18B109.5
N2—C6—H6B109.6C17—C18—H18C109.5
C5—C6—H6B109.6H18A—C18—H18C109.5
H6A—C6—H6B108.2H18B—C18—H18C109.5
N2—C7—C8109.26 (14)O4—C19—C22102.03 (14)
N2—C7—H7A109.8O4—C19—C21110.41 (14)
C8—C7—H7A109.8C22—C19—C21111.25 (15)
N2—C7—H7B109.8O4—C19—C20108.05 (14)
C8—C7—H7B109.8C22—C19—C20111.12 (15)
H7A—C7—H7B108.3C21—C19—C20113.35 (16)
C9—C8—N3107.00 (14)C19—C20—H20A109.5
C9—C8—C7128.71 (15)C19—C20—H20B109.5
N3—C8—C7124.28 (16)H20A—C20—H20B109.5
C8—C9—C10108.38 (16)C19—C20—H20C109.5
C8—C9—H9125.8H20A—C20—H20C109.5
C10—C9—H9125.8H20B—C20—H20C109.5
C11—C10—C9107.95 (16)C19—C21—H21A109.5
C11—C10—H10126.0C19—C21—H21B109.5
C9—C10—H10126.0H21A—C21—H21B109.5
C10—C11—N3108.12 (15)C19—C21—H21C109.5
C10—C11—H11125.9H21A—C21—H21C109.5
N3—C11—H11125.9H21B—C21—H21C109.5
O3—C12—O4127.40 (17)C19—C22—H22A109.5
O3—C12—N3123.38 (15)C19—C22—H22B109.5
O4—C12—N3109.21 (14)H22A—C22—H22B109.5
O2—C13—C14109.60 (13)C19—C22—H22C109.5
O2—C13—C16101.24 (15)H22A—C22—H22C109.5
C14—C13—C16111.47 (16)H22B—C22—H22C109.5
O2—C13—C15109.64 (13)
C13—O2—C1—O12.0 (2)C12—N3—C8—C72.4 (2)
C13—O2—C1—N1176.90 (12)C11—N3—C8—C7179.74 (15)
C2—N1—C1—O1179.68 (15)N2—C7—C8—C90.3 (2)
C5—N1—C1—O10.9 (2)N2—C7—C8—N3179.67 (14)
C2—N1—C1—O20.7 (2)N3—C8—C9—C100.08 (18)
C5—N1—C1—O2178.04 (13)C7—C8—C9—C10179.92 (16)
C1—N1—C2—C3178.48 (14)C8—C9—C10—C110.1 (2)
C5—N1—C2—C30.47 (17)C9—C10—C11—N30.29 (19)
N1—C2—C3—C40.43 (17)C12—N3—C11—C10177.71 (15)
C2—C3—C4—C50.25 (18)C8—N3—C11—C100.34 (19)
C3—C4—C5—N10.04 (17)C19—O4—C12—O313.9 (2)
C3—C4—C5—C6178.28 (15)C19—O4—C12—N3166.59 (12)
C2—N1—C5—C40.31 (16)C11—N3—C12—O3178.45 (15)
C1—N1—C5—C4178.64 (14)C8—N3—C12—O31.5 (2)
C2—N1—C5—C6178.67 (14)C11—N3—C12—O42.0 (2)
C1—N1—C5—C60.3 (2)C8—N3—C12—O4178.95 (13)
C7—N2—C6—C5147.26 (14)C1—O2—C13—C1465.63 (19)
C17—N2—C6—C587.35 (17)C1—O2—C13—C16176.54 (14)
C4—C5—C6—N26.7 (2)C1—O2—C13—C1559.2 (2)
N1—C5—C6—N2175.38 (13)C7—N2—C17—C1871.9 (2)
C6—N2—C7—C880.67 (16)C6—N2—C17—C18163.52 (15)
C17—N2—C7—C8155.20 (14)C12—O4—C19—C22177.50 (13)
C12—N3—C8—C9177.58 (15)C12—O4—C19—C2164.16 (18)
C11—N3—C8—C90.26 (18)C12—O4—C19—C2060.31 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the N3/C8–C11 pyrrole ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···O10.982.483.062 (3)118
C15—H15C···O10.982.452.989 (2)114
C20—H20A···O30.982.543.100 (3)116
C21—H21C···O30.982.433.012 (3)118
C16—H16B···Cg2i0.982.853.779 (2)158
Symmetry code: (i) x, y, z1.
Summary of short interatomic contacts (Å) in the title compound 4 top
ContactDistanceSymmetry operation
H17A···O12.731 - x, 2 - y, 1 - z
H22B···O12.72-x, 1 - y, 1 - z
H22A···H22.591 - x, 1 - y, 1 - z
H20B···H102.48-1 + x, y, z
C8···H16B2.75x, y, 1 + z
H16A···C183.062 - x, 2 - y, 1 - z
H18C···C212.961 - x, 2 - y, 2 - z
H18A···H18A2.582 - x, 2 - y, 2 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound 4 top
ContactPercentage contribution
H···H74.3
C···H/H···C11.5
O···H/H···O9.1
N···H/H···N3.4
N···C/C···N0.7
O···C/C···O0.5
C···C0.5
 

Funding information

Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBorisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationButler, D. N., Hammond, M. L. A., Johnston, M. R., Sun, G., Malpass, J. R., Fawcett, J. & Warrener, R. N. (2000). Org. Lett. 2, 721–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDomingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKitamura, C. & Yamashita, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1443–1448.  CSD CrossRef Web of Science Google Scholar
First citationKvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmes, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161.  Web of Science CSD CrossRef Google Scholar
First citationLautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRaines, S. & Kovacs, C. A. (1970). J. Heterocycl. Chem. 7, 223–225.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVisnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622.  CrossRef Web of Science Google Scholar
First citationWang, R., Liang, Y., Liu, G. & Pu, S. (2020). RSC Adv. 10, 2170–2179.  Web of Science CSD CrossRef CAS Google Scholar
First citationWarrener, R. N., Margetic, D., Sun, G. & Russell, R. A. (2003). Aust. J. Chem. 56, 263–267.  Web of Science CrossRef CAS Google Scholar
First citationWinkler, J. D. (1996). Chem. Rev. 96, 167–176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationZhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577–582.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds