research communications
tert-butyl 2,2′-[(ethylazanediyl)bis(methylene)]bis(1H-pyrrole-1-carboxylate)
and Hirshfeld analysis of di-aFaculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation, bİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991 , Russian Federation, and eDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
The title compound, C22H33N3O4, crystallizes in the triclinic P with two molecules in a The two pyrrole rings are essentially planar (r.m.s. deviation = 0.002 Å) and they form a dihedral angle of 81.24 (10)° with each other. The crystal packing is stabilized by C—H⋯π interactions and π–π stacking interactions, forming a three-dimensional network. The Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that the most important contributions for the crystal packing are from H⋯H (74.3%), C⋯H/H⋯C (11.5%) and O⋯H/H⋯O (9.1%) contacts.
Keywords: crystal structure; pyrrole ring; C—H⋯π interactions; π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 2043609
1. Chemical context
This work is a continuation of the study of Diels–Alder reactions on bis-diene systems, which was previously carried out on the example of the tandem [4 + 2]/[4 + 2] cycloaddition between bis-furyl dienes similar to 1 and activated leading to adducts such as 2, as shown in Fig. 1 (Borisova et al., 2018a,b; Kvyatkovskaya et al., 2020; Lautens & Fillion, 1997; Domingo et al., 2000). Here we aimed to investigate substrates containing two pyrrole moieties under the same reaction conditions. For this reason, N,N-bis(1H-pyrrol-2-ylmethyl) ethanamine (3) was synthesized using a Mannich reaction according to the described procedure (Raines & Kovacs, 1970). It is known that pyrrole fragments are capable of reacting with the most active dienophiles in the [4 + 2] cycloaddition reaction, which requires the presence of electron-deficient groups at the nitrogen atom (Winkler, 1996; Visnick & Battiste, 1985; Butler et al., 2000; Warrener et al., 2003). Thus, the pyrrole rings of amine 3 were activated by Boc-protecting groups to give the title substance 4. Considering that a single example of a successful domino [4 + 2] cycloaddition between hexafluorobut-2-yne and N,N′-dipyrrolylmethane is reported in the literature (Visnick & Battiste, 1985), we tested amine 4 in the reaction with such an active as dimethyl acetylenedicarboxylate (DMAD). The experiments were performed in a wide temperature range (from room temperature to 413 K) and led to multicomponent mixtures of products at elevated temperatures, from which we were unable to isolate the target adduct 5.
However, taking into account the importance of the non-covalent bond-donor/acceptor properties of the nitrogen atom in N-heterocycles for synthesis, catalysis and the design of new materials (Asadov et al., 2016; Gurbanov et al., 2017, 2018a,b; Karmakar et al., 2017; Maharramov et al., 2018; Mahmoudi et al., 2017, 2019; Mahmudov et al., 2010, 2013, 2017a,b, 2019, 2020; Shixaliyev et al., 2014), we describe in this work the structural features of compound 4.
2. Structural commentary
As shown in Fig. 2, the two pyrrole rings (N1/C2–C5 and N3/C8–C11) in the title compound 4 form a dihedral angle of 81.24 (10)°. The C6—N2—C17—C18 and C7—N2—C17—C18, C5—C6—N2—C17, C8—C7—N2—C17 and C6—N2—C7—C8 torsion angles are −163.52 (15), 71.9 (2), −87.35 (17), −155.20 (14) and 80.67 (16)°, respectively. All of the bond lengths and angles in the title compound 4 are of usual values.
3. Supramolecular features
The supramolecular structure of the title compound 4 is defined by π–π stacking [Cg1⋯Cg1i = 3.6892 (13) Å, symmetry code (i): 2 − x, 2 − y, 1 − z, slippage = 1.794 Å, where Cg1 is the centroid of the N1/C2–C5 pyrrole ring] and C—H⋯π [C16—H16B⋯Cg2ii, symmetry code (ii): x, y, −1 + z, where Cg2 is the centroid of the N3/C8–C11 pyrrole ring] interactions, forming a three-dimensional network (Fig. 3; Table 1). There are no conventional hydrogen bonds in the structure.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and the associated two-dimensional fingerprint plots (McKinnon, et al., 2007) were obtained with Crystal Explorer17 (Turner et al., 2017) to investigate the intermolecular interactions and surface morphology. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.0919 (red) to 1.6027 (blue) a.u. is shown in Fig. 4.
The percentage contributions of various contacts (Table 2) to the total Hirshfeld surface are listed in Table 3 and shown in the two-dimensional fingerprint plots in Fig. 5, revealing that the crystal packing is dominated by H⋯H contacts, representing van der Waals interactions (74.3% contribution to the overall surface), followed by C⋯H/H⋯C and O⋯H/H⋯O interactions, which contribute 11.5% and 9.1%, respectively.
|
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, update of August 2018; Groom et al., 2016) using Conquest (Bruno et al., 2002) for the di-tert-butyl 2,2′-[(ethylazanediyl)bis(methylene)[bis(1H-pyrrole-1-carboxylate)] skeleton revealed 37 structures similar to the title compound 4. Only three of them are closely related to the title compound, viz. di-tert-butyl 2,2′-(anthracene-9,10-diyl)bis(1H-pyrrole-1-carboxylate) in the P21/n (CSD refcode PUKKEO; Wang et al., 2020), tert-butyl 2-{4-[1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl]-2,5-bis (2,2-dicyanovinyl)phenyl}-1H-pyrrole-1-carboxylate in the C2/c (IVIJAA; Zhang et al., 2017) and bis(3-bromo-1- (tert-butyloxycarbonyl)-5-(methoxycarbonyl)-pyrrol-2-yl)methane in the P (NANLAP; Kitamura & Yamashita, 1997).
In the crystal of PUKKEO, the distance between two parallel molecules within one column was measured to be 9.333 Å, indicating that π–π interactions cannot be formed in the molecule. In the of IVIJAA, multiple intermolecular C—H⋯N (or C—H⋯O) and C—H⋯π interactions were found, which could help to rigidify the molecular conformation. In NANLAP, the dihedral angle between the two pyrrole ring is 82.77°.
In the three structures closely related to the title compound, the different linkers between the two pyrrole units (aromatic vs aliphatic, large vs small) may account for the distinct intermolecular interactions in the crystals.
6. Synthesis and crystallization
Di-tert-butyl dicarbonate [(Boc)2O, 27.8 mL, 0.13 mol] was added to a solution of N,N-bis(1H-pyrrol-2-ylmethyl)ethanamine (12.0 g, 0.06 mol) and DMAP (1.1 g, 0.009 mol) in CH3CN (50 mL) at room temperature under an argon atmosphere. The mixture was stirred for 6 h at room temperature. The reaction mixture was poured into a 5% solution of NH3 in H2O (300 mL) and extracted with CH2Cl2 (3 × 50 mL). The combined organic layers were dried over MgSO4, filtered and concentrated. Flash purification on aluminium oxide (hexane) of the residue yielded the title compound as colourless crystals. Single crystals suitable for X-ray were obtained by slow evaporation of an EtOAc/hexane solution at room temperature. Colourless prisms. Yield 14.25 g (60%). M.p. = 349.8–351.5 K (hexane, Al2O3). IR (KBr), ν (cm−1): 3112, 3172. 1H NMR (CDCl3, 600.1 MHz): δ = 1.08 (t, 3H, NCH2CH3, J = 6.6), 1.57 (s, 18H, 2 × tBu), 2.67 (q, 2H, N–CH2–CH3, J = 6.6), 3.90 (s, 4H, 2 × N–CH2), 6.09 (t, 2H, H-4, pyrrole, J = 3.3), 6.31 (m, 2H, H-3, pyrrole), 7.16 (dd, 2H, H-5, pyrrole, J = 1.7, J = 3.3). 13C NMR (100.6 MHz, CDCl3): δ = 12.6 (NCH2CH3), 28.1 [2C, 2 × C(CH3)3], 48.9 (N–CH2–CH3), 52.8 (2C, CH2–N–CH2), 83.3 [2C, 2 × O–C(CH3)3], 110.2 (2C, 2 × C-3, pyrrole), 111.7 (2C, 2 × C-4, pyrrole), 120.9 (2C, 2 × C-5, pyrrole), 134.9 (2C, 2 × C-2, pyrrole), 149.5 (2C, 2 × CO). Elemental analysis calculated for C22H33N3O4 (%): C 65.12, H 7.88, N 10.73; found (%): C 65.48, H 8.24, N 10.41.
7. Refinement
Crystal data, data collection and structure . All H atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 4Supporting information
CCDC reference: 2043609
https://doi.org/10.1107/S2056989020014966/yz2002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020014966/yz2002Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020014966/yz2002Isup3.cml
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C22H33N3O4 | Z = 2 |
Mr = 403.51 | F(000) = 436 |
Triclinic, P1 | Dx = 1.169 Mg m−3 |
a = 9.6579 (19) Å | Synchrotron radiation, λ = 0.96990 Å |
b = 11.798 (2) Å | Cell parameters from 600 reflections |
c = 12.216 (2) Å | θ = 3.4–34.0° |
α = 100.95 (3)° | µ = 0.17 mm−1 |
β = 109.41 (3)° | T = 100 K |
γ = 111.12 (3)° | Prism, colourless |
V = 1146.3 (7) Å3 | 0.25 × 0.15 × 0.12 mm |
Rayonix SX165 CCD diffractometer | 3323 reflections with I > 2σ(I) |
/f scan | Rint = 0.081 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 38.5°, θmin = 3.4° |
Tmin = 0.950, Tmax = 0.970 | h = −11→11 |
14236 measured reflections | k = −15→15 |
4609 independent reflections | l = −15→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.067 | H-atom parameters constrained |
wR(F2) = 0.180 | w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4609 reflections | Δρmax = 0.36 e Å−3 |
270 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.039 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.54208 (15) | 0.82396 (12) | 0.31750 (10) | 0.0262 (4) | |
O2 | 0.71965 (15) | 0.80484 (11) | 0.23867 (10) | 0.0227 (3) | |
O3 | 0.22197 (15) | 0.72623 (11) | 0.74478 (11) | 0.0245 (3) | |
O4 | 0.11894 (14) | 0.51479 (10) | 0.73408 (11) | 0.0222 (3) | |
N1 | 0.79450 (17) | 0.84298 (12) | 0.44180 (12) | 0.0172 (4) | |
N2 | 0.67247 (17) | 0.89738 (12) | 0.70376 (12) | 0.0194 (4) | |
N3 | 0.35254 (17) | 0.60263 (12) | 0.71412 (12) | 0.0179 (4) | |
C1 | 0.6716 (2) | 0.82405 (15) | 0.32830 (15) | 0.0196 (4) | |
C2 | 0.9456 (2) | 0.84337 (15) | 0.45916 (15) | 0.0194 (4) | |
H2 | 0.9835 | 0.8329 | 0.3972 | 0.023* | |
C3 | 1.0283 (2) | 0.86130 (15) | 0.58039 (16) | 0.0221 (4) | |
H3 | 1.1340 | 0.8651 | 0.6182 | 0.027* | |
C4 | 0.9274 (2) | 0.87346 (15) | 0.64092 (15) | 0.0212 (4) | |
H4 | 0.9553 | 0.8871 | 0.7262 | 0.025* | |
C5 | 0.7845 (2) | 0.86223 (14) | 0.55571 (15) | 0.0187 (4) | |
C6 | 0.6378 (2) | 0.86467 (16) | 0.57186 (15) | 0.0218 (4) | |
H6A | 0.6124 | 0.9298 | 0.5408 | 0.026* | |
H6B | 0.5404 | 0.7786 | 0.5230 | 0.026* | |
C7 | 0.5214 (2) | 0.83163 (15) | 0.71812 (15) | 0.0198 (4) | |
H7A | 0.4270 | 0.8326 | 0.6541 | 0.024* | |
H7B | 0.5353 | 0.8777 | 0.8007 | 0.024* | |
C8 | 0.4879 (2) | 0.69338 (15) | 0.70485 (14) | 0.0177 (4) | |
C9 | 0.5758 (2) | 0.63131 (16) | 0.68252 (15) | 0.0218 (4) | |
H9 | 0.6736 | 0.6684 | 0.6721 | 0.026* | |
C10 | 0.4954 (2) | 0.50002 (16) | 0.67744 (16) | 0.0253 (5) | |
H10 | 0.5308 | 0.4355 | 0.6633 | 0.030* | |
C11 | 0.3603 (2) | 0.48460 (15) | 0.69642 (16) | 0.0230 (5) | |
H11 | 0.2841 | 0.4072 | 0.6975 | 0.028* | |
C12 | 0.2268 (2) | 0.62378 (15) | 0.73226 (14) | 0.0177 (4) | |
C13 | 0.6074 (2) | 0.77552 (16) | 0.10726 (15) | 0.0235 (5) | |
C14 | 0.5794 (3) | 0.89213 (19) | 0.09584 (17) | 0.0336 (5) | |
H14A | 0.5206 | 0.9074 | 0.1442 | 0.050* | |
H14B | 0.5135 | 0.8755 | 0.0085 | 0.050* | |
H14C | 0.6861 | 0.9688 | 0.1274 | 0.050* | |
C15 | 0.4477 (2) | 0.65187 (18) | 0.06423 (17) | 0.0341 (5) | |
H15A | 0.4740 | 0.5843 | 0.0870 | 0.051* | |
H15B | 0.3852 | 0.6221 | −0.0260 | 0.051* | |
H15C | 0.3812 | 0.6699 | 0.1041 | 0.051* | |
C16 | 0.7089 (3) | 0.7536 (2) | 0.04130 (17) | 0.0363 (6) | |
H16A | 0.8146 | 0.8318 | 0.0752 | 0.055* | |
H16B | 0.6486 | 0.7344 | −0.0475 | 0.055* | |
H16C | 0.7292 | 0.6803 | 0.0536 | 0.055* | |
C17 | 0.7538 (2) | 1.03940 (15) | 0.76618 (16) | 0.0247 (5) | |
H17A | 0.6706 | 1.0716 | 0.7420 | 0.030* | |
H17B | 0.8378 | 1.0801 | 0.7377 | 0.030* | |
C18 | 0.8364 (2) | 1.08057 (17) | 0.90690 (16) | 0.0323 (5) | |
H18A | 0.9061 | 1.0379 | 0.9308 | 0.048* | |
H18B | 0.7517 | 1.0554 | 0.9371 | 0.048* | |
H18C | 0.9047 | 1.1750 | 0.9433 | 0.048* | |
C19 | −0.0459 (2) | 0.49847 (16) | 0.72438 (15) | 0.0208 (4) | |
C20 | −0.1389 (2) | 0.50783 (18) | 0.60138 (16) | 0.0284 (5) | |
H20A | −0.0858 | 0.5970 | 0.6037 | 0.043* | |
H20B | −0.2534 | 0.4839 | 0.5870 | 0.043* | |
H20C | −0.1373 | 0.4486 | 0.5342 | 0.043* | |
C21 | −0.0258 (2) | 0.59732 (18) | 0.83598 (17) | 0.0304 (5) | |
H21A | 0.0432 | 0.5918 | 0.9123 | 0.046* | |
H21B | −0.1345 | 0.5791 | 0.8332 | 0.046* | |
H21C | 0.0267 | 0.6848 | 0.8343 | 0.046* | |
C22 | −0.1245 (2) | 0.36136 (17) | 0.72450 (19) | 0.0353 (5) | |
H22A | −0.1313 | 0.3003 | 0.6539 | 0.053* | |
H22B | −0.2357 | 0.3392 | 0.7179 | 0.053* | |
H22C | −0.0572 | 0.3562 | 0.8018 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0223 (8) | 0.0387 (8) | 0.0215 (7) | 0.0145 (6) | 0.0118 (6) | 0.0133 (6) |
O2 | 0.0238 (7) | 0.0281 (7) | 0.0129 (6) | 0.0086 (5) | 0.0090 (5) | 0.0056 (5) |
O3 | 0.0240 (7) | 0.0220 (6) | 0.0296 (7) | 0.0103 (5) | 0.0139 (6) | 0.0099 (5) |
O4 | 0.0179 (7) | 0.0214 (6) | 0.0287 (7) | 0.0063 (5) | 0.0134 (6) | 0.0110 (5) |
N1 | 0.0181 (8) | 0.0174 (7) | 0.0145 (8) | 0.0058 (6) | 0.0084 (6) | 0.0053 (6) |
N2 | 0.0220 (8) | 0.0167 (7) | 0.0179 (8) | 0.0044 (6) | 0.0127 (6) | 0.0049 (6) |
N3 | 0.0179 (8) | 0.0159 (7) | 0.0203 (8) | 0.0055 (6) | 0.0113 (6) | 0.0063 (6) |
C1 | 0.0212 (10) | 0.0187 (8) | 0.0155 (9) | 0.0048 (7) | 0.0093 (8) | 0.0049 (7) |
C2 | 0.0197 (10) | 0.0190 (8) | 0.0192 (9) | 0.0066 (7) | 0.0111 (8) | 0.0056 (7) |
C3 | 0.0197 (10) | 0.0198 (8) | 0.0243 (10) | 0.0075 (7) | 0.0084 (8) | 0.0080 (7) |
C4 | 0.0221 (10) | 0.0230 (9) | 0.0146 (9) | 0.0064 (7) | 0.0080 (8) | 0.0070 (7) |
C5 | 0.0234 (10) | 0.0152 (8) | 0.0172 (9) | 0.0052 (7) | 0.0126 (8) | 0.0058 (7) |
C6 | 0.0251 (10) | 0.0213 (9) | 0.0183 (9) | 0.0075 (8) | 0.0115 (8) | 0.0080 (7) |
C7 | 0.0210 (10) | 0.0212 (9) | 0.0183 (9) | 0.0076 (7) | 0.0115 (8) | 0.0081 (7) |
C8 | 0.0181 (9) | 0.0172 (8) | 0.0142 (8) | 0.0036 (7) | 0.0083 (7) | 0.0048 (7) |
C9 | 0.0204 (10) | 0.0219 (9) | 0.0240 (10) | 0.0075 (7) | 0.0132 (8) | 0.0083 (7) |
C10 | 0.0256 (11) | 0.0209 (9) | 0.0336 (11) | 0.0119 (8) | 0.0167 (9) | 0.0085 (8) |
C11 | 0.0227 (10) | 0.0167 (8) | 0.0283 (10) | 0.0064 (7) | 0.0124 (8) | 0.0084 (7) |
C12 | 0.0169 (10) | 0.0192 (8) | 0.0130 (9) | 0.0045 (7) | 0.0063 (7) | 0.0056 (7) |
C13 | 0.0251 (11) | 0.0303 (10) | 0.0111 (9) | 0.0103 (8) | 0.0070 (8) | 0.0054 (7) |
C14 | 0.0429 (13) | 0.0428 (11) | 0.0246 (10) | 0.0239 (10) | 0.0172 (9) | 0.0183 (9) |
C15 | 0.0314 (12) | 0.0355 (11) | 0.0197 (10) | 0.0059 (9) | 0.0059 (9) | 0.0058 (8) |
C16 | 0.0389 (13) | 0.0514 (13) | 0.0177 (10) | 0.0198 (10) | 0.0150 (9) | 0.0072 (9) |
C17 | 0.0285 (11) | 0.0173 (8) | 0.0279 (10) | 0.0060 (8) | 0.0174 (9) | 0.0070 (8) |
C18 | 0.0308 (12) | 0.0261 (10) | 0.0265 (11) | 0.0027 (8) | 0.0141 (9) | −0.0002 (8) |
C19 | 0.0157 (10) | 0.0258 (9) | 0.0222 (9) | 0.0084 (7) | 0.0115 (8) | 0.0072 (7) |
C20 | 0.0225 (11) | 0.0332 (10) | 0.0230 (10) | 0.0087 (8) | 0.0094 (8) | 0.0057 (8) |
C21 | 0.0290 (11) | 0.0392 (11) | 0.0231 (10) | 0.0138 (9) | 0.0153 (9) | 0.0076 (9) |
C22 | 0.0283 (12) | 0.0315 (10) | 0.0507 (13) | 0.0098 (9) | 0.0239 (10) | 0.0193 (10) |
O1—C1 | 1.213 (2) | C11—H11 | 0.9500 |
O2—C1 | 1.336 (2) | C13—C14 | 1.517 (3) |
O2—C13 | 1.495 (2) | C13—C16 | 1.519 (3) |
O3—C12 | 1.209 (2) | C13—C15 | 1.527 (3) |
O4—C12 | 1.3415 (19) | C14—H14A | 0.9800 |
O4—C19 | 1.494 (2) | C14—H14B | 0.9800 |
N1—C2 | 1.401 (2) | C14—H14C | 0.9800 |
N1—C1 | 1.407 (2) | C15—H15A | 0.9800 |
N1—C5 | 1.408 (2) | C15—H15B | 0.9800 |
N2—C7 | 1.472 (2) | C15—H15C | 0.9800 |
N2—C6 | 1.473 (2) | C16—H16A | 0.9800 |
N2—C17 | 1.475 (2) | C16—H16B | 0.9800 |
N3—C12 | 1.401 (2) | C16—H16C | 0.9800 |
N3—C11 | 1.401 (2) | C17—C18 | 1.523 (3) |
N3—C8 | 1.415 (2) | C17—H17A | 0.9900 |
C2—C3 | 1.360 (2) | C17—H17B | 0.9900 |
C2—H2 | 0.9500 | C18—H18A | 0.9800 |
C3—C4 | 1.434 (3) | C18—H18B | 0.9800 |
C3—H3 | 0.9500 | C18—H18C | 0.9800 |
C4—C5 | 1.366 (2) | C19—C22 | 1.520 (2) |
C4—H4 | 0.9500 | C19—C21 | 1.521 (3) |
C5—C6 | 1.503 (2) | C19—C20 | 1.521 (2) |
C6—H6A | 0.9900 | C20—H20A | 0.9800 |
C6—H6B | 0.9900 | C20—H20B | 0.9800 |
C7—C8 | 1.508 (2) | C20—H20C | 0.9800 |
C7—H7A | 0.9900 | C21—H21A | 0.9800 |
C7—H7B | 0.9900 | C21—H21B | 0.9800 |
C8—C9 | 1.364 (3) | C21—H21C | 0.9800 |
C9—C10 | 1.439 (2) | C22—H22A | 0.9800 |
C9—H9 | 0.9500 | C22—H22B | 0.9800 |
C10—C11 | 1.354 (3) | C22—H22C | 0.9800 |
C10—H10 | 0.9500 | ||
C1—O2—C13 | 120.54 (15) | C14—C13—C15 | 113.23 (17) |
C12—O4—C19 | 121.12 (14) | C16—C13—C15 | 111.00 (16) |
C2—N1—C1 | 125.39 (14) | C13—C14—H14A | 109.5 |
C2—N1—C5 | 109.01 (14) | C13—C14—H14B | 109.5 |
C1—N1—C5 | 125.59 (15) | H14A—C14—H14B | 109.5 |
C7—N2—C6 | 111.01 (13) | C13—C14—H14C | 109.5 |
C7—N2—C17 | 112.51 (14) | H14A—C14—H14C | 109.5 |
C6—N2—C17 | 110.28 (13) | H14B—C14—H14C | 109.5 |
C12—N3—C11 | 125.04 (14) | C13—C15—H15A | 109.5 |
C12—N3—C8 | 126.37 (14) | C13—C15—H15B | 109.5 |
C11—N3—C8 | 108.54 (14) | H15A—C15—H15B | 109.5 |
O1—C1—O2 | 127.13 (16) | C13—C15—H15C | 109.5 |
O1—C1—N1 | 123.13 (15) | H15A—C15—H15C | 109.5 |
O2—C1—N1 | 109.73 (16) | H15B—C15—H15C | 109.5 |
C3—C2—N1 | 107.86 (15) | C13—C16—H16A | 109.5 |
C3—C2—H2 | 126.1 | C13—C16—H16B | 109.5 |
N1—C2—H2 | 126.1 | H16A—C16—H16B | 109.5 |
C2—C3—C4 | 107.70 (17) | C13—C16—H16C | 109.5 |
C2—C3—H3 | 126.2 | H16A—C16—H16C | 109.5 |
C4—C3—H3 | 126.2 | H16B—C16—H16C | 109.5 |
C5—C4—C3 | 108.77 (15) | N2—C17—C18 | 112.62 (15) |
C5—C4—H4 | 125.6 | N2—C17—H17A | 109.1 |
C3—C4—H4 | 125.6 | C18—C17—H17A | 109.1 |
C4—C5—N1 | 106.67 (16) | N2—C17—H17B | 109.1 |
C4—C5—C6 | 129.41 (15) | C18—C17—H17B | 109.1 |
N1—C5—C6 | 123.90 (15) | H17A—C17—H17B | 107.8 |
N2—C6—C5 | 110.12 (14) | C17—C18—H18A | 109.5 |
N2—C6—H6A | 109.6 | C17—C18—H18B | 109.5 |
C5—C6—H6A | 109.6 | H18A—C18—H18B | 109.5 |
N2—C6—H6B | 109.6 | C17—C18—H18C | 109.5 |
C5—C6—H6B | 109.6 | H18A—C18—H18C | 109.5 |
H6A—C6—H6B | 108.2 | H18B—C18—H18C | 109.5 |
N2—C7—C8 | 109.26 (14) | O4—C19—C22 | 102.03 (14) |
N2—C7—H7A | 109.8 | O4—C19—C21 | 110.41 (14) |
C8—C7—H7A | 109.8 | C22—C19—C21 | 111.25 (15) |
N2—C7—H7B | 109.8 | O4—C19—C20 | 108.05 (14) |
C8—C7—H7B | 109.8 | C22—C19—C20 | 111.12 (15) |
H7A—C7—H7B | 108.3 | C21—C19—C20 | 113.35 (16) |
C9—C8—N3 | 107.00 (14) | C19—C20—H20A | 109.5 |
C9—C8—C7 | 128.71 (15) | C19—C20—H20B | 109.5 |
N3—C8—C7 | 124.28 (16) | H20A—C20—H20B | 109.5 |
C8—C9—C10 | 108.38 (16) | C19—C20—H20C | 109.5 |
C8—C9—H9 | 125.8 | H20A—C20—H20C | 109.5 |
C10—C9—H9 | 125.8 | H20B—C20—H20C | 109.5 |
C11—C10—C9 | 107.95 (16) | C19—C21—H21A | 109.5 |
C11—C10—H10 | 126.0 | C19—C21—H21B | 109.5 |
C9—C10—H10 | 126.0 | H21A—C21—H21B | 109.5 |
C10—C11—N3 | 108.12 (15) | C19—C21—H21C | 109.5 |
C10—C11—H11 | 125.9 | H21A—C21—H21C | 109.5 |
N3—C11—H11 | 125.9 | H21B—C21—H21C | 109.5 |
O3—C12—O4 | 127.40 (17) | C19—C22—H22A | 109.5 |
O3—C12—N3 | 123.38 (15) | C19—C22—H22B | 109.5 |
O4—C12—N3 | 109.21 (14) | H22A—C22—H22B | 109.5 |
O2—C13—C14 | 109.60 (13) | C19—C22—H22C | 109.5 |
O2—C13—C16 | 101.24 (15) | H22A—C22—H22C | 109.5 |
C14—C13—C16 | 111.47 (16) | H22B—C22—H22C | 109.5 |
O2—C13—C15 | 109.64 (13) | ||
C13—O2—C1—O1 | −2.0 (2) | C12—N3—C8—C7 | 2.4 (2) |
C13—O2—C1—N1 | 176.90 (12) | C11—N3—C8—C7 | 179.74 (15) |
C2—N1—C1—O1 | 179.68 (15) | N2—C7—C8—C9 | −0.3 (2) |
C5—N1—C1—O1 | 0.9 (2) | N2—C7—C8—N3 | 179.67 (14) |
C2—N1—C1—O2 | 0.7 (2) | N3—C8—C9—C10 | 0.08 (18) |
C5—N1—C1—O2 | −178.04 (13) | C7—C8—C9—C10 | −179.92 (16) |
C1—N1—C2—C3 | −178.48 (14) | C8—C9—C10—C11 | 0.1 (2) |
C5—N1—C2—C3 | 0.47 (17) | C9—C10—C11—N3 | −0.29 (19) |
N1—C2—C3—C4 | −0.43 (17) | C12—N3—C11—C10 | 177.71 (15) |
C2—C3—C4—C5 | 0.25 (18) | C8—N3—C11—C10 | 0.34 (19) |
C3—C4—C5—N1 | 0.04 (17) | C19—O4—C12—O3 | 13.9 (2) |
C3—C4—C5—C6 | 178.28 (15) | C19—O4—C12—N3 | −166.59 (12) |
C2—N1—C5—C4 | −0.31 (16) | C11—N3—C12—O3 | −178.45 (15) |
C1—N1—C5—C4 | 178.64 (14) | C8—N3—C12—O3 | −1.5 (2) |
C2—N1—C5—C6 | −178.67 (14) | C11—N3—C12—O4 | 2.0 (2) |
C1—N1—C5—C6 | 0.3 (2) | C8—N3—C12—O4 | 178.95 (13) |
C7—N2—C6—C5 | −147.26 (14) | C1—O2—C13—C14 | 65.63 (19) |
C17—N2—C6—C5 | 87.35 (17) | C1—O2—C13—C16 | −176.54 (14) |
C4—C5—C6—N2 | 6.7 (2) | C1—O2—C13—C15 | −59.2 (2) |
N1—C5—C6—N2 | −175.38 (13) | C7—N2—C17—C18 | 71.9 (2) |
C6—N2—C7—C8 | 80.67 (16) | C6—N2—C17—C18 | −163.52 (15) |
C17—N2—C7—C8 | −155.20 (14) | C12—O4—C19—C22 | 177.50 (13) |
C12—N3—C8—C9 | −177.58 (15) | C12—O4—C19—C21 | −64.16 (18) |
C11—N3—C8—C9 | −0.26 (18) | C12—O4—C19—C20 | 60.31 (18) |
Cg2 is the centroid of the N3/C8–C11 pyrrole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···O1 | 0.98 | 2.48 | 3.062 (3) | 118 |
C15—H15C···O1 | 0.98 | 2.45 | 2.989 (2) | 114 |
C20—H20A···O3 | 0.98 | 2.54 | 3.100 (3) | 116 |
C21—H21C···O3 | 0.98 | 2.43 | 3.012 (3) | 118 |
C16—H16B···Cg2i | 0.98 | 2.85 | 3.779 (2) | 158 |
Symmetry code: (i) x, y, z−1. |
Contact | Distance | Symmetry operation |
H17A···O1 | 2.73 | 1 - x, 2 - y, 1 - z |
H22B···O1 | 2.72 | -x, 1 - y, 1 - z |
H22A···H2 | 2.59 | 1 - x, 1 - y, 1 - z |
H20B···H10 | 2.48 | -1 + x, y, z |
C8···H16B | 2.75 | x, y, 1 + z |
H16A···C18 | 3.06 | 2 - x, 2 - y, 1 - z |
H18C···C21 | 2.96 | 1 - x, 2 - y, 2 - z |
H18A···H18A | 2.58 | 2 - x, 2 - y, 2 - z |
Contact | Percentage contribution |
H···H | 74.3 |
C···H/H···C | 11.5 |
O···H/H···O | 9.1 |
N···H/H···N | 3.4 |
N···C/C···N | 0.7 |
O···C/C···O | 0.5 |
C···C | 0.5 |
Funding information
Funding for this research was provided by the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].
References
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018a). J. Org. Chem. 83, 4840–4850. Web of Science CSD CrossRef CAS PubMed Google Scholar
Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018b). Chem. Commun. 54, 2850–2853. Web of Science CSD CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Butler, D. N., Hammond, M. L. A., Johnston, M. R., Sun, G., Malpass, J. R., Fawcett, J. & Warrener, R. N. (2000). Org. Lett. 2, 721–724. Web of Science CrossRef PubMed CAS Google Scholar
Domingo, L. R., Picher, M. T. & Andrés, J. (2000). J. Org. Chem. 65, 3473–3477. Web of Science CrossRef PubMed CAS Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kitamura, C. & Yamashita, Y. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1443–1448. CSD CrossRef Web of Science Google Scholar
Kvyatkovskaya, E. A., Nikitina, E. V., Khrustalev, V. N., Galmes, B., Zubkov, F. I. & Frontera, A. (2020). Eur. J. Org. Chem. pp. 156–161. Web of Science CSD CrossRef Google Scholar
Lautens, M. & Fillion, E. (1997). J. Org. Chem. 62, 4418–4427. CSD CrossRef PubMed CAS Web of Science Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Raines, S. & Kovacs, C. A. (1970). J. Heterocycl. Chem. 7, 223–225. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Visnick, M. & Battiste, M. A. (1985). J. Chem. Soc. Chem. Commun. pp. 1621–1622. CrossRef Web of Science Google Scholar
Wang, R., Liang, Y., Liu, G. & Pu, S. (2020). RSC Adv. 10, 2170–2179. Web of Science CSD CrossRef CAS Google Scholar
Warrener, R. N., Margetic, D., Sun, G. & Russell, R. A. (2003). Aust. J. Chem. 56, 263–267. Web of Science CrossRef CAS Google Scholar
Winkler, J. D. (1996). Chem. Rev. 96, 167–176. CrossRef PubMed CAS Web of Science Google Scholar
Zhang, J. N., Kang, H., Li, N., Zhou, S. M., Sun, H. M., Yin, S. W., Zhao, N. & Tang, B. Z. (2017). Chem. Sci. 8, 577–582. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.