research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-[(E)-2-phenyl­ethen­yl]pyridazin-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, abdulmalikabudunia@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 19 November 2020; accepted 1 December 2020; online 1 January 2021)

The title pyridazinone derivative, C19H14Cl2N2O, an important pharmacophore with a wide variety of biological applications is not planar, the chloro­phenyl and pyridazinone rings being almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. In the crystal, N—H⋯O hydrogen bonds form inversion dimers with an R22(8) ring motif and C—H⋯Cl hydrogen bonds also occur. The roles of the inter­molecular inter­actions in the crystal packing were clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.9%), C⋯H/H⋯C (18.7%), Cl⋯H/ H⋯Cl (16.4%) and Cl⋯C/C⋯Cl (6.7%) contacts.

1. Chemical context

Pyridazines are an important family of six-membered aromatic heterocycles containing two nitro­gen atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological activities including anti­tumor (Bouchmaa et al., 2018[Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893-901.], 2019[Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528-536.]), anti-inflammatory (Boukharsa et al., 2018[Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119-127.]), anti­hypertensive (Siddiqui et al., 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), anti­depressant (Boukharsa et al., 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), anti-HIV (Livermore et al., 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784-3794.]), anti­histaminic (Tao et al. 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]), analgesic (Gökçe et al., 2009[Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]) and anti­convulsant (Partap et al., 2018[Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74-83.]) and is used in glucan synthase inhibitors (Zhou et al., 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]) and herbicidal agents (Asif et al., 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]). The chemistry of pyridazinones has been an inter­esting field of study for decades and this nitro­gen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey et al., 2015[Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579-3598.]; Thakur et al., 2010[Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem. 3, 265-271.]).

[Scheme 1]
In a continuation of our studies towards the synthesis, mol­ecular structures, Hirshfeld surfaces analysis and DFT studies of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020[Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020). Acta Cryst. E76, 432-437.], 2021[Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2021). J. Mol. Struct. 1225, 129-180.]; El Kalai et al., 2021[El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021). J. Mol. Struct. 1223, 129-213.]), we report herein the crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-[(E)-2-phenyl­ethen­yl]pyridazin-3(2H)-one.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The C1–C6 phenyl ring and the pyridazinone ring (N1/N2/C8–C11) are almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The C14–C19 phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. The carbonyl group has a C8=O1 bond length of 1.236 (2) Å, and the C8—N1 and C11—N2 bond lengths in the pyridazine ring are 1.357 (3) and 1.305 (2) Å, respectively. The N1—N2 bond length is 1.344 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, pairs of N—H⋯O hydrogen bonds form inversion dimers with an [R_{2}^{2}](8) ring motif (Table 1[link], Fig. 2[link]). C3—H3⋯Cl1 hydrogen bonds are also observed. C—H⋯π inter­actions between the [R_{2}^{2}](8) dimer rings and H16 atoms [centroid-to-centroid distance of 3.501 (9) Å; length between dimer ring and C14–C19 ring = 3.569 (12) Å] also occur (Fig. 3[link]). ππ inter­actions also occur with a centroid–centroid distance Cg1⋯Cg3(−x + 1, −y + 2, −z + 1) of 3.9107 (15) Å where Cg1 and Cg3 are the centroids of the N1/N2/C8–C11 and C14–C19 rings, respectively (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.92 2.772 (2) 171
C3—H3⋯Cl1ii 0.93 2.97 3.824 (3) 153
C7—H7A⋯O1 0.97 2.42 2.803 (2) 103
C13—H13⋯N2 0.93 2.51 2.845 (3) 101
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
View of the crystal structure of the title compound. N—H⋯O hydrogen bonds are represented by red dashed lines and C—H⋯N and C—H⋯O inter­actions are shown as blue dashed lines.
[Figure 3]
Figure 3
Packing diagram showing the inter­molecular inter­actions in the title compound (C—H⋯π inter­actions shown as black dashed lines and ππ inter­actions as purple dashed lines).

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals six comparable pyridazine derivatives, 1-(6-benzoyl-2-phenyl-2,3-di­hydro­pyridazin-4-yl)ethanone 1-(4-benzoyl-2-phenyl-2,3-di­hydro­pyridazin-6-yl)ethanone (AQIKOB; Al-Awadi et al., 2011[Al-Awadi, N. A., Ibrahim, M. R., Al-Etaibi, A. M. & Elnagdia, M. H. (2011). Arkivoc (ii) pp. 310-321, https://doi.org/10.3998/ark.5550190.0012.225]), 4-(2′-chloro-6′-fluoro­phen­yl)-2,5-dioxo-8-phenyl-1,2,3,4,5,6-hexa­hydro­pyrido(2,3-d)pyridazine (BARQOA; Pita et al., 2000[Pita, B., Sotelo, E., Suárez, M., Raviña, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., de Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473-2479.]), 4-[(2,6-di­chloro­phen­yl)meth­yl]-6-phenyl­pyridazin-3(2H)-one (BOBXEY; El Kali, Kansiz et al., 2019[El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650-654.]), ethyl {5-[(3-chloro­phen­yl)meth­yl]-6-oxo-3-phenyl­pyridazin-1(6H)-yl}acetate (FODQUN; El Kalai, Baydere et al., 2019[El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892-895.]), 4-benzyl-2-[2-(4-fluoro­phen­yl)-2-oxoeth­yl]-6-phenyl­pyrid­az­in-3(2H)-one (NOLDUQ; Daoui et al., 2019[Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1030-1034.]) and 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009[Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350-o1351.]). Of these, BOBXEY, (II), is very similar to the title compound. The phenyl ring and the pyridazine ring are twisted with respect to each other, making a dihedral angle of 21.76 (18)° and the phenyl ring (C1–C6) of the benzyl group is inclined to the pyridazine ring by 79.61 (19)°. Relevant bond lengths in (II) are C17=O1 = 1.229 (5), C17—N2 = 1.388 (5) Å and C10—N1 =1.299 (4) Å. The N1—N2 bond lengths in (I)[link] and (II) are virtually the same, with values of 1.348 (2) and 1.353 (4) Å, respectively. In the structure of YOTVIN, N—H⋯O bonds are also observed.

5. Hirshfeld surface analysis

A Hirshfeld surface (HS) study of the title compound was undertaken using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.]) to visualize and study the inter­molecular contacts. The dnorm surface of the title compound is illustrated in Fig. 4[link]a. The shape-index, a tool for visualizing ππ stacking inter­actions by the presence of adjacent red and blue triangles is given in Fig. 4[link]b while Fig. 4[link]c shows the curvedness map of the title compound. The absence of prominent red and blue triangles in the shape-index map, as well as the absence of large green regions in the curvedness map, confirms that ππ and C—H⋯π interactions are weak. Fig. 5[link] shows fingerprint plots that qu­anti­tatively summarize the nature and type of inter­molecular contacts. The highest contribution to the Hirshfeld surface is from H⋯H contacts (Fig. 5[link]b). Other inter­actions and their respective contributions are C⋯H/H⋯C (18.7%), Cl⋯H/H⋯Cl (16.4%), Cl⋯C/C⋯Cl (6.7%), O⋯H/H⋯O (6.5%), N⋯H/H⋯N (4.8%), C⋯O/O⋯C (3.3%) and C⋯N/N⋯C (2.5%). The acceptor and donor atoms participating in the hydrogen bond appear as blue (donors) and red regions (acceptors) corresponding to positive and negative potential, respectively, in the HS mapped over the electrostatic potential, in the range −0.099–0.165 a.u., as shown in Fig. 6[link].

[Figure 4]
Figure 4
(a) Hirshfeld surface mapped over dnorm for visualizing the inter­molecular inter­actions of the title compound, (b) shape-index map and (c) curvedness map of the title mol­ecule.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound showing the relative contributions of the atom pairs to the Hirshfeld surface.
[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential.

6. Synthesis and crystallization

To a solution of (E)-6-styryl-4,5-di­hydro­pyridazin-3(2H)-one (0.2 g, 1 mmol) and 2,6-di­chloro­benzaldehyde (0.175 g, 1 mmol) in 30 ml of ethanol, sodium ethano­ate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydro­chloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. Colourless single-crystals were obtained by slow evaporation at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map and refined with N—H = 0.86 Å.

Table 2
Experimental details

Crystal data
Chemical formula C19H14Cl2N2O
Mr 357.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.1306 (5), 10.7019 (6), 15.7749 (7)
β (°) 97.715 (4)
V3) 1694.78 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.72 × 0.47 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.796, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 20123, 5828, 2944
Rint 0.047
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.170, 1.01
No. of reflections 5828
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

4-(2,6-Dichlorobenzyl)-6-[(E)-2-phenylethenyl]pyridazin-3(2H)-one top
Crystal data top
C19H14Cl2N2OF(000) = 736
Mr = 357.22Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.1306 (5) ÅCell parameters from 16480 reflections
b = 10.7019 (6) Åθ = 1.9–32.4°
c = 15.7749 (7) ŵ = 0.39 mm1
β = 97.715 (4)°T = 296 K
V = 1694.78 (15) Å3Plate, colorless
Z = 40.72 × 0.47 × 0.13 mm
Data collection top
Stoe IPDS 2
diffractometer
5828 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2944 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.047
Detector resolution: 6.67 pixels mm-1θmax = 32.0°, θmin = 2.3°
rotation method scansh = 1215
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.796, Tmax = 0.937l = 2323
20123 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3156P]
where P = (Fo2 + 2Fc2)/3
5828 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.32888 (9)0.44720 (8)0.41784 (5)0.1022 (3)
Cl10.06171 (9)0.57454 (9)0.67843 (6)0.1101 (3)
O10.00667 (14)0.83981 (14)0.49196 (12)0.0698 (4)
N20.30239 (16)0.97613 (15)0.57214 (12)0.0561 (4)
N10.17344 (16)0.95588 (15)0.54273 (13)0.0582 (4)
H10.12291.02080.53810.070*
C60.19680 (18)0.50436 (17)0.55109 (14)0.0520 (5)
C110.37910 (19)0.87772 (18)0.58104 (13)0.0508 (4)
C90.2000 (2)0.73781 (17)0.53008 (13)0.0508 (4)
C80.11329 (19)0.84552 (18)0.51939 (14)0.0536 (5)
C100.32911 (19)0.75621 (18)0.56121 (14)0.0533 (5)
H100.38620.68800.56980.064*
C120.5217 (2)0.8968 (2)0.61209 (14)0.0568 (5)
H120.57520.82610.62040.068*
C70.1371 (2)0.61526 (18)0.50303 (16)0.0609 (6)
H7A0.04330.61920.50950.073*
H7B0.14310.60310.44270.073*
C140.7197 (2)1.0298 (2)0.66024 (15)0.0615 (5)
C130.5792 (2)1.0060 (2)0.62890 (15)0.0607 (5)
H130.52451.07590.61990.073*
C10.1675 (2)0.4752 (2)0.63198 (16)0.0650 (6)
C50.2807 (2)0.4200 (2)0.51757 (16)0.0631 (6)
C190.7618 (3)1.1510 (3)0.67726 (17)0.0761 (7)
H190.70041.21590.66910.091*
C20.2149 (3)0.3694 (3)0.67623 (18)0.0840 (8)
H20.19340.35330.73070.101*
C150.8136 (2)0.9359 (3)0.67285 (19)0.0776 (7)
H150.78820.85360.66110.093*
C40.3270 (3)0.3132 (2)0.5602 (2)0.0831 (8)
H40.38100.25790.53510.100*
C30.2937 (3)0.2891 (3)0.6385 (2)0.0897 (9)
H30.32490.21680.66720.108*
C180.8940 (3)1.1772 (3)0.7063 (2)0.0951 (9)
H180.92091.25950.71680.114*
C160.9453 (3)0.9629 (4)0.7027 (2)0.0969 (9)
H161.00720.89840.71150.116*
C170.9850 (3)1.0827 (4)0.7194 (2)0.1007 (10)
H171.07361.10020.73970.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.1168 (6)0.1083 (6)0.0881 (5)0.0366 (5)0.0379 (5)0.0082 (4)
Cl10.1042 (6)0.1263 (7)0.1069 (6)0.0057 (5)0.0406 (5)0.0446 (5)
O10.0467 (8)0.0506 (8)0.1070 (13)0.0102 (6)0.0080 (8)0.0061 (8)
N20.0479 (9)0.0427 (9)0.0767 (12)0.0047 (7)0.0040 (8)0.0020 (8)
N10.0459 (9)0.0409 (8)0.0860 (13)0.0104 (7)0.0017 (8)0.0034 (8)
C60.0467 (9)0.0412 (9)0.0653 (12)0.0024 (8)0.0024 (9)0.0062 (9)
C110.0469 (10)0.0460 (10)0.0587 (12)0.0051 (8)0.0047 (9)0.0004 (9)
C90.0506 (10)0.0406 (9)0.0597 (12)0.0066 (8)0.0019 (9)0.0011 (8)
C80.0486 (10)0.0434 (10)0.0671 (13)0.0070 (8)0.0014 (9)0.0014 (9)
C100.0488 (11)0.0415 (10)0.0682 (13)0.0114 (8)0.0029 (9)0.0003 (9)
C120.0488 (10)0.0493 (11)0.0708 (14)0.0067 (8)0.0027 (9)0.0009 (9)
C70.0519 (11)0.0451 (10)0.0813 (15)0.0073 (9)0.0074 (10)0.0068 (10)
C140.0553 (11)0.0673 (14)0.0618 (13)0.0049 (10)0.0073 (10)0.0002 (11)
C130.0526 (11)0.0545 (12)0.0740 (14)0.0054 (10)0.0049 (10)0.0029 (10)
C10.0605 (12)0.0645 (13)0.0692 (14)0.0135 (10)0.0054 (11)0.0135 (11)
C50.0652 (13)0.0512 (11)0.0716 (14)0.0087 (10)0.0042 (11)0.0006 (10)
C190.0754 (16)0.0741 (16)0.0785 (16)0.0148 (13)0.0092 (13)0.0052 (13)
C20.095 (2)0.0852 (19)0.0684 (16)0.0303 (16)0.0025 (15)0.0149 (14)
C150.0567 (13)0.0771 (16)0.0962 (19)0.0020 (12)0.0002 (12)0.0039 (14)
C40.0901 (18)0.0569 (14)0.099 (2)0.0237 (13)0.0024 (16)0.0022 (14)
C30.105 (2)0.0610 (16)0.097 (2)0.0033 (15)0.0089 (18)0.0160 (15)
C180.098 (2)0.103 (2)0.0835 (19)0.043 (2)0.0090 (16)0.0134 (17)
C160.0554 (14)0.125 (3)0.106 (2)0.0002 (16)0.0032 (14)0.010 (2)
C170.0643 (17)0.141 (3)0.093 (2)0.031 (2)0.0051 (15)0.002 (2)
Geometric parameters (Å, º) top
Cl2—C51.733 (3)C14—C151.379 (3)
Cl1—C11.740 (3)C14—C191.380 (3)
O1—C81.236 (2)C14—C131.465 (3)
N2—C111.305 (2)C13—H130.9300
N2—N11.344 (2)C1—C21.382 (4)
N1—C81.357 (3)C5—C41.376 (3)
N1—H10.8600C19—C181.385 (4)
C6—C11.384 (3)C19—H190.9300
C6—C51.392 (3)C2—C31.362 (4)
C6—C71.492 (3)C2—H20.9300
C11—C101.415 (3)C15—C161.384 (4)
C11—C121.476 (3)C15—H150.9300
C9—C101.349 (3)C4—C31.350 (4)
C9—C81.445 (3)C4—H40.9300
C9—C71.495 (3)C3—H30.9300
C10—H100.9300C18—C171.366 (5)
C12—C131.317 (3)C18—H180.9300
C12—H120.9300C16—C171.358 (5)
C7—H7A0.9700C16—H160.9300
C7—H7B0.9700C17—H170.9300
C11—N2—N1116.38 (17)C12—C13—H13116.4
N2—N1—C8127.90 (16)C14—C13—H13116.4
N2—N1—H1116.1C2—C1—C6123.2 (2)
C8—N1—H1116.1C2—C1—Cl1118.7 (2)
C1—C6—C5114.9 (2)C6—C1—Cl1118.08 (19)
C1—C6—C7121.7 (2)C4—C5—C6122.6 (2)
C5—C6—C7123.3 (2)C4—C5—Cl2117.6 (2)
N2—C11—C10121.83 (18)C6—C5—Cl2119.75 (17)
N2—C11—C12117.79 (18)C14—C19—C18121.0 (3)
C10—C11—C12120.38 (17)C14—C19—H19119.5
C10—C9—C8118.07 (18)C18—C19—H19119.5
C10—C9—C7125.98 (17)C3—C2—C1118.7 (3)
C8—C9—C7115.93 (17)C3—C2—H2120.6
O1—C8—N1121.52 (17)C1—C2—H2120.6
O1—C8—C9123.72 (18)C14—C15—C16120.8 (3)
N1—C8—C9114.76 (17)C14—C15—H15119.6
C9—C10—C11121.03 (17)C16—C15—H15119.6
C9—C10—H10119.5C3—C4—C5119.7 (3)
C11—C10—H10119.5C3—C4—H4120.2
C13—C12—C11125.18 (19)C5—C4—H4120.2
C13—C12—H12117.4C4—C3—C2120.9 (3)
C11—C12—H12117.4C4—C3—H3119.6
C6—C7—C9115.12 (17)C2—C3—H3119.6
C6—C7—H7A108.5C17—C18—C19120.2 (3)
C9—C7—H7A108.5C17—C18—H18119.9
C6—C7—H7B108.5C19—C18—H18119.9
C9—C7—H7B108.5C17—C16—C15120.6 (3)
H7A—C7—H7B107.5C17—C16—H16119.7
C15—C14—C19117.8 (2)C15—C16—H16119.7
C15—C14—C13122.9 (2)C16—C17—C18119.5 (3)
C19—C14—C13119.3 (2)C16—C17—H17120.2
C12—C13—C14127.2 (2)C18—C17—H17120.2
C11—N2—N1—C81.5 (3)C5—C6—C1—C21.3 (3)
N1—N2—C11—C100.3 (3)C7—C6—C1—C2176.1 (2)
N1—N2—C11—C12179.18 (19)C5—C6—C1—Cl1179.26 (16)
N2—N1—C8—O1178.9 (2)C7—C6—C1—Cl11.8 (3)
N2—N1—C8—C91.7 (3)C1—C6—C5—C42.4 (3)
C10—C9—C8—O1179.6 (2)C7—C6—C5—C4175.0 (2)
C7—C9—C8—O11.9 (3)C1—C6—C5—Cl2178.40 (17)
C10—C9—C8—N10.1 (3)C7—C6—C5—Cl24.2 (3)
C7—C9—C8—N1178.7 (2)C15—C14—C19—C180.2 (4)
C8—C9—C10—C111.4 (3)C13—C14—C19—C18179.5 (2)
C7—C9—C10—C11177.0 (2)C6—C1—C2—C30.4 (4)
N2—C11—C10—C91.7 (3)Cl1—C1—C2—C3177.5 (2)
C12—C11—C10—C9177.8 (2)C19—C14—C15—C160.9 (4)
N2—C11—C12—C132.5 (3)C13—C14—C15—C16179.9 (3)
C10—C11—C12—C13177.0 (2)C6—C5—C4—C31.7 (4)
C1—C6—C7—C978.6 (3)Cl2—C5—C4—C3179.0 (2)
C5—C6—C7—C9104.2 (2)C5—C4—C3—C20.2 (5)
C10—C9—C7—C631.4 (3)C1—C2—C3—C41.2 (4)
C8—C9—C7—C6150.2 (2)C14—C19—C18—C170.7 (4)
C11—C12—C13—C14179.6 (2)C14—C15—C16—C170.7 (5)
C15—C14—C13—C123.0 (4)C15—C16—C17—C180.2 (5)
C19—C14—C13—C12177.8 (2)C19—C18—C17—C160.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.922.772 (2)171
C3—H3···Cl1ii0.932.973.824 (3)153
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Funding information

This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001.

References

First citationAl-Awadi, N. A., Ibrahim, M. R., Al-Etaibi, A. M. & Elnagdia, M. H. (2011). Arkivoc (ii) pp. 310–321, https://doi.org/10.3998/ark.5550190.0012.225  Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  Web of Science CrossRef CAS Google Scholar
First citationBouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528–536.  Web of Science CAS PubMed Google Scholar
First citationBouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901.  Web of Science CrossRef CAS Google Scholar
First citationBoukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127.  Web of Science CrossRef CAS Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationDaoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2021). J. Mol. Struct. 1225, 129–180.  CSD CrossRef Google Scholar
First citationDaoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020). Acta Cryst. E76, 432–437.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDaoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1030–1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.  Web of Science CrossRef CAS Google Scholar
First citationEl Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021). J. Mol. Struct. 1223, 129–213.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPartap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPita, B., Sotelo, E., Suárez, M., Raviña, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., de Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem. 3, 265–271.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds