research communications
E)-2-phenylethenyl]pyridazin-3(2H)-one
and Hirshfeld surface analysis of 4-(2,6-dichlorobenzyl)-6-[(aLaboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed I University, 60000 Oujda, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, 55200, Turkey, cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: emineberrin.cinar@omu.edu.tr, abdulmalikabudunia@gmail.com
The title pyridazinone derivative, C19H14Cl2N2O, an important pharmacophore with a wide variety of biological applications is not planar, the chlorophenyl and pyridazinone rings being almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. In the crystal, N—H⋯O hydrogen bonds form inversion dimers with an R22(8) ring motif and C—H⋯Cl hydrogen bonds also occur. The roles of the intermolecular interactions in the crystal packing were clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (37.9%), C⋯H/H⋯C (18.7%), Cl⋯H/ H⋯Cl (16.4%) and Cl⋯C/C⋯Cl (6.7%) contacts.
CCDC reference: 2047452
1. Chemical context
Pyridazines are an important family of six-membered aromatic heterocycles containing two nitrogen atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological activities including antitumor (Bouchmaa et al., 2018, 2019), anti-inflammatory (Boukharsa et al., 2018), antihypertensive (Siddiqui et al., 2011), antidepressant (Boukharsa et al., 2016), anti-HIV (Livermore et al., 1993), antihistaminic (Tao et al. 2012), analgesic (Gökçe et al., 2009) and anticonvulsant (Partap et al., 2018) and is used in glucan synthase inhibitors (Zhou et al., 2011) and herbicidal agents (Asif et al., 2013). The chemistry of pyridazinones has been an interesting field of study for decades and this nitrogen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey et al., 2015; Thakur et al., 2010).
In a continuation of our studies towards the synthesis, molecular structures, Hirshfeld surfaces analysis and DFT studies of new pyridazin-3(2H)-one derivatives (Daoui et al., 2020, 2021; El Kalai et al., 2021), we report herein the and Hirshfeld surface analysis of 4-(2,6-dichlorobenzyl)-6-[(E)-2-phenylethenyl]pyridazin-3(2H)-one.2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The C1–C6 phenyl ring and the pyridazinone ring (N1/N2/C8–C11) are almost perpendicular, subtending a dihedral angle of 85.73 (11)°. The C14–C19 phenyl ring of the styryl group is coplanar with the pyridazinone ring [1.47 (12)°]. The carbonyl group has a C8=O1 bond length of 1.236 (2) Å, and the C8—N1 and C11—N2 bond lengths in the pyridazine ring are 1.357 (3) and 1.305 (2) Å, respectively. The N1—N2 bond length is 1.344 (2) Å.
3. Supramolecular features
In the crystal, pairs of N—H⋯O hydrogen bonds form inversion dimers with an (8) ring motif (Table 1, Fig. 2). C3—H3⋯Cl1 hydrogen bonds are also observed. C—H⋯π interactions between the (8) dimer rings and H16 atoms [centroid-to-centroid distance of 3.501 (9) Å; length between dimer ring and C14–C19 ring = 3.569 (12) Å] also occur (Fig. 3). π–π interactions also occur with a centroid–centroid distance Cg1⋯Cg3(−x + 1, −y + 2, −z + 1) of 3.9107 (15) Å where Cg1 and Cg3 are the centroids of the N1/N2/C8–C11 and C14–C19 rings, respectively (Fig. 3).
4. Database survey
A survey of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) reveals six comparable pyridazine derivatives, 1-(6-benzoyl-2-phenyl-2,3-dihydropyridazin-4-yl)ethanone 1-(4-benzoyl-2-phenyl-2,3-dihydropyridazin-6-yl)ethanone (AQIKOB; Al-Awadi et al., 2011), 4-(2′-chloro-6′-fluorophenyl)-2,5-dioxo-8-phenyl-1,2,3,4,5,6-hexahydropyrido(2,3-d)pyridazine (BARQOA; Pita et al., 2000), 4-[(2,6-dichlorophenyl)methyl]-6-phenylpyridazin-3(2H)-one (BOBXEY; El Kali, Kansiz et al., 2019), ethyl {5-[(3-chlorophenyl)methyl]-6-oxo-3-phenylpyridazin-1(6H)-yl}acetate (FODQUN; El Kalai, Baydere et al., 2019), 4-benzyl-2-[2-(4-fluorophenyl)-2-oxoethyl]-6-phenylpyridazin-3(2H)-one (NOLDUQ; Daoui et al., 2019) and 4-benzyl-6-p-tolylpyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009). Of these, BOBXEY, (II), is very similar to the title compound. The phenyl ring and the pyridazine ring are twisted with respect to each other, making a dihedral angle of 21.76 (18)° and the phenyl ring (C1–C6) of the benzyl group is inclined to the pyridazine ring by 79.61 (19)°. Relevant bond lengths in (II) are C17=O1 = 1.229 (5), C17—N2 = 1.388 (5) Å and C10—N1 =1.299 (4) Å. The N1—N2 bond lengths in (I) and (II) are virtually the same, with values of 1.348 (2) and 1.353 (4) Å, respectively. In the structure of YOTVIN, N—H⋯O bonds are also observed.
5. Hirshfeld surface analysis
A Hirshfeld surface (HS) study of the title compound was undertaken using CrystalExplorer17.5 (Turner et al., 2017) to visualize and study the intermolecular contacts. The dnorm surface of the title compound is illustrated in Fig. 4a. The shape-index, a tool for visualizing π–π stacking interactions by the presence of adjacent red and blue triangles is given in Fig. 4b while Fig. 4c shows the curvedness map of the title compound. The absence of prominent red and blue triangles in the shape-index map, as well as the absence of large green regions in the curvedness map, confirms that π–π and C—H⋯π interactions are weak. Fig. 5 shows fingerprint plots that quantitatively summarize the nature and type of intermolecular contacts. The highest contribution to the Hirshfeld surface is from H⋯H contacts (Fig. 5b). Other interactions and their respective contributions are C⋯H/H⋯C (18.7%), Cl⋯H/H⋯Cl (16.4%), Cl⋯C/C⋯Cl (6.7%), O⋯H/H⋯O (6.5%), N⋯H/H⋯N (4.8%), C⋯O/O⋯C (3.3%) and C⋯N/N⋯C (2.5%). The acceptor and donor atoms participating in the hydrogen bond appear as blue (donors) and red regions (acceptors) corresponding to positive and negative potential, respectively, in the HS mapped over the electrostatic potential, in the range −0.099–0.165 a.u., as shown in Fig. 6.
6. Synthesis and crystallization
To a solution of (E)-6-styryl-4,5-dihydropyridazin-3(2H)-one (0.2 g, 1 mmol) and 2,6-dichlorobenzaldehyde (0.175 g, 1 mmol) in 30 ml of ethanol, sodium ethanoate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydrochloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. Colourless single-crystals were obtained by slow evaporation at room temperature.
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically with C—H distances of 0.93–0.97 Å and refined as riding, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map and refined with N—H = 0.86 Å.
details are summarized in Table 2Supporting information
CCDC reference: 2047452
https://doi.org/10.1107/S205698902001573X/dx2034sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902001573X/dx2034Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902001573X/dx2034Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C19H14Cl2N2O | F(000) = 736 |
Mr = 357.22 | Dx = 1.400 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.1306 (5) Å | Cell parameters from 16480 reflections |
b = 10.7019 (6) Å | θ = 1.9–32.4° |
c = 15.7749 (7) Å | µ = 0.39 mm−1 |
β = 97.715 (4)° | T = 296 K |
V = 1694.78 (15) Å3 | Plate, colorless |
Z = 4 | 0.72 × 0.47 × 0.13 mm |
Stoe IPDS 2 diffractometer | 5828 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2944 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.047 |
Detector resolution: 6.67 pixels mm-1 | θmax = 32.0°, θmin = 2.3° |
rotation method scans | h = −12→15 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −15→15 |
Tmin = 0.796, Tmax = 0.937 | l = −23→23 |
20123 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3156P] where P = (Fo2 + 2Fc2)/3 |
5828 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 0.32888 (9) | 0.44720 (8) | 0.41784 (5) | 0.1022 (3) | |
Cl1 | 0.06171 (9) | 0.57454 (9) | 0.67843 (6) | 0.1101 (3) | |
O1 | −0.00667 (14) | 0.83981 (14) | 0.49196 (12) | 0.0698 (4) | |
N2 | 0.30239 (16) | 0.97613 (15) | 0.57214 (12) | 0.0561 (4) | |
N1 | 0.17344 (16) | 0.95588 (15) | 0.54273 (13) | 0.0582 (4) | |
H1 | 0.1229 | 1.0208 | 0.5381 | 0.070* | |
C6 | 0.19680 (18) | 0.50436 (17) | 0.55109 (14) | 0.0520 (5) | |
C11 | 0.37910 (19) | 0.87772 (18) | 0.58104 (13) | 0.0508 (4) | |
C9 | 0.2000 (2) | 0.73781 (17) | 0.53008 (13) | 0.0508 (4) | |
C8 | 0.11329 (19) | 0.84552 (18) | 0.51939 (14) | 0.0536 (5) | |
C10 | 0.32911 (19) | 0.75621 (18) | 0.56121 (14) | 0.0533 (5) | |
H10 | 0.3862 | 0.6880 | 0.5698 | 0.064* | |
C12 | 0.5217 (2) | 0.8968 (2) | 0.61209 (14) | 0.0568 (5) | |
H12 | 0.5752 | 0.8261 | 0.6204 | 0.068* | |
C7 | 0.1371 (2) | 0.61526 (18) | 0.50303 (16) | 0.0609 (6) | |
H7A | 0.0433 | 0.6192 | 0.5095 | 0.073* | |
H7B | 0.1431 | 0.6031 | 0.4427 | 0.073* | |
C14 | 0.7197 (2) | 1.0298 (2) | 0.66024 (15) | 0.0615 (5) | |
C13 | 0.5792 (2) | 1.0060 (2) | 0.62890 (15) | 0.0607 (5) | |
H13 | 0.5245 | 1.0759 | 0.6199 | 0.073* | |
C1 | 0.1675 (2) | 0.4752 (2) | 0.63198 (16) | 0.0650 (6) | |
C5 | 0.2807 (2) | 0.4200 (2) | 0.51757 (16) | 0.0631 (6) | |
C19 | 0.7618 (3) | 1.1510 (3) | 0.67726 (17) | 0.0761 (7) | |
H19 | 0.7004 | 1.2159 | 0.6691 | 0.091* | |
C2 | 0.2149 (3) | 0.3694 (3) | 0.67623 (18) | 0.0840 (8) | |
H2 | 0.1934 | 0.3533 | 0.7307 | 0.101* | |
C15 | 0.8136 (2) | 0.9359 (3) | 0.67285 (19) | 0.0776 (7) | |
H15 | 0.7882 | 0.8536 | 0.6611 | 0.093* | |
C4 | 0.3270 (3) | 0.3132 (2) | 0.5602 (2) | 0.0831 (8) | |
H4 | 0.3810 | 0.2579 | 0.5351 | 0.100* | |
C3 | 0.2937 (3) | 0.2891 (3) | 0.6385 (2) | 0.0897 (9) | |
H3 | 0.3249 | 0.2168 | 0.6672 | 0.108* | |
C18 | 0.8940 (3) | 1.1772 (3) | 0.7063 (2) | 0.0951 (9) | |
H18 | 0.9209 | 1.2595 | 0.7168 | 0.114* | |
C16 | 0.9453 (3) | 0.9629 (4) | 0.7027 (2) | 0.0969 (9) | |
H16 | 1.0072 | 0.8984 | 0.7115 | 0.116* | |
C17 | 0.9850 (3) | 1.0827 (4) | 0.7194 (2) | 0.1007 (10) | |
H17 | 1.0736 | 1.1002 | 0.7397 | 0.121* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.1168 (6) | 0.1083 (6) | 0.0881 (5) | 0.0366 (5) | 0.0379 (5) | 0.0082 (4) |
Cl1 | 0.1042 (6) | 0.1263 (7) | 0.1069 (6) | −0.0057 (5) | 0.0406 (5) | −0.0446 (5) |
O1 | 0.0467 (8) | 0.0506 (8) | 0.1070 (13) | 0.0102 (6) | −0.0080 (8) | −0.0061 (8) |
N2 | 0.0479 (9) | 0.0427 (9) | 0.0767 (12) | 0.0047 (7) | 0.0040 (8) | −0.0020 (8) |
N1 | 0.0459 (9) | 0.0409 (8) | 0.0860 (13) | 0.0104 (7) | 0.0017 (8) | −0.0034 (8) |
C6 | 0.0467 (9) | 0.0412 (9) | 0.0653 (12) | −0.0024 (8) | −0.0024 (9) | −0.0062 (9) |
C11 | 0.0469 (10) | 0.0460 (10) | 0.0587 (12) | 0.0051 (8) | 0.0047 (9) | 0.0004 (9) |
C9 | 0.0506 (10) | 0.0406 (9) | 0.0597 (12) | 0.0066 (8) | 0.0019 (9) | −0.0011 (8) |
C8 | 0.0486 (10) | 0.0434 (10) | 0.0671 (13) | 0.0070 (8) | 0.0014 (9) | −0.0014 (9) |
C10 | 0.0488 (11) | 0.0415 (10) | 0.0682 (13) | 0.0114 (8) | 0.0029 (9) | −0.0003 (9) |
C12 | 0.0488 (10) | 0.0493 (11) | 0.0708 (14) | 0.0067 (8) | 0.0027 (9) | −0.0009 (9) |
C7 | 0.0519 (11) | 0.0451 (10) | 0.0813 (15) | 0.0073 (9) | −0.0074 (10) | −0.0068 (10) |
C14 | 0.0553 (11) | 0.0673 (14) | 0.0618 (13) | −0.0049 (10) | 0.0073 (10) | −0.0002 (11) |
C13 | 0.0526 (11) | 0.0545 (12) | 0.0740 (14) | 0.0054 (10) | 0.0049 (10) | 0.0029 (10) |
C1 | 0.0605 (12) | 0.0645 (13) | 0.0692 (14) | −0.0135 (10) | 0.0054 (11) | −0.0135 (11) |
C5 | 0.0652 (13) | 0.0512 (11) | 0.0716 (14) | 0.0087 (10) | 0.0042 (11) | −0.0006 (10) |
C19 | 0.0754 (16) | 0.0741 (16) | 0.0785 (16) | −0.0148 (13) | 0.0092 (13) | −0.0052 (13) |
C2 | 0.095 (2) | 0.0852 (19) | 0.0684 (16) | −0.0303 (16) | −0.0025 (15) | 0.0149 (14) |
C15 | 0.0567 (13) | 0.0771 (16) | 0.0962 (19) | −0.0020 (12) | −0.0002 (12) | 0.0039 (14) |
C4 | 0.0901 (18) | 0.0569 (14) | 0.099 (2) | 0.0237 (13) | 0.0024 (16) | 0.0022 (14) |
C3 | 0.105 (2) | 0.0610 (16) | 0.097 (2) | 0.0033 (15) | −0.0089 (18) | 0.0160 (15) |
C18 | 0.098 (2) | 0.103 (2) | 0.0835 (19) | −0.043 (2) | 0.0090 (16) | −0.0134 (17) |
C16 | 0.0554 (14) | 0.125 (3) | 0.106 (2) | 0.0002 (16) | −0.0032 (14) | 0.010 (2) |
C17 | 0.0643 (17) | 0.141 (3) | 0.093 (2) | −0.031 (2) | −0.0051 (15) | −0.002 (2) |
Cl2—C5 | 1.733 (3) | C14—C15 | 1.379 (3) |
Cl1—C1 | 1.740 (3) | C14—C19 | 1.380 (3) |
O1—C8 | 1.236 (2) | C14—C13 | 1.465 (3) |
N2—C11 | 1.305 (2) | C13—H13 | 0.9300 |
N2—N1 | 1.344 (2) | C1—C2 | 1.382 (4) |
N1—C8 | 1.357 (3) | C5—C4 | 1.376 (3) |
N1—H1 | 0.8600 | C19—C18 | 1.385 (4) |
C6—C1 | 1.384 (3) | C19—H19 | 0.9300 |
C6—C5 | 1.392 (3) | C2—C3 | 1.362 (4) |
C6—C7 | 1.492 (3) | C2—H2 | 0.9300 |
C11—C10 | 1.415 (3) | C15—C16 | 1.384 (4) |
C11—C12 | 1.476 (3) | C15—H15 | 0.9300 |
C9—C10 | 1.349 (3) | C4—C3 | 1.350 (4) |
C9—C8 | 1.445 (3) | C4—H4 | 0.9300 |
C9—C7 | 1.495 (3) | C3—H3 | 0.9300 |
C10—H10 | 0.9300 | C18—C17 | 1.366 (5) |
C12—C13 | 1.317 (3) | C18—H18 | 0.9300 |
C12—H12 | 0.9300 | C16—C17 | 1.358 (5) |
C7—H7A | 0.9700 | C16—H16 | 0.9300 |
C7—H7B | 0.9700 | C17—H17 | 0.9300 |
C11—N2—N1 | 116.38 (17) | C12—C13—H13 | 116.4 |
N2—N1—C8 | 127.90 (16) | C14—C13—H13 | 116.4 |
N2—N1—H1 | 116.1 | C2—C1—C6 | 123.2 (2) |
C8—N1—H1 | 116.1 | C2—C1—Cl1 | 118.7 (2) |
C1—C6—C5 | 114.9 (2) | C6—C1—Cl1 | 118.08 (19) |
C1—C6—C7 | 121.7 (2) | C4—C5—C6 | 122.6 (2) |
C5—C6—C7 | 123.3 (2) | C4—C5—Cl2 | 117.6 (2) |
N2—C11—C10 | 121.83 (18) | C6—C5—Cl2 | 119.75 (17) |
N2—C11—C12 | 117.79 (18) | C14—C19—C18 | 121.0 (3) |
C10—C11—C12 | 120.38 (17) | C14—C19—H19 | 119.5 |
C10—C9—C8 | 118.07 (18) | C18—C19—H19 | 119.5 |
C10—C9—C7 | 125.98 (17) | C3—C2—C1 | 118.7 (3) |
C8—C9—C7 | 115.93 (17) | C3—C2—H2 | 120.6 |
O1—C8—N1 | 121.52 (17) | C1—C2—H2 | 120.6 |
O1—C8—C9 | 123.72 (18) | C14—C15—C16 | 120.8 (3) |
N1—C8—C9 | 114.76 (17) | C14—C15—H15 | 119.6 |
C9—C10—C11 | 121.03 (17) | C16—C15—H15 | 119.6 |
C9—C10—H10 | 119.5 | C3—C4—C5 | 119.7 (3) |
C11—C10—H10 | 119.5 | C3—C4—H4 | 120.2 |
C13—C12—C11 | 125.18 (19) | C5—C4—H4 | 120.2 |
C13—C12—H12 | 117.4 | C4—C3—C2 | 120.9 (3) |
C11—C12—H12 | 117.4 | C4—C3—H3 | 119.6 |
C6—C7—C9 | 115.12 (17) | C2—C3—H3 | 119.6 |
C6—C7—H7A | 108.5 | C17—C18—C19 | 120.2 (3) |
C9—C7—H7A | 108.5 | C17—C18—H18 | 119.9 |
C6—C7—H7B | 108.5 | C19—C18—H18 | 119.9 |
C9—C7—H7B | 108.5 | C17—C16—C15 | 120.6 (3) |
H7A—C7—H7B | 107.5 | C17—C16—H16 | 119.7 |
C15—C14—C19 | 117.8 (2) | C15—C16—H16 | 119.7 |
C15—C14—C13 | 122.9 (2) | C16—C17—C18 | 119.5 (3) |
C19—C14—C13 | 119.3 (2) | C16—C17—H17 | 120.2 |
C12—C13—C14 | 127.2 (2) | C18—C17—H17 | 120.2 |
C11—N2—N1—C8 | −1.5 (3) | C5—C6—C1—C2 | −1.3 (3) |
N1—N2—C11—C10 | −0.3 (3) | C7—C6—C1—C2 | 176.1 (2) |
N1—N2—C11—C12 | 179.18 (19) | C5—C6—C1—Cl1 | −179.26 (16) |
N2—N1—C8—O1 | −178.9 (2) | C7—C6—C1—Cl1 | −1.8 (3) |
N2—N1—C8—C9 | 1.7 (3) | C1—C6—C5—C4 | 2.4 (3) |
C10—C9—C8—O1 | −179.6 (2) | C7—C6—C5—C4 | −175.0 (2) |
C7—C9—C8—O1 | 1.9 (3) | C1—C6—C5—Cl2 | −178.40 (17) |
C10—C9—C8—N1 | −0.1 (3) | C7—C6—C5—Cl2 | 4.2 (3) |
C7—C9—C8—N1 | −178.7 (2) | C15—C14—C19—C18 | −0.2 (4) |
C8—C9—C10—C11 | −1.4 (3) | C13—C14—C19—C18 | −179.5 (2) |
C7—C9—C10—C11 | 177.0 (2) | C6—C1—C2—C3 | −0.4 (4) |
N2—C11—C10—C9 | 1.7 (3) | Cl1—C1—C2—C3 | 177.5 (2) |
C12—C11—C10—C9 | −177.8 (2) | C19—C14—C15—C16 | 0.9 (4) |
N2—C11—C12—C13 | −2.5 (3) | C13—C14—C15—C16 | −179.9 (3) |
C10—C11—C12—C13 | 177.0 (2) | C6—C5—C4—C3 | −1.7 (4) |
C1—C6—C7—C9 | 78.6 (3) | Cl2—C5—C4—C3 | 179.0 (2) |
C5—C6—C7—C9 | −104.2 (2) | C5—C4—C3—C2 | −0.2 (5) |
C10—C9—C7—C6 | 31.4 (3) | C1—C2—C3—C4 | 1.2 (4) |
C8—C9—C7—C6 | −150.2 (2) | C14—C19—C18—C17 | −0.7 (4) |
C11—C12—C13—C14 | 179.6 (2) | C14—C15—C16—C17 | −0.7 (5) |
C15—C14—C13—C12 | 3.0 (4) | C15—C16—C17—C18 | −0.2 (5) |
C19—C14—C13—C12 | −177.8 (2) | C19—C18—C17—C16 | 0.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.86 | 1.92 | 2.772 (2) | 171 |
C3—H3···Cl1ii | 0.93 | 2.97 | 3.824 (3) | 153 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+3/2. |
Funding information
This study was supported by Ondokuz Mayıs University under project No. PYOFEN.1906.19.001.
References
Al-Awadi, N. A., Ibrahim, M. R., Al-Etaibi, A. M. & Elnagdia, M. H. (2011). Arkivoc (ii) pp. 310–321, https://doi.org/10.3998/ark.5550190.0012.225 Google Scholar
Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122. Web of Science CrossRef CAS Google Scholar
Bouchmaa, N., Mrid, R. B., Boukharsa, Y., Bouargalne, Y., Nhiri, M., Idir, A., Taoufik, J., Ansar, M. & Zyad, A. (2019). Drug Res (Stuttg), 69, 528–536. Web of Science CAS PubMed Google Scholar
Bouchmaa, N., Tilaoui, M., Boukharsa, Y., Jaâfari, A., Mouse, H. A., Ali Oukerrou, M., Taoufik, J., Ansar, M. & Zyad, A. (2018). Pharm. Chem. J. 51, 893–901. Web of Science CrossRef CAS Google Scholar
Boukharsa, Y., Lakhlili, W., El harti, J., Meddah, B., Tiendrebeogo, R. Y., Taoufik, J., El Abbes Faouzi, M., Ibrahimi, A. & Ansar, M. (2018). J. Mol. Struct. 1153, 119–127. Web of Science CrossRef CAS Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Daoui, S., Baydere, C., Akman, F., El Kalai, F., Mahi, L., Dege, N., Topcu, Y., Karrouchi, K. & Benchat, N. (2021). J. Mol. Struct. 1225, 129–180. CSD CrossRef Google Scholar
Daoui, S., Baydere, C., Chelfi, T., El Kalai, F., Dege, N., Karrouchi, K. & Benchat, N. (2020). Acta Cryst. E76, 432–437. Web of Science CSD CrossRef IUCr Journals Google Scholar
Daoui, S., Faizi, M. S. H., Kalai, F. E., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1030–1034. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598. Web of Science CrossRef CAS Google Scholar
El Kalai, F., Baydere, C., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 892–895. Web of Science CSD CrossRef IUCr Journals Google Scholar
El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654. Web of Science CSD CrossRef IUCr Journals Google Scholar
El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021). J. Mol. Struct. 1223, 129–213. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794. CSD CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. Web of Science CSD CrossRef IUCr Journals Google Scholar
Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. Web of Science CrossRef CAS PubMed Google Scholar
Pita, B., Sotelo, E., Suárez, M., Raviña, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., de Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. Web of Science CrossRef CAS PubMed Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. Web of Science CrossRef CAS PubMed Google Scholar
Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian. J. Res. Chem. 3, 265–271. Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.