research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and halogen–hydrogen bonding of a Delépine reaction inter­mediate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: tony.keene@ucd.ie

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 October 2020; accepted 25 November 2020; online 1 January 2021)

The reaction of 1,5-di­bromo­pentane with urotropine results in crystals of the title mol­ecular salt, 5-bromo­urotropinium bromide [systematic name: 1-(5-bro­mo­pent­yl)-3,5,7-tri­aza-1-azoniatri­cyclo­[3.3.1.13,7]decane bromide], C11H22BrN4+·Br (1), crystallizing in space group P21/n. The packing in compound 1 is directed mainly by H⋯H van der Waals inter­actions and C—H⋯Br hydrogen bonds, as revealed by Hirshfeld surface analysis. Comparison with literature examples of alkyl­urotropinium halides shows that the inter­actions in 1 are consistent with those in other bromides and simple chloride and iodide species.

1. Chemical context

Urotropine, C6H12N4 (also known as hexa­methyl­ene­tetra­mine, hmta) and its salts are widely used in chemical organic synthesis (Blažević et al., 1979[Blažević, N., Kolbah, D., Belin, B., Šunjić, V. & Kajfež, F. (1979). Synthesis, pp. 161-176.]), as precursors for explosives (Fried et al., 2001[Fried, L. E., Manaa, M. R., Pagoria, P. F. & Simpson, R. L. (2001). Annu. Rev. Mater. Res. 31, 291-321.]) and as pharmaceuticals (Lo et al., 2014[Lo, T. S., Hammer, K. D. P., Zegarra, M. & Cho, W. C. S. (2014). Expert Rev. Anti Infect. Ther. 12, 549-554.]).

The Delépine reaction is a classic synthetic route to produce primary amines (Delépine, 1895[Delépine, M. (1895). Bull. Soc. Chim. Paris, 13, 352-355.], 1897[Delépine, M. (1897). Bull. Soc. Chim. Paris, 17, 292-295.]). Alkyl or aryl halides are reacted with hmta to form a quaternary ammonium salt, followed by acid hydrolysis to give a primary amine. A major advantage of this reaction over other routes is that the formation of the quaternary urotropinium cation prevents further alkyl­ation and high yields are possible (Galat & Elion, 1939[Galat, A. & Elion, G. (1939). J. Am. Chem. Soc. 61, 3585-3586.]). We recently made an attempt to find a cost-effective route to synthesize 1,5-di­amino­pentane (cadaverine) from 1,5-di­bromo­pentane. On an industrial scale, this is produced by bacterial deca­rboxylation of lysine (Ma et al. 2017[Ma, W., Chen, K., Li, Y., Hao, N., Wang, X. & Ouyang, P. (2017). Engineering, 3, 308-317.]; Wang et al., 2018[Wang, J., Lu, X., Ying, H., Ma, W., Xu, S., Wang, X., Chen, K. & Ouyang, P. (2018). Front. Microbiol. 9, 1312.]). Attempts to react 1,5-di­bromo­pentane with hmta in the presence of NaI in ethanol (modified from Galat & Elion, 1939[Galat, A. & Elion, G. (1939). J. Am. Chem. Soc. 61, 3585-3586.]) led to the crystallization of a monosubstituted product, 5-bromo­urotropinium bromide, C11H22BrN4+·Br (1), the structure and supra­molecular features of which are presented here.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the centrosymmetric monoclinic space group P21/n. The asymmetric unit of 1 (Fig. 1[link]) contains one C11H22BrN4+ N-(5-bromo­pent­yl)urotropinium cation and one bromide anion. The pentyl chain is in the all-trans configuration, unlike its hexyl relative (Reddy et al., 1994[Reddy, D. S., Panneerselvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113-120.]), which displays an anti­clinal configuration between C4 and C6 of the hexyl chain (torsion angle = 133°).

[Figure 1]
Figure 1
Asymmetric unit of compound 1. Hydrogen atom labels are omitted for clarity. Displacement ellipsoids are at the 50% probability level.

3. Supra­molecular features

The three-dimensional structure of 1 features C—H⋯Br and C—H⋯Br—C inter­actions (Table 1[link]). Hirshfeld surface analysis of the urotropinium cation (see below for further details) reveals that the bromide anion, Br17, accepts C—H⋯Br hydrogen bonds from H12A and H13B [H⋯Br = 2.91 and 2.77 Å, respectively] within the asymmetric unit and forms bonds to H6B([{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z, 2.92 Å), H8B ([{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z, 2.82 Å) and H15A(−[{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z, 2.86 Å). C—H⋯Br—C bonds are also seen from H5B to Br1(1 − x, 1 − y, −z) at the end of the pentyl chain, linking neighbouring cations into an inversion dimer with an H⋯Br distance of 3.00 Å (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Br17 0.99 2.91 3.800 (2) 150
C13—H13B⋯Br17 0.99 2.77 3.689 (2) 155
C15—H15A⋯Br17i 0.99 2.92 3.844 (3) 156
C8—H8B⋯Br17ii 0.99 2.82 3.777 (2) 162
C6—H6B⋯Br17iii 0.99 2.86 3.819 (2) 163
C5—H5B⋯Br1iv 0.99 3.00 3.960 (3) 163
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Dimerization of 5-bromo­pentyl­urotropinium cations through C—H⋯Br—C bonds.

The overall packing (Fig. 3[link]) is similar to the hexyl compound.

[Figure 3]
Figure 3
View of the crystal packing of compound 1 looking down the a axis.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) were calculated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). The surface was calculated for the 5-bromo­pentyl­urotropinium cation (Fig. 4[link]) in order to differentiate the contribution of the alkyl­bromine and bromide components to the overall bonding picture. In the dnorm plot (Fig. 5[link]a), white surface areas represent contacts at the sum of van der Waals radii, red is shorter (close contact) and blue is longer (long contact).

[Figure 4]
Figure 4
Hirshfeld surface of the 5-bromo­pentyl­urotropinium cation in compound 1 with the bromide anion shown. Surface plotted for d­norm in the range −0.1755 to 1.3045 a.u.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for compound 1, showing (a) all inter­actions, (b) H⋯H, (c) H⋯Br and (d) H⋯N subsets.

The Hirshfeld surface primarily consists of H⋯H van der Waals inter­actions (59.6%, Fig. 5[link]b) with the next major contributor being H⋯Br (31.0%, Fig. 5[link]c) with a small N⋯H component (9.4%, Fig. 5[link]d). The inter­action of H and the alkyl­bromine residue accounts for 12.6% of the surface (bottom right of Fig. 5[link]c), leaving the remaining 18.4% as H⋯Br hydrogen bonds to the bromide ions (top left of Fig. 5[link]c), as detailed above.

5. Database survey

Surprisingly few discrete alkyl­urotropinium salts have been submitted to the Cambridge Structural Database (version 5.41, May 2020 update 2, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), given that the salts are reported to crystallize in most cases. There are 48 in total, 17 of which are halide or polyiodide salts. In the remainder, the alkyl­urotropinium exists as a counter-ion to complex anions or is a bridging species in a coordination polymer. Of the 17, only six are bromide salts (refcode BUXZEZ, Qingchuan et al. 1983[Qingchuan, Y., Meicheng, S. & Minxie, Q. (1983). Huaxue Xuebao, 41, 176-178.]; CAQVUO, Aniol et al., 2017[Aniol, A., Mallick, B., Winter, M. & Feigel, M. (2017). J. Mol. Struct. 1141, 451-456.]; CEXLOG, Mak, 1984[Mak, T. C. W. (1984). Inorg. Chem. 23, 620-622.]; GINHAN, Betz & Klüfers, 2007[Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4279.]; YOYWEO and YOYWIS, Reddy et al., 1994[Reddy, D. S., Panneerselvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113-120.]).

A close relative to compound 1 is 6-bromo­hexyl­urotropinium bromide, C12H24BrN4+·Br (YOYWIS; Reddy et al., 1994[Reddy, D. S., Panneerselvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113-120.]), which is isostructural, also crystallizing in space group P21/n. As mentioned above, this displays an anti­clinal torsion angle in the alkyl chain, but presents very similar H⋯Br inter­actions and overall packing. For the purposes of comparison, the partial structure CIF in the CSD was completed in OLEX2 to add in the hydrogen atoms present in the original publication, and Hirshfeld surface analysis also undertaken. A potential difficulty in this structure is the presence of a possible disorder in the hexyl chain (atom C10 has a markedly larger Ueq value than its neighbours, plus hydrogen atoms on C10 come into closer than van der Waals contact with hydrogen atoms on neighbouring C10 atoms in the crystal). However, the inter­actions between hydrogen and bromide account for a similar percentage of the overall Hirshfeld surface (16.6% in YOYWIS versus 18.4% in compound 1).

Direct comparisons with BUXZEZ (Yang et al., 1983[Yang, Q., Shao, M. & Qian, M. (1983). Acta Chim. Sinica, 41, 176-181.]) are difficult because of the disorder around the allyl group while the remaining compounds have other significant inter­molecular inter­actions such as hydrogen bonds formed to bromide by a water mol­ecule (CEXLOG, GINHAN) or from a carb­oxy­lic acid (YOYWEO). Similar inter­actions to compound 1 can be seen where chloride is the halide anion: BIDBIZ (Shao et al., 1982[Shao, M., Wang, L., Zheng, X. & Tang, Y. (1982). Acta Chim. Sinica, 40, 223-232.]) shows hydrogen bonds from the benzyl­urotropinium cation to the chloride anion, accounting for 12.2% of the inter­action surface. Polyiodide compounds appear not to show C—H⋯I inter­actions in the same manner as the above bromide and chloride compounds, but a methyl­urotropinium monoiodide compound (VOBCIY; Ribár et al., 1991[Ribár, B., Mészáros, C., Vladimirov, S., Živanov-Stakić, D. & Golič, L. (1991). Acta Cryst. C47, 1987-1989.]) displays similar inter­actions to 1 with H⋯I hydrogen bonds forming 15.5% of the Hirshfeld surface.

6. Synthesis and crystallization

Uroptropine (11.0 mmol, 1.542 g) and NaI (90.95 mmol, 1.648 g) were dissolved in ethanol and 1,5-di­bromo­pentane (5.00 mmol, 0.595 ml) was added. Clear block-like crystals appeared after 8 days, which were found to be a mixture of compound 1 and [Na(H2O)4(hmta)]2Br2·2H2O (Kruszynski et al., 2012[Kruszynski, R., Sieranski, T., Bilinska, A., Bernat, T. & Czubacka, E. (2012). Struct. Chem. 23, 1643-1656.]), which precluded further analysis, given the instability of hmta adducts to recrystallization.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically (C—H = 0.99 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C11H22BrN4+·Br
Mr 370.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.7897 (2), 14.8937 (3), 11.1294 (2)
β (°) 101.742 (2)
V3) 1426.47 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.09
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO Software System. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.698, 0.788
No. of measured, independent and observed [I > 2σ(I)] reflections 22370, 2992, 2652
Rint 0.040
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.04
No. of reflections 2992
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.64
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO Software System. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND.Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(5-Bromopentyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane bromide top
Crystal data top
C11H22BrN4+·BrF(000) = 744
Mr = 370.14Dx = 1.724 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.7897 (2) ÅCell parameters from 10133 reflections
b = 14.8937 (3) Åθ = 5.0–76.7°
c = 11.1294 (2) ŵ = 7.09 mm1
β = 101.742 (2)°T = 100 K
V = 1426.47 (5) Å3Block, colourless
Z = 40.08 × 0.06 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2652 reflections with I > 2σ(I)
Detector resolution: 10.3196 pixels mm-1Rint = 0.040
ω scansθmax = 76.9°, θmin = 5.0°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
h = 911
Tmin = 0.698, Tmax = 0.788k = 1817
22370 measured reflectionsl = 1314
2992 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0253P)2 + 1.7861P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2992 reflectionsΔρmax = 0.53 e Å3
154 parametersΔρmin = 0.64 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br170.26207 (3)0.11960 (2)0.16658 (2)0.02528 (8)
Br10.83401 (3)0.60049 (2)0.02566 (3)0.03427 (9)
N140.0484 (2)0.32690 (14)0.35699 (18)0.0220 (4)
N90.1817 (2)0.39262 (14)0.55095 (18)0.0209 (4)
N70.3320 (2)0.32645 (13)0.41148 (17)0.0185 (4)
N110.1807 (2)0.23044 (14)0.52273 (19)0.0233 (4)
C130.1875 (3)0.33503 (16)0.3076 (2)0.0204 (4)
H13A0.1884860.3939640.2666000.024*
H13B0.1890790.2874310.2457570.024*
C80.3233 (3)0.40058 (15)0.5049 (2)0.0200 (4)
H8A0.4139600.3961140.5739160.024*
H8B0.3266280.4599960.4656550.024*
C120.3222 (3)0.23654 (16)0.4761 (2)0.0222 (5)
H12A0.3255760.1868750.4175480.027*
H12B0.4128360.2302050.5447500.027*
C40.6585 (3)0.42073 (17)0.2631 (2)0.0228 (5)
H4A0.7232640.4400040.3423770.027*
H4B0.7007570.3632710.2393220.027*
C30.6661 (3)0.49142 (17)0.1656 (2)0.0250 (5)
H3A0.6019000.4716740.0863680.030*
H3B0.6222090.5484780.1890600.030*
C60.4807 (3)0.32939 (16)0.3650 (2)0.0216 (5)
H6A0.4919180.2722730.3221200.026*
H6B0.5687450.3336780.4361010.026*
C20.8312 (3)0.50736 (18)0.1499 (2)0.0267 (5)
H2A0.8749160.4508930.1243590.032*
H2B0.8963960.5264370.2291270.032*
C160.0478 (3)0.23966 (17)0.4192 (2)0.0261 (5)
H16A0.0499800.2334700.4496650.031*
H16B0.0511240.1907830.3595140.031*
C50.4915 (3)0.40688 (17)0.2780 (2)0.0241 (5)
H5A0.4531650.4625230.3104660.029*
H5B0.4245870.3941880.1968980.029*
C150.0467 (3)0.39888 (16)0.4473 (2)0.0228 (5)
H15A0.0503560.3949680.4791130.027*
H15B0.0481580.4578560.4065270.027*
C100.1763 (3)0.30439 (16)0.6095 (2)0.0237 (5)
H10A0.2656890.2988370.6793690.028*
H10B0.0798680.2999280.6422090.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br170.02347 (13)0.02523 (14)0.02747 (13)0.00279 (9)0.00593 (9)0.00790 (9)
Br10.02808 (14)0.04267 (18)0.03123 (15)0.00985 (11)0.00409 (11)0.00965 (11)
N140.0176 (9)0.0237 (11)0.0244 (10)0.0014 (7)0.0038 (7)0.0001 (8)
N90.0214 (9)0.0215 (10)0.0205 (9)0.0016 (7)0.0060 (7)0.0001 (7)
N70.0169 (9)0.0173 (9)0.0213 (9)0.0007 (7)0.0039 (7)0.0005 (7)
N110.0257 (10)0.0193 (10)0.0264 (10)0.0008 (8)0.0092 (8)0.0013 (8)
C130.0169 (10)0.0237 (12)0.0197 (10)0.0002 (8)0.0018 (8)0.0002 (9)
C80.0212 (11)0.0167 (11)0.0220 (10)0.0005 (8)0.0045 (8)0.0026 (8)
C120.0233 (11)0.0167 (11)0.0269 (12)0.0019 (8)0.0062 (9)0.0013 (9)
C40.0191 (11)0.0231 (12)0.0268 (11)0.0003 (9)0.0063 (9)0.0024 (9)
C30.0218 (11)0.0274 (13)0.0264 (12)0.0019 (9)0.0060 (9)0.0011 (10)
C60.0178 (10)0.0233 (12)0.0248 (11)0.0010 (8)0.0069 (8)0.0023 (9)
C20.0248 (12)0.0293 (13)0.0264 (12)0.0019 (10)0.0063 (9)0.0037 (10)
C160.0233 (12)0.0246 (13)0.0308 (13)0.0067 (9)0.0062 (10)0.0015 (10)
C50.0185 (11)0.0273 (13)0.0266 (12)0.0009 (9)0.0050 (9)0.0019 (9)
C150.0199 (11)0.0239 (12)0.0250 (11)0.0049 (9)0.0054 (9)0.0012 (9)
C100.0269 (12)0.0224 (12)0.0230 (11)0.0012 (9)0.0077 (9)0.0021 (9)
Geometric parameters (Å, º) top
Br1—C21.962 (3)C4—H4A0.9900
N14—C131.444 (3)C4—H4B0.9900
N14—C161.473 (3)C4—C31.523 (3)
N14—C151.472 (3)C4—C51.525 (3)
N9—C81.444 (3)C3—H3A0.9900
N9—C151.480 (3)C3—H3B0.9900
N9—C101.472 (3)C3—C21.515 (3)
N7—C131.539 (3)C6—H6A0.9900
N7—C81.529 (3)C6—H6B0.9900
N7—C121.530 (3)C6—C51.522 (3)
N7—C61.501 (3)C2—H2A0.9900
N11—C121.445 (3)C2—H2B0.9900
N11—C161.471 (3)C16—H16A0.9900
N11—C101.471 (3)C16—H16B0.9900
C13—H13A0.9900C5—H5A0.9900
C13—H13B0.9900C5—H5B0.9900
C8—H8A0.9900C15—H15A0.9900
C8—H8B0.9900C15—H15B0.9900
C12—H12A0.9900C10—H10A0.9900
C12—H12B0.9900C10—H10B0.9900
C13—N14—C16109.72 (19)H3A—C3—H3B107.9
C13—N14—C15109.01 (18)C2—C3—C4111.8 (2)
C15—N14—C16108.66 (19)C2—C3—H3A109.2
C8—N9—C15109.30 (18)C2—C3—H3B109.2
C8—N9—C10109.79 (18)N7—C6—H6A108.7
C10—N9—C15107.96 (19)N7—C6—H6B108.7
C8—N7—C13107.64 (17)N7—C6—C5114.37 (19)
C8—N7—C12107.27 (17)H6A—C6—H6B107.6
C12—N7—C13107.99 (17)C5—C6—H6A108.7
C6—N7—C13112.44 (17)C5—C6—H6B108.7
C6—N7—C8112.39 (17)Br1—C2—H2A109.7
C6—N7—C12108.89 (17)Br1—C2—H2B109.7
C12—N11—C16108.50 (19)C3—C2—Br1109.96 (17)
C12—N11—C10109.20 (19)C3—C2—H2A109.7
C10—N11—C16108.76 (19)C3—C2—H2B109.7
N14—C13—N7109.89 (18)H2A—C2—H2B108.2
N14—C13—H13A109.7N14—C16—H16A109.2
N14—C13—H13B109.7N14—C16—H16B109.2
N7—C13—H13A109.7N11—C16—N14111.85 (19)
N7—C13—H13B109.7N11—C16—H16A109.2
H13A—C13—H13B108.2N11—C16—H16B109.2
N9—C8—N7110.37 (18)H16A—C16—H16B107.9
N9—C8—H8A109.6C4—C5—H5A109.4
N9—C8—H8B109.6C4—C5—H5B109.4
N7—C8—H8A109.6C6—C5—C4111.0 (2)
N7—C8—H8B109.6C6—C5—H5A109.4
H8A—C8—H8B108.1C6—C5—H5B109.4
N7—C12—H12A109.4H5A—C5—H5B108.0
N7—C12—H12B109.4N14—C15—N9111.64 (19)
N11—C12—N7111.02 (18)N14—C15—H15A109.3
N11—C12—H12A109.4N14—C15—H15B109.3
N11—C12—H12B109.4N9—C15—H15A109.3
H12A—C12—H12B108.0N9—C15—H15B109.3
H4A—C4—H4B108.1H15A—C15—H15B108.0
C3—C4—H4A109.5N9—C10—H10A109.3
C3—C4—H4B109.5N9—C10—H10B109.3
C3—C4—C5110.7 (2)N11—C10—N9111.71 (19)
C5—C4—H4A109.5N11—C10—H10A109.3
C5—C4—H4B109.5N11—C10—H10B109.3
C4—C3—H3A109.2H10A—C10—H10B107.9
C4—C3—H3B109.2
N7—C6—C5—C4164.35 (19)C3—C4—C5—C6173.8 (2)
C13—N14—C16—N1161.4 (3)C6—N7—C13—N14176.92 (19)
C13—N14—C15—N961.1 (2)C6—N7—C8—N9177.46 (18)
C13—N7—C8—N958.2 (2)C6—N7—C12—N11179.94 (19)
C13—N7—C12—N1157.7 (2)C16—N14—C13—N758.7 (2)
C13—N7—C6—C549.2 (3)C16—N14—C15—N958.4 (2)
C8—N9—C15—N1460.4 (2)C16—N11—C12—N759.3 (2)
C8—N9—C10—N1160.0 (2)C16—N11—C10—N958.7 (2)
C8—N7—C13—N1458.8 (2)C5—C4—C3—C2179.3 (2)
C8—N7—C12—N1158.1 (2)C15—N14—C13—N760.2 (2)
C8—N7—C6—C572.4 (2)C15—N14—C16—N1157.7 (2)
C12—N7—C13—N1456.8 (2)C15—N9—C8—N758.9 (2)
C12—N7—C8—N957.8 (2)C15—N9—C10—N1159.0 (2)
C12—N7—C6—C5168.85 (19)C10—N9—C8—N759.3 (2)
C12—N11—C16—N1460.9 (3)C10—N9—C15—N1459.0 (2)
C12—N11—C10—N959.5 (2)C10—N11—C12—N759.1 (2)
C4—C3—C2—Br1178.93 (17)C10—N11—C16—N1457.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Br170.992.913.800 (2)150
C13—H13B···Br170.992.773.689 (2)155
C15—H15A···Br17i0.992.923.844 (3)156
C8—H8B···Br17ii0.992.823.777 (2)162
C6—H6B···Br17iii0.992.863.819 (2)163
C5—H5B···Br1iv0.993.003.960 (3)163
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Funding information

This publication has emanated from research supported in part by funding from Science Foundation Ireland under grant No. 19/FIP/ZE/7567.

References

First citationAniol, A., Mallick, B., Winter, M. & Feigel, M. (2017). J. Mol. Struct. 1141, 451–456.  Web of Science CSD CrossRef Google Scholar
First citationBetz, R. & Klüfers, P. (2007). Acta Cryst. E63, o4279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlažević, N., Kolbah, D., Belin, B., Šunjić, V. & Kajfež, F. (1979). Synthesis, pp. 161–176.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND.Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDelépine, M. (1895). Bull. Soc. Chim. Paris, 13, 352–355.  Google Scholar
First citationDelépine, M. (1897). Bull. Soc. Chim. Paris, 17, 292–295.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFried, L. E., Manaa, M. R., Pagoria, P. F. & Simpson, R. L. (2001). Annu. Rev. Mater. Res. 31, 291–321.  Web of Science CrossRef CAS Google Scholar
First citationGalat, A. & Elion, G. (1939). J. Am. Chem. Soc. 61, 3585–3586.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKruszynski, R., Sieranski, T., Bilinska, A., Bernat, T. & Czubacka, E. (2012). Struct. Chem. 23, 1643–1656.  Web of Science CSD CrossRef CAS Google Scholar
First citationLo, T. S., Hammer, K. D. P., Zegarra, M. & Cho, W. C. S. (2014). Expert Rev. Anti Infect. Ther. 12, 549–554.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, W., Chen, K., Li, Y., Hao, N., Wang, X. & Ouyang, P. (2017). Engineering, 3, 308–317.  Web of Science CrossRef Google Scholar
First citationMak, T. C. W. (1984). Inorg. Chem. 23, 620–622.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationQingchuan, Y., Meicheng, S. & Minxie, Q. (1983). Huaxue Xuebao, 41, 176–178.  Google Scholar
First citationReddy, D. S., Panneerselvam, K., Shimoni, L., Carrell, H. L. & Desiraju, G. R. (1994). J. Mol. Struct. 327, 113–120.  CAS Google Scholar
First citationRibár, B., Mészáros, C., Vladimirov, S., Živanov-Stakić, D. & Golič, L. (1991). Acta Cryst. C47, 1987–1989.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO Software System. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShao, M., Wang, L., Zheng, X. & Tang, Y. (1982). Acta Chim. Sinica, 40, 223–232.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWang, J., Lu, X., Ying, H., Ma, W., Xu, S., Wang, X., Chen, K. & Ouyang, P. (2018). Front. Microbiol. 9, 1312.  Web of Science CrossRef PubMed Google Scholar
First citationYang, Q., Shao, M. & Qian, M. (1983). Acta Chim. Sinica, 41, 176-181.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds