research communications
Redetermination of K2Mg3(OH)2(SO4)3(H2O)2 from single-crystal X-ray data revealing the correct hydrogen-atom positions
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
In comparison with the previous 2Mg3(OH)2(SO4)3(H2O)2, dipotassium trimagnesium dihydroxide tris(sulfate) dihydrate, from laboratory powder X-ray diffraction data [Kubel & Cabaret-Lampin (2013). Z. Anorg. Allg. Chem. 639, 1782–1786], the present redetermination against CCD single-crystal data has allowed for the modelling of all non-H atoms with anisotropic displacement parameters. As well as higher accuracy and precision in terms of bond lengths and angles, the clear localization of the H-atom positions leads also to a reasonable hydrogen-bonding scheme for this hydroxy hydrate. The structure consists of (100) sheets composed of corner- and edge-sharing [MgO6] octahedra and sulfate tetrahedra. Adjacent sheets are linked by the potassium cations and a hydrogen bond of medium strength involving the water molecule. The title compound is isotypic with its CoII and MnII analogues: the three K2M3(OH)2(SO4)3(H2O)2 (M = Mg, Co, Mn) structures are quantitatively compared.
of KKeywords: crystal structure; redetermination; potassium magnesium sulfate; hydrogen bonding; structure comparison.
CCDC reference: 2050138
1. Chemical context
In our recent projects focused on hydrothermal phase-formation studies in the systems M/XVI/TeIV/O/H (X = S, Se), it was tested whether tetrahedral sulfate or selenate anions can be incorporated into oxidotellurates(IV) of different divalent metals M. So far, this concept proved to be successful for M = Hg (Weil & Shirkhanlou, 2015), M = Ca, Cd, Sr (Weil & Shirkhanlou, 2017a), M = Pb (Weil & Shirkhanlou, 2017b) as well as for M = Zn, Mg (Weil & Shirkhanlou, 2017c). However, in nearly all cases multi-phase formation was observed under the given hydrothermal conditions, and the target compounds, i.e. metal oxidochalcogenates(IV,VI) with both oxidosulfate(VI) or oxidoselenate(VI) and oxidotellurate(IV) building units, appeared only as minority phases next to other different phases. The same holds for the Mg/S/Te/O/H system when working at pH ∼10 by using potassium hydroxide as a base. From one of the reaction batches, high-quality single crystals of the title compound, K2Mg3(OH)2(SO4)3(H2O)2, could be isolated as one of the products. A crystal-structure of this phase has already been performed by against laboratory powder X-ray diffraction data (Kubel & Cabaret-Lampin, 2013). In the corresponding structure model, H-atom positions were estimated and optimized by energy minimization, but the resulting hydrogen-bonding pattern was not discussed in detail. A close check of this model revealed chemically implausible O—H bond lengths and O—H⋯O angles (Table 1). For example, H1 is more tightly bonded to O7 than to the actual hydroxide O atom (O8); the second hydroxyl group (O9) shows a too large O—H distance accompanied with large D⋯A distances or a too small O9—H2⋯O8 angle; the water molecule (O10) shows likewise either unreasonable H⋯A distances or D—H⋯A angles. Hence a redetermination of the of K2Mg3(OH)2(SO4)3(H2O)2 to establish a more reasonable hydrogen-bonding pattern by using single crystal X-ray diffraction CCD data seemed appropriate and is reported here.
2. Structural commentary
Of the 19 atoms in the x = 0 (Wyckoff position 4 a); all other atoms in the are on general sites (8 b). Both MgII atoms are octahedrally coordinated by oxygen atoms. Mg1 is bonded to four O atoms belonging to sulfate groups (O5, O1 and its symmetry-related counterpart, O7) and to O atoms of two OH groups (O8, O9), whereas Mg2 is bonded to three sulfate O atoms (O4, O6, O2), two OH groups (O8, O9) and an O atom belonging to a water molecule (O10). Two [Mg2(H2O)(OH)2O3] octahedra build up a {Mg2(H2O)1/1O3/1(OH)2/2}2 dimer by edge-sharing the two OH groups. These dimers are linked to the [Mg1(OH)2O4] octahedra by corner-sharing the two OH groups, which leads to the formation of zigzag chains running parallel to [001]. Sulfate tetrahedra join neighbouring chains into sheets extending parallel to (100). Adjacent sheets are linked into a three-dimensional network by potassium cations (irregular nine-coordination), together with a hydrogen bond involving the water molecule (O10) and a sulfate O atom (O3) (Fig. 1).
(1 K, 2 Mg, 2 S, 10 O, 4 H), eight (Mg1, S2, O5, O7, O8, O9, H1 and H2) are located on a crystallographic mirror plane atThe bond lengths for the two octahedral [MgO6] groups, the tetrahedral sulfate groups and the nine-coordinate potassium cations, with mean values of 2.089, 1.474 and 2.964 Å, respectively, are in very good agreement with the expected values of 2.089 (59), 1.473 (7) and 2.955 (214) Å, provided recently by Gagné & Hawthorne (2016, 2018). In terms of a comparison between the current single-crystal study and the previous powder study by Kubel & Cabaret-Lampin (2013), individual bond lengths as obtained from the single crystal study are, as expected, more precise and accurate, with the largest deviation of Δ = 0.092 Å for the Mg1—O5iv bond (Table 2).
|
The hydrogen-bonding pattern derived from the single crystal study is chemically plausible (Table 3, Fig. 1). The water molecule (O10) participates in two nearly linear O—H⋯O hydrogen bonds to two sulfate O atoms. One is of weak nature to O5 as the acceptor atom [D⋯A = 3.009 (2) Å] within a sheet, the other of medium strength to O3 [D⋯A = 2.722 (2) Å] between adjacent layers. The hydroxy group involving O8 exhibits a weak hydrogen bond to a neighbouring sulfate O atom [O7; D⋯A = 3.068 (2) Å]. The other hydroxy group involving O9 appears not to be involved in hydrogen bonding: the next nearest O atoms that could act as acceptor atoms are two symmetry-related O6 atoms (−x, −y + 1, z + ; x, −y + 1, z + ), both at a distance of 3.405 (2) Å from O9. Such a long D⋯A distance is usually not considered as relevant for hydrogen bonding but was discussed for the K2Co3(OH)2(SO4)3(H2O)2 structure as part of a bifurcated O—H⋯(O,O) hydrogen bond of very weak nature, here with D⋯A = 3.370 (9) Å (Effenberger & Langhof, 1984).
|
K2Mg3(OH)2(SO4)3(H2O)2 is isotypic with its Co (Effenberger & Langhof, 1984) and Mn (Yu et al., 2007) analogues. The three isotypic K2M3(OH)2(SO4)3(H2O)2 (M = Mg, Co, Mn) structures were quantitatively compared using the compstru program (de la Flor et al., 2016), available at the Bilbao Crystallographic Server (Aroyo et al., 2006). For this purpose, the hydrogen atoms were not taken into account. In relation to the title Mg structure, the Co and Mn structures show the following values for evaluation of the structural similarity. Co: the degree of is 0.0034, the maximum displacement between atomic positions of paired atoms is 0.0553 Å for the pair O9, the arithmetic mean of the distance between paired atoms is 0.0295 Å, and the measure of similarity is 0.010. Corresponding values for the Mn structure are: 0.0126, 0.1343 Å for pair O2, 0.0768 Å and 0.013, respectively. The two value sets indicate a higher similarity between the Mg and Co structures compared to the Mn structure. This is most probably related to the ionic radii (Shannon, 1976) of the six-coordinate metal cations that differ only marginally for Mg (0.72 Å) and Co (0.745 Å, assuming a high-spin 3d7 configuration), whereas Mn (0.83 Å for a high-spin 3d5 state) is considerately greater.
3. Synthesis and crystallization
A mixture of 380 mg of MgSO4·7H2O, 100 mg of TeO2 and 70 mg of KOH was placed in a 5 ml Teflon container that was subsequently filled with 2 ml of water and sealed with a Teflon lid. The closed container was placed in a steel autoclave and was heated at 413 K for one week at autogenous pressure and then cooled down to room temperature within 5 h. The recovered solids consisted of Mg2Te3O8 (Lin et al., 2013) as the main product (checked by powder X-ray diffraction of the bulk), besides minor amounts of caminite, Mg2(SO4)(OH)2 (Keefer et al., 1981), the sulfate tellurite Mg3(SO4)(TeO3)(OH)2(H2O)2 (Weil & Shirkhanlou, 2017c) and the title compound (the latter phases determined by single-crystal X-ray diffraction).
4. Refinement
Crystal data, data collection and structure . Atomic coordinates and labelling for the non-H atoms were adapted from the previous from powder X-ray diffraction data (Kubel & Cabaret-Lampin, 2013). H atoms were clearly discernible in difference-Fourier maps and were refined freely. The (Table 4) indicates that the has been determined correctly.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2050138
https://doi.org/10.1107/S2056989020016217/hb7955sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020016217/hb7955Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates taken from previous program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Atoms for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).K2Mg3(OH)2(SO4)3(H2O)2 | Dx = 2.595 Mg m−3 |
Mr = 509.36 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmc21 | Cell parameters from 9959 reflections |
a = 17.8228 (19) Å | θ = 2.8–33.0° |
b = 7.4879 (8) Å | µ = 1.45 mm−1 |
c = 9.7686 (10) Å | T = 100 K |
V = 1303.7 (2) Å3 | Plate, colourless |
Z = 4 | 0.10 × 0.08 × 0.01 mm |
F(000) = 1024 |
Bruker APEXII CCD diffractometer | 2430 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 33.1°, θmin = 2.3° |
Tmin = 0.668, Tmax = 0.747 | h = −27→27 |
31799 measured reflections | k = −11→11 |
2535 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0167P)2 + 0.9127P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.039 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.30 e Å−3 |
2535 reflections | Δρmin = −0.38 e Å−3 |
132 parameters | Absolute structure: Flack x determined using 1125 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.010 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
K1 | 0.19321 (2) | 0.04648 (5) | −0.26016 (4) | 0.00947 (7) | |
Mg1 | 0.0000 | 0.19893 (11) | 0.00487 (10) | 0.00514 (15) | |
Mg2 | 0.08605 (4) | 0.46648 (8) | 0.28489 (7) | 0.00532 (11) | |
S1 | 0.17492 (2) | 0.30375 (5) | 0.01513 (5) | 0.00452 (7) | |
S2 | 0.0000 | 0.18319 (8) | −0.31682 (6) | 0.00448 (10) | |
O1 | 0.11670 (7) | 0.16279 (16) | 0.00789 (16) | 0.0074 (2) | |
O2 | 0.17476 (8) | 0.40504 (19) | −0.11519 (14) | 0.0075 (2) | |
O3 | 0.24837 (8) | 0.21941 (17) | 0.03462 (15) | 0.0091 (2) | |
O4 | 0.15996 (8) | 0.42187 (18) | 0.13162 (14) | 0.0079 (2) | |
O5 | 0.0000 | 0.0697 (2) | −0.44063 (19) | 0.0067 (3) | |
O6 | 0.06775 (8) | 0.29624 (17) | −0.32058 (15) | 0.0086 (2) | |
O7 | 0.0000 | 0.0711 (2) | −0.1934 (2) | 0.0087 (4) | |
O8 | 0.0000 | 0.3133 (2) | 0.1979 (2) | 0.0055 (3) | |
O9 | 0.0000 | 0.4505 (2) | −0.0823 (2) | 0.0062 (3) | |
O10 | 0.12236 (8) | 0.23658 (19) | 0.39003 (15) | 0.0084 (2) | |
H1 | 0.0000 | 0.213 (6) | 0.241 (5) | 0.023 (11)* | |
H2 | 0.0000 | 0.509 (7) | −0.023 (5) | 0.031 (13)* | |
H3 | 0.092 (2) | 0.182 (5) | 0.433 (3) | 0.030 (9)* | |
H4 | 0.159 (2) | 0.246 (6) | 0.441 (4) | 0.046 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.01028 (16) | 0.00894 (14) | 0.00920 (15) | −0.00051 (13) | 0.00151 (15) | −0.00034 (14) |
Mg1 | 0.0061 (4) | 0.0045 (3) | 0.0048 (4) | 0.000 | 0.000 | 0.0002 (3) |
Mg2 | 0.0054 (3) | 0.0052 (3) | 0.0053 (2) | 0.00037 (19) | 0.0001 (2) | −0.0003 (2) |
S1 | 0.00477 (16) | 0.00458 (15) | 0.00422 (16) | 0.00040 (13) | −0.00005 (15) | 0.00002 (15) |
S2 | 0.0054 (2) | 0.0040 (2) | 0.0041 (2) | 0.000 | 0.000 | −0.00057 (19) |
O1 | 0.0063 (5) | 0.0060 (5) | 0.0101 (6) | −0.0022 (4) | 0.0003 (5) | −0.0007 (5) |
O2 | 0.0087 (6) | 0.0093 (6) | 0.0044 (6) | −0.0004 (5) | −0.0007 (4) | 0.0021 (4) |
O3 | 0.0057 (5) | 0.0100 (6) | 0.0114 (6) | 0.0025 (4) | 0.0006 (5) | 0.0013 (5) |
O4 | 0.0092 (6) | 0.0084 (6) | 0.0061 (6) | −0.0016 (5) | 0.0022 (5) | −0.0028 (4) |
O5 | 0.0087 (8) | 0.0062 (8) | 0.0053 (8) | 0.000 | 0.000 | −0.0021 (6) |
O6 | 0.0082 (6) | 0.0082 (5) | 0.0096 (6) | −0.0037 (4) | 0.0018 (5) | −0.0028 (5) |
O7 | 0.0144 (9) | 0.0055 (8) | 0.0061 (8) | 0.000 | 0.000 | 0.0009 (6) |
O8 | 0.0059 (8) | 0.0048 (7) | 0.0056 (8) | 0.000 | 0.000 | 0.0006 (6) |
O9 | 0.0081 (8) | 0.0049 (7) | 0.0056 (8) | 0.000 | 0.000 | −0.0005 (6) |
O10 | 0.0077 (6) | 0.0084 (6) | 0.0093 (6) | −0.0006 (5) | −0.0008 (5) | 0.0020 (5) |
K1—O4i | 2.8323 (15) | Mg2—O4 | 2.0220 (15) |
K1—O3i | 2.8594 (15) | Mg2—O6vi | 2.0796 (14) |
K1—O10ii | 2.8704 (15) | Mg2—O2vi | 2.0924 (15) |
K1—O2iii | 2.9436 (14) | Mg2—O8 | 2.0952 (14) |
K1—O6 | 2.9743 (15) | Mg2—O9vii | 2.1026 (14) |
K1—O3ii | 2.9915 (15) | Mg2—O10 | 2.1064 (15) |
K1—O2 | 3.0532 (15) | S1—O4 | 1.4657 (14) |
K1—O1ii | 3.0740 (15) | S1—O3 | 1.4659 (14) |
K1—O1 | 3.0780 (15) | S1—O2 | 1.4818 (14) |
K1—O3 | 3.3068 (15) | S1—O1 | 1.4818 (13) |
Mg1—O9 | 2.067 (2) | S2—O7 | 1.469 (2) |
Mg1—O8 | 2.071 (2) | S2—O6 | 1.4751 (14) |
Mg1—O5iv | 2.081 (2) | S2—O6v | 1.4751 (14) |
Mg1—O1v | 2.0976 (13) | S2—O5 | 1.4779 (19) |
Mg1—O1 | 2.0977 (13) | O10—H3 | 0.79 (4) |
Mg1—O7 | 2.160 (2) | O10—H4 | 0.83 (4) |
O4i—K1—O3i | 49.50 (4) | O4—Mg2—O9vii | 168.75 (7) |
O4i—K1—O10ii | 131.23 (4) | O6vi—Mg2—O9vii | 86.48 (7) |
O3i—K1—O10ii | 166.22 (4) | O2vi—Mg2—O9vii | 97.32 (6) |
O4i—K1—O2iii | 58.07 (4) | O8—Mg2—O9vii | 83.00 (6) |
O3i—K1—O2iii | 105.47 (4) | O4—Mg2—O10 | 91.48 (6) |
O10ii—K1—O2iii | 80.80 (4) | O6vi—Mg2—O10 | 171.10 (7) |
O4i—K1—O6 | 124.61 (4) | O2vi—Mg2—O10 | 85.19 (6) |
O3i—K1—O6 | 75.47 (4) | O8—Mg2—O10 | 88.59 (7) |
O10ii—K1—O6 | 103.59 (4) | O9vii—Mg2—O10 | 99.50 (7) |
O2iii—K1—O6 | 157.33 (4) | O4—S1—O3 | 108.76 (8) |
O4i—K1—O3ii | 60.13 (4) | O4—S1—O2 | 110.97 (8) |
O3i—K1—O3ii | 79.54 (4) | O3—S1—O2 | 109.50 (8) |
O10ii—K1—O3ii | 89.75 (4) | O4—S1—O1 | 109.84 (8) |
O2iii—K1—O3ii | 79.64 (4) | O3—S1—O1 | 108.94 (8) |
O6—K1—O3ii | 122.18 (4) | O2—S1—O1 | 108.80 (8) |
O4i—K1—O2 | 101.48 (4) | O7—S2—O6 | 110.39 (7) |
O3i—K1—O2 | 79.94 (4) | O7—S2—O6v | 110.39 (7) |
O10ii—K1—O2 | 111.40 (4) | O6—S2—O6v | 109.88 (11) |
O2iii—K1—O2 | 100.33 (4) | O7—S2—O5 | 110.07 (11) |
O6—K1—O2 | 57.19 (4) | O6—S2—O5 | 108.03 (7) |
O3ii—K1—O2 | 158.66 (4) | O6v—S2—O5 | 108.03 (7) |
O4i—K1—O1ii | 100.22 (4) | S1—O1—Mg1 | 127.09 (8) |
O3i—K1—O1ii | 87.55 (4) | S1—O1—K1viii | 90.99 (6) |
O10ii—K1—O1ii | 78.76 (4) | Mg1—O1—K1viii | 121.06 (6) |
O2iii—K1—O1ii | 121.72 (4) | S1—O1—K1 | 86.09 (6) |
O6—K1—O1ii | 80.84 (4) | Mg1—O1—K1 | 117.63 (7) |
O3ii—K1—O1ii | 46.57 (4) | K1viii—O1—K1 | 106.63 (4) |
O2—K1—O1ii | 137.93 (4) | S1—O2—Mg2ix | 129.61 (8) |
O4i—K1—O1 | 134.68 (4) | S1—O2—K1x | 126.58 (7) |
O3i—K1—O1 | 125.75 (4) | Mg2ix—O2—K1x | 102.37 (5) |
O10ii—K1—O1 | 65.12 (4) | S1—O2—K1 | 87.03 (6) |
O2iii—K1—O1 | 92.68 (4) | Mg2ix—O2—K1 | 105.63 (5) |
O6—K1—O1 | 69.99 (4) | K1x—O2—K1 | 90.41 (4) |
O3ii—K1—O1 | 154.68 (4) | S1—O3—K1xi | 98.75 (7) |
O2—K1—O1 | 46.28 (3) | S1—O3—K1viii | 94.61 (7) |
O1ii—K1—O1 | 125.08 (4) | K1xi—O3—K1viii | 93.32 (4) |
O4i—K1—O3 | 91.01 (4) | S1—O3—K1 | 77.88 (6) |
O3i—K1—O3 | 105.201 (16) | K1xi—O3—K1 | 163.50 (5) |
O10ii—K1—O3 | 88.56 (4) | K1viii—O3—K1 | 103.02 (4) |
O2iii—K1—O3 | 58.95 (4) | S1—O4—Mg2 | 142.48 (9) |
O6—K1—O3 | 98.63 (4) | S1—O4—K1xi | 99.91 (7) |
O3ii—K1—O3 | 138.28 (5) | Mg2—O4—K1xi | 108.16 (6) |
O2—K1—O3 | 44.26 (3) | S2—O5—Mg1xii | 139.91 (12) |
O1ii—K1—O3 | 166.75 (4) | S2—O6—Mg2ix | 127.33 (9) |
O1—K1—O3 | 43.96 (4) | S2—O6—K1 | 104.45 (7) |
O9—Mg1—O8 | 89.91 (8) | Mg2ix—O6—K1 | 108.72 (6) |
O9—Mg1—O5iv | 170.48 (9) | S2—O7—Mg1 | 118.84 (11) |
O8—Mg1—O5iv | 99.61 (8) | Mg1—O8—Mg2 | 126.57 (6) |
O9—Mg1—O1v | 97.08 (4) | Mg1—O8—Mg2v | 126.57 (6) |
O8—Mg1—O1v | 92.32 (5) | Mg2—O8—Mg2v | 94.11 (8) |
O5iv—Mg1—O1v | 82.63 (4) | Mg1—O8—H1 | 95 (3) |
O9—Mg1—O1 | 97.08 (4) | Mg2—O8—H1 | 106.4 (19) |
O8—Mg1—O1 | 92.32 (5) | Mg2v—O8—H1 | 106.4 (19) |
O5iv—Mg1—O1 | 82.63 (4) | Mg1—O9—Mg2xiii | 121.58 (6) |
O1v—Mg1—O1 | 165.09 (8) | Mg1—O9—Mg2ix | 121.58 (6) |
O9—Mg1—O7 | 91.97 (8) | Mg2xiii—O9—Mg2ix | 93.68 (8) |
O8—Mg1—O7 | 178.12 (9) | Mg1—O9—H2 | 103 (4) |
O5iv—Mg1—O7 | 78.51 (8) | Mg2xiii—O9—H2 | 108 (3) |
O1v—Mg1—O7 | 87.44 (5) | Mg2ix—O9—H2 | 108 (3) |
O1—Mg1—O7 | 87.44 (5) | Mg2—O10—K1viii | 119.30 (6) |
O4—Mg2—O6vi | 82.90 (6) | Mg2—O10—H3 | 118 (3) |
O4—Mg2—O2vi | 85.94 (6) | K1viii—O10—H3 | 101 (2) |
O6vi—Mg2—O2vi | 87.52 (6) | Mg2—O10—H4 | 118 (3) |
O4—Mg2—O8 | 94.94 (6) | K1viii—O10—H4 | 92 (3) |
O6vi—Mg2—O8 | 98.73 (7) | H3—O10—H4 | 105 (4) |
O2vi—Mg2—O8 | 173.74 (7) |
Symmetry codes: (i) −x+1/2, −y+1/2, z−1/2; (ii) x, −y, z−1/2; (iii) −x+1/2, y−1/2, z; (iv) −x, −y, z+1/2; (v) −x, y, z; (vi) x, −y+1, z+1/2; (vii) −x, −y+1, z+1/2; (viii) x, −y, z+1/2; (ix) x, −y+1, z−1/2; (x) −x+1/2, y+1/2, z; (xi) −x+1/2, −y+1/2, z+1/2; (xii) −x, −y, z−1/2; (xiii) −x, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H1···O7iv | 0.86 (4) | 2.22 (4) | 3.068 (2) | 168 (3) |
O9—H2 | 0.73 (5) | ? | ? | ? |
O10—H3···O5xiv | 0.79 (4) | 2.22 (4) | 3.009 (2) | 171 (3) |
O10—H3···O6xiv | 0.79 (4) | 2.59 (3) | 3.023 (2) | 116 (3) |
O10—H4···O3xi | 0.83 (4) | 1.90 (4) | 2.722 (2) | 171 (4) |
Symmetry codes: (iv) −x, −y, z+1/2; (xi) −x+1/2, −y+1/2, z+1/2; (xiv) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O8i | 0.82 | 2.54 | 3.258 (14) | 147 |
O9—H2···O8 | 1.13 | 2.18 | 2.901 (14) | 119 |
O9—H2···O6ii | 1.13 | 2.52 | 3.506 (13) | 145 |
O9—H2···O6iii | 1.13 | 2.52 | 3.506 (13) | 145 |
O10—H3···O5iv | 0.85 | 2.41 | 3.066 (9) | 134 |
O10—H3···O6iv | 0.85 | 2.55 | 3.038 (13) | 118 |
O10—H3···O1 | 0.85 | 2.52 | 3.229 (9) | 142 |
O10—H4···O2iii | 0.97 | 2.39 | 2.812 (8) | 106 |
O10—H4···O3v | 0.97 | 1.77 | 2.698 (9) | 158 |
Symmetry codes; (i) x, -y, z + 1/2; (ii) -x, -y + 1, z + 1/2; (iii) x, -y+1, z + 1/2; (iv) x, y, z + 1; (v) -x + 1/2, -y + 1/2, z + 1/2. |
Bond | single crystal study | powder study |
K1—O4i | 2.8323 (15) | 2.902 (7) |
K1—O3i | 2.8594 (15) | 2.877 (8) |
K1—O10ii | 2.8704 (15) | 2.874 (9) |
K1—O2iii | 2.9436 (14) | 2.948 (8) |
K1—O6 | 2.9743 (15) | 2.945 (8) |
K1—O3ii | 2.9915 (15) | 3.016 (9) |
K1—O2 | 3.0532 (15) | 3.116 (9) |
K1—O1ii | 3.0740 (15) | 3.118 (10) |
K1—O1 | 3.0780 (15) | 3.128 (11) |
K1—O3 | 3.3068 (15) | 3.311 (10) |
Mg1—O9 | 2.067 (2) | 2.139 (11) |
Mg1—O8 | 2.071 (2) | 2.104 (10) |
Mg1—O5iv | 2.081 (2) | 1.989 (10) |
Mg1—O1v | 2.0976 (13) | 2.049 (5) |
Mg1—O1 | 2.0977 (13) | 2.049 (5) |
Mg1—O7 | 2.160 (2) | 2.139 (11) |
Mg2—O4 | 2.0220 (15) | 2.012 (9) |
Mg2—O6vi | 2.0796 (14) | 2.099 (8) |
Mg2—O2vi | 2.0924 (15) | 2.117 (8) |
Mg2—O8 | 2.0952 (14) | 2.036 (7) |
Mg2—O9vii | 2.1026 (14) | 2.045 (9) |
Mg2—O10 | 2.1064 (15) | 2.163 (8) |
S1—O4 | 1.4657 (14) | 1.487 (10) |
S1—O3 | 1.4659 (14) | 1.463 (6) |
S1—O2 | 1.4818 (14) | 1.500 (10) |
S1—O1 | 1.4818 (13) | 1.476 (6) |
S2—O7 | 1.469 (2) | 1.483 (13) |
S2—O6 | 1.4751 (14) | 1.468 (8) |
S2—O6v | 1.4751 (14) | 1.468 (8) |
S2—O5 | 1.4779 (19) | 1.530 (12) |
Symmetry codes: (i) -x + 1/2, -y + 1/2, z - 1/2; (ii) x, -y, z - 1/2; (iii) -x + 1/2, y -1/2, z; (iv) -x, -y, z + 1/2; (v) -x, y, z; (vi) x, -y + 1, z + 1/2; (vii) -x, -y + 1, z + 1/2. |
Acknowledgements
The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the powder and single-crystal diffractometers.
References
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27. Web of Science CrossRef CAS Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA Google Scholar
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Effenberger, H. & Langhof, H. (1984). Monatsh. Chem. 115, 165–177. CrossRef ICSD CAS Web of Science Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96. Web of Science CrossRef IUCr Journals Google Scholar
Keefer, K. D., Hochella, M. F. Jr & de Jong, B. H. W. S. (1981). Acta Cryst. B37, 1003–1006. CrossRef ICSD CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782–1786. CrossRef ICSD CAS Google Scholar
Lin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. & Guo, G.-C. (2013). Z. Anorg. Allg. Chem. 639, 31–34. Web of Science CrossRef ICSD CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Weil, M. & Shirkhanlou, M. (2015). Z. Anorg. Allg. Chem. 641, 1459–1466. Web of Science CrossRef ICSD CAS Google Scholar
Weil, M. & Shirkhanlou, M. (2017a). Z. Anorg. Allg. Chem. 643, 330–339. Web of Science CrossRef CAS Google Scholar
Weil, M. & Shirkhanlou, M. (2017b). Z. Anorg. Allg. Chem. 643, 757–765. Web of Science CrossRef CAS Google Scholar
Weil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 749–756. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J.-H., Ye, L., Ding, H., Chen, Y., Hou, Q., Zhang, X. & Xu, J. Q. (2007). Inorg. Chem. Commun. 10, 159–162. CrossRef ICSD CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.