research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of K2Mg3(OH)2(SO4)3(H2O)2 from single-crystal X-ray data revealing the correct hydrogen-atom positions

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 December 2020; accepted 14 December 2020; online 1 January 2021)

In comparison with the previous structure determination of K2Mg3(OH)2(SO4)3(H2O)2, dipotassium trimagnesium di­hydroxide tris­(sulfate) dihydrate, from laboratory powder X-ray diffraction data [Kubel & Cabaret-Lampin (2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.]). Z. Anorg. Allg. Chem. 639, 1782–1786], the present redetermination against CCD single-crystal data has allowed for the modelling of all non-H atoms with anisotropic displacement parameters. As well as higher accuracy and precision in terms of bond lengths and angles, the clear localization of the H-atom positions leads also to a reasonable hydrogen-bonding scheme for this hy­droxy hydrate. The structure consists of (100) sheets composed of corner- and edge-sharing [MgO6] octa­hedra and sulfate tetra­hedra. Adjacent sheets are linked by the potassium cations and a hydrogen bond of medium strength involving the water mol­ecule. The title compound is isotypic with its CoII and MnII analogues: the three K2M3(OH)2(SO4)3(H2O)2 (M = Mg, Co, Mn) structures are qu­anti­tatively compared.

1. Chemical context

In our recent projects focused on hydro­thermal phase-formation studies in the systems M/XVI/TeIV/O/H (X = S, Se), it was tested whether tetra­hedral sulfate or selenate anions can be incorporated into oxidotellurates(IV) of different divalent metals M. So far, this concept proved to be successful for M = Hg (Weil & Shirkhanlou, 2015[Weil, M. & Shirkhanlou, M. (2015). Z. Anorg. Allg. Chem. 641, 1459-1466.]), M = Ca, Cd, Sr (Weil & Shirkhanlou, 2017a[Weil, M. & Shirkhanlou, M. (2017a). Z. Anorg. Allg. Chem. 643, 330-339.]), M = Pb (Weil & Shirkhanlou, 2017b[Weil, M. & Shirkhanlou, M. (2017b). Z. Anorg. Allg. Chem. 643, 757-765.]) as well as for M = Zn, Mg (Weil & Shirkhanlou, 2017c[Weil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 749-756.]). However, in nearly all cases multi-phase formation was observed under the given hydro­thermal conditions, and the target compounds, i.e. metal oxidochalcogenates(IV,VI) with both oxido­sulfate­(VI) or oxidoselenate(VI) and oxidotellurate(IV) building units, appeared only as minority phases next to other different phases. The same holds for the Mg/S/Te/O/H system when working at pH ∼10 by using potassium hydroxide as a base. From one of the reaction batches, high-quality single crystals of the title compound, K2Mg3(OH)2(SO4)3(H2O)2, could be isolated as one of the products. A crystal-structure refinement of this phase has already been performed by Rietveld refinement against laboratory powder X-ray diffraction data (Kubel & Cabaret-Lampin, 2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.]). In the corresponding structure model, H-atom positions were estimated and optimized by energy minimization, but the resulting hydrogen-bonding pattern was not discussed in detail. A close check of this model revealed chemically implausible O—H bond lengths and O—H⋯O angles (Table 1[link]). For example, H1 is more tightly bonded to O7 than to the actual hydroxide O atom (O8); the second hydroxyl group (O9) shows a too large O—H distance accompanied with large DA distances or a too small O9—H2⋯O8 angle; the water mol­ecule (O10) shows likewise either unreasonable H⋯A distances or D—H⋯A angles. Hence a redetermination of the crystal structure of K2Mg3(OH)2(SO4)3(H2O)2 to establish a more reasonable hydrogen-bonding pattern by using single crystal X-ray diffraction CCD data seemed appropriate and is reported here.

Table 1
Hydrogen-bond geometry (Å, °) from the previous model based on powder X-ray diffraction data and geometry-optimized H-atom positions (Kubel & Cabaret-Lampin, 2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.])

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O8i 0.82 2.54 3.258 (14) 147
O9—H2⋯O8 1.13 2.18 2.901 (14) 119
O9—H2⋯O6ii 1.13 2.52 3.506 (13) 145
O9—H2⋯O6iii 1.13 2.52 3.506 (13) 145
O10—H3⋯O5iv 0.85 2.41 3.066 (9) 134
O10—H3⋯O6iv 0.85 2.55 3.038 (13) 118
O10—H3⋯O1 0.85 2.52 3.229 (9) 142
O10—H4⋯O2iii 0.97 2.39 2.812 (8) 106
O10—H4⋯O3v 0.97 1.77 2.698 (9) 158
Symmetry codes; (i) x, −y, z + [{1\over 2}]; (ii) −x, −y + 1, z + [{1\over 2}]; (iii) x, −y + 1, z + [{1\over 2}]; (iv) x, y, z + 1; (v) −x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].

2. Structural commentary

Of the 19 atoms in the asymmetric unit (1 K, 2 Mg, 2 S, 10 O, 4 H), eight (Mg1, S2, O5, O7, O8, O9, H1 and H2) are located on a crystallographic mirror plane at x = 0 (Wyckoff position 4 a); all other atoms in the asymmetric unit are on general sites (8 b). Both MgII atoms are octa­hedrally coordinated by oxygen atoms. Mg1 is bonded to four O atoms belonging to sulfate groups (O5, O1 and its symmetry-related counterpart, O7) and to O atoms of two OH groups (O8, O9), whereas Mg2 is bonded to three sulfate O atoms (O4, O6, O2), two OH groups (O8, O9) and an O atom belonging to a water mol­ecule (O10). Two [Mg2(H2O)(OH)2O3] octa­hedra build up a {Mg2(H2O)1/1O3/1(OH)2/2}2 dimer by edge-sharing the two OH groups. These dimers are linked to the [Mg1(OH)2O4] octa­hedra by corner-sharing the two OH groups, which leads to the formation of zigzag chains running parallel to [001]. Sulfate tetra­hedra join neighbouring chains into sheets extending parallel to (100). Adjacent sheets are linked into a three-dimensional network by potassium cations (irregular nine-coordination), together with a hydrogen bond involving the water mol­ecule (O10) and a sulfate O atom (O3) (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of K2Mg3(OH)2(SO4)3(H2O)2 in a projection along [0[\overline{1}]0]. Displacement ellipsoids are drawn at the 98% probability level for non-H atoms, and H atoms are given as spheres of arbitrary radius. Colour code: [MgO6] octa­hedra are green, SO4 tetra­hedra are red; sulfate O atoms are white, O atoms of OH are yellow (O8) and blue (O9), and O atoms of water mol­ecules are orange (O10). Hydrogen bonds involving the hy­droxy group O8 are indicated by yellow lines and those involving the water mol­ecule by orange lines.

The bond lengths for the two octa­hedral [MgO6] groups, the tetra­hedral sulfate groups and the nine-coordinate potassium cations, with mean values of 2.089, 1.474 and 2.964 Å, respectively, are in very good agreement with the expected values of 2.089 (59), 1.473 (7) and 2.955 (214) Å, provided recently by Gagné & Hawthorne (2016[Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602-625.], 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79-96.]). In terms of a comparison between the current single-crystal study and the previous powder study by Kubel & Cabaret-Lampin (2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.]), individual bond lengths as obtained from the single crystal study are, as expected, more precise and accurate, with the largest deviation of Δ = 0.092 Å for the Mg1—O5iv bond (Table 2[link]).

Table 2
Comparison of bond lengths (Å) from the current single-crystal X-ray study and the previous powder X-ray diffraction study (Kubel & Cabaret-Lampin, 2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.])

Bond single-crystal study powder study
K1—O4i 2.8323 (15) 2.902 (7)
K1—O3i 2.8594 (15) 2.877 (8)
K1—O10ii 2.8704 (15) 2.874 (9)
K1—O2iii 2.9436 (14) 2.948 (8)
K1—O6 2.9743 (15) 2.945 (8)
K1—O3ii 2.9915 (15) 3.016 (9)
K1—O2 3.0532 (15) 3.116 (9)
K1—O1ii 3.0740 (15) 3.118 (10)
K1—O1 3.0780 (15) 3.128 (11)
K1—O3 3.3068 (15) 3.311 (10)
Mg1—O9 2.067 (2) 2.139 (11)
Mg1—O8 2.071 (2) 2.104 (10)
Mg1—O5iv 2.081 (2) 1.989 (10)
Mg1—O1v 2.0976 (13) 2.049 (5)
Mg1—O1 2.0977 (13) 2.049 (5)
Mg1—O7 2.160 (2) 2.139 (11)
Mg2—O4 2.0220 (15) 2.012 (9)
Mg2—O6vi 2.0796 (14) 2.099 (8)
Mg2—O2vi 2.0924 (15) 2.117 (8)
Mg2—O8 2.0952 (14) 2.036 (7)
Mg2—O9vii 2.1026 (14) 2.045 (9)
Mg2—O10 2.1064 (15) 2.163 (8)
S1—O4 1.4657 (14) 1.487 (10)
S1—O3 1.4659 (14) 1.463 (6)
S1—O2 1.4818 (14) 1.500 (10)
S1—O1 1.4818 (13) 1.476 (6)
S2—O7 1.469 (2) 1.483 (13)
S2—O6 1.4751 (14) 1.468 (8)
S2—O6v 1.4751 (14) 1.468 (8)
S2—O5 1.4779 (19) 1.530 (12)
Symmetry codes: (i) −x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, −y, z − [{1\over 2}]; (iii) −x + [{1\over 2}], y − [{1\over 2}], z; (iv) −x, −y, z + [{1\over 2}]; (v) −x, y, z; (vi) x, −y + 1, z + [{1\over 2}]; (vii) −x, −y + 1, z + [{1\over 2}].

The hydrogen-bonding pattern derived from the single crystal study is chemically plausible (Table 3[link], Fig. 1[link]). The water mol­ecule (O10) participates in two nearly linear O—H⋯O hydrogen bonds to two sulfate O atoms. One is of weak nature to O5 as the acceptor atom [DA = 3.009 (2) Å] within a sheet, the other of medium strength to O3 [DA = 2.722 (2) Å] between adjacent layers. The hy­droxy group involving O8 exhibits a weak hydrogen bond to a neighbouring sulfate O atom [O7; DA = 3.068 (2) Å]. The other hy­droxy group involving O9 appears not to be involved in hydrogen bonding: the next nearest O atoms that could act as acceptor atoms are two symmetry-related O6 atoms (−x, −y + 1, z + [{1\over 2}]; x, −y + 1, z + [{1\over 2}]), both at a distance of 3.405 (2) Å from O9. Such a long DA distance is usually not considered as relevant for hydrogen bonding but was discussed for the K2Co3(OH)2(SO4)3(H2O)2 structure as part of a bifurcated O—H⋯(O,O) hydrogen bond of very weak nature, here with DA = 3.370 (9) Å (Effenberger & Langhof, 1984[Effenberger, H. & Langhof, H. (1984). Monatsh. Chem. 115, 165-177.]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1⋯O7i 0.86 (4) 2.22 (4) 3.068 (2) 168 (3)
O9—H2 0.73 (5) ? ? ?
O10—H3⋯O5ii 0.79 (4) 2.22 (4) 3.009 (2) 171 (3)
O10—H3⋯O6ii 0.79 (4) 2.59 (3) 3.023 (2) 116 (3)
O10—H4⋯O3iii 0.83 (4) 1.90 (4) 2.722 (2) 171 (4)
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

K2Mg3(OH)2(SO4)3(H2O)2 is isotypic with its Co (Effenberger & Langhof, 1984[Effenberger, H. & Langhof, H. (1984). Monatsh. Chem. 115, 165-177.]) and Mn (Yu et al., 2007[Yu, J.-H., Ye, L., Ding, H., Chen, Y., Hou, Q., Zhang, X. & Xu, J. Q. (2007). Inorg. Chem. Commun. 10, 159-162.]) analogues. The three isotypic K2M3(OH)2(SO4)3(H2O)2 (M = Mg, Co, Mn) structures were qu­anti­tatively compared using the compstru program (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]), available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]). For this purpose, the hydrogen atoms were not taken into account. In relation to the title Mg structure, the Co and Mn structures show the following values for evaluation of the structural similarity. Co: the degree of lattice distortion is 0.0034, the maximum displacement between atomic positions of paired atoms is 0.0553 Å for the pair O9, the arithmetic mean of the distance between paired atoms is 0.0295 Å, and the measure of similarity is 0.010. Corresponding values for the Mn structure are: 0.0126, 0.1343 Å for pair O2, 0.0768 Å and 0.013, respectively. The two value sets indicate a higher similarity between the Mg and Co structures compared to the Mn structure. This is most probably related to the ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of the six-coordinate metal cations that differ only marginally for Mg (0.72 Å) and Co (0.745 Å, assuming a high-spin 3d7 configuration), whereas Mn (0.83 Å for a high-spin 3d5 state) is considerately greater.

3. Synthesis and crystallization

A mixture of 380 mg of MgSO4·7H2O, 100 mg of TeO2 and 70 mg of KOH was placed in a 5 ml Teflon container that was subsequently filled with 2 ml of water and sealed with a Teflon lid. The closed container was placed in a steel autoclave and was heated at 413 K for one week at autogenous pressure and then cooled down to room temperature within 5 h. The recovered solids consisted of Mg2Te3O8 (Lin et al., 2013[Lin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. & Guo, G.-C. (2013). Z. Anorg. Allg. Chem. 639, 31-34.]) as the main product (checked by powder X-ray diffraction of the bulk), besides minor amounts of caminite, Mg2(SO4)(OH)2 (Keefer et al., 1981[Keefer, K. D., Hochella, M. F. Jr & de Jong, B. H. W. S. (1981). Acta Cryst. B37, 1003-1006.]), the sulfate tellurite Mg3(SO4)(TeO3)(OH)2(H2O)2 (Weil & Shirkhanlou, 2017c[Weil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 749-756.]) and the title compound (the latter phases determined by single-crystal X-ray diffraction).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Atomic coordinates and labelling for the non-H atoms were adapted from the previous refinement from powder X-ray diffraction data (Kubel & Cabaret-Lampin, 2013[Kubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782-1786.]). H atoms were clearly discernible in difference-Fourier maps and were refined freely. The Flack parameter (Table 4[link]) indicates that the absolute structure has been determined correctly.

Table 4
Experimental details

Crystal data
Chemical formula K2Mg3(OH)2(SO4)3(H2O)2
Mr 509.36
Crystal system, space group Orthorhombic, Cmc21
Temperature (K) 100
a, b, c (Å) 17.8228 (19), 7.4879 (8), 9.7686 (10)
V3) 1303.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.10 × 0.08 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.668, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 31799, 2535, 2430
Rint 0.042
(sin θ/λ)max−1) 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.039, 1.07
No. of reflections 2535
No. of parameters 132
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.38
Absolute structure Flack x determined using 1125 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (13)
Coordinates taken from previous refinement. Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates taken from previous refinement; program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Atoms for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dipotassium trimagnesium dihydroxide tris(sulfate) dihydrate top
Crystal data top
K2Mg3(OH)2(SO4)3(H2O)2Dx = 2.595 Mg m3
Mr = 509.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Cmc21Cell parameters from 9959 reflections
a = 17.8228 (19) Åθ = 2.8–33.0°
b = 7.4879 (8) ŵ = 1.45 mm1
c = 9.7686 (10) ÅT = 100 K
V = 1303.7 (2) Å3Plate, colourless
Z = 40.10 × 0.08 × 0.01 mm
F(000) = 1024
Data collection top
Bruker APEXII CCD
diffractometer
2430 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 33.1°, θmin = 2.3°
Tmin = 0.668, Tmax = 0.747h = 2727
31799 measured reflectionsk = 1111
2535 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.9127P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.039(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.30 e Å3
2535 reflectionsΔρmin = 0.38 e Å3
132 parametersAbsolute structure: Flack x determined using 1125 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.010 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.19321 (2)0.04648 (5)0.26016 (4)0.00947 (7)
Mg10.00000.19893 (11)0.00487 (10)0.00514 (15)
Mg20.08605 (4)0.46648 (8)0.28489 (7)0.00532 (11)
S10.17492 (2)0.30375 (5)0.01513 (5)0.00452 (7)
S20.00000.18319 (8)0.31682 (6)0.00448 (10)
O10.11670 (7)0.16279 (16)0.00789 (16)0.0074 (2)
O20.17476 (8)0.40504 (19)0.11519 (14)0.0075 (2)
O30.24837 (8)0.21941 (17)0.03462 (15)0.0091 (2)
O40.15996 (8)0.42187 (18)0.13162 (14)0.0079 (2)
O50.00000.0697 (2)0.44063 (19)0.0067 (3)
O60.06775 (8)0.29624 (17)0.32058 (15)0.0086 (2)
O70.00000.0711 (2)0.1934 (2)0.0087 (4)
O80.00000.3133 (2)0.1979 (2)0.0055 (3)
O90.00000.4505 (2)0.0823 (2)0.0062 (3)
O100.12236 (8)0.23658 (19)0.39003 (15)0.0084 (2)
H10.00000.213 (6)0.241 (5)0.023 (11)*
H20.00000.509 (7)0.023 (5)0.031 (13)*
H30.092 (2)0.182 (5)0.433 (3)0.030 (9)*
H40.159 (2)0.246 (6)0.441 (4)0.046 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01028 (16)0.00894 (14)0.00920 (15)0.00051 (13)0.00151 (15)0.00034 (14)
Mg10.0061 (4)0.0045 (3)0.0048 (4)0.0000.0000.0002 (3)
Mg20.0054 (3)0.0052 (3)0.0053 (2)0.00037 (19)0.0001 (2)0.0003 (2)
S10.00477 (16)0.00458 (15)0.00422 (16)0.00040 (13)0.00005 (15)0.00002 (15)
S20.0054 (2)0.0040 (2)0.0041 (2)0.0000.0000.00057 (19)
O10.0063 (5)0.0060 (5)0.0101 (6)0.0022 (4)0.0003 (5)0.0007 (5)
O20.0087 (6)0.0093 (6)0.0044 (6)0.0004 (5)0.0007 (4)0.0021 (4)
O30.0057 (5)0.0100 (6)0.0114 (6)0.0025 (4)0.0006 (5)0.0013 (5)
O40.0092 (6)0.0084 (6)0.0061 (6)0.0016 (5)0.0022 (5)0.0028 (4)
O50.0087 (8)0.0062 (8)0.0053 (8)0.0000.0000.0021 (6)
O60.0082 (6)0.0082 (5)0.0096 (6)0.0037 (4)0.0018 (5)0.0028 (5)
O70.0144 (9)0.0055 (8)0.0061 (8)0.0000.0000.0009 (6)
O80.0059 (8)0.0048 (7)0.0056 (8)0.0000.0000.0006 (6)
O90.0081 (8)0.0049 (7)0.0056 (8)0.0000.0000.0005 (6)
O100.0077 (6)0.0084 (6)0.0093 (6)0.0006 (5)0.0008 (5)0.0020 (5)
Geometric parameters (Å, º) top
K1—O4i2.8323 (15)Mg2—O42.0220 (15)
K1—O3i2.8594 (15)Mg2—O6vi2.0796 (14)
K1—O10ii2.8704 (15)Mg2—O2vi2.0924 (15)
K1—O2iii2.9436 (14)Mg2—O82.0952 (14)
K1—O62.9743 (15)Mg2—O9vii2.1026 (14)
K1—O3ii2.9915 (15)Mg2—O102.1064 (15)
K1—O23.0532 (15)S1—O41.4657 (14)
K1—O1ii3.0740 (15)S1—O31.4659 (14)
K1—O13.0780 (15)S1—O21.4818 (14)
K1—O33.3068 (15)S1—O11.4818 (13)
Mg1—O92.067 (2)S2—O71.469 (2)
Mg1—O82.071 (2)S2—O61.4751 (14)
Mg1—O5iv2.081 (2)S2—O6v1.4751 (14)
Mg1—O1v2.0976 (13)S2—O51.4779 (19)
Mg1—O12.0977 (13)O10—H30.79 (4)
Mg1—O72.160 (2)O10—H40.83 (4)
O4i—K1—O3i49.50 (4)O4—Mg2—O9vii168.75 (7)
O4i—K1—O10ii131.23 (4)O6vi—Mg2—O9vii86.48 (7)
O3i—K1—O10ii166.22 (4)O2vi—Mg2—O9vii97.32 (6)
O4i—K1—O2iii58.07 (4)O8—Mg2—O9vii83.00 (6)
O3i—K1—O2iii105.47 (4)O4—Mg2—O1091.48 (6)
O10ii—K1—O2iii80.80 (4)O6vi—Mg2—O10171.10 (7)
O4i—K1—O6124.61 (4)O2vi—Mg2—O1085.19 (6)
O3i—K1—O675.47 (4)O8—Mg2—O1088.59 (7)
O10ii—K1—O6103.59 (4)O9vii—Mg2—O1099.50 (7)
O2iii—K1—O6157.33 (4)O4—S1—O3108.76 (8)
O4i—K1—O3ii60.13 (4)O4—S1—O2110.97 (8)
O3i—K1—O3ii79.54 (4)O3—S1—O2109.50 (8)
O10ii—K1—O3ii89.75 (4)O4—S1—O1109.84 (8)
O2iii—K1—O3ii79.64 (4)O3—S1—O1108.94 (8)
O6—K1—O3ii122.18 (4)O2—S1—O1108.80 (8)
O4i—K1—O2101.48 (4)O7—S2—O6110.39 (7)
O3i—K1—O279.94 (4)O7—S2—O6v110.39 (7)
O10ii—K1—O2111.40 (4)O6—S2—O6v109.88 (11)
O2iii—K1—O2100.33 (4)O7—S2—O5110.07 (11)
O6—K1—O257.19 (4)O6—S2—O5108.03 (7)
O3ii—K1—O2158.66 (4)O6v—S2—O5108.03 (7)
O4i—K1—O1ii100.22 (4)S1—O1—Mg1127.09 (8)
O3i—K1—O1ii87.55 (4)S1—O1—K1viii90.99 (6)
O10ii—K1—O1ii78.76 (4)Mg1—O1—K1viii121.06 (6)
O2iii—K1—O1ii121.72 (4)S1—O1—K186.09 (6)
O6—K1—O1ii80.84 (4)Mg1—O1—K1117.63 (7)
O3ii—K1—O1ii46.57 (4)K1viii—O1—K1106.63 (4)
O2—K1—O1ii137.93 (4)S1—O2—Mg2ix129.61 (8)
O4i—K1—O1134.68 (4)S1—O2—K1x126.58 (7)
O3i—K1—O1125.75 (4)Mg2ix—O2—K1x102.37 (5)
O10ii—K1—O165.12 (4)S1—O2—K187.03 (6)
O2iii—K1—O192.68 (4)Mg2ix—O2—K1105.63 (5)
O6—K1—O169.99 (4)K1x—O2—K190.41 (4)
O3ii—K1—O1154.68 (4)S1—O3—K1xi98.75 (7)
O2—K1—O146.28 (3)S1—O3—K1viii94.61 (7)
O1ii—K1—O1125.08 (4)K1xi—O3—K1viii93.32 (4)
O4i—K1—O391.01 (4)S1—O3—K177.88 (6)
O3i—K1—O3105.201 (16)K1xi—O3—K1163.50 (5)
O10ii—K1—O388.56 (4)K1viii—O3—K1103.02 (4)
O2iii—K1—O358.95 (4)S1—O4—Mg2142.48 (9)
O6—K1—O398.63 (4)S1—O4—K1xi99.91 (7)
O3ii—K1—O3138.28 (5)Mg2—O4—K1xi108.16 (6)
O2—K1—O344.26 (3)S2—O5—Mg1xii139.91 (12)
O1ii—K1—O3166.75 (4)S2—O6—Mg2ix127.33 (9)
O1—K1—O343.96 (4)S2—O6—K1104.45 (7)
O9—Mg1—O889.91 (8)Mg2ix—O6—K1108.72 (6)
O9—Mg1—O5iv170.48 (9)S2—O7—Mg1118.84 (11)
O8—Mg1—O5iv99.61 (8)Mg1—O8—Mg2126.57 (6)
O9—Mg1—O1v97.08 (4)Mg1—O8—Mg2v126.57 (6)
O8—Mg1—O1v92.32 (5)Mg2—O8—Mg2v94.11 (8)
O5iv—Mg1—O1v82.63 (4)Mg1—O8—H195 (3)
O9—Mg1—O197.08 (4)Mg2—O8—H1106.4 (19)
O8—Mg1—O192.32 (5)Mg2v—O8—H1106.4 (19)
O5iv—Mg1—O182.63 (4)Mg1—O9—Mg2xiii121.58 (6)
O1v—Mg1—O1165.09 (8)Mg1—O9—Mg2ix121.58 (6)
O9—Mg1—O791.97 (8)Mg2xiii—O9—Mg2ix93.68 (8)
O8—Mg1—O7178.12 (9)Mg1—O9—H2103 (4)
O5iv—Mg1—O778.51 (8)Mg2xiii—O9—H2108 (3)
O1v—Mg1—O787.44 (5)Mg2ix—O9—H2108 (3)
O1—Mg1—O787.44 (5)Mg2—O10—K1viii119.30 (6)
O4—Mg2—O6vi82.90 (6)Mg2—O10—H3118 (3)
O4—Mg2—O2vi85.94 (6)K1viii—O10—H3101 (2)
O6vi—Mg2—O2vi87.52 (6)Mg2—O10—H4118 (3)
O4—Mg2—O894.94 (6)K1viii—O10—H492 (3)
O6vi—Mg2—O898.73 (7)H3—O10—H4105 (4)
O2vi—Mg2—O8173.74 (7)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y, z1/2; (iii) x+1/2, y1/2, z; (iv) x, y, z+1/2; (v) x, y, z; (vi) x, y+1, z+1/2; (vii) x, y+1, z+1/2; (viii) x, y, z+1/2; (ix) x, y+1, z1/2; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y, z1/2; (xiii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O7iv0.86 (4)2.22 (4)3.068 (2)168 (3)
O9—H20.73 (5)???
O10—H3···O5xiv0.79 (4)2.22 (4)3.009 (2)171 (3)
O10—H3···O6xiv0.79 (4)2.59 (3)3.023 (2)116 (3)
O10—H4···O3xi0.83 (4)1.90 (4)2.722 (2)171 (4)
Symmetry codes: (iv) x, y, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xiv) x, y, z+1.
Hydrogen-bond geometry (Å, °) from the previous model based on powder X-ray diffraction data and geometry-optimized H-atom positions (Kubel &amp; Cabaret-Lampin, 2013) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O8i0.822.543.258 (14)147
O9—H2···O81.132.182.901 (14)119
O9—H2···O6ii1.132.523.506 (13)145
O9—H2···O6iii1.132.523.506 (13)145
O10—H3···O5iv0.852.413.066 (9)134
O10—H3···O6iv0.852.553.038 (13)118
O10—H3···O10.852.523.229 (9)142
O10—H4···O2iii0.972.392.812 (8)106
O10—H4···O3v0.971.772.698 (9)158
Symmetry codes; (i) x, -y, z + 1/2; (ii) -x, -y + 1, z + 1/2; (iii) x, -y+1, z + 1/2; (iv) x, y, z + 1; (v) -x + 1/2, -y + 1/2, z + 1/2.
Comparison of bond lengths (Å) from the current single crystal X-ray study and the previous powder X-ray diffraction study (Kubel &amp; Cabaret-Lampin, 2013) top
Bondsingle crystal studypowder study
K1—O4i2.8323 (15)2.902 (7)
K1—O3i2.8594 (15)2.877 (8)
K1—O10ii2.8704 (15)2.874 (9)
K1—O2iii2.9436 (14)2.948 (8)
K1—O62.9743 (15)2.945 (8)
K1—O3ii2.9915 (15)3.016 (9)
K1—O23.0532 (15)3.116 (9)
K1—O1ii3.0740 (15)3.118 (10)
K1—O13.0780 (15)3.128 (11)
K1—O33.3068 (15)3.311 (10)
Mg1—O92.067 (2)2.139 (11)
Mg1—O82.071 (2)2.104 (10)
Mg1—O5iv2.081 (2)1.989 (10)
Mg1—O1v2.0976 (13)2.049 (5)
Mg1—O12.0977 (13)2.049 (5)
Mg1—O72.160 (2)2.139 (11)
Mg2—O42.0220 (15)2.012 (9)
Mg2—O6vi2.0796 (14)2.099 (8)
Mg2—O2vi2.0924 (15)2.117 (8)
Mg2—O82.0952 (14)2.036 (7)
Mg2—O9vii2.1026 (14)2.045 (9)
Mg2—O102.1064 (15)2.163 (8)
S1—O41.4657 (14)1.487 (10)
S1—O31.4659 (14)1.463 (6)
S1—O21.4818 (14)1.500 (10)
S1—O11.4818 (13)1.476 (6)
S2—O71.469 (2)1.483 (13)
S2—O61.4751 (14)1.468 (8)
S2—O6v1.4751 (14)1.468 (8)
S2—O51.4779 (19)1.530 (12)
Symmetry codes: (i) -x + 1/2, -y + 1/2, z - 1/2; (ii) x, -y, z - 1/2; (iii) -x + 1/2, y -1/2, z; (iv) -x, -y, z + 1/2; (v) -x, y, z; (vi) x, -y + 1, z + 1/2; (vii) -x, -y + 1, z + 1/2.
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the powder and single-crystal diffractometers.

References

First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA  Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEffenberger, H. & Langhof, H. (1984). Monatsh. Chem. 115, 165–177.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeefer, K. D., Hochella, M. F. Jr & de Jong, B. H. W. S. (1981). Acta Cryst. B37, 1003–1006.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKubel, F. & Cabaret-Lampin, M. (2013). Z. Anorg. Allg. Chem. 639, 1782–1786.  CrossRef ICSD CAS Google Scholar
First citationLin, W.-F., Xing, Q.-J., Ma, J., Zou, J.-P., Lei, S.-L., Luo, X.-B. & Guo, G.-C. (2013). Z. Anorg. Allg. Chem. 639, 31–34.  Web of Science CrossRef ICSD CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2015). Z. Anorg. Allg. Chem. 641, 1459–1466.  Web of Science CrossRef ICSD CAS Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017a). Z. Anorg. Allg. Chem. 643, 330–339.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017b). Z. Anorg. Allg. Chem. 643, 757–765.  Web of Science CrossRef CAS Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017c). Z. Anorg. Allg. Chem. 643, 749–756.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J.-H., Ye, L., Ding, H., Chen, Y., Hou, Q., Zhang, X. & Xu, J. Q. (2007). Inorg. Chem. Commun. 10, 159–162.  CrossRef ICSD CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds