research communications
Synthesis and structural characterization of hexa-μ2-chlorido-μ4-oxido-tetrakis{[4-(phenylethynyl)pyridine-κN]copper(II)} dichloromethane monosolvate
aDepartment of Basic Sciences, College of Applied and Health Science, Al Sharqiyah University, PO Box 42, Ibra 400, Sultanate of Oman, bDepartment of Chemistry, Sultan Qaboos University, PO Box 36, Al-Khod 123, Sultanate of Oman, cDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, dDepartment of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia, and eDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
*Correspondence e-mail: p.r.raithby@bath.ac.uk
In the 4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C—H⋯Cl interactions. Furthermore, C—H⋯π and π–π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C interactions.
of the title compound, [CuKeywords: crystal structure; 4-phenylethynyl-pyridine; tetrahedral.
CCDC reference: 2048458
1. Chemical context
Polynuclear CuII complexes with various bridges between the metal centres have attracted much attention in the past decade, from both an experimental and a theoretical point of view, and a significant amount of research has been devoted to analysing their structural and magnetic properties (Bertrand & Kelley, 1966). Copper complexes that form clusters of the type Cu4OX6L4 (X = halogen, L = ligand or X) are known (Bertrand et al., 1968; Dey et al., 2002; Mukherjee et al., 2007; Thakurta et al., 2009; Wegner et al., 2001). In our studies on dimeric, tetrameric, and polymeric Cu complexes supported by ethynylpyridine-based ligands, we have obtained Cu4OX6L4 complexes where a central oxide ion is tetrahedrally coordinated to four copper ions, which are in turn bridged in pairs by six chloride ions, and the L groups complete the trigonal–bipyramidal coordination of the copper centres. The structural complexity of these [Cu4OX6L4] systems, as well as their challenging magnetic properties, has promoted sustained structural work on the subject (Atria et al., 1999), where the magnetic properties exhibited by the compound were successfully modelled in a rather simple and elegant fashion. We report herein the synthesis of the title complex μ4-oxo-hexa-μ2-chlorido-tetrakis[(4-phenylethynylpyridine)copper(II)] dichloromethane solvate (1) from 4-(2-phenylethynyl)pyridine and CuCl in dichloromethane. It is well known that CuX (X = Cl, Br, I) salts react with ethynylpyridine-based ligands in dichloromethane to form coordination-driven self-assembled tetrahedral CuI complexes; however, oxidation to form CuII species is also possible. We have a long-standing interest in the design and development of functional ethynyl-based carbocyclic and heterocyclic ligands and their transition metal complexes (Haque et al., 2018; Haque et al., 2019a). In the past, we have reported several dimeric, tetrameric, and polymeric CuI complexes supported by ethynylpyridine-based ligands. (Al-Balushi et al., 2016a,b; Ilmi et al., 2018). In the quest for new dimeric halide-bridged Cu complexes, we obtained an oxidized CuII product, compound 1. Our experience suggests that the chloride-containing CuI complexes are somewhat less stable and oxidize easily (in situ or during crystallization), leading to the formation of multiple products. The as well as Hirshfeld surface analysis, indicate that the most important contributions to the packing arrangement within are from H⋯H and C⋯H/H⋯C interactions.
2. Structural commentary
Within the via the N atoms of the six-membered heterocyclic ring (Fig. 1). The Cu atoms are tetrahedrally oriented about the O atom and are bridged by the six Cl atoms, which adopt an octahedral arrangement with respect to the cluster centre. Each Cu atom lies at the centre of a trigonal bipyramid, with the O atom and the 4-phenylethynyl-pyridine N atom in the axial positions and three Cl atoms in the equatorial positions. Average distances are: Cu—N, 1.976 (3) Å; Cu—O, 1.905 (2) Å; Cu—Cl1, 2.418 (11) Å; Cu—Cu, 3.111 (2) Å. The average of the axial O—Cu—N angles is 177.1 (12)°; that of the equatorial C1—Cu—C1 angles is 119.2 (4)°. The dihedral angles between benzene and pyridine rings are 0.9 (2)° (C21–C26 and C14–C18/N2), 34.0 (3)° (C34–C39 and C27–C31/N3), 5.8 (3)° (C47–C52 and C40–C44/N4) and 5.7 (3)° (C8–C13 and C1–C5/N1). The average distance of the triple bond is 1.193 (6) Å;.
the consists of a central core with an O atom binding four Cu atoms, and there are six bridging Cl atoms, with four 4-phenylethynylpyridine units also attached to the Cu atoms3. Supramolecular features
The , Table 1) interactions (C1—H1⋯Cl2, C4—H4⋯Cl5i, C14—H14⋯Cl5, C17—H17⋯Cl4ii, C27—H27⋯Cl6, C31—H31⋯Cl2, C44—H44⋯Cl5, C53—H53A⋯Cl1 and C53—H53B⋯Cl3i helps in the stabilization of the crystals. Furthermore, C31—H31⋯π (π is the midpoint of the C19≡C20 triple bond) interactions connect the molecules into a chain along the b-axis direction. The C41—H41⋯Cg1 and C43—H43⋯Cg2 interactions form a network along the b-axis direction (Fig. 3). π–π interactions [centroid⋯centroid = 3.672 (3) Å; between the C47–C52 and N4/C40–C44 are also present and are supported by the Hirshfeld surface analysis.
of the title compound is consolidated by several inter- and intramolecular interactions, the presence of which are supported by a Hirshfeld surface analysis. In the crystal, the presence of several C—H⋯Cl (Fig. 24. Hirshfeld surface analysis
In order to better visualize and analyse the role of weak intermolecular contacts in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer17.5 (Turner et al., 2017). The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Fig. 4), while the other weaker intermolecular interactions appear as light-red spots. The red points, which represent close contacts and negative dnorm values on the surface, correspond to the C—H⋯Cl interactions. The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if these triangles do not appear, then there are no π–π interactions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 4b clearly suggests that there are π–π interactions in the crystal packing of the title compound. The curvedness plot (Fig. 4c) shows flat surface patches characteristic of planar stacking. The large green regions represent a relatively flat (i.e. planar) surface area, while the blue regions demonstrate areas of curvature. The presence of π–π stacking interactions is also evident as flat regions on the Hirshfeld surface plotted over curvedness. The percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 5. These indicate that the crystal packing is dominated by H⋯H contacts, representing van der Waals interactions (34.4% contribution to the overall surface), followed by C⋯H/H⋯C, C⋯C, Cl⋯H/H⋯Cl, C⋯Cl/Cl⋯C, and N⋯H/H⋯N interactions, which contribute 27.8%, 22.8%, 7.5%, 4.2%, and 2.0%, respectively. The other interactions (Cu⋯H/H⋯Cu, Cl⋯Cl, N⋯C/C⋯N, N⋯Cl/Cl⋯N and Cu⋯C/C⋯Cu) contribute less than 2% and are not considered to be significant.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016) gave ten hits for the Cu4OX6L4 moiety. The eight most closely related compounds are hexa-μ2-chlorido-tetrakis(2-ethylpyrazine-N)-μ4-oxo-tetracopper(II) (Näther & Jess 2002), [Cu4Cl6O(C6H8N2)4], in which the Cu4 tetrahedra are centred by an interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. The copper(II) cations are fourfold coordinated by one O atom, two chlorido ligands and one N atom of the 2-ethylpyrazine ligand within a distorted tetrahedron. The Cu4Cl6O(C6H8N2)4 units are located in general positions. Three oxo complexes with a tetranuclear [Cu4(μ-Cl)6(μ-O)] unit (Cortés et al., 2006), namely 4-phenyl-1H-imidazolium hexa-μ2-chlorido-chlorido-μ4-oxo-tris(4-phenyl-1H-imidazole-κN1)tetracopper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa-μ2-chlorido-μ4-oxo-tetrakis(pyridine N-oxide-κO)tetracopper(II), [Cu4Cl6O(C5H5NO)4], and hexa-μ2-chlorido-tetrakis(2-methyl-1H-imidazole-κN1)μ4-oxo-tetracopper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetrahedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octahedron, leading to a rather globular species.
6. Synthesis and crystallization
The ligand L was prepared by adapting a previously reported procedure (Haque et al., 2019b). 1-Ethynylbenzene (0.33 g, 3.23 mmol) and 4-iodopyridine (0.66 g, 3.23 mmol) were dissolved in a iPr2NH/THF mixture (1:2, 60 mL) under an argon atmosphere. Catalytic amounts of Pd(OAc)2 (3 mg), CuI (3 mg), and PPh3 (10 mg) were added to the mixture and it was refluxed overnight. The solvent was then removed under vacuum and the residue was dissolved in dichloromethane (100 mL), washed with water and extracted with dichloromethane. The combined organic layers were washed with water and brine and then dried over anhydrous magnesium sulfate. The solution was concentrated under vacuum, and the crude product was chromatographed on a silica column using a mixture of hexane:dichloromethane (1:1, v/v). The ligand was obtained as an orange/pale-brown powder (0.51g, 88% yield). IR (νmax) cm−1: 2185 (–C≡C–), 1590 (C—N). 1H NMR (700 MHz, CDCl3): δ(ppm) 8.07 (d, 2H, J = 6.0, H-py), 7.94 (d, 2H, J = 6.2, H-py), 7.73 (d, 2H, J = 6.2, H-ph), 6.80–6.74 (m, 3H, H-ph). ESI–MS: m/z 179.06 (M+). C13H9N Analysis calculated: C, 87.12; H 5.06; N, 7.82%. Found: C, 86.65; H, 4.89; N, 7.67%.
Synthesis of Cu4OCl6L4 [L = 4-(2-phenylethynyl)pyridine] (1)
The title complex 1 was obtained by the reaction of the ethynylpyridine-based ligand with CuICl due to partial oxidation under the reaction conditions employed. The methodology for the synthesis of the complex is as follows: L (0.050 g, 0.24 mmol) and CuCl (0.024 g, 0.24 mmol) were dissolved in dichloromethane (50 mL). The reaction mixture was stirred at room temperature under a partial argon atmosphere for 24 h, after which period the solvent was removed under reduced pressure. The crude product was dissolved in dichloromethane and filtered through a pad of celite using dichloromethane giving the final product as an orange powder (0.057 g, 79% yield). Diffusion of hexane to a dichloromethane solution gave the final product as orange crystals.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned with idealized geometry (C—H = 0.95–0.99 Å) and refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2048458
https://doi.org/10.1107/S2056989020015935/mw2170sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015935/mw2170Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu4Cl6O(C13H9N)4]·CH2Cl2 | Z = 2 |
Mr = 1284.63 | F(000) = 1288 |
Triclinic, P1 | Dx = 1.609 Mg m−3 |
a = 12.7166 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.4366 (2) Å | Cell parameters from 38646 reflections |
c = 16.4038 (3) Å | θ = 2.9–27.5° |
α = 105.024 (1)° | µ = 2.03 mm−1 |
β = 105.935 (1)° | T = 150 K |
γ = 102.999 (1)° | Block, brown |
V = 2650.81 (8) Å3 | 0.15 × 0.12 × 0.12 mm |
Nonius Kappa CCD diffractometer | 12164 independent reflections |
Radiation source: fine-focus sealed tube | 8495 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
274 2.0 degree images with φ and ω scans | θmax = 27.6°, θmin = 3.0° |
Absorption correction: multi-scan (Sortav; Blessing 1995) | h = −16→16 |
Tmin = 0.548, Tmax = 0.572 | k = −18→18 |
50117 measured reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0564P)2 + 3.7541P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
12164 reflections | Δρmax = 0.89 e Å−3 |
631 parameters | Δρmin = −0.99 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59753 (4) | 0.13110 (3) | 0.37484 (3) | 0.02947 (12) | |
Cu2 | 0.39563 (4) | 0.22081 (3) | 0.36568 (3) | 0.02945 (12) | |
Cu3 | 0.53201 (4) | 0.23908 (4) | 0.23694 (3) | 0.02972 (12) | |
Cu4 | 0.37106 (4) | 0.02979 (4) | 0.20606 (3) | 0.03326 (13) | |
Cl1 | 0.51186 (8) | 0.19294 (8) | 0.49034 (6) | 0.0369 (2) | |
Cl2 | 0.71949 (7) | 0.25680 (8) | 0.34475 (7) | 0.0365 (2) | |
Cl3 | 0.49178 (8) | −0.04512 (7) | 0.29070 (7) | 0.0408 (2) | |
Cl4 | 0.45580 (8) | 0.35909 (7) | 0.31625 (7) | 0.0344 (2) | |
Cl5 | 0.22503 (7) | 0.07846 (8) | 0.25227 (6) | 0.0355 (2) | |
Cl6 | 0.43774 (8) | 0.09701 (8) | 0.10345 (6) | 0.0367 (2) | |
Cl7 | 0.4867 (3) | 0.3790 (3) | 0.7675 (4) | 0.240 (2) | |
Cl8 | 0.2612 (2) | 0.2324 (2) | 0.6751 (2) | 0.1420 (10) | |
O | 0.47340 (19) | 0.15499 (18) | 0.29649 (16) | 0.0258 (5) | |
N1 | 0.7198 (3) | 0.0992 (2) | 0.4559 (2) | 0.0326 (7) | |
N2 | 0.3071 (3) | 0.2858 (2) | 0.4319 (2) | 0.0321 (7) | |
N3 | 0.5893 (3) | 0.3317 (3) | 0.1777 (2) | 0.0321 (7) | |
N4 | 0.2701 (3) | −0.1021 (3) | 0.1125 (2) | 0.0385 (8) | |
C1 | 0.8321 (3) | 0.1366 (3) | 0.4721 (3) | 0.0387 (10) | |
H1 | 0.855892 | 0.183883 | 0.444621 | 0.046* | |
C2 | 0.9156 (3) | 0.1107 (3) | 0.5265 (3) | 0.0386 (10) | |
H2 | 0.994667 | 0.139724 | 0.535835 | 0.046* | |
C3 | 0.8834 (3) | 0.0419 (3) | 0.5673 (3) | 0.0353 (9) | |
C4 | 0.7655 (3) | 0.0014 (3) | 0.5498 (3) | 0.0404 (10) | |
H4 | 0.739232 | −0.046548 | 0.575925 | 0.048* | |
C5 | 0.6884 (3) | 0.0315 (3) | 0.4949 (3) | 0.0411 (10) | |
H5 | 0.608589 | 0.003118 | 0.483687 | 0.049* | |
C6 | 0.9675 (3) | 0.0144 (3) | 0.6270 (3) | 0.0386 (10) | |
C7 | 1.0352 (3) | −0.0082 (3) | 0.6781 (3) | 0.0365 (9) | |
C8 | 1.1148 (3) | −0.0365 (3) | 0.7408 (3) | 0.0364 (9) | |
C9 | 1.2335 (3) | 0.0069 (3) | 0.7646 (3) | 0.0424 (10) | |
H9 | 1.262150 | 0.052823 | 0.737537 | 0.051* | |
C10 | 1.3093 (4) | −0.0173 (4) | 0.8278 (3) | 0.0504 (12) | |
H10 | 1.390090 | 0.013447 | 0.845156 | 0.060* | |
C11 | 1.2687 (4) | −0.0852 (4) | 0.8653 (3) | 0.0490 (11) | |
H11 | 1.321158 | −0.102063 | 0.908199 | 0.059* | |
C12 | 1.1512 (4) | −0.1293 (4) | 0.8409 (3) | 0.0497 (11) | |
H12 | 1.123184 | −0.176620 | 0.866944 | 0.060* | |
C13 | 1.0749 (4) | −0.1053 (3) | 0.7794 (3) | 0.0436 (10) | |
H13 | 0.994295 | −0.136030 | 0.763053 | 0.052* | |
C14 | 0.1961 (3) | 0.2383 (3) | 0.4150 (3) | 0.0375 (9) | |
H14 | 0.161600 | 0.171347 | 0.372599 | 0.045* | |
C15 | 0.1298 (3) | 0.2814 (3) | 0.4557 (3) | 0.0382 (9) | |
H15 | 0.051425 | 0.244242 | 0.441431 | 0.046* | |
C16 | 0.1764 (3) | 0.3785 (3) | 0.5174 (3) | 0.0346 (9) | |
C17 | 0.2923 (4) | 0.4281 (4) | 0.5358 (3) | 0.0470 (11) | |
H17 | 0.328895 | 0.494974 | 0.578058 | 0.056* | |
C18 | 0.3531 (4) | 0.3793 (3) | 0.4920 (3) | 0.0445 (11) | |
H18 | 0.432019 | 0.414203 | 0.505436 | 0.053* | |
C19 | 0.1059 (4) | 0.4239 (3) | 0.5592 (3) | 0.0372 (9) | |
C20 | 0.0397 (4) | 0.4535 (3) | 0.5895 (3) | 0.0380 (9) | |
C21 | −0.0431 (4) | 0.4866 (3) | 0.6243 (3) | 0.0364 (9) | |
C22 | −0.1552 (4) | 0.4217 (4) | 0.5946 (3) | 0.0485 (11) | |
H22 | −0.176695 | 0.355923 | 0.551746 | 0.058* | |
C23 | −0.2351 (4) | 0.4526 (4) | 0.6270 (3) | 0.0547 (13) | |
H23 | −0.311833 | 0.408101 | 0.606374 | 0.066* | |
C24 | −0.2043 (4) | 0.5475 (4) | 0.6892 (3) | 0.0477 (11) | |
H24 | −0.259810 | 0.568142 | 0.711595 | 0.057* | |
C25 | −0.0936 (4) | 0.6128 (4) | 0.7195 (3) | 0.0467 (11) | |
H25 | −0.073483 | 0.678680 | 0.761853 | 0.056* | |
C26 | −0.0106 (4) | 0.5826 (3) | 0.6880 (3) | 0.0424 (10) | |
H26 | 0.066445 | 0.626733 | 0.709696 | 0.051* | |
C27 | 0.5272 (4) | 0.3257 (4) | 0.0946 (3) | 0.0436 (10) | |
H27 | 0.458081 | 0.270477 | 0.061050 | 0.052* | |
C28 | 0.5593 (4) | 0.3960 (4) | 0.0562 (3) | 0.0483 (11) | |
H28 | 0.512469 | 0.389894 | −0.002329 | 0.058* | |
C29 | 0.6621 (4) | 0.4772 (3) | 0.1043 (3) | 0.0415 (10) | |
C30 | 0.7252 (4) | 0.4840 (3) | 0.1907 (3) | 0.0430 (10) | |
H30 | 0.793922 | 0.539021 | 0.226412 | 0.052* | |
C31 | 0.6865 (4) | 0.4095 (3) | 0.2239 (3) | 0.0400 (10) | |
H31 | 0.731096 | 0.413844 | 0.282489 | 0.048* | |
C32 | 0.6997 (4) | 0.5538 (4) | 0.0677 (3) | 0.0498 (12) | |
C33 | 0.7328 (4) | 0.6179 (4) | 0.0394 (3) | 0.0486 (11) | |
C34 | 0.7732 (4) | 0.6993 (4) | 0.0096 (3) | 0.0443 (10) | |
C35 | 0.7567 (4) | 0.6839 (4) | −0.0809 (3) | 0.0432 (10) | |
H35 | 0.717866 | 0.617900 | −0.124341 | 0.052* | |
C36 | 0.7962 (4) | 0.7634 (4) | −0.1082 (3) | 0.0435 (10) | |
H36 | 0.785363 | 0.752164 | −0.170008 | 0.052* | |
C37 | 0.8509 (4) | 0.8585 (4) | −0.0459 (3) | 0.0506 (12) | |
H37 | 0.877916 | 0.913099 | −0.064975 | 0.061* | |
C38 | 0.8675 (5) | 0.8766 (4) | 0.0439 (4) | 0.0662 (15) | |
H38 | 0.905580 | 0.943093 | 0.086590 | 0.079* | |
C39 | 0.8278 (5) | 0.7963 (4) | 0.0718 (3) | 0.0577 (13) | |
H39 | 0.838400 | 0.808259 | 0.133693 | 0.069* | |
C40 | 0.3174 (4) | −0.1621 (4) | 0.0713 (3) | 0.0555 (13) | |
H40 | 0.397743 | −0.137270 | 0.082813 | 0.067* | |
C41 | 0.2561 (4) | −0.2598 (4) | 0.0119 (4) | 0.0600 (14) | |
H41 | 0.293855 | −0.299850 | −0.017452 | 0.072* | |
C42 | 0.1388 (4) | −0.2987 (3) | −0.0044 (3) | 0.0419 (10) | |
C43 | 0.0893 (4) | −0.2333 (3) | 0.0350 (3) | 0.0483 (11) | |
H43 | 0.008513 | −0.254493 | 0.022820 | 0.058* | |
C44 | 0.1567 (4) | −0.1368 (3) | 0.0923 (3) | 0.0464 (11) | |
H44 | 0.120298 | −0.092934 | 0.118602 | 0.056* | |
C45 | 0.0715 (4) | −0.4002 (4) | −0.0610 (3) | 0.0470 (11) | |
C46 | 0.0100 (4) | −0.4851 (3) | −0.1066 (3) | 0.0468 (11) | |
C47 | −0.0649 (4) | −0.5861 (3) | −0.1609 (3) | 0.0466 (11) | |
C48 | −0.0220 (5) | −0.6593 (4) | −0.1977 (3) | 0.0590 (13) | |
H48 | 0.058499 | −0.642711 | −0.186536 | 0.071* | |
C49 | −0.0926 (5) | −0.7556 (4) | −0.2500 (4) | 0.0711 (16) | |
H49 | −0.060809 | −0.805330 | −0.273686 | 0.085* | |
C50 | −0.2091 (5) | −0.7803 (4) | −0.2681 (4) | 0.0692 (16) | |
H50 | −0.258630 | −0.846348 | −0.306387 | 0.083* | |
C51 | −0.2539 (5) | −0.7089 (4) | −0.2306 (4) | 0.0693 (16) | |
H51 | −0.334433 | −0.726301 | −0.241841 | 0.083* | |
C52 | −0.1818 (4) | −0.6112 (4) | −0.1761 (4) | 0.0618 (14) | |
H52 | −0.212778 | −0.562268 | −0.149741 | 0.074* | |
C53 | 0.4027 (7) | 0.2640 (6) | 0.6845 (6) | 0.110 (3) | |
H53A | 0.407802 | 0.266389 | 0.625938 | 0.132* | |
H53B | 0.433915 | 0.210544 | 0.698022 | 0.132* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0202 (2) | 0.0321 (3) | 0.0350 (3) | 0.00681 (18) | 0.00683 (18) | 0.0143 (2) |
Cu2 | 0.0248 (2) | 0.0339 (3) | 0.0316 (3) | 0.01083 (19) | 0.01190 (19) | 0.0109 (2) |
Cu3 | 0.0261 (2) | 0.0339 (3) | 0.0293 (2) | 0.00812 (19) | 0.01021 (19) | 0.0118 (2) |
Cu4 | 0.0252 (2) | 0.0304 (3) | 0.0342 (3) | 0.00260 (19) | 0.00720 (19) | 0.0040 (2) |
Cl1 | 0.0310 (5) | 0.0498 (6) | 0.0324 (5) | 0.0151 (4) | 0.0113 (4) | 0.0162 (4) |
Cl2 | 0.0222 (4) | 0.0430 (6) | 0.0423 (5) | 0.0042 (4) | 0.0066 (4) | 0.0219 (5) |
Cl3 | 0.0322 (5) | 0.0288 (5) | 0.0520 (6) | 0.0061 (4) | 0.0044 (4) | 0.0128 (4) |
Cl4 | 0.0336 (5) | 0.0310 (5) | 0.0421 (5) | 0.0102 (4) | 0.0185 (4) | 0.0127 (4) |
Cl5 | 0.0220 (4) | 0.0426 (6) | 0.0341 (5) | 0.0057 (4) | 0.0083 (4) | 0.0064 (4) |
Cl6 | 0.0344 (5) | 0.0402 (5) | 0.0290 (5) | 0.0087 (4) | 0.0082 (4) | 0.0075 (4) |
Cl7 | 0.138 (3) | 0.145 (3) | 0.374 (6) | 0.052 (2) | 0.100 (3) | −0.027 (3) |
Cl8 | 0.1206 (19) | 0.152 (2) | 0.165 (2) | 0.0463 (17) | 0.0331 (17) | 0.090 (2) |
O | 0.0205 (12) | 0.0264 (13) | 0.0275 (13) | 0.0051 (10) | 0.0082 (10) | 0.0064 (11) |
N1 | 0.0239 (16) | 0.0360 (18) | 0.0373 (18) | 0.0072 (13) | 0.0087 (14) | 0.0158 (15) |
N2 | 0.0283 (16) | 0.0366 (19) | 0.0360 (18) | 0.0131 (14) | 0.0154 (14) | 0.0134 (15) |
N3 | 0.0310 (17) | 0.0411 (19) | 0.0314 (17) | 0.0152 (15) | 0.0149 (14) | 0.0164 (15) |
N4 | 0.0333 (18) | 0.0343 (19) | 0.0374 (19) | 0.0037 (15) | 0.0090 (15) | 0.0049 (15) |
C1 | 0.028 (2) | 0.046 (2) | 0.048 (2) | 0.0095 (18) | 0.0134 (18) | 0.027 (2) |
C2 | 0.0221 (18) | 0.047 (2) | 0.047 (2) | 0.0079 (17) | 0.0087 (17) | 0.022 (2) |
C3 | 0.0273 (19) | 0.041 (2) | 0.038 (2) | 0.0128 (17) | 0.0101 (17) | 0.0141 (19) |
C4 | 0.030 (2) | 0.042 (2) | 0.051 (3) | 0.0070 (18) | 0.0108 (19) | 0.027 (2) |
C5 | 0.027 (2) | 0.048 (3) | 0.050 (3) | 0.0101 (18) | 0.0107 (18) | 0.023 (2) |
C6 | 0.029 (2) | 0.046 (2) | 0.041 (2) | 0.0105 (18) | 0.0114 (18) | 0.018 (2) |
C7 | 0.0270 (19) | 0.041 (2) | 0.041 (2) | 0.0113 (17) | 0.0090 (17) | 0.0166 (19) |
C8 | 0.031 (2) | 0.037 (2) | 0.037 (2) | 0.0114 (17) | 0.0082 (17) | 0.0109 (18) |
C9 | 0.033 (2) | 0.052 (3) | 0.046 (3) | 0.017 (2) | 0.0127 (19) | 0.022 (2) |
C10 | 0.029 (2) | 0.069 (3) | 0.053 (3) | 0.018 (2) | 0.012 (2) | 0.024 (3) |
C11 | 0.042 (2) | 0.067 (3) | 0.041 (3) | 0.028 (2) | 0.010 (2) | 0.020 (2) |
C12 | 0.048 (3) | 0.058 (3) | 0.048 (3) | 0.020 (2) | 0.015 (2) | 0.027 (2) |
C13 | 0.034 (2) | 0.049 (3) | 0.047 (3) | 0.0119 (19) | 0.0114 (19) | 0.019 (2) |
C14 | 0.038 (2) | 0.032 (2) | 0.041 (2) | 0.0097 (17) | 0.0173 (18) | 0.0082 (18) |
C15 | 0.032 (2) | 0.039 (2) | 0.047 (2) | 0.0113 (18) | 0.0213 (19) | 0.013 (2) |
C16 | 0.034 (2) | 0.040 (2) | 0.035 (2) | 0.0146 (18) | 0.0174 (17) | 0.0134 (18) |
C17 | 0.040 (2) | 0.045 (3) | 0.046 (3) | 0.008 (2) | 0.018 (2) | 0.001 (2) |
C18 | 0.031 (2) | 0.046 (3) | 0.044 (2) | 0.0029 (19) | 0.0143 (19) | 0.002 (2) |
C19 | 0.040 (2) | 0.038 (2) | 0.033 (2) | 0.0127 (19) | 0.0169 (18) | 0.0079 (18) |
C20 | 0.039 (2) | 0.042 (2) | 0.033 (2) | 0.0140 (19) | 0.0139 (18) | 0.0113 (19) |
C21 | 0.041 (2) | 0.043 (2) | 0.034 (2) | 0.0215 (19) | 0.0198 (18) | 0.0143 (19) |
C22 | 0.044 (3) | 0.048 (3) | 0.045 (3) | 0.012 (2) | 0.019 (2) | 0.001 (2) |
C23 | 0.036 (2) | 0.066 (3) | 0.053 (3) | 0.010 (2) | 0.018 (2) | 0.007 (3) |
C24 | 0.046 (3) | 0.062 (3) | 0.049 (3) | 0.029 (2) | 0.025 (2) | 0.022 (2) |
C25 | 0.059 (3) | 0.042 (3) | 0.047 (3) | 0.025 (2) | 0.024 (2) | 0.015 (2) |
C26 | 0.043 (2) | 0.043 (3) | 0.047 (3) | 0.018 (2) | 0.021 (2) | 0.015 (2) |
C27 | 0.035 (2) | 0.053 (3) | 0.043 (2) | 0.011 (2) | 0.0092 (19) | 0.022 (2) |
C28 | 0.041 (2) | 0.063 (3) | 0.046 (3) | 0.017 (2) | 0.010 (2) | 0.031 (2) |
C29 | 0.045 (2) | 0.047 (3) | 0.048 (3) | 0.022 (2) | 0.023 (2) | 0.028 (2) |
C30 | 0.038 (2) | 0.047 (3) | 0.042 (2) | 0.0066 (19) | 0.0136 (19) | 0.020 (2) |
C31 | 0.041 (2) | 0.044 (2) | 0.033 (2) | 0.0097 (19) | 0.0103 (18) | 0.0158 (19) |
C32 | 0.046 (3) | 0.063 (3) | 0.051 (3) | 0.019 (2) | 0.020 (2) | 0.031 (3) |
C33 | 0.046 (3) | 0.062 (3) | 0.049 (3) | 0.020 (2) | 0.019 (2) | 0.032 (2) |
C34 | 0.047 (3) | 0.048 (3) | 0.048 (3) | 0.020 (2) | 0.021 (2) | 0.025 (2) |
C35 | 0.039 (2) | 0.047 (3) | 0.041 (2) | 0.012 (2) | 0.0096 (19) | 0.018 (2) |
C36 | 0.046 (2) | 0.052 (3) | 0.043 (2) | 0.022 (2) | 0.019 (2) | 0.025 (2) |
C37 | 0.066 (3) | 0.045 (3) | 0.056 (3) | 0.026 (2) | 0.024 (2) | 0.030 (2) |
C38 | 0.101 (5) | 0.048 (3) | 0.054 (3) | 0.035 (3) | 0.024 (3) | 0.019 (3) |
C39 | 0.085 (4) | 0.059 (3) | 0.048 (3) | 0.037 (3) | 0.033 (3) | 0.027 (3) |
C40 | 0.037 (2) | 0.050 (3) | 0.060 (3) | 0.004 (2) | 0.015 (2) | −0.001 (2) |
C41 | 0.049 (3) | 0.048 (3) | 0.065 (3) | 0.009 (2) | 0.021 (3) | −0.004 (3) |
C42 | 0.040 (2) | 0.034 (2) | 0.035 (2) | 0.0028 (18) | 0.0021 (18) | 0.0058 (18) |
C43 | 0.033 (2) | 0.041 (3) | 0.053 (3) | 0.0030 (19) | 0.005 (2) | 0.006 (2) |
C44 | 0.038 (2) | 0.038 (2) | 0.049 (3) | 0.0090 (19) | 0.007 (2) | 0.004 (2) |
C45 | 0.048 (3) | 0.042 (3) | 0.041 (2) | 0.007 (2) | 0.010 (2) | 0.010 (2) |
C46 | 0.049 (3) | 0.039 (3) | 0.041 (2) | 0.006 (2) | 0.009 (2) | 0.012 (2) |
C47 | 0.048 (3) | 0.037 (2) | 0.041 (2) | 0.000 (2) | 0.007 (2) | 0.012 (2) |
C48 | 0.058 (3) | 0.049 (3) | 0.055 (3) | 0.001 (2) | 0.021 (3) | 0.006 (2) |
C49 | 0.073 (4) | 0.052 (3) | 0.066 (4) | 0.002 (3) | 0.028 (3) | −0.003 (3) |
C50 | 0.080 (4) | 0.048 (3) | 0.053 (3) | −0.002 (3) | 0.015 (3) | 0.005 (3) |
C51 | 0.048 (3) | 0.054 (3) | 0.080 (4) | −0.004 (3) | −0.001 (3) | 0.024 (3) |
C52 | 0.051 (3) | 0.046 (3) | 0.073 (4) | 0.008 (2) | 0.006 (3) | 0.020 (3) |
C53 | 0.118 (7) | 0.096 (6) | 0.127 (7) | 0.041 (5) | 0.052 (6) | 0.039 (5) |
Cu1—O | 1.904 (2) | C18—H18 | 0.9500 |
Cu1—N1 | 1.976 (3) | C19—C20 | 1.192 (6) |
Cu1—Cl2 | 2.3581 (10) | C20—C21 | 1.441 (6) |
Cu1—Cl3 | 2.4098 (11) | C21—C22 | 1.388 (6) |
Cu1—Cl1 | 2.5036 (11) | C21—C26 | 1.392 (6) |
Cu2—O | 1.910 (2) | C22—C23 | 1.376 (6) |
Cu2—N2 | 1.986 (3) | C22—H22 | 0.9500 |
Cu2—Cl1 | 2.3586 (10) | C23—C24 | 1.373 (7) |
Cu2—Cl4 | 2.3918 (10) | C23—H23 | 0.9500 |
Cu2—Cl5 | 2.4874 (10) | C24—C25 | 1.376 (7) |
Cu3—O | 1.895 (2) | C24—H24 | 0.9500 |
Cu3—N3 | 1.972 (3) | C25—C26 | 1.401 (6) |
Cu3—Cl6 | 2.3586 (11) | C25—H25 | 0.9500 |
Cu3—Cl4 | 2.4316 (11) | C26—H26 | 0.9500 |
Cu3—Cl2 | 2.4602 (10) | C27—C28 | 1.371 (6) |
Cu4—O | 1.911 (2) | C27—H27 | 0.9500 |
Cu4—N4 | 1.982 (3) | C28—C29 | 1.403 (6) |
Cu4—Cl5 | 2.3666 (11) | C28—H28 | 0.9500 |
Cu4—Cl6 | 2.3987 (11) | C29—C30 | 1.390 (6) |
Cu4—Cl3 | 2.4101 (11) | C29—C32 | 1.441 (6) |
Cl7—C53 | 1.727 (9) | C30—C31 | 1.382 (6) |
Cl8—C53 | 1.706 (9) | C30—H30 | 0.9500 |
N1—C1 | 1.331 (5) | C31—H31 | 0.9500 |
N1—C5 | 1.347 (5) | C32—C33 | 1.185 (6) |
N2—C18 | 1.333 (5) | C33—C34 | 1.431 (6) |
N2—C14 | 1.338 (5) | C34—C39 | 1.384 (7) |
N3—C31 | 1.336 (5) | C34—C35 | 1.391 (6) |
N3—C27 | 1.344 (5) | C35—C36 | 1.379 (6) |
N4—C40 | 1.312 (6) | C35—H35 | 0.9500 |
N4—C44 | 1.330 (5) | C36—C37 | 1.365 (7) |
C1—C2 | 1.377 (6) | C36—H36 | 0.9500 |
C1—H1 | 0.9500 | C37—C38 | 1.374 (7) |
C2—C3 | 1.383 (6) | C37—H37 | 0.9500 |
C2—H2 | 0.9500 | C38—C39 | 1.394 (7) |
C3—C4 | 1.398 (5) | C38—H38 | 0.9500 |
C3—C6 | 1.442 (6) | C39—H39 | 0.9500 |
C4—C5 | 1.368 (6) | C40—C41 | 1.387 (7) |
C4—H4 | 0.9500 | C40—H40 | 0.9500 |
C5—H5 | 0.9500 | C41—C42 | 1.392 (6) |
C6—C7 | 1.192 (6) | C41—H41 | 0.9500 |
C7—C8 | 1.443 (5) | C42—C43 | 1.371 (7) |
C8—C13 | 1.386 (6) | C42—C45 | 1.427 (6) |
C8—C9 | 1.395 (6) | C43—C44 | 1.378 (6) |
C9—C10 | 1.385 (6) | C43—H43 | 0.9500 |
C9—H9 | 0.9500 | C44—H44 | 0.9500 |
C10—C11 | 1.366 (7) | C45—C46 | 1.203 (6) |
C10—H10 | 0.9500 | C46—C47 | 1.436 (6) |
C11—C12 | 1.382 (7) | C47—C48 | 1.375 (7) |
C11—H11 | 0.9500 | C47—C52 | 1.382 (7) |
C12—C13 | 1.369 (6) | C48—C49 | 1.368 (7) |
C12—H12 | 0.9500 | C48—H48 | 0.9500 |
C13—H13 | 0.9500 | C49—C50 | 1.369 (8) |
C14—C15 | 1.369 (6) | C49—H49 | 0.9500 |
C14—H14 | 0.9500 | C50—C51 | 1.377 (8) |
C15—C16 | 1.379 (6) | C50—H50 | 0.9500 |
C15—H15 | 0.9500 | C51—C52 | 1.394 (7) |
C16—C17 | 1.395 (6) | C51—H51 | 0.9500 |
C16—C19 | 1.440 (6) | C52—H52 | 0.9500 |
C17—C18 | 1.378 (6) | C53—H53A | 0.9900 |
C17—H17 | 0.9500 | C53—H53B | 0.9900 |
O—Cu1—N1 | 176.66 (12) | C15—C16—C17 | 116.8 (4) |
O—Cu1—Cl2 | 85.93 (7) | C15—C16—C19 | 120.1 (4) |
N1—Cu1—Cl2 | 97.34 (9) | C17—C16—C19 | 123.2 (4) |
O—Cu1—Cl3 | 84.70 (8) | C18—C17—C16 | 119.4 (4) |
N1—Cu1—Cl3 | 92.56 (10) | C18—C17—H17 | 120.3 |
Cl2—Cu1—Cl3 | 132.72 (4) | C16—C17—H17 | 120.3 |
O—Cu1—Cl1 | 83.27 (8) | N2—C18—C17 | 123.4 (4) |
N1—Cu1—Cl1 | 95.83 (10) | N2—C18—H18 | 118.3 |
Cl2—Cu1—Cl1 | 116.16 (4) | C17—C18—H18 | 118.3 |
Cl3—Cu1—Cl1 | 108.55 (4) | C20—C19—C16 | 174.1 (5) |
O—Cu2—N2 | 176.97 (12) | C19—C20—C21 | 178.3 (5) |
O—Cu2—Cl1 | 87.21 (8) | C22—C21—C26 | 120.2 (4) |
N2—Cu2—Cl1 | 95.20 (10) | C22—C21—C20 | 119.6 (4) |
O—Cu2—Cl4 | 85.66 (8) | C26—C21—C20 | 120.2 (4) |
N2—Cu2—Cl4 | 94.47 (10) | C23—C22—C21 | 120.1 (4) |
Cl1—Cu2—Cl4 | 124.17 (4) | C23—C22—H22 | 119.9 |
O—Cu2—Cl5 | 81.79 (7) | C21—C22—H22 | 119.9 |
N2—Cu2—Cl5 | 95.42 (10) | C24—C23—C22 | 120.2 (4) |
Cl1—Cu2—Cl5 | 118.83 (4) | C24—C23—H23 | 119.9 |
Cl4—Cu2—Cl5 | 114.72 (4) | C22—C23—H23 | 119.9 |
O—Cu3—N3 | 176.99 (12) | C23—C24—C25 | 120.6 (4) |
O—Cu3—Cl6 | 86.45 (8) | C23—C24—H24 | 119.7 |
N3—Cu3—Cl6 | 95.31 (10) | C25—C24—H24 | 119.7 |
O—Cu3—Cl4 | 84.86 (8) | C24—C25—C26 | 120.2 (4) |
N3—Cu3—Cl4 | 92.14 (10) | C24—C25—H25 | 119.9 |
Cl6—Cu3—Cl4 | 130.17 (4) | C26—C25—H25 | 119.9 |
O—Cu3—Cl2 | 83.24 (7) | C21—C26—C25 | 118.7 (4) |
N3—Cu3—Cl2 | 97.90 (9) | C21—C26—H26 | 120.6 |
Cl6—Cu3—Cl2 | 120.96 (4) | C25—C26—H26 | 120.6 |
Cl4—Cu3—Cl2 | 106.52 (4) | N3—C27—C28 | 122.8 (4) |
O—Cu4—N4 | 177.76 (12) | N3—C27—H27 | 118.6 |
O—Cu4—Cl5 | 85.09 (8) | C28—C27—H27 | 118.6 |
N4—Cu4—Cl5 | 96.99 (11) | C27—C28—C29 | 119.3 (4) |
O—Cu4—Cl6 | 84.95 (8) | C27—C28—H28 | 120.3 |
N4—Cu4—Cl6 | 94.70 (11) | C29—C28—H28 | 120.3 |
Cl5—Cu4—Cl6 | 119.74 (4) | C30—C29—C28 | 117.8 (4) |
O—Cu4—Cl3 | 84.53 (8) | C30—C29—C32 | 120.4 (4) |
N4—Cu4—Cl3 | 93.68 (11) | C28—C29—C32 | 121.8 (4) |
Cl5—Cu4—Cl3 | 120.61 (4) | C31—C30—C29 | 118.9 (4) |
Cl6—Cu4—Cl3 | 117.27 (4) | C31—C30—H30 | 120.5 |
Cu2—Cl1—Cu1 | 79.49 (3) | C29—C30—H30 | 120.5 |
Cu1—Cl2—Cu3 | 80.10 (3) | N3—C31—C30 | 123.2 (4) |
Cu1—Cl3—Cu4 | 80.64 (3) | N3—C31—H31 | 118.4 |
Cu2—Cl4—Cu3 | 80.09 (3) | C30—C31—H31 | 118.4 |
Cu4—Cl5—Cu2 | 81.16 (3) | C33—C32—C29 | 178.5 (6) |
Cu3—Cl6—Cu4 | 80.40 (3) | C32—C33—C34 | 176.9 (6) |
Cu3—O—Cu1 | 109.47 (11) | C39—C34—C35 | 118.9 (4) |
Cu3—O—Cu2 | 109.29 (12) | C39—C34—C33 | 119.5 (4) |
Cu1—O—Cu2 | 109.31 (12) | C35—C34—C33 | 121.6 (4) |
Cu3—O—Cu4 | 107.57 (12) | C36—C35—C34 | 120.6 (4) |
Cu1—O—Cu4 | 109.67 (12) | C36—C35—H35 | 119.7 |
Cu2—O—Cu4 | 111.50 (11) | C34—C35—H35 | 119.7 |
C1—N1—C5 | 116.9 (3) | C37—C36—C35 | 119.7 (4) |
C1—N1—Cu1 | 124.6 (3) | C37—C36—H36 | 120.1 |
C5—N1—Cu1 | 118.4 (3) | C35—C36—H36 | 120.1 |
C18—N2—C14 | 116.9 (3) | C36—C37—C38 | 121.1 (4) |
C18—N2—Cu2 | 122.2 (3) | C36—C37—H37 | 119.4 |
C14—N2—Cu2 | 120.9 (3) | C38—C37—H37 | 119.4 |
C31—N3—C27 | 118.0 (4) | C37—C38—C39 | 119.3 (5) |
C31—N3—Cu3 | 119.7 (3) | C37—C38—H38 | 120.3 |
C27—N3—Cu3 | 121.9 (3) | C39—C38—H38 | 120.3 |
C40—N4—C44 | 117.1 (4) | C34—C39—C38 | 120.3 (5) |
C40—N4—Cu4 | 118.9 (3) | C34—C39—H39 | 119.9 |
C44—N4—Cu4 | 123.8 (3) | C38—C39—H39 | 119.9 |
N1—C1—C2 | 123.7 (4) | N4—C40—C41 | 123.4 (4) |
N1—C1—H1 | 118.2 | N4—C40—H40 | 118.3 |
C2—C1—H1 | 118.2 | C41—C40—H40 | 118.3 |
C1—C2—C3 | 119.4 (4) | C40—C41—C42 | 119.3 (5) |
C1—C2—H2 | 120.3 | C40—C41—H41 | 120.3 |
C3—C2—H2 | 120.3 | C42—C41—H41 | 120.3 |
C2—C3—C4 | 117.3 (4) | C43—C42—C41 | 116.6 (4) |
C2—C3—C6 | 121.7 (4) | C43—C42—C45 | 120.9 (4) |
C4—C3—C6 | 121.0 (4) | C41—C42—C45 | 122.5 (4) |
C5—C4—C3 | 119.4 (4) | C42—C43—C44 | 119.9 (4) |
C5—C4—H4 | 120.3 | C42—C43—H43 | 120.0 |
C3—C4—H4 | 120.3 | C44—C43—H43 | 120.0 |
N1—C5—C4 | 123.3 (4) | N4—C44—C43 | 123.3 (4) |
N1—C5—H5 | 118.3 | N4—C44—H44 | 118.3 |
C4—C5—H5 | 118.3 | C43—C44—H44 | 118.3 |
C7—C6—C3 | 178.0 (4) | C46—C45—C42 | 176.3 (5) |
C6—C7—C8 | 178.5 (4) | C45—C46—C47 | 179.1 (6) |
C13—C8—C9 | 119.1 (4) | C48—C47—C52 | 119.0 (4) |
C13—C8—C7 | 120.8 (4) | C48—C47—C46 | 120.9 (5) |
C9—C8—C7 | 120.1 (4) | C52—C47—C46 | 120.1 (5) |
C10—C9—C8 | 119.7 (4) | C49—C48—C47 | 121.5 (5) |
C10—C9—H9 | 120.1 | C49—C48—H48 | 119.3 |
C8—C9—H9 | 120.1 | C47—C48—H48 | 119.3 |
C11—C10—C9 | 120.4 (4) | C48—C49—C50 | 120.0 (6) |
C11—C10—H10 | 119.8 | C48—C49—H49 | 120.0 |
C9—C10—H10 | 119.8 | C50—C49—H49 | 120.0 |
C10—C11—C12 | 119.9 (4) | C49—C50—C51 | 119.6 (5) |
C10—C11—H11 | 120.1 | C49—C50—H50 | 120.2 |
C12—C11—H11 | 120.1 | C51—C50—H50 | 120.2 |
C13—C12—C11 | 120.5 (4) | C50—C51—C52 | 120.4 (5) |
C13—C12—H12 | 119.7 | C50—C51—H51 | 119.8 |
C11—C12—H12 | 119.7 | C52—C51—H51 | 119.8 |
C12—C13—C8 | 120.3 (4) | C47—C52—C51 | 119.5 (5) |
C12—C13—H13 | 119.9 | C47—C52—H52 | 120.2 |
C8—C13—H13 | 119.9 | C51—C52—H52 | 120.2 |
N2—C14—C15 | 123.2 (4) | Cl8—C53—Cl7 | 113.3 (5) |
N2—C14—H14 | 118.4 | Cl8—C53—H53A | 108.9 |
C15—C14—H14 | 118.4 | Cl7—C53—H53A | 108.9 |
C14—C15—C16 | 120.3 (4) | Cl8—C53—H53B | 108.9 |
C14—C15—H15 | 119.9 | Cl7—C53—H53B | 108.9 |
C16—C15—H15 | 119.9 | H53A—C53—H53B | 107.7 |
Cl6—Cu3—O—Cu1 | 112.21 (11) | C23—C24—C25—C26 | −0.9 (7) |
Cl4—Cu3—O—Cu1 | −116.90 (11) | C22—C21—C26—C25 | −1.5 (6) |
Cl2—Cu3—O—Cu1 | −9.55 (10) | C20—C21—C26—C25 | 179.1 (4) |
Cl6—Cu3—O—Cu2 | −128.10 (10) | C24—C25—C26—C21 | 1.5 (7) |
Cl4—Cu3—O—Cu2 | 2.78 (9) | C31—N3—C27—C28 | −0.3 (7) |
Cl2—Cu3—O—Cu2 | 110.14 (10) | Cu3—N3—C27—C28 | 172.6 (4) |
Cl6—Cu3—O—Cu4 | −6.90 (10) | N3—C27—C28—C29 | 1.1 (7) |
Cl4—Cu3—O—Cu4 | 123.99 (10) | C27—C28—C29—C30 | −2.0 (7) |
Cl2—Cu3—O—Cu4 | −128.66 (11) | C27—C28—C29—C32 | −179.5 (4) |
C5—N1—C1—C2 | −0.8 (7) | C28—C29—C30—C31 | 2.2 (7) |
Cu1—N1—C1—C2 | −177.7 (3) | C32—C29—C30—C31 | 179.7 (4) |
N1—C1—C2—C3 | 0.1 (7) | C27—N3—C31—C30 | 0.5 (7) |
C1—C2—C3—C4 | 0.6 (6) | Cu3—N3—C31—C30 | −172.5 (3) |
C1—C2—C3—C6 | −178.1 (4) | C29—C30—C31—N3 | −1.5 (7) |
C2—C3—C4—C5 | −0.6 (7) | C39—C34—C35—C36 | 1.3 (7) |
C6—C3—C4—C5 | 178.1 (4) | C33—C34—C35—C36 | 179.9 (4) |
C1—N1—C5—C4 | 0.8 (7) | C34—C35—C36—C37 | −0.7 (7) |
Cu1—N1—C5—C4 | 177.9 (4) | C35—C36—C37—C38 | 0.0 (7) |
C3—C4—C5—N1 | −0.1 (7) | C36—C37—C38—C39 | 0.1 (8) |
C13—C8—C9—C10 | −1.7 (7) | C35—C34—C39—C38 | −1.2 (7) |
C7—C8—C9—C10 | 177.2 (4) | C33—C34—C39—C38 | −179.9 (5) |
C8—C9—C10—C11 | 1.6 (7) | C37—C38—C39—C34 | 0.5 (8) |
C9—C10—C11—C12 | −0.7 (8) | C44—N4—C40—C41 | −2.9 (8) |
C10—C11—C12—C13 | −0.2 (8) | Cu4—N4—C40—C41 | 173.1 (4) |
C11—C12—C13—C8 | 0.1 (7) | N4—C40—C41—C42 | −1.5 (9) |
C9—C8—C13—C12 | 0.9 (7) | C40—C41—C42—C43 | 5.1 (8) |
C7—C8—C13—C12 | −178.0 (4) | C40—C41—C42—C45 | −176.7 (5) |
C18—N2—C14—C15 | 0.3 (6) | C41—C42—C43—C44 | −4.3 (7) |
Cu2—N2—C14—C15 | −177.0 (3) | C45—C42—C43—C44 | 177.4 (4) |
N2—C14—C15—C16 | 0.2 (7) | C40—N4—C44—C43 | 3.8 (7) |
C14—C15—C16—C17 | −0.6 (6) | Cu4—N4—C44—C43 | −172.0 (4) |
C14—C15—C16—C19 | 179.2 (4) | C42—C43—C44—N4 | −0.1 (8) |
C15—C16—C17—C18 | 0.4 (7) | C52—C47—C48—C49 | 1.0 (8) |
C19—C16—C17—C18 | −179.4 (4) | C46—C47—C48—C49 | −179.6 (5) |
C14—N2—C18—C17 | −0.5 (7) | C47—C48—C49—C50 | 1.3 (9) |
Cu2—N2—C18—C17 | 176.7 (4) | C48—C49—C50—C51 | −2.5 (9) |
C16—C17—C18—N2 | 0.1 (7) | C49—C50—C51—C52 | 1.6 (9) |
C26—C21—C22—C23 | 0.9 (7) | C48—C47—C52—C51 | −2.0 (8) |
C20—C21—C22—C23 | −179.7 (4) | C46—C47—C52—C51 | 178.6 (5) |
C21—C22—C23—C24 | −0.3 (8) | C50—C51—C52—C47 | 0.7 (9) |
C22—C23—C24—C25 | 0.3 (8) |
π is the midpoint of the C19≡C20 triple bond. Cg1 and Cg2 are the centroids of the N3/C27–C31 and C34–C39 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl2 | 0.95 | 2.64 | 3.283 (4) | 126 |
C4—H4···Cl5i | 0.95 | 2.90 | 3.697 (4) | 142 |
C14—H14···Cl5 | 0.95 | 2.52 | 3.211 (4) | 130 |
C17—H17···Cl4ii | 0.95 | 2.80 | 3.609 (5) | 144 |
C27—H27···Cl6 | 0.95 | 2.74 | 3.297 (5) | 118 |
C31—H31···Cl2 | 0.95 | 2.71 | 3.345 (4) | 125 |
C44—H44···Cl5 | 0.95 | 2.61 | 3.257 (5) | 126 |
C53—H53A···Cl1 | 0.99 | 2.97 | 3.808 (9) | 143 |
C53—H53B···Cl3i | 0.99 | 2.79 | 3.771 (8) | 172 |
C31—H31···π | 0.95 | 2.84 | 3.600 (3) | 135 |
C41—H41···Cg1iii | 0.95 | 2.78 | 3.705 (6) | 165 |
C43—H43···Cg2 | 0.95 | 2.73 | 3.452 (2) | 150 (1) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z. |
Funding information
RAA gratefully acknowledges the Ministry of Higher Education, Research and Innovation, Oman (Project No. BFP/RGP/EI/18/076) for funding and Al Sharqiyah University, Oman, for a research grant (ASU-FSFR/ CAS/FSHN-01/2019).
References
Al-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Koentjoro, O. F., Molloy, K. C., Skelton, J. M. & Raithby, P. R. (2016a). Inorg. Chem. 55, 6465–6480. CAS PubMed Google Scholar
Al-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Skelton, J. M., Molloy, K. C. & Raithby, P. R. (2016b). Inorg. Chem. 55, 10955–10967. CAS PubMed Google Scholar
Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681–5685. Web of Science CSD CrossRef CAS Google Scholar
Bertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746–4747. CrossRef Web of Science Google Scholar
Bertrand, J. A., Kelley, J. A. & Kirkwood, C. E. (1968). J. Chem. Soc. Chem. Commun. 1329–1330. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311–m314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 380–383. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haque, A., Al Balushi, R. A., Al-Busaidi, I. J., Ilmi, R., Al Rasbi, N., Jayapal, M., Khan, M. S. & Raithby, P. R. (2019b). J. Organomet. Chem. 892, 75–82. CSD CrossRef CAS Google Scholar
Haque, A., Al-Balushi, R. A., Al-Busaidi, I. J., Khan, M. S. & Raithby, P. R. (2018). Chem. Rev. 118, 8474–8597. CrossRef CAS PubMed Google Scholar
Haque, A., Xu, L., Al-Balushi, R. A., Al-Suti, M. K., Ilmi, R., Guo, Z., Khan, M. S., Wong, W.-Y. & Raithby, P. R. (2019a). Chem. Soc. Rev. 48, 5547–5563. CrossRef CAS PubMed Google Scholar
Ilmi, R., Al-busaidi, I. J., Haque, A. & Khan, M. S. (2018). J. Coord. Chem. 71, 3045–3076. CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mukherjee, C., Weyhermüller, T., Bothe, E., Rentschler, E. & Chaudhuri, P. (2007). Inorg. Chem. 46, 9895–9905. CSD CrossRef PubMed CAS Google Scholar
Näther, C. & Jeß, I. (2002). Acta Cryst. E58, m4–m6. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (1998). (1998).COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Thakurta, S., Roy, P., Butcher, R. J., El Fallah, M. S., Tercero, J., Garribba, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 4385–4395. Web of Science CSD CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wegner, R., Gottschaldt, M., Görls, H., Jäger, E. G. & Klemm, D. (2001). Chem. Eur. J. 7, 2143–2157. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.