research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structural characterization of hexa-μ2-chlorido-μ4-oxido-tetra­kis­{[4-(phenyl­ethyn­yl)pyridine-κN]copper(II)} di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Basic Sciences, College of Applied and Health Science, Al Sharqiyah University, PO Box 42, Ibra 400, Sultanate of Oman, bDepartment of Chemistry, Sultan Qaboos University, PO Box 36, Al-Khod 123, Sultanate of Oman, cDepartment of Chemistry, Langat Singh College, B.R.A. Bihar University, Muzaffarpur, Bihar 842001, India, dDepartment of Chemistry, College of Science, University of Hail, Kingdom of Saudi Arabia, and eDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
*Correspondence e-mail: p.r.raithby@bath.ac.uk

Edited by J. T. Mague, Tulane University, USA (Received 14 August 2020; accepted 5 December 2020; online 1 January 2021)

In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core mol­ecular structure consists of a Cu4 tetra­hedron with a central inter­stitial O atom. Each edge of the Cu4 tetra­hedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenyl­ethynyl­pyridine ligand. In the crystal, the mol­ecules are linked by inter­molecular C—H⋯Cl inter­actions. Furthermore, C—H⋯π and ππ inter­actions also connect the mol­ecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H⋯H and C⋯H/H⋯C inter­actions.

1. Chemical context

Polynuclear CuII complexes with various bridges between the metal centres have attracted much attention in the past decade, from both an experimental and a theoretical point of view, and a significant amount of research has been devoted to analysing their structural and magnetic properties (Bertrand & Kelley, 1966[Bertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746-4747.]). Copper complexes that form clusters of the type Cu4OX6L4 (X = halogen, L = ligand or X) are known (Bertrand et al., 1968[Bertrand, J. A., Kelley, J. A. & Kirkwood, C. E. (1968). J. Chem. Soc. Chem. Commun. 1329-1330.]; Dey et al., 2002[Dey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 380-383.]; Mukherjee et al., 2007[Mukherjee, C., Weyhermüller, T., Bothe, E., Rentschler, E. & Chaudhuri, P. (2007). Inorg. Chem. 46, 9895-9905.]; Thakurta et al., 2009[Thakurta, S., Roy, P., Butcher, R. J., El Fallah, M. S., Tercero, J., Garribba, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 4385-4395.]; Wegner et al., 2001[Wegner, R., Gottschaldt, M., Görls, H., Jäger, E. G. & Klemm, D. (2001). Chem. Eur. J. 7, 2143-2157.]). In our studies on dimeric, tetra­meric, and polymeric Cu complexes supported by ethynyl­pyridine-based ligands, we have obtained Cu4OX6L4 complexes where a central oxide ion is tetra­hedrally coord­inated to four copper ions, which are in turn bridged in pairs by six chloride ions, and the L groups complete the trigonal–bipyramidal coordination of the copper centres. The structural complexity of these [Cu4OX6L4] systems, as well as their challenging magnetic properties, has promoted sustained structural work on the subject (Atria et al., 1999[Atria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681-5685.]), where the magnetic properties exhibited by the compound were successfully modelled in a rather simple and elegant fashion. We report herein the synthesis of the title complex μ4-oxo-hexa-μ2-chlorido-tetra­kis­[(4-phenyl­ethynyl­pyridine)­copper(II)] di­chloro­methane solvate (1) from 4-(2-phenyl­ethyn­yl)pyridine and CuCl in di­chloro­methane. It is well known that CuX (X = Cl, Br, I) salts react with ethynyl­pyridine-based ligands in di­chloro­methane to form coordination-driven self-assembled tetra­hedral CuI complexes; however, oxidation to form CuII species is also possible. We have a long-standing inter­est in the design and development of functional ethynyl-based carbocyclic and heterocyclic ligands and their transition metal complexes (Haque et al., 2018[Haque, A., Al-Balushi, R. A., Al-Busaidi, I. J., Khan, M. S. & Raithby, P. R. (2018). Chem. Rev. 118, 8474-8597.]; Haque et al., 2019a[Haque, A., Xu, L., Al-Balushi, R. A., Al-Suti, M. K., Ilmi, R., Guo, Z., Khan, M. S., Wong, W.-Y. & Raithby, P. R. (2019a). Chem. Soc. Rev. 48, 5547-5563.]). In the past, we have reported several dimeric, tetra­meric, and polymeric CuI complexes supported by ethynyl­pyridine-based ligands. (Al-Balushi et al., 2016a[Al-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Koentjoro, O. F., Molloy, K. C., Skelton, J. M. & Raithby, P. R. (2016a). Inorg. Chem. 55, 6465-6480.],b[Al-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Skelton, J. M., Molloy, K. C. & Raithby, P. R. (2016b). Inorg. Chem. 55, 10955-10967.]; Ilmi et al., 2018[Ilmi, R., Al-busaidi, I. J., Haque, A. & Khan, M. S. (2018). J. Coord. Chem. 71, 3045-3076.]). In the quest for new dimeric halide-bridged Cu complexes, we obtained an oxidized CuII product, compound 1. Our experience suggests that the chloride-containing CuI complexes are somewhat less stable and oxidize easily (in situ or during crystallization), leading to the formation of multiple products. The crystal structure, as well as Hirshfeld surface analysis, indicate that the most important contributions to the packing arrangement within are from H⋯H and C⋯H/H⋯C inter­actions.

[Scheme 1]

2. Structural commentary

Within the crystal structure the asymmetric unit consists of a central core with an O atom binding four Cu atoms, and there are six bridging Cl atoms, with four 4-phenyl­ethynyl­pyridine units also attached to the Cu atoms via the N atoms of the six-membered heterocyclic ring (Fig. 1[link]). The Cu atoms are tetra­hedrally oriented about the O atom and are bridged by the six Cl atoms, which adopt an octa­hedral arrangement with respect to the cluster centre. Each Cu atom lies at the centre of a trigonal bipyramid, with the O atom and the 4-phenyl­ethynyl-pyridine N atom in the axial positions and three Cl atoms in the equatorial positions. Average distances are: Cu—N, 1.976 (3) Å; Cu—O, 1.905 (2) Å; Cu—Cl1, 2.418 (11) Å; Cu—Cu, 3.111 (2) Å. The average of the axial O—Cu—N angles is 177.1 (12)°; that of the equatorial C1—Cu—C1 angles is 119.2 (4)°. The dihedral angles between benzene and pyridine rings are 0.9 (2)° (C21–C26 and C14–C18/N2), 34.0 (3)° (C34–C39 and C27–C31/N3), 5.8 (3)° (C47–C52 and C40–C44/N4) and 5.7 (3)° (C8–C13 and C1–C5/N1). The average distance of the triple bond is 1.193 (6) Å;.

[Figure 1]
Figure 1
The molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 40% probability level.

3. Supra­molecular features

The crystal structure of the title compound is consolidated by several inter- and intra­molecular inter­actions, the presence of which are supported by a Hirshfeld surface analysis. In the crystal, the presence of several C—H⋯Cl (Fig. 2[link], Table 1[link]) inter­actions (C1—H1⋯Cl2, C4—H4⋯Cl5i, C14—H14⋯Cl5, C17—H17⋯Cl4ii, C27—H27⋯Cl6, C31—H31⋯Cl2, C44—H44⋯Cl5, C53—H53A⋯Cl1 and C53—H53B⋯Cl3i helps in the stabilization of the crystals. Furthermore, C31—H31⋯π (π is the midpoint of the C19≡C20 triple bond) inter­actions connect the mol­ecules into a chain along the b-axis direction. The C41—H41⋯Cg1 and C43—H43⋯Cg2 inter­actions form a network along the b-axis direction (Fig. 3[link]). ππ inter­actions [centroid⋯centroid = 3.672 (3) Å; between the C47–C52 and N4/C40–C44 are also present and are supported by the Hirshfeld surface analysis.

Table 1
Hydrogen-bond geometry (Å, °)

π is the midpoint of the C19≡C20 triple bond. Cg1 and Cg2 are the centroids of the N3/C27–C31 and C34–C39 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.95 2.64 3.283 (4) 126
C4—H4⋯Cl5i 0.95 2.90 3.697 (4) 142
C14—H14⋯Cl5 0.95 2.52 3.211 (4) 130
C17—H17⋯Cl4ii 0.95 2.80 3.609 (5) 144
C27—H27⋯Cl6 0.95 2.74 3.297 (5) 118
C31—H31⋯Cl2 0.95 2.71 3.345 (4) 125
C44—H44⋯Cl5 0.95 2.61 3.257 (5) 126
C53—H53A⋯Cl1 0.99 2.97 3.808 (9) 143
C53—H53B⋯Cl3i 0.99 2.79 3.771 (8) 172
C31—H31⋯π 0.95 2.84 3.600 (3) 135
C41—H41⋯Cg1iii 0.95 2.78 3.705 (6) 165
C43—H43⋯Cg2 0.95 2.73 3.452 (2) 150
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z].
[Figure 2]
Figure 2
Crystal packing of the title compound showing the C—H⋯Cl inter­actions.
[Figure 3]
Figure 3
Crystal packing of the title compound showing the C41—H41⋯Cg1 and C43—H43⋯Cg2 inter­actions viewed along the b-axis direction.

4. Hirshfeld surface analysis

In order to better visualize and analyse the role of weak inter­molecular contacts in the crystal, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Fig. 4[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The red points, which represent close contacts and negative dnorm values on the surface, correspond to the C—H⋯Cl inter­actions. The shape-index of the Hirshfeld surface is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles; if these triangles do not appear, then there are no ππ inter­actions. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 4[link]b clearly suggests that there are ππ inter­actions in the crystal packing of the title compound. The curvedness plot (Fig. 4[link]c) shows flat surface patches characteristic of planar stacking. The large green regions represent a relatively flat (i.e. planar) surface area, while the blue regions demonstrate areas of curvature. The presence of ππ stacking interactions is also evident as flat regions on the Hirshfeld surface plotted over curvedness. The percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 5[link]. These indicate that the crystal packing is dominated by H⋯H contacts, representing van der Waals inter­actions (34.4% contribution to the overall surface), followed by C⋯H/H⋯C, C⋯C, Cl⋯H/H⋯Cl, C⋯Cl/Cl⋯C, and N⋯H/H⋯N inter­actions, which contribute 27.8%, 22.8%, 7.5%, 4.2%, and 2.0%, respectively. The other inter­actions (Cu⋯H/H⋯Cu, Cl⋯Cl, N⋯C/C⋯N, N⋯Cl/Cl⋯N and Cu⋯C/C⋯Cu) contribute less than 2% and are not considered to be significant.

[Figure 4]
Figure 4
Hirshfeld surfaces of the title mol­ecule plotted over (a) dnorm (b) shape-index showing the ππ stacking and (c) curvedness.
[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) Cl⋯H/H⋯Cl, (e) C⋯C and (f) C⋯Cl/Cl⋯C (g) N⋯H/H⋯N (h) Cu⋯H/H⋯Cu (i) Cl⋯Cl (j) N⋯C/C⋯N (k) N⋯Cl/Cl⋯N and (l) Cu⋯C/C⋯Cu inter­actions

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave ten hits for the Cu4OX6L4 moiety. The eight most closely related compounds are hexa-μ2-chlorido-tetra­kis­(2-ethyl­pyrazine-N)-μ4-oxo-tetra­copper(II) (Näther & Jess 2002[Näther, C. & Jeß, I. (2002). Acta Cryst. E58, m4-m6.]), [Cu4Cl6O(C6H8N2)4], in which the Cu4 tetra­hedra are centred by an inter­stitial O atom. Each edge of the Cu4 tetra­hedron is bridged by a chlorido ligand. The copper(II) cations are fourfold coordinated by one O atom, two chlorido ligands and one N atom of the 2-ethyl­pyrazine ligand within a distorted tetra­hedron. The Cu4Cl6O(C6H8N2)4 units are located in general positions. Three oxo complexes with a tetra­nuclear [Cu4(μ-Cl)6(μ-O)] unit (Cortés et al., 2006[Cortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311-m314.]), namely 4-phenyl-1H-imidazolium hexa-μ2-chlorido-chlorido-μ4-oxo-tris­(4-phenyl-1H-imidazole-κN1)tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa-μ2-chlorido-μ4-oxo-tetra­kis­(pyridine N-oxide-κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa-μ2-chlorido-tetra­kis­(2-methyl-1H-imidazole-κN1)μ4-oxo-tetra­copper(II) methanol tris­olvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species.

6. Synthesis and crystallization

The ligand L was prepared by adapting a previously reported procedure (Haque et al., 2019b[Haque, A., Al Balushi, R. A., Al-Busaidi, I. J., Ilmi, R., Al Rasbi, N., Jayapal, M., Khan, M. S. & Raithby, P. R. (2019b). J. Organomet. Chem. 892, 75-82.]). 1-Ethynyl­benzene (0.33 g, 3.23 mmol) and 4-iodo­pyridine (0.66 g, 3.23 mmol) were dissolved in a iPr2NH/THF mixture (1:2, 60 mL) under an argon atmosphere. Catalytic amounts of Pd(OAc)2 (3 mg), CuI (3 mg), and PPh3 (10 mg) were added to the mixture and it was refluxed overnight. The solvent was then removed under vacuum and the residue was dissolved in di­chloro­methane (100 mL), washed with water and extracted with di­chloro­methane. The combined organic layers were washed with water and brine and then dried over anhydrous magnesium sulfate. The solution was concentrated under vacuum, and the crude product was chromatographed on a silica column using a mixture of hexa­ne:di­chloro­methane (1:1, v/v). The ligand was obtained as an orange/pale-brown powder (0.51g, 88% yield). IR (νmax) cm−1: 2185 (–C≡C–), 1590 (C—N). 1H NMR (700 MHz, CDCl3): δ(ppm) 8.07 (d, 2H, J = 6.0, H-py), 7.94 (d, 2H, J = 6.2, H-py), 7.73 (d, 2H, J = 6.2, H-ph), 6.80–6.74 (m, 3H, H-ph). ESI–MS: m/z 179.06 (M+). C13H9N Analysis calculated: C, 87.12; H 5.06; N, 7.82%. Found: C, 86.65; H, 4.89; N, 7.67%.

Synthesis of Cu4OCl6L4 [L = 4-(2-phenyl­ethyn­yl)pyridine] (1)

The title complex 1 was obtained by the reaction of the ethynyl­pyridine-based ligand with CuICl due to partial oxidation under the reaction conditions employed. The methodology for the synthesis of the complex is as follows: L (0.050 g, 0.24 mmol) and CuCl (0.024 g, 0.24 mmol) were dissolved in di­chloro­methane (50 mL). The reaction mixture was stirred at room temperature under a partial argon atmosphere for 24 h, after which period the solvent was removed under reduced pressure. The crude product was dissolved in di­chloro­methane and filtered through a pad of celite using di­chloro­methane giving the final product as an orange powder (0.057 g, 79% yield). Diffusion of hexane to a di­chloro­methane solution gave the final product as orange crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned with idealized geometry (C—H = 0.95–0.99 Å) and refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Cu4Cl6O(C13H9N)4]·CH2Cl2
Mr 1284.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 12.7166 (2), 14.4366 (2), 16.4038 (3)
α, β, γ (°) 105.024 (1), 105.935 (1), 102.999 (1)
V3) 2650.81 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.15 × 0.12 × 0.12
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction Multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.548, 0.572
No. of measured, independent and observed [I > 2σ(I)] reflections 50117, 12164, 8495
Rint 0.060
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.02
No. of reflections 12164
No. of parameters 631
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.99
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). (1998).COLLECT. Nonius BV, Delft, The Netherlands.]), HKL and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexa-µ2-chlorido-µ4-oxido-tetrakis{[4-(phenylethynyl)pyridine-κN]copper(II)} dichloromethane monosolvate top
Crystal data top
[Cu4Cl6O(C13H9N)4]·CH2Cl2Z = 2
Mr = 1284.63F(000) = 1288
Triclinic, P1Dx = 1.609 Mg m3
a = 12.7166 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.4366 (2) ÅCell parameters from 38646 reflections
c = 16.4038 (3) Åθ = 2.9–27.5°
α = 105.024 (1)°µ = 2.03 mm1
β = 105.935 (1)°T = 150 K
γ = 102.999 (1)°Block, brown
V = 2650.81 (8) Å30.15 × 0.12 × 0.12 mm
Data collection top
Nonius Kappa CCD
diffractometer
12164 independent reflections
Radiation source: fine-focus sealed tube8495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
274 2.0 degree images with φ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(Sortav; Blessing 1995)
h = 1616
Tmin = 0.548, Tmax = 0.572k = 1818
50117 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0564P)2 + 3.7541P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
12164 reflectionsΔρmax = 0.89 e Å3
631 parametersΔρmin = 0.99 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59753 (4)0.13110 (3)0.37484 (3)0.02947 (12)
Cu20.39563 (4)0.22081 (3)0.36568 (3)0.02945 (12)
Cu30.53201 (4)0.23908 (4)0.23694 (3)0.02972 (12)
Cu40.37106 (4)0.02979 (4)0.20606 (3)0.03326 (13)
Cl10.51186 (8)0.19294 (8)0.49034 (6)0.0369 (2)
Cl20.71949 (7)0.25680 (8)0.34475 (7)0.0365 (2)
Cl30.49178 (8)0.04512 (7)0.29070 (7)0.0408 (2)
Cl40.45580 (8)0.35909 (7)0.31625 (7)0.0344 (2)
Cl50.22503 (7)0.07846 (8)0.25227 (6)0.0355 (2)
Cl60.43774 (8)0.09701 (8)0.10345 (6)0.0367 (2)
Cl70.4867 (3)0.3790 (3)0.7675 (4)0.240 (2)
Cl80.2612 (2)0.2324 (2)0.6751 (2)0.1420 (10)
O0.47340 (19)0.15499 (18)0.29649 (16)0.0258 (5)
N10.7198 (3)0.0992 (2)0.4559 (2)0.0326 (7)
N20.3071 (3)0.2858 (2)0.4319 (2)0.0321 (7)
N30.5893 (3)0.3317 (3)0.1777 (2)0.0321 (7)
N40.2701 (3)0.1021 (3)0.1125 (2)0.0385 (8)
C10.8321 (3)0.1366 (3)0.4721 (3)0.0387 (10)
H10.8558920.1838830.4446210.046*
C20.9156 (3)0.1107 (3)0.5265 (3)0.0386 (10)
H20.9946670.1397240.5358350.046*
C30.8834 (3)0.0419 (3)0.5673 (3)0.0353 (9)
C40.7655 (3)0.0014 (3)0.5498 (3)0.0404 (10)
H40.7392320.0465480.5759250.048*
C50.6884 (3)0.0315 (3)0.4949 (3)0.0411 (10)
H50.6085890.0031180.4836870.049*
C60.9675 (3)0.0144 (3)0.6270 (3)0.0386 (10)
C71.0352 (3)0.0082 (3)0.6781 (3)0.0365 (9)
C81.1148 (3)0.0365 (3)0.7408 (3)0.0364 (9)
C91.2335 (3)0.0069 (3)0.7646 (3)0.0424 (10)
H91.2621500.0528230.7375370.051*
C101.3093 (4)0.0173 (4)0.8278 (3)0.0504 (12)
H101.3900900.0134470.8451560.060*
C111.2687 (4)0.0852 (4)0.8653 (3)0.0490 (11)
H111.3211580.1020630.9081990.059*
C121.1512 (4)0.1293 (4)0.8409 (3)0.0497 (11)
H121.1231840.1766200.8669440.060*
C131.0749 (4)0.1053 (3)0.7794 (3)0.0436 (10)
H130.9942950.1360300.7630530.052*
C140.1961 (3)0.2383 (3)0.4150 (3)0.0375 (9)
H140.1616000.1713470.3725990.045*
C150.1298 (3)0.2814 (3)0.4557 (3)0.0382 (9)
H150.0514250.2442420.4414310.046*
C160.1764 (3)0.3785 (3)0.5174 (3)0.0346 (9)
C170.2923 (4)0.4281 (4)0.5358 (3)0.0470 (11)
H170.3288950.4949740.5780580.056*
C180.3531 (4)0.3793 (3)0.4920 (3)0.0445 (11)
H180.4320190.4142030.5054360.053*
C190.1059 (4)0.4239 (3)0.5592 (3)0.0372 (9)
C200.0397 (4)0.4535 (3)0.5895 (3)0.0380 (9)
C210.0431 (4)0.4866 (3)0.6243 (3)0.0364 (9)
C220.1552 (4)0.4217 (4)0.5946 (3)0.0485 (11)
H220.1766950.3559230.5517460.058*
C230.2351 (4)0.4526 (4)0.6270 (3)0.0547 (13)
H230.3118330.4081010.6063740.066*
C240.2043 (4)0.5475 (4)0.6892 (3)0.0477 (11)
H240.2598100.5681420.7115950.057*
C250.0936 (4)0.6128 (4)0.7195 (3)0.0467 (11)
H250.0734830.6786800.7618530.056*
C260.0106 (4)0.5826 (3)0.6880 (3)0.0424 (10)
H260.0664450.6267330.7096960.051*
C270.5272 (4)0.3257 (4)0.0946 (3)0.0436 (10)
H270.4580810.2704770.0610500.052*
C280.5593 (4)0.3960 (4)0.0562 (3)0.0483 (11)
H280.5124690.3898940.0023290.058*
C290.6621 (4)0.4772 (3)0.1043 (3)0.0415 (10)
C300.7252 (4)0.4840 (3)0.1907 (3)0.0430 (10)
H300.7939220.5390210.2264120.052*
C310.6865 (4)0.4095 (3)0.2239 (3)0.0400 (10)
H310.7310960.4138440.2824890.048*
C320.6997 (4)0.5538 (4)0.0677 (3)0.0498 (12)
C330.7328 (4)0.6179 (4)0.0394 (3)0.0486 (11)
C340.7732 (4)0.6993 (4)0.0096 (3)0.0443 (10)
C350.7567 (4)0.6839 (4)0.0809 (3)0.0432 (10)
H350.7178660.6179000.1243410.052*
C360.7962 (4)0.7634 (4)0.1082 (3)0.0435 (10)
H360.7853630.7521640.1700080.052*
C370.8509 (4)0.8585 (4)0.0459 (3)0.0506 (12)
H370.8779160.9130990.0649750.061*
C380.8675 (5)0.8766 (4)0.0439 (4)0.0662 (15)
H380.9055800.9430930.0865900.079*
C390.8278 (5)0.7963 (4)0.0718 (3)0.0577 (13)
H390.8384000.8082590.1336930.069*
C400.3174 (4)0.1621 (4)0.0713 (3)0.0555 (13)
H400.3977430.1372700.0828130.067*
C410.2561 (4)0.2598 (4)0.0119 (4)0.0600 (14)
H410.2938550.2998500.0174520.072*
C420.1388 (4)0.2987 (3)0.0044 (3)0.0419 (10)
C430.0893 (4)0.2333 (3)0.0350 (3)0.0483 (11)
H430.0085130.2544930.0228200.058*
C440.1567 (4)0.1368 (3)0.0923 (3)0.0464 (11)
H440.1202980.0929340.1186020.056*
C450.0715 (4)0.4002 (4)0.0610 (3)0.0470 (11)
C460.0100 (4)0.4851 (3)0.1066 (3)0.0468 (11)
C470.0649 (4)0.5861 (3)0.1609 (3)0.0466 (11)
C480.0220 (5)0.6593 (4)0.1977 (3)0.0590 (13)
H480.0584990.6427110.1865360.071*
C490.0926 (5)0.7556 (4)0.2500 (4)0.0711 (16)
H490.0608090.8053300.2736860.085*
C500.2091 (5)0.7803 (4)0.2681 (4)0.0692 (16)
H500.2586300.8463480.3063870.083*
C510.2539 (5)0.7089 (4)0.2306 (4)0.0693 (16)
H510.3344330.7263010.2418410.083*
C520.1818 (4)0.6112 (4)0.1761 (4)0.0618 (14)
H520.2127780.5622680.1497410.074*
C530.4027 (7)0.2640 (6)0.6845 (6)0.110 (3)
H53A0.4078020.2663890.6259380.132*
H53B0.4339150.2105440.6980220.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0202 (2)0.0321 (3)0.0350 (3)0.00681 (18)0.00683 (18)0.0143 (2)
Cu20.0248 (2)0.0339 (3)0.0316 (3)0.01083 (19)0.01190 (19)0.0109 (2)
Cu30.0261 (2)0.0339 (3)0.0293 (2)0.00812 (19)0.01021 (19)0.0118 (2)
Cu40.0252 (2)0.0304 (3)0.0342 (3)0.00260 (19)0.00720 (19)0.0040 (2)
Cl10.0310 (5)0.0498 (6)0.0324 (5)0.0151 (4)0.0113 (4)0.0162 (4)
Cl20.0222 (4)0.0430 (6)0.0423 (5)0.0042 (4)0.0066 (4)0.0219 (5)
Cl30.0322 (5)0.0288 (5)0.0520 (6)0.0061 (4)0.0044 (4)0.0128 (4)
Cl40.0336 (5)0.0310 (5)0.0421 (5)0.0102 (4)0.0185 (4)0.0127 (4)
Cl50.0220 (4)0.0426 (6)0.0341 (5)0.0057 (4)0.0083 (4)0.0064 (4)
Cl60.0344 (5)0.0402 (5)0.0290 (5)0.0087 (4)0.0082 (4)0.0075 (4)
Cl70.138 (3)0.145 (3)0.374 (6)0.052 (2)0.100 (3)0.027 (3)
Cl80.1206 (19)0.152 (2)0.165 (2)0.0463 (17)0.0331 (17)0.090 (2)
O0.0205 (12)0.0264 (13)0.0275 (13)0.0051 (10)0.0082 (10)0.0064 (11)
N10.0239 (16)0.0360 (18)0.0373 (18)0.0072 (13)0.0087 (14)0.0158 (15)
N20.0283 (16)0.0366 (19)0.0360 (18)0.0131 (14)0.0154 (14)0.0134 (15)
N30.0310 (17)0.0411 (19)0.0314 (17)0.0152 (15)0.0149 (14)0.0164 (15)
N40.0333 (18)0.0343 (19)0.0374 (19)0.0037 (15)0.0090 (15)0.0049 (15)
C10.028 (2)0.046 (2)0.048 (2)0.0095 (18)0.0134 (18)0.027 (2)
C20.0221 (18)0.047 (2)0.047 (2)0.0079 (17)0.0087 (17)0.022 (2)
C30.0273 (19)0.041 (2)0.038 (2)0.0128 (17)0.0101 (17)0.0141 (19)
C40.030 (2)0.042 (2)0.051 (3)0.0070 (18)0.0108 (19)0.027 (2)
C50.027 (2)0.048 (3)0.050 (3)0.0101 (18)0.0107 (18)0.023 (2)
C60.029 (2)0.046 (2)0.041 (2)0.0105 (18)0.0114 (18)0.018 (2)
C70.0270 (19)0.041 (2)0.041 (2)0.0113 (17)0.0090 (17)0.0166 (19)
C80.031 (2)0.037 (2)0.037 (2)0.0114 (17)0.0082 (17)0.0109 (18)
C90.033 (2)0.052 (3)0.046 (3)0.017 (2)0.0127 (19)0.022 (2)
C100.029 (2)0.069 (3)0.053 (3)0.018 (2)0.012 (2)0.024 (3)
C110.042 (2)0.067 (3)0.041 (3)0.028 (2)0.010 (2)0.020 (2)
C120.048 (3)0.058 (3)0.048 (3)0.020 (2)0.015 (2)0.027 (2)
C130.034 (2)0.049 (3)0.047 (3)0.0119 (19)0.0114 (19)0.019 (2)
C140.038 (2)0.032 (2)0.041 (2)0.0097 (17)0.0173 (18)0.0082 (18)
C150.032 (2)0.039 (2)0.047 (2)0.0113 (18)0.0213 (19)0.013 (2)
C160.034 (2)0.040 (2)0.035 (2)0.0146 (18)0.0174 (17)0.0134 (18)
C170.040 (2)0.045 (3)0.046 (3)0.008 (2)0.018 (2)0.001 (2)
C180.031 (2)0.046 (3)0.044 (2)0.0029 (19)0.0143 (19)0.002 (2)
C190.040 (2)0.038 (2)0.033 (2)0.0127 (19)0.0169 (18)0.0079 (18)
C200.039 (2)0.042 (2)0.033 (2)0.0140 (19)0.0139 (18)0.0113 (19)
C210.041 (2)0.043 (2)0.034 (2)0.0215 (19)0.0198 (18)0.0143 (19)
C220.044 (3)0.048 (3)0.045 (3)0.012 (2)0.019 (2)0.001 (2)
C230.036 (2)0.066 (3)0.053 (3)0.010 (2)0.018 (2)0.007 (3)
C240.046 (3)0.062 (3)0.049 (3)0.029 (2)0.025 (2)0.022 (2)
C250.059 (3)0.042 (3)0.047 (3)0.025 (2)0.024 (2)0.015 (2)
C260.043 (2)0.043 (3)0.047 (3)0.018 (2)0.021 (2)0.015 (2)
C270.035 (2)0.053 (3)0.043 (2)0.011 (2)0.0092 (19)0.022 (2)
C280.041 (2)0.063 (3)0.046 (3)0.017 (2)0.010 (2)0.031 (2)
C290.045 (2)0.047 (3)0.048 (3)0.022 (2)0.023 (2)0.028 (2)
C300.038 (2)0.047 (3)0.042 (2)0.0066 (19)0.0136 (19)0.020 (2)
C310.041 (2)0.044 (2)0.033 (2)0.0097 (19)0.0103 (18)0.0158 (19)
C320.046 (3)0.063 (3)0.051 (3)0.019 (2)0.020 (2)0.031 (3)
C330.046 (3)0.062 (3)0.049 (3)0.020 (2)0.019 (2)0.032 (2)
C340.047 (3)0.048 (3)0.048 (3)0.020 (2)0.021 (2)0.025 (2)
C350.039 (2)0.047 (3)0.041 (2)0.012 (2)0.0096 (19)0.018 (2)
C360.046 (2)0.052 (3)0.043 (2)0.022 (2)0.019 (2)0.025 (2)
C370.066 (3)0.045 (3)0.056 (3)0.026 (2)0.024 (2)0.030 (2)
C380.101 (5)0.048 (3)0.054 (3)0.035 (3)0.024 (3)0.019 (3)
C390.085 (4)0.059 (3)0.048 (3)0.037 (3)0.033 (3)0.027 (3)
C400.037 (2)0.050 (3)0.060 (3)0.004 (2)0.015 (2)0.001 (2)
C410.049 (3)0.048 (3)0.065 (3)0.009 (2)0.021 (3)0.004 (3)
C420.040 (2)0.034 (2)0.035 (2)0.0028 (18)0.0021 (18)0.0058 (18)
C430.033 (2)0.041 (3)0.053 (3)0.0030 (19)0.005 (2)0.006 (2)
C440.038 (2)0.038 (2)0.049 (3)0.0090 (19)0.007 (2)0.004 (2)
C450.048 (3)0.042 (3)0.041 (2)0.007 (2)0.010 (2)0.010 (2)
C460.049 (3)0.039 (3)0.041 (2)0.006 (2)0.009 (2)0.012 (2)
C470.048 (3)0.037 (2)0.041 (2)0.000 (2)0.007 (2)0.012 (2)
C480.058 (3)0.049 (3)0.055 (3)0.001 (2)0.021 (3)0.006 (2)
C490.073 (4)0.052 (3)0.066 (4)0.002 (3)0.028 (3)0.003 (3)
C500.080 (4)0.048 (3)0.053 (3)0.002 (3)0.015 (3)0.005 (3)
C510.048 (3)0.054 (3)0.080 (4)0.004 (3)0.001 (3)0.024 (3)
C520.051 (3)0.046 (3)0.073 (4)0.008 (2)0.006 (3)0.020 (3)
C530.118 (7)0.096 (6)0.127 (7)0.041 (5)0.052 (6)0.039 (5)
Geometric parameters (Å, º) top
Cu1—O1.904 (2)C18—H180.9500
Cu1—N11.976 (3)C19—C201.192 (6)
Cu1—Cl22.3581 (10)C20—C211.441 (6)
Cu1—Cl32.4098 (11)C21—C221.388 (6)
Cu1—Cl12.5036 (11)C21—C261.392 (6)
Cu2—O1.910 (2)C22—C231.376 (6)
Cu2—N21.986 (3)C22—H220.9500
Cu2—Cl12.3586 (10)C23—C241.373 (7)
Cu2—Cl42.3918 (10)C23—H230.9500
Cu2—Cl52.4874 (10)C24—C251.376 (7)
Cu3—O1.895 (2)C24—H240.9500
Cu3—N31.972 (3)C25—C261.401 (6)
Cu3—Cl62.3586 (11)C25—H250.9500
Cu3—Cl42.4316 (11)C26—H260.9500
Cu3—Cl22.4602 (10)C27—C281.371 (6)
Cu4—O1.911 (2)C27—H270.9500
Cu4—N41.982 (3)C28—C291.403 (6)
Cu4—Cl52.3666 (11)C28—H280.9500
Cu4—Cl62.3987 (11)C29—C301.390 (6)
Cu4—Cl32.4101 (11)C29—C321.441 (6)
Cl7—C531.727 (9)C30—C311.382 (6)
Cl8—C531.706 (9)C30—H300.9500
N1—C11.331 (5)C31—H310.9500
N1—C51.347 (5)C32—C331.185 (6)
N2—C181.333 (5)C33—C341.431 (6)
N2—C141.338 (5)C34—C391.384 (7)
N3—C311.336 (5)C34—C351.391 (6)
N3—C271.344 (5)C35—C361.379 (6)
N4—C401.312 (6)C35—H350.9500
N4—C441.330 (5)C36—C371.365 (7)
C1—C21.377 (6)C36—H360.9500
C1—H10.9500C37—C381.374 (7)
C2—C31.383 (6)C37—H370.9500
C2—H20.9500C38—C391.394 (7)
C3—C41.398 (5)C38—H380.9500
C3—C61.442 (6)C39—H390.9500
C4—C51.368 (6)C40—C411.387 (7)
C4—H40.9500C40—H400.9500
C5—H50.9500C41—C421.392 (6)
C6—C71.192 (6)C41—H410.9500
C7—C81.443 (5)C42—C431.371 (7)
C8—C131.386 (6)C42—C451.427 (6)
C8—C91.395 (6)C43—C441.378 (6)
C9—C101.385 (6)C43—H430.9500
C9—H90.9500C44—H440.9500
C10—C111.366 (7)C45—C461.203 (6)
C10—H100.9500C46—C471.436 (6)
C11—C121.382 (7)C47—C481.375 (7)
C11—H110.9500C47—C521.382 (7)
C12—C131.369 (6)C48—C491.368 (7)
C12—H120.9500C48—H480.9500
C13—H130.9500C49—C501.369 (8)
C14—C151.369 (6)C49—H490.9500
C14—H140.9500C50—C511.377 (8)
C15—C161.379 (6)C50—H500.9500
C15—H150.9500C51—C521.394 (7)
C16—C171.395 (6)C51—H510.9500
C16—C191.440 (6)C52—H520.9500
C17—C181.378 (6)C53—H53A0.9900
C17—H170.9500C53—H53B0.9900
O—Cu1—N1176.66 (12)C15—C16—C17116.8 (4)
O—Cu1—Cl285.93 (7)C15—C16—C19120.1 (4)
N1—Cu1—Cl297.34 (9)C17—C16—C19123.2 (4)
O—Cu1—Cl384.70 (8)C18—C17—C16119.4 (4)
N1—Cu1—Cl392.56 (10)C18—C17—H17120.3
Cl2—Cu1—Cl3132.72 (4)C16—C17—H17120.3
O—Cu1—Cl183.27 (8)N2—C18—C17123.4 (4)
N1—Cu1—Cl195.83 (10)N2—C18—H18118.3
Cl2—Cu1—Cl1116.16 (4)C17—C18—H18118.3
Cl3—Cu1—Cl1108.55 (4)C20—C19—C16174.1 (5)
O—Cu2—N2176.97 (12)C19—C20—C21178.3 (5)
O—Cu2—Cl187.21 (8)C22—C21—C26120.2 (4)
N2—Cu2—Cl195.20 (10)C22—C21—C20119.6 (4)
O—Cu2—Cl485.66 (8)C26—C21—C20120.2 (4)
N2—Cu2—Cl494.47 (10)C23—C22—C21120.1 (4)
Cl1—Cu2—Cl4124.17 (4)C23—C22—H22119.9
O—Cu2—Cl581.79 (7)C21—C22—H22119.9
N2—Cu2—Cl595.42 (10)C24—C23—C22120.2 (4)
Cl1—Cu2—Cl5118.83 (4)C24—C23—H23119.9
Cl4—Cu2—Cl5114.72 (4)C22—C23—H23119.9
O—Cu3—N3176.99 (12)C23—C24—C25120.6 (4)
O—Cu3—Cl686.45 (8)C23—C24—H24119.7
N3—Cu3—Cl695.31 (10)C25—C24—H24119.7
O—Cu3—Cl484.86 (8)C24—C25—C26120.2 (4)
N3—Cu3—Cl492.14 (10)C24—C25—H25119.9
Cl6—Cu3—Cl4130.17 (4)C26—C25—H25119.9
O—Cu3—Cl283.24 (7)C21—C26—C25118.7 (4)
N3—Cu3—Cl297.90 (9)C21—C26—H26120.6
Cl6—Cu3—Cl2120.96 (4)C25—C26—H26120.6
Cl4—Cu3—Cl2106.52 (4)N3—C27—C28122.8 (4)
O—Cu4—N4177.76 (12)N3—C27—H27118.6
O—Cu4—Cl585.09 (8)C28—C27—H27118.6
N4—Cu4—Cl596.99 (11)C27—C28—C29119.3 (4)
O—Cu4—Cl684.95 (8)C27—C28—H28120.3
N4—Cu4—Cl694.70 (11)C29—C28—H28120.3
Cl5—Cu4—Cl6119.74 (4)C30—C29—C28117.8 (4)
O—Cu4—Cl384.53 (8)C30—C29—C32120.4 (4)
N4—Cu4—Cl393.68 (11)C28—C29—C32121.8 (4)
Cl5—Cu4—Cl3120.61 (4)C31—C30—C29118.9 (4)
Cl6—Cu4—Cl3117.27 (4)C31—C30—H30120.5
Cu2—Cl1—Cu179.49 (3)C29—C30—H30120.5
Cu1—Cl2—Cu380.10 (3)N3—C31—C30123.2 (4)
Cu1—Cl3—Cu480.64 (3)N3—C31—H31118.4
Cu2—Cl4—Cu380.09 (3)C30—C31—H31118.4
Cu4—Cl5—Cu281.16 (3)C33—C32—C29178.5 (6)
Cu3—Cl6—Cu480.40 (3)C32—C33—C34176.9 (6)
Cu3—O—Cu1109.47 (11)C39—C34—C35118.9 (4)
Cu3—O—Cu2109.29 (12)C39—C34—C33119.5 (4)
Cu1—O—Cu2109.31 (12)C35—C34—C33121.6 (4)
Cu3—O—Cu4107.57 (12)C36—C35—C34120.6 (4)
Cu1—O—Cu4109.67 (12)C36—C35—H35119.7
Cu2—O—Cu4111.50 (11)C34—C35—H35119.7
C1—N1—C5116.9 (3)C37—C36—C35119.7 (4)
C1—N1—Cu1124.6 (3)C37—C36—H36120.1
C5—N1—Cu1118.4 (3)C35—C36—H36120.1
C18—N2—C14116.9 (3)C36—C37—C38121.1 (4)
C18—N2—Cu2122.2 (3)C36—C37—H37119.4
C14—N2—Cu2120.9 (3)C38—C37—H37119.4
C31—N3—C27118.0 (4)C37—C38—C39119.3 (5)
C31—N3—Cu3119.7 (3)C37—C38—H38120.3
C27—N3—Cu3121.9 (3)C39—C38—H38120.3
C40—N4—C44117.1 (4)C34—C39—C38120.3 (5)
C40—N4—Cu4118.9 (3)C34—C39—H39119.9
C44—N4—Cu4123.8 (3)C38—C39—H39119.9
N1—C1—C2123.7 (4)N4—C40—C41123.4 (4)
N1—C1—H1118.2N4—C40—H40118.3
C2—C1—H1118.2C41—C40—H40118.3
C1—C2—C3119.4 (4)C40—C41—C42119.3 (5)
C1—C2—H2120.3C40—C41—H41120.3
C3—C2—H2120.3C42—C41—H41120.3
C2—C3—C4117.3 (4)C43—C42—C41116.6 (4)
C2—C3—C6121.7 (4)C43—C42—C45120.9 (4)
C4—C3—C6121.0 (4)C41—C42—C45122.5 (4)
C5—C4—C3119.4 (4)C42—C43—C44119.9 (4)
C5—C4—H4120.3C42—C43—H43120.0
C3—C4—H4120.3C44—C43—H43120.0
N1—C5—C4123.3 (4)N4—C44—C43123.3 (4)
N1—C5—H5118.3N4—C44—H44118.3
C4—C5—H5118.3C43—C44—H44118.3
C7—C6—C3178.0 (4)C46—C45—C42176.3 (5)
C6—C7—C8178.5 (4)C45—C46—C47179.1 (6)
C13—C8—C9119.1 (4)C48—C47—C52119.0 (4)
C13—C8—C7120.8 (4)C48—C47—C46120.9 (5)
C9—C8—C7120.1 (4)C52—C47—C46120.1 (5)
C10—C9—C8119.7 (4)C49—C48—C47121.5 (5)
C10—C9—H9120.1C49—C48—H48119.3
C8—C9—H9120.1C47—C48—H48119.3
C11—C10—C9120.4 (4)C48—C49—C50120.0 (6)
C11—C10—H10119.8C48—C49—H49120.0
C9—C10—H10119.8C50—C49—H49120.0
C10—C11—C12119.9 (4)C49—C50—C51119.6 (5)
C10—C11—H11120.1C49—C50—H50120.2
C12—C11—H11120.1C51—C50—H50120.2
C13—C12—C11120.5 (4)C50—C51—C52120.4 (5)
C13—C12—H12119.7C50—C51—H51119.8
C11—C12—H12119.7C52—C51—H51119.8
C12—C13—C8120.3 (4)C47—C52—C51119.5 (5)
C12—C13—H13119.9C47—C52—H52120.2
C8—C13—H13119.9C51—C52—H52120.2
N2—C14—C15123.2 (4)Cl8—C53—Cl7113.3 (5)
N2—C14—H14118.4Cl8—C53—H53A108.9
C15—C14—H14118.4Cl7—C53—H53A108.9
C14—C15—C16120.3 (4)Cl8—C53—H53B108.9
C14—C15—H15119.9Cl7—C53—H53B108.9
C16—C15—H15119.9H53A—C53—H53B107.7
Cl6—Cu3—O—Cu1112.21 (11)C23—C24—C25—C260.9 (7)
Cl4—Cu3—O—Cu1116.90 (11)C22—C21—C26—C251.5 (6)
Cl2—Cu3—O—Cu19.55 (10)C20—C21—C26—C25179.1 (4)
Cl6—Cu3—O—Cu2128.10 (10)C24—C25—C26—C211.5 (7)
Cl4—Cu3—O—Cu22.78 (9)C31—N3—C27—C280.3 (7)
Cl2—Cu3—O—Cu2110.14 (10)Cu3—N3—C27—C28172.6 (4)
Cl6—Cu3—O—Cu46.90 (10)N3—C27—C28—C291.1 (7)
Cl4—Cu3—O—Cu4123.99 (10)C27—C28—C29—C302.0 (7)
Cl2—Cu3—O—Cu4128.66 (11)C27—C28—C29—C32179.5 (4)
C5—N1—C1—C20.8 (7)C28—C29—C30—C312.2 (7)
Cu1—N1—C1—C2177.7 (3)C32—C29—C30—C31179.7 (4)
N1—C1—C2—C30.1 (7)C27—N3—C31—C300.5 (7)
C1—C2—C3—C40.6 (6)Cu3—N3—C31—C30172.5 (3)
C1—C2—C3—C6178.1 (4)C29—C30—C31—N31.5 (7)
C2—C3—C4—C50.6 (7)C39—C34—C35—C361.3 (7)
C6—C3—C4—C5178.1 (4)C33—C34—C35—C36179.9 (4)
C1—N1—C5—C40.8 (7)C34—C35—C36—C370.7 (7)
Cu1—N1—C5—C4177.9 (4)C35—C36—C37—C380.0 (7)
C3—C4—C5—N10.1 (7)C36—C37—C38—C390.1 (8)
C13—C8—C9—C101.7 (7)C35—C34—C39—C381.2 (7)
C7—C8—C9—C10177.2 (4)C33—C34—C39—C38179.9 (5)
C8—C9—C10—C111.6 (7)C37—C38—C39—C340.5 (8)
C9—C10—C11—C120.7 (8)C44—N4—C40—C412.9 (8)
C10—C11—C12—C130.2 (8)Cu4—N4—C40—C41173.1 (4)
C11—C12—C13—C80.1 (7)N4—C40—C41—C421.5 (9)
C9—C8—C13—C120.9 (7)C40—C41—C42—C435.1 (8)
C7—C8—C13—C12178.0 (4)C40—C41—C42—C45176.7 (5)
C18—N2—C14—C150.3 (6)C41—C42—C43—C444.3 (7)
Cu2—N2—C14—C15177.0 (3)C45—C42—C43—C44177.4 (4)
N2—C14—C15—C160.2 (7)C40—N4—C44—C433.8 (7)
C14—C15—C16—C170.6 (6)Cu4—N4—C44—C43172.0 (4)
C14—C15—C16—C19179.2 (4)C42—C43—C44—N40.1 (8)
C15—C16—C17—C180.4 (7)C52—C47—C48—C491.0 (8)
C19—C16—C17—C18179.4 (4)C46—C47—C48—C49179.6 (5)
C14—N2—C18—C170.5 (7)C47—C48—C49—C501.3 (9)
Cu2—N2—C18—C17176.7 (4)C48—C49—C50—C512.5 (9)
C16—C17—C18—N20.1 (7)C49—C50—C51—C521.6 (9)
C26—C21—C22—C230.9 (7)C48—C47—C52—C512.0 (8)
C20—C21—C22—C23179.7 (4)C46—C47—C52—C51178.6 (5)
C21—C22—C23—C240.3 (8)C50—C51—C52—C470.7 (9)
C22—C23—C24—C250.3 (8)
Hydrogen-bond geometry (Å, º) top
π is the midpoint of the C19C20 triple bond. Cg1 and Cg2 are the centroids of the N3/C27–C31 and C34–C39 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.952.643.283 (4)126
C4—H4···Cl5i0.952.903.697 (4)142
C14—H14···Cl50.952.523.211 (4)130
C17—H17···Cl4ii0.952.803.609 (5)144
C27—H27···Cl60.952.743.297 (5)118
C31—H31···Cl20.952.713.345 (4)125
C44—H44···Cl50.952.613.257 (5)126
C53—H53A···Cl10.992.973.808 (9)143
C53—H53B···Cl3i0.992.793.771 (8)172
C31—H31···π0.952.843.600 (3)135
C41—H41···Cg1iii0.952.783.705 (6)165
C43—H43···Cg20.952.733.452 (2)150 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Funding information

RAA gratefully acknowledges the Ministry of Higher Education, Research and Innovation, Oman (Project No. BFP/RGP/EI/18/076) for funding and Al Sharqiyah University, Oman, for a research grant (ASU-FSFR/ CAS/FSHN-01/2019).

References

First citationAl-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Koentjoro, O. F., Molloy, K. C., Skelton, J. M. & Raithby, P. R. (2016a). Inorg. Chem. 55, 6465–6480.  CAS PubMed Google Scholar
First citationAl-Balushi, R. A., Haque, A., Jayapal, M., Al-Suti, M. K., Husband, J., Khan, M. S., Skelton, J. M., Molloy, K. C. & Raithby, P. R. (2016b). Inorg. Chem. 55, 10955–10967.  CAS PubMed Google Scholar
First citationAtria, A. M., Vega, A., Contreras, M., Valenzuela, J. & Spodine, E. (1999). Inorg. Chem. 38, 5681–5685.  Web of Science CSD CrossRef CAS Google Scholar
First citationBertrand, J. A. & Kelley, J. A. (1966). J. Am. Chem. Soc. 88, 4746–4747.  CrossRef Web of Science Google Scholar
First citationBertrand, J. A., Kelley, J. A. & Kirkwood, C. E. (1968). J. Chem. Soc. Chem. Commun. 1329–1330.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCortés, P., Atria, A. M., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m311–m314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 380–383.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaque, A., Al Balushi, R. A., Al-Busaidi, I. J., Ilmi, R., Al Rasbi, N., Jayapal, M., Khan, M. S. & Raithby, P. R. (2019b). J. Organomet. Chem. 892, 75–82.  CSD CrossRef CAS Google Scholar
First citationHaque, A., Al-Balushi, R. A., Al-Busaidi, I. J., Khan, M. S. & Raithby, P. R. (2018). Chem. Rev. 118, 8474–8597.  CrossRef CAS PubMed Google Scholar
First citationHaque, A., Xu, L., Al-Balushi, R. A., Al-Suti, M. K., Ilmi, R., Guo, Z., Khan, M. S., Wong, W.-Y. & Raithby, P. R. (2019a). Chem. Soc. Rev. 48, 5547–5563.  CrossRef CAS PubMed Google Scholar
First citationIlmi, R., Al-busaidi, I. J., Haque, A. & Khan, M. S. (2018). J. Coord. Chem. 71, 3045–3076.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, C., Weyhermüller, T., Bothe, E., Rentschler, E. & Chaudhuri, P. (2007). Inorg. Chem. 46, 9895–9905.  CSD CrossRef PubMed CAS Google Scholar
First citationNäther, C. & Jeß, I. (2002). Acta Cryst. E58, m4–m6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). (1998).COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationThakurta, S., Roy, P., Butcher, R. J., El Fallah, M. S., Tercero, J., Garribba, E. & Mitra, S. (2009). Eur. J. Inorg. Chem. pp. 4385–4395.  Web of Science CSD CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWegner, R., Gottschaldt, M., Görls, H., Jäger, E. G. & Klemm, D. (2001). Chem. Eur. J. 7, 2143–2157.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds