research communications
Synthesis, structure, and theoretical studies of a calcium complex of a unique dianion derived from 1-methylpyrrolidin-2-one
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, bChemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, cChemistry Division, Code 6189, ASEE Postdoctoral Associate, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and dChemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, catena-poly[[tetrakis(1-methylpyrrolidin-2-one-κO)calcium(II)]-μ-(E)-1,1′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetrahydro-[3,3′-bipyrrolylidene]-5,5′-bis(thiolato)-κ2O:O′], [Ca(C10H8N2O2S2)(C5H9NO)4]n, 1, crystallizes in the triclinic P. The crystal studied was twinned by non-merohedry via two different twofold operations, about the normals to (001) and (10), giving four twin domains with refined occupancies of 0.412 (4), 0.366 (4), 0.055 (1), 0.167 (4). The Ca atoms are located on centers of inversion. Each Ca is surrounded by four 1-methylpyrrolidin-2-one (NMP) ligands and coordinated through one of the two O atoms to two (E)-1,1′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetrahydro-[3,3′-bipyrrolylidene]-5,5′-bis(thiolate), [C10H8N2O2S2]2−, dianions (abbreviation: DMTBT). This dianion thus facilitates the formation of a 1-D polymer, which propagates in the [011] direction. These ribbons are linked by intermolecular C—H⋯S interactions. Each Ca atom is in an octahedral CaO6 six-coordinate environment with Ca—O bond lengths ranging from 2.308 (6) to 2.341 (6) Å, cis bond angles ranging from 88.2 (2) to 91.8 (2)° and the trans angles all 180° due to the Ca atoms being located on centers of inversion. Theoretical calculations were carried out using density functional theory (DFT) and the results showed that although the central DMTBT dianion is planar there is likely some resonance across the central bond between both azapentyl rings, but this is not sufficient to establish a ring current. The calculated UV–vis spectrum shows a peak at 625 nm, which accounts for the deep blue–purple color of solutions of the complex.
Keywords: crystal structure; (E)-1,1′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetrahydro-[3,3′-bipyrrolylidene]-5,5′-bis(thiolate); dianion; calcium-N-methyl-2-pyrrolidine coordination; density functional theory.
CCDC reference: 2050442
1. Chemical context
There has been recent interest in ternary et al., 2015) as well as other uses, such as phosphor materials (Sun et al., 1994). In the synthesis of alkaline earth ternary reactions using metal thiolates and H2S are an obvious avenue of study. An obstacle to such work is the lack of soluble alkaline earth thiolates. As part of a program for the investigation of precursors for the synthesis of a wide variety of metal sulfide materials, the reactions between alkaline earth and thiolate ligands were explored (Purdy et al., 1997). When the barium complex, Ba(SCMe3)2, was crystallized from a mixed NMP solution over a period of years, an unusual barium sulfur cluster was obtained, [Ba6(C4H9S)10S(C5H9NO)6], containing a central μ6-sulfido atom surrounded by six Ba atoms and NMP ligands (Butcher & Purdy, 2006). On the other hand, when solutions of the analogous calcium complex are substituted, these solutions turn blue over time (or more quickly when heated).
as two-color IR optical window materials (JarýThe solvent NMP, along with the presence of calcium ions, appears to play a crucial role in this reactivity. Solutions of calcium ions in N-methyl-2-pyrrolidine have shown unusual reactivity in many areas, including the synthesis of thermally stable polyamides (Mallakpour & Kolahdoozan, 2008; Faghihi, 2009; Faghihi et al., 2010; Dewilde et al., 2016), the synthesis and structural studies of functional coordination polymers from calcium carboxylates based on cluster- and rod-like building blocks (Kang et al., 2014), dental applications using calcium hydroxide paste along with NMP (Lim et al., 2017; Kim et al., 2020), the formulation of solid self-nanoemulsifying drug-delivery systems (Agrawal et al., 2015), and in lyotropic liquid crystalline behavior of poly(2-cyano-p-phenylene terephthalamide) in N-methyl-2-pyrrolidone/calcium chloride solutions (Jung et al., 2016).
The results of this unusual reactivity are explored in this paper.
2. Structural commentary
The title compound, C30H44CaN6O6S2, 1, crystallizes with the triclinic P. The Ca atoms are located on centers of inversion. Each Ca atom is surrounded by four NMP ligands and coordinated through one of the two O atoms to two DMTBT dianions. This dianion thus results in the formation of a 1-D polymer, which extends in the [011] direction. Each Ca atom is in a CaO6 six-coordinate environment with Ca—O bond lengths ranging from 2.308 (6) to 2.341 (6) Å, cis bond angles ranging from 88.2 (2) to 91.8 (2)° and the trans angles all 180° due to the Ca atoms being located on centers of inversion. Thus each Ca atom has close to ideal octahedral geometry.
In view of the interest in combinations of NMP with Ca ions as a reaction medium, it is surprising to note that in the literature (Kang et al., 2014; Qinghua, 2018) there are only three instances of structures containing Ca coordinated to NMP. In these structures, the Ca—O bond length varies from 2.244 (4) to 2.305 (3) Å, which match the values in 1. However, there are no previous structures containing the dianion or any related species. This dianion has resulted from the condensation of two molecules of NMP along with the incorporation of two sulfur atoms in the form of C—S− bonds (Fig. 1). In view of the reactivity of Ca in NMP solutions as mentioned above, it appears that the calcium associated with NMP templates this reaction.
The two five-membered rings of the dianion (Fig. 2) are planar (r.m.s. deviations for C11 to N3 and C16 to N4 of 0.005 and 0.009 Å, respectively) and the two rings are almost coplanar [dihedral angle between rings of only 1.0 (5)°]. The two nitrogen atoms in the ring are almost trigonal [sum of angles about N3 and N4 of 359.5 (7) and 359.8 (7)°, respectively] with their attached methyl groups being only 0.157 (15) and 0.051 (15) Å out of the plane of their respective rings. Thus there must be considerable aromatic character in the linked five-membered rings of the dianion. The bond order of both the C—O and C—S moieties in both rings appear to be close to double bond in character with distances of 1.242 (9) and 1.256 (10) Å for C—O and 1.696 (9) and 1.713 (9) Å for C—S (Trinajstić, 1968).
3. DFT calculations
The calculations for the DMTBT dianions were treated with density functional theory (DFT) within the Gaussian 09 suite (Frisch et al., 2016; Hohenberg & Kohn, 1964). To approximate the exchange-correlation functional for this compound we used the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid HSE06 functional within an unrestricted self-consistent field for the singlet dianion ground state (Heyd et al., 2005). The elements composing the compound are expanded in the 6-311+G(d,p) Gaussian basis set, which is included in the geometry optimization with tight convergence criteria and ultrafine integration grid (McLean & Chandler, 1980; Curtiss et al., 1995). The ground-state equilibrium structure for the dianion state is shown in Fig. 3 with bond lengths in Å overlaid. The optimized geometry was used in all subsequent calculations. The charge distribution is shown in Fig. 4 and from this it can be seen that the negative charge is distributed between the S and O atoms, with the O atom having the major part in each ring. To understand aromaticity in this compound, the ring currents were computed starting from the gauge-independent atomic orbitals (GIAO) method (London, 1937; Cheeseman et al., 1996). The GIAO results were used to generate the signed modulus of the and average induced current with gauge-including magnetically induced current code (GIMIC) on a dense grid (Johansson et al., 2005; Taubert et al., 2008; Fliegl et al., 2009, 2011, 2015, 2016). The results are shown in Fig. 5 and show that there likely is some resonance across the central bond between both azapentyl rings, but this is not sufficient to establish a ring current (Peeks et al., 2017). The UV–vis spectrum (Fig. 6) is computed with time-dependent self-consistent density functional theory (TD-SCF) with 1000 additional states (Casida et al., 1998; Furche & Ahlrichs, 2002). This shows a peak at 625 nm, originating from the HOMO–LUMO transition (Fig. 6), which accounts for the deep blue–purple color of solutions of the complex. The experimental λmax of the blue solution is at 671 nm, which may include colored compounds besides the title compound, as what crystallizes is not necessarily representative of the remaining solution. Thus, while we could obtain a spectrum similar to that generated from calculations, we cannot be sure that what is in solution is the same material that is in the crystals. The oxidation of NMP to the title dianion requires removal of ten hydrogen atoms, and this process must involve multiple steps that produce many different intermediates. An attempt to prepare this dianion by oxidation of NMP with S8 in the presence of CaS under an inert atmosphere produced purple- and blue-colored compounds, which have yet to be identified.
4. Supramolecular features
The Ca atoms are located on centers of inversion. Each Ca is surrounded by 4 NMP ligands and coordinated through one of the two O atoms to two DMTBT dianions. This dianion thus facilitates the formation of 1-D ribbons, which propagate in the [011] direction. These ribbons are linked by C—H⋯S interactions (Table 1), as shown in Fig. 7.
5. Database survey
A search of the Cambridge Structural Database [CSD version 5.41 (November 2019); Groom et al., 2016] for both dianion and structures containing NMP coordinated to Ca gave only three examples of the latter [POMSER and POMSOB (Kang et al., 2014); WIMBIG (Qinghua, 2018)] and no examples of the former.
6. Synthesis and crystallization
Ca(SCMe3)2 (Purdy et al., 1997) was dissolved in N-methyl-2-pyrrolidone containing about 10% C6D6 and a drop of tetramethylsilane and sealed in an NMR tube. After ∼6.5 years, a mass of deep-blue crystals was discovered in the NMR tube. One was selected and transferred to the cold stream of the diffractometer at 100 K. While perfectly stable under an inert atmosphere, the color changes in a few minutes after exposure to air. 13C NMR spectra of the solution showed nothing that can be attributed to the title compound, so it is likely that the concentration is too low to be observed. A UV–vis spectrum of the solution showed a λmax at 671 nm. For an attempt to use Ca to template the sulfur oxidation of NMP, 0.53 g of CaS, 0.54 g of S8, and 20 mL of dry NMP were stirred in an H-tube for 373 K under N2 for 3 d. A pink–purple solution formed, but turned blue when the filtered solution was heated over CaS, allowing H2S to escape, and then turned pink again when concentrated.
7. details
Crystal data, data collection and structure . All hydrogen atoms for the major component were located in difference Fourier maps and included in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.2Ueq(C, N) [1.5Ueq(C) for CH3], with C—H distances ranging from 0.95 to 0.99 Å. The crystal was twinned by non-merohedry via two different twofold operations, about the normals to (001) and (10), giving four twin domains with refined occupancies of 0.412 (4), 0.366 (4), 0.055 (1), 0.167 (4).
details are summarized in Table 2
|
Supporting information
CCDC reference: 2050442
https://doi.org/10.1107/S205698902001628X/pk2649sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902001628X/pk2649Isup3.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).[Ca(C10H8N2O2S2)(C5H9NO)4] | Z = 2 |
Mr = 688.91 | F(000) = 732 |
Triclinic, P1 | Dx = 1.409 Mg m−3 |
a = 8.6686 (13) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5190 (15) Å | Cell parameters from 4441 reflections |
c = 18.998 (3) Å | θ = 2.8–28.1° |
α = 75.488 (9)° | µ = 0.37 mm−1 |
β = 76.847 (7)° | T = 100 K |
γ = 80.905 (6)° | Plate, blue-crimson |
V = 1623.6 (4) Å3 | 0.25 × 0.21 × 0.09 mm |
Bruker APEXII CCD diffractometer | 5186 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.083 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 28.3°, θmin = 2.5° |
Tmin = 0.569, Tmax = 0.745 | h = −11→11 |
8230 measured reflections | k = −13→14 |
8230 independent reflections | l = 0→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.111 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.301 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + 10.0576P] where P = (Fo2 + 2Fc2)/3 |
8230 reflections | (Δ/σ)max < 0.001 |
418 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.70 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a four-component twin |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.500000 | 0.000000 | 0.500000 | 0.0209 (5) | |
Ca2 | 0.500000 | 0.500000 | 0.000000 | 0.0207 (5) | |
S1 | 0.8711 (3) | −0.0571 (2) | 0.14841 (12) | 0.0295 (5) | |
S2 | 0.0342 (3) | 0.4917 (2) | 0.34997 (12) | 0.0309 (5) | |
O1 | 0.2279 (7) | −0.0055 (7) | 0.5364 (3) | 0.0338 (15) | |
O2 | 0.4684 (7) | 0.2267 (6) | 0.4928 (3) | 0.0296 (13) | |
O3 | 0.4856 (7) | 0.0391 (6) | 0.3747 (3) | 0.0262 (13) | |
O4 | 0.4201 (7) | 0.3985 (6) | 0.1239 (3) | 0.0247 (13) | |
O5 | 0.5191 (7) | 0.6900 (6) | 0.0382 (3) | 0.0310 (14) | |
O6 | 0.2373 (7) | 0.5739 (6) | −0.0113 (3) | 0.0283 (13) | |
N1 | −0.0137 (10) | 0.1047 (8) | 0.5747 (4) | 0.0386 (19) | |
N2 | 0.4026 (9) | 0.4436 (7) | 0.4464 (4) | 0.0258 (15) | |
N3 | 0.6702 (7) | −0.0260 (6) | 0.2776 (3) | 0.0182 (13) | |
N4 | 0.2341 (8) | 0.4610 (7) | 0.2207 (3) | 0.0216 (14) | |
N5 | 0.3706 (9) | 0.8684 (7) | 0.0771 (4) | 0.0291 (16) | |
N6 | 0.0237 (10) | 0.6894 (8) | −0.0595 (5) | 0.042 (2) | |
C1 | 0.0984 (11) | 0.0092 (10) | 0.5796 (6) | 0.036 (2) | |
C2 | 0.0476 (12) | −0.0938 (10) | 0.6544 (6) | 0.041 (2) | |
H2A | 0.016867 | −0.173904 | 0.645037 | 0.049* | |
H2B | 0.134884 | −0.119763 | 0.682601 | 0.049* | |
C3 | −0.0935 (13) | −0.0196 (11) | 0.6954 (6) | 0.044 (3) | |
H3A | −0.061227 | 0.016484 | 0.732660 | 0.053* | |
H3B | −0.178066 | −0.077899 | 0.720847 | 0.053* | |
C4 | −0.1524 (11) | 0.0942 (11) | 0.6338 (5) | 0.039 (2) | |
H4A | −0.243478 | 0.071000 | 0.617940 | 0.047* | |
H4B | −0.184156 | 0.177675 | 0.651072 | 0.047* | |
C5 | −0.0042 (15) | 0.2138 (12) | 0.5117 (6) | 0.054 (3) | |
H5A | 0.087633 | 0.194829 | 0.473425 | 0.081* | |
H5B | 0.008172 | 0.293686 | 0.526633 | 0.081* | |
H5C | −0.101935 | 0.227553 | 0.491797 | 0.081* | |
C6 | 0.4926 (10) | 0.3304 (8) | 0.4429 (5) | 0.0241 (16) | |
C7 | 0.6206 (10) | 0.3457 (9) | 0.3749 (5) | 0.0289 (18) | |
H7A | 0.617176 | 0.280747 | 0.345683 | 0.035* | |
H7B | 0.726897 | 0.332815 | 0.388168 | 0.035* | |
C8 | 0.5860 (13) | 0.4870 (9) | 0.3308 (5) | 0.039 (2) | |
H8A | 0.556192 | 0.486307 | 0.283647 | 0.047* | |
H8B | 0.680617 | 0.535770 | 0.319590 | 0.047* | |
C9 | 0.4453 (10) | 0.5516 (9) | 0.3816 (5) | 0.0298 (19) | |
H9A | 0.478478 | 0.625278 | 0.396386 | 0.036* | |
H9B | 0.354412 | 0.585444 | 0.356079 | 0.036* | |
C10 | 0.2645 (10) | 0.4624 (9) | 0.5035 (5) | 0.033 (2) | |
H10A | 0.262799 | 0.385681 | 0.545334 | 0.049* | |
H10B | 0.167597 | 0.472303 | 0.483435 | 0.049* | |
H10C | 0.269587 | 0.542061 | 0.520446 | 0.049* | |
C11 | 0.5490 (9) | 0.0573 (8) | 0.3071 (5) | 0.0207 (16) | |
C12 | 0.5132 (10) | 0.1665 (8) | 0.2445 (4) | 0.0227 (16) | |
C13 | 0.6225 (10) | 0.1396 (8) | 0.1799 (4) | 0.0229 (17) | |
H13A | 0.629740 | 0.193468 | 0.131270 | 0.027* | |
C14 | 0.7155 (10) | 0.0228 (8) | 0.1998 (4) | 0.0236 (17) | |
C15 | 0.7302 (10) | −0.1537 (8) | 0.3191 (5) | 0.0244 (17) | |
H15A | 0.685079 | −0.162070 | 0.372077 | 0.037* | |
H15B | 0.846621 | −0.160100 | 0.311137 | 0.037* | |
H15C | 0.699104 | −0.224643 | 0.301992 | 0.037* | |
C16 | 0.3566 (9) | 0.3793 (8) | 0.1907 (4) | 0.0207 (16) | |
C17 | 0.3937 (9) | 0.2709 (8) | 0.2528 (4) | 0.0217 (16) | |
C18 | 0.2858 (9) | 0.2971 (8) | 0.3173 (4) | 0.0189 (15) | |
H18A | 0.282092 | 0.243790 | 0.365955 | 0.023* | |
C19 | 0.1869 (10) | 0.4118 (8) | 0.2988 (5) | 0.0241 (17) | |
C20 | 0.1567 (10) | 0.5776 (8) | 0.1775 (5) | 0.0268 (18) | |
H20A | 0.172438 | 0.568900 | 0.126140 | 0.040* | |
H20B | 0.203080 | 0.656072 | 0.178620 | 0.040* | |
H20C | 0.042424 | 0.586495 | 0.198735 | 0.040* | |
C21 | 0.4733 (10) | 0.7619 (9) | 0.0845 (5) | 0.0280 (18) | |
C22 | 0.5330 (12) | 0.7414 (10) | 0.1554 (5) | 0.038 (2) | |
H22A | 0.641539 | 0.768551 | 0.145754 | 0.045* | |
H22B | 0.533749 | 0.648017 | 0.182951 | 0.045* | |
C23 | 0.4100 (12) | 0.8321 (10) | 0.1980 (5) | 0.038 (2) | |
H23A | 0.324693 | 0.781927 | 0.232182 | 0.045* | |
H23B | 0.461434 | 0.873266 | 0.226868 | 0.045* | |
C24 | 0.3430 (11) | 0.9365 (10) | 0.1375 (5) | 0.034 (2) | |
H24A | 0.227943 | 0.962313 | 0.153860 | 0.041* | |
H24B | 0.400454 | 1.016203 | 0.122862 | 0.041* | |
C25 | 0.2933 (13) | 0.9182 (10) | 0.0144 (6) | 0.042 (2) | |
H25A | 0.313195 | 0.852532 | −0.016107 | 0.064* | |
H25B | 0.335889 | 1.000203 | −0.015339 | 0.064* | |
H25C | 0.178354 | 0.935811 | 0.032024 | 0.064* | |
C26 | 0.1555 (11) | 0.6123 (9) | −0.0607 (5) | 0.033 (2) | |
C27 | 0.1989 (12) | 0.5684 (9) | −0.1368 (5) | 0.035 (2) | |
H27A | 0.312863 | 0.574708 | −0.159708 | 0.042* | |
H27B | 0.174354 | 0.477044 | −0.130614 | 0.042* | |
C28 | 0.0932 (13) | 0.6667 (12) | −0.1818 (6) | 0.045 (3) | |
H28A | 0.051692 | 0.623984 | −0.213478 | 0.055* | |
H28B | 0.152731 | 0.740055 | −0.213860 | 0.055* | |
C29 | −0.0437 (12) | 0.7182 (10) | −0.1257 (6) | 0.040 (2) | |
H29A | −0.073001 | 0.814245 | −0.142362 | 0.048* | |
H29B | −0.138893 | 0.671270 | −0.117271 | 0.048* | |
C30 | −0.0501 (13) | 0.7456 (11) | 0.0025 (6) | 0.044 (2) | |
H30A | −0.007574 | 0.695702 | 0.046247 | 0.066* | |
H30B | −0.165465 | 0.741933 | 0.012262 | 0.066* | |
H30C | −0.027947 | 0.837780 | −0.008253 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0226 (11) | 0.0206 (11) | 0.0142 (10) | 0.0017 (9) | 0.0007 (8) | −0.0005 (8) |
Ca2 | 0.0218 (11) | 0.0214 (11) | 0.0161 (10) | 0.0035 (9) | −0.0017 (8) | −0.0044 (8) |
S1 | 0.0307 (11) | 0.0307 (11) | 0.0220 (10) | 0.0046 (9) | 0.0012 (8) | −0.0072 (8) |
S2 | 0.0275 (11) | 0.0376 (12) | 0.0226 (10) | 0.0054 (9) | −0.0006 (8) | −0.0069 (9) |
O1 | 0.030 (3) | 0.037 (4) | 0.032 (3) | −0.005 (3) | 0.003 (3) | −0.011 (3) |
O2 | 0.039 (3) | 0.023 (3) | 0.024 (3) | 0.000 (3) | −0.003 (3) | −0.004 (2) |
O3 | 0.029 (3) | 0.025 (3) | 0.020 (3) | 0.003 (2) | −0.001 (2) | −0.002 (2) |
O4 | 0.028 (3) | 0.028 (3) | 0.015 (3) | 0.000 (2) | 0.000 (2) | −0.004 (2) |
O5 | 0.033 (3) | 0.028 (3) | 0.033 (3) | 0.006 (3) | −0.003 (3) | −0.017 (3) |
O6 | 0.024 (3) | 0.029 (3) | 0.027 (3) | 0.008 (2) | −0.007 (2) | −0.004 (2) |
N1 | 0.039 (5) | 0.042 (5) | 0.032 (4) | 0.004 (4) | −0.002 (3) | −0.012 (4) |
N2 | 0.029 (4) | 0.022 (3) | 0.024 (3) | −0.001 (3) | −0.003 (3) | −0.002 (3) |
N3 | 0.021 (3) | 0.020 (3) | 0.012 (3) | −0.001 (3) | −0.002 (2) | −0.003 (2) |
N4 | 0.024 (3) | 0.023 (3) | 0.015 (3) | −0.001 (3) | 0.003 (3) | −0.005 (3) |
N5 | 0.032 (4) | 0.031 (4) | 0.026 (4) | 0.002 (3) | −0.004 (3) | −0.014 (3) |
N6 | 0.037 (5) | 0.036 (5) | 0.049 (5) | 0.000 (4) | −0.015 (4) | −0.003 (4) |
C1 | 0.024 (4) | 0.040 (5) | 0.050 (6) | 0.000 (4) | −0.004 (4) | −0.026 (5) |
C2 | 0.035 (5) | 0.037 (5) | 0.058 (6) | −0.004 (4) | −0.022 (5) | −0.013 (5) |
C3 | 0.040 (6) | 0.055 (7) | 0.043 (6) | −0.016 (5) | 0.001 (5) | −0.024 (5) |
C4 | 0.025 (4) | 0.052 (6) | 0.044 (6) | 0.008 (4) | −0.004 (4) | −0.028 (5) |
C5 | 0.061 (8) | 0.050 (7) | 0.047 (6) | −0.016 (6) | −0.007 (6) | 0.001 (5) |
C6 | 0.028 (4) | 0.022 (4) | 0.026 (4) | 0.000 (3) | −0.009 (3) | −0.010 (3) |
C7 | 0.027 (4) | 0.031 (5) | 0.030 (4) | 0.002 (4) | −0.004 (3) | −0.013 (4) |
C8 | 0.053 (6) | 0.029 (5) | 0.028 (5) | −0.002 (4) | −0.001 (4) | 0.002 (4) |
C9 | 0.029 (4) | 0.030 (5) | 0.028 (4) | 0.000 (4) | −0.008 (4) | −0.002 (4) |
C10 | 0.029 (5) | 0.035 (5) | 0.034 (5) | −0.001 (4) | −0.002 (4) | −0.014 (4) |
C11 | 0.021 (4) | 0.018 (4) | 0.027 (4) | −0.002 (3) | −0.008 (3) | −0.008 (3) |
C12 | 0.027 (4) | 0.023 (4) | 0.019 (4) | −0.002 (3) | −0.006 (3) | −0.005 (3) |
C13 | 0.029 (4) | 0.023 (4) | 0.015 (3) | 0.004 (3) | −0.002 (3) | −0.006 (3) |
C14 | 0.032 (4) | 0.021 (4) | 0.017 (4) | −0.007 (3) | −0.003 (3) | −0.002 (3) |
C15 | 0.027 (4) | 0.018 (4) | 0.028 (4) | 0.001 (3) | −0.009 (3) | −0.005 (3) |
C16 | 0.016 (4) | 0.022 (4) | 0.024 (4) | −0.006 (3) | −0.003 (3) | −0.002 (3) |
C17 | 0.021 (4) | 0.028 (4) | 0.017 (4) | −0.004 (3) | −0.007 (3) | −0.004 (3) |
C18 | 0.018 (3) | 0.020 (4) | 0.015 (3) | −0.001 (3) | −0.002 (3) | 0.000 (3) |
C19 | 0.024 (4) | 0.026 (4) | 0.022 (4) | −0.004 (3) | −0.004 (3) | −0.003 (3) |
C20 | 0.026 (4) | 0.025 (4) | 0.028 (4) | 0.002 (3) | −0.006 (3) | −0.005 (3) |
C21 | 0.029 (4) | 0.031 (5) | 0.024 (4) | −0.003 (4) | 0.004 (3) | −0.015 (3) |
C22 | 0.039 (5) | 0.038 (5) | 0.033 (5) | −0.001 (4) | −0.005 (4) | −0.007 (4) |
C23 | 0.035 (5) | 0.050 (6) | 0.034 (5) | −0.008 (4) | −0.006 (4) | −0.018 (4) |
C24 | 0.034 (5) | 0.036 (5) | 0.032 (5) | 0.001 (4) | 0.000 (4) | −0.018 (4) |
C25 | 0.043 (6) | 0.042 (6) | 0.035 (5) | 0.011 (5) | −0.011 (4) | −0.002 (4) |
C26 | 0.031 (5) | 0.023 (4) | 0.041 (5) | −0.006 (4) | −0.007 (4) | 0.000 (4) |
C27 | 0.036 (5) | 0.031 (5) | 0.043 (5) | −0.010 (4) | −0.014 (4) | −0.007 (4) |
C28 | 0.042 (6) | 0.055 (7) | 0.043 (6) | −0.005 (5) | −0.013 (5) | −0.013 (5) |
C29 | 0.039 (5) | 0.036 (5) | 0.042 (5) | 0.004 (4) | −0.022 (4) | 0.003 (4) |
C30 | 0.042 (6) | 0.049 (6) | 0.044 (6) | −0.003 (5) | −0.007 (5) | −0.020 (5) |
Ca1—O1 | 2.308 (6) | C7—C8 | 1.533 (12) |
Ca1—O1i | 2.308 (6) | C7—H7A | 0.9900 |
Ca1—O2 | 2.329 (6) | C7—H7B | 0.9900 |
Ca1—O2i | 2.329 (6) | C8—C9 | 1.552 (13) |
Ca1—O3i | 2.341 (6) | C8—H8A | 0.9900 |
Ca1—O3 | 2.341 (6) | C8—H8B | 0.9900 |
Ca2—O4ii | 2.322 (5) | C9—H9A | 0.9900 |
Ca2—O4 | 2.322 (5) | C9—H9B | 0.9900 |
Ca2—O6 | 2.327 (6) | C10—H10A | 0.9800 |
Ca2—O6ii | 2.327 (6) | C10—H10B | 0.9800 |
Ca2—O5ii | 2.331 (6) | C10—H10C | 0.9800 |
Ca2—O5 | 2.331 (6) | C11—C12 | 1.483 (11) |
S1—C14 | 1.713 (9) | C12—C17 | 1.399 (10) |
S2—C19 | 1.696 (9) | C12—C13 | 1.429 (11) |
O1—C1 | 1.244 (11) | C13—C14 | 1.376 (11) |
O2—C6 | 1.264 (10) | C13—H13A | 0.9500 |
O3—C11 | 1.256 (10) | C15—H15A | 0.9800 |
O4—C16 | 1.242 (9) | C15—H15B | 0.9800 |
O5—C21 | 1.258 (10) | C15—H15C | 0.9800 |
O6—C26 | 1.253 (11) | C16—C17 | 1.475 (11) |
N1—C1 | 1.283 (12) | C17—C18 | 1.422 (11) |
N1—C5 | 1.433 (13) | C18—C19 | 1.382 (11) |
N1—C4 | 1.444 (12) | C18—H18A | 0.9500 |
N2—C6 | 1.324 (10) | C20—H20A | 0.9800 |
N2—C10 | 1.446 (11) | C20—H20B | 0.9800 |
N2—C9 | 1.473 (11) | C20—H20C | 0.9800 |
N3—C11 | 1.369 (10) | C21—C22 | 1.506 (13) |
N3—C14 | 1.422 (9) | C22—C23 | 1.540 (13) |
N3—C15 | 1.460 (10) | C22—H22A | 0.9900 |
N4—C16 | 1.369 (10) | C22—H22B | 0.9900 |
N4—C19 | 1.430 (10) | C23—C24 | 1.528 (14) |
N4—C20 | 1.453 (10) | C23—H23A | 0.9900 |
N5—C21 | 1.315 (11) | C23—H23B | 0.9900 |
N5—C25 | 1.443 (12) | C24—H24A | 0.9900 |
N5—C24 | 1.456 (11) | C24—H24B | 0.9900 |
N6—C26 | 1.291 (12) | C25—H25A | 0.9800 |
N6—C30 | 1.426 (13) | C25—H25B | 0.9800 |
N6—C29 | 1.450 (12) | C25—H25C | 0.9800 |
C1—C2 | 1.576 (15) | C26—C27 | 1.573 (14) |
C2—C3 | 1.510 (14) | C27—C28 | 1.501 (14) |
C2—H2A | 0.9900 | C27—H27A | 0.9900 |
C2—H2B | 0.9900 | C27—H27B | 0.9900 |
C3—C4 | 1.562 (15) | C28—C29 | 1.532 (15) |
C3—H3A | 0.9900 | C28—H28A | 0.9900 |
C3—H3B | 0.9900 | C28—H28B | 0.9900 |
C4—H4A | 0.9900 | C29—H29A | 0.9900 |
C4—H4B | 0.9900 | C29—H29B | 0.9900 |
C5—H5A | 0.9800 | C30—H30A | 0.9800 |
C5—H5B | 0.9800 | C30—H30B | 0.9800 |
C5—H5C | 0.9800 | C30—H30C | 0.9800 |
C6—C7 | 1.492 (12) | ||
O1—Ca1—O1i | 180.0 | N2—C9—H9B | 110.9 |
O1—Ca1—O2 | 90.3 (2) | C8—C9—H9B | 110.9 |
O1i—Ca1—O2 | 89.7 (2) | H9A—C9—H9B | 108.9 |
O1—Ca1—O2i | 89.7 (2) | N2—C10—H10A | 109.5 |
O1i—Ca1—O2i | 90.3 (2) | N2—C10—H10B | 109.5 |
O2—Ca1—O2i | 180.0 (3) | H10A—C10—H10B | 109.5 |
O1—Ca1—O3i | 88.3 (2) | N2—C10—H10C | 109.5 |
O1i—Ca1—O3i | 91.7 (2) | H10A—C10—H10C | 109.5 |
O2—Ca1—O3i | 89.9 (2) | H10B—C10—H10C | 109.5 |
O2i—Ca1—O3i | 90.1 (2) | O3—C11—N3 | 124.0 (7) |
O1—Ca1—O3 | 91.7 (2) | O3—C11—C12 | 129.5 (7) |
O1i—Ca1—O3 | 88.3 (2) | N3—C11—C12 | 106.5 (7) |
O2—Ca1—O3 | 90.1 (2) | C17—C12—C13 | 130.6 (7) |
O2i—Ca1—O3 | 89.9 (2) | C17—C12—C11 | 123.3 (7) |
O3i—Ca1—O3 | 180.0 | C13—C12—C11 | 106.1 (7) |
O4ii—Ca2—O4 | 180.0 (3) | C14—C13—C12 | 108.8 (7) |
O4ii—Ca2—O6 | 88.6 (2) | C14—C13—H13A | 125.6 |
O4—Ca2—O6 | 91.4 (2) | C12—C13—H13A | 125.6 |
O4ii—Ca2—O6ii | 91.4 (2) | C13—C14—N3 | 108.4 (7) |
O4—Ca2—O6ii | 88.6 (2) | C13—C14—S1 | 130.8 (6) |
O6—Ca2—O6ii | 180.0 | N3—C14—S1 | 120.7 (6) |
O4ii—Ca2—O5ii | 88.2 (2) | N3—C15—H15A | 109.5 |
O4—Ca2—O5ii | 91.8 (2) | N3—C15—H15B | 109.5 |
O6—Ca2—O5ii | 89.7 (2) | H15A—C15—H15B | 109.5 |
O6ii—Ca2—O5ii | 90.3 (2) | N3—C15—H15C | 109.5 |
O4ii—Ca2—O5 | 91.8 (2) | H15A—C15—H15C | 109.5 |
O4—Ca2—O5 | 88.2 (2) | H15B—C15—H15C | 109.5 |
O6—Ca2—O5 | 90.3 (2) | O4—C16—N4 | 124.3 (7) |
O6ii—Ca2—O5 | 89.7 (2) | O4—C16—C17 | 129.3 (7) |
O5ii—Ca2—O5 | 180.0 (3) | N4—C16—C17 | 106.3 (7) |
C1—O1—Ca1 | 152.9 (6) | C12—C17—C18 | 130.2 (7) |
C6—O2—Ca1 | 137.1 (5) | C12—C17—C16 | 123.7 (7) |
C11—O3—Ca1 | 151.9 (5) | C18—C17—C16 | 106.1 (7) |
C16—O4—Ca2 | 162.2 (5) | C19—C18—C17 | 110.0 (7) |
C21—O5—Ca2 | 149.4 (6) | C19—C18—H18A | 125.0 |
C26—O6—Ca2 | 139.4 (6) | C17—C18—H18A | 125.0 |
C1—N1—C5 | 121.3 (9) | C18—C19—N4 | 106.7 (7) |
C1—N1—C4 | 117.0 (9) | C18—C19—S2 | 132.3 (6) |
C5—N1—C4 | 121.6 (9) | N4—C19—S2 | 121.1 (6) |
C6—N2—C10 | 125.4 (7) | N4—C20—H20A | 109.5 |
C6—N2—C9 | 113.8 (7) | N4—C20—H20B | 109.5 |
C10—N2—C9 | 120.6 (7) | H20A—C20—H20B | 109.5 |
C11—N3—C14 | 110.1 (6) | N4—C20—H20C | 109.5 |
C11—N3—C15 | 124.3 (6) | H20A—C20—H20C | 109.5 |
C14—N3—C15 | 125.3 (7) | H20B—C20—H20C | 109.5 |
C16—N4—C19 | 110.9 (7) | O5—C21—N5 | 125.2 (8) |
C16—N4—C20 | 124.0 (6) | O5—C21—C22 | 124.8 (8) |
C19—N4—C20 | 124.9 (7) | N5—C21—C22 | 109.9 (7) |
C21—N5—C25 | 124.3 (8) | C21—C22—C23 | 102.2 (8) |
C21—N5—C24 | 114.1 (7) | C21—C22—H22A | 111.3 |
C25—N5—C24 | 121.5 (8) | C23—C22—H22A | 111.3 |
C26—N6—C30 | 122.3 (9) | C21—C22—H22B | 111.3 |
C26—N6—C29 | 116.1 (9) | C23—C22—H22B | 111.3 |
C30—N6—C29 | 121.7 (8) | H22A—C22—H22B | 109.2 |
O1—C1—N1 | 129.4 (10) | C24—C23—C22 | 104.4 (7) |
O1—C1—C2 | 122.8 (9) | C24—C23—H23A | 110.9 |
N1—C1—C2 | 107.8 (8) | C22—C23—H23A | 110.9 |
C3—C2—C1 | 103.3 (8) | C24—C23—H23B | 110.9 |
C3—C2—H2A | 111.1 | C22—C23—H23B | 110.9 |
C1—C2—H2A | 111.1 | H23A—C23—H23B | 108.9 |
C3—C2—H2B | 111.1 | N5—C24—C23 | 102.4 (7) |
C1—C2—H2B | 111.1 | N5—C24—H24A | 111.3 |
H2A—C2—H2B | 109.1 | C23—C24—H24A | 111.3 |
C2—C3—C4 | 104.6 (8) | N5—C24—H24B | 111.3 |
C2—C3—H3A | 110.8 | C23—C24—H24B | 111.3 |
C4—C3—H3A | 110.8 | H24A—C24—H24B | 109.2 |
C2—C3—H3B | 110.8 | N5—C25—H25A | 109.5 |
C4—C3—H3B | 110.8 | N5—C25—H25B | 109.5 |
H3A—C3—H3B | 108.9 | H25A—C25—H25B | 109.5 |
N1—C4—C3 | 102.6 (7) | N5—C25—H25C | 109.5 |
N1—C4—H4A | 111.2 | H25A—C25—H25C | 109.5 |
C3—C4—H4A | 111.2 | H25B—C25—H25C | 109.5 |
N1—C4—H4B | 111.2 | O6—C26—N6 | 128.3 (10) |
C3—C4—H4B | 111.2 | O6—C26—C27 | 123.7 (8) |
H4A—C4—H4B | 109.2 | N6—C26—C27 | 108.0 (8) |
N1—C5—H5A | 109.5 | C28—C27—C26 | 102.0 (8) |
N1—C5—H5B | 109.5 | C28—C27—H27A | 111.4 |
H5A—C5—H5B | 109.5 | C26—C27—H27A | 111.4 |
N1—C5—H5C | 109.5 | C28—C27—H27B | 111.4 |
H5A—C5—H5C | 109.5 | C26—C27—H27B | 111.4 |
H5B—C5—H5C | 109.5 | H27A—C27—H27B | 109.2 |
O2—C6—N2 | 121.9 (8) | C27—C28—C29 | 106.0 (8) |
O2—C6—C7 | 127.1 (7) | C27—C28—H28A | 110.5 |
N2—C6—C7 | 111.0 (7) | C29—C28—H28A | 110.5 |
C6—C7—C8 | 105.3 (7) | C27—C28—H28B | 110.5 |
C6—C7—H7A | 110.7 | C29—C28—H28B | 110.5 |
C8—C7—H7A | 110.7 | H28A—C28—H28B | 108.7 |
C6—C7—H7B | 110.7 | N6—C29—C28 | 102.5 (8) |
C8—C7—H7B | 110.7 | N6—C29—H29A | 111.3 |
H7A—C7—H7B | 108.8 | C28—C29—H29A | 111.3 |
C7—C8—C9 | 105.4 (7) | N6—C29—H29B | 111.3 |
C7—C8—H8A | 110.7 | C28—C29—H29B | 111.3 |
C9—C8—H8A | 110.7 | H29A—C29—H29B | 109.2 |
C7—C8—H8B | 110.7 | N6—C30—H30A | 109.5 |
C9—C8—H8B | 110.7 | N6—C30—H30B | 109.5 |
H8A—C8—H8B | 108.8 | H30A—C30—H30B | 109.5 |
N2—C9—C8 | 104.1 (7) | N6—C30—H30C | 109.5 |
N2—C9—H9A | 110.9 | H30A—C30—H30C | 109.5 |
C8—C9—H9A | 110.9 | H30B—C30—H30C | 109.5 |
Ca1—O1—C1—N1 | 101.2 (16) | C19—N4—C16—O4 | 179.8 (7) |
Ca1—O1—C1—C2 | −77.4 (17) | C20—N4—C16—O4 | 3.3 (13) |
C5—N1—C1—O1 | 2.4 (17) | C19—N4—C16—C17 | −0.7 (9) |
C4—N1—C1—O1 | 179.6 (10) | C20—N4—C16—C17 | −177.2 (7) |
C5—N1—C1—C2 | −178.9 (9) | C13—C12—C17—C18 | −179.8 (9) |
C4—N1—C1—C2 | −1.6 (12) | C11—C12—C17—C18 | 0.1 (14) |
O1—C1—C2—C3 | 166.4 (9) | C13—C12—C17—C16 | 0.6 (14) |
N1—C1—C2—C3 | −12.5 (10) | C11—C12—C17—C16 | −179.5 (7) |
C1—C2—C3—C4 | 20.1 (10) | O4—C16—C17—C12 | −0.6 (13) |
C1—N1—C4—C3 | 14.5 (12) | N4—C16—C17—C12 | 180.0 (7) |
C5—N1—C4—C3 | −168.3 (9) | O4—C16—C17—C18 | 179.7 (8) |
C2—C3—C4—N1 | −20.9 (10) | N4—C16—C17—C18 | 0.3 (9) |
Ca1—O2—C6—N2 | 148.7 (7) | C12—C17—C18—C19 | −179.4 (8) |
Ca1—O2—C6—C7 | −32.1 (14) | C16—C17—C18—C19 | 0.3 (9) |
C10—N2—C6—O2 | −3.1 (13) | C17—C18—C19—N4 | −0.7 (9) |
C9—N2—C6—O2 | −177.5 (8) | C17—C18—C19—S2 | 178.6 (7) |
C10—N2—C6—C7 | 177.5 (8) | C16—N4—C19—C18 | 0.9 (9) |
C9—N2—C6—C7 | 3.2 (10) | C20—N4—C19—C18 | 177.4 (7) |
O2—C6—C7—C8 | 175.1 (9) | C16—N4—C19—S2 | −178.5 (6) |
N2—C6—C7—C8 | −5.6 (10) | C20—N4—C19—S2 | −2.1 (11) |
C6—C7—C8—C9 | 5.7 (10) | Ca2—O5—C21—N5 | −98.8 (13) |
C6—N2—C9—C8 | 0.7 (10) | Ca2—O5—C21—C22 | 83.7 (15) |
C10—N2—C9—C8 | −174.0 (8) | C25—N5—C21—O5 | 0.7 (15) |
C7—C8—C9—N2 | −4.0 (10) | C24—N5—C21—O5 | −177.7 (9) |
Ca1—O3—C11—N3 | 53.7 (15) | C25—N5—C21—C22 | 178.5 (9) |
Ca1—O3—C11—C12 | −126.3 (10) | C24—N5—C21—C22 | 0.2 (11) |
C14—N3—C11—O3 | −179.7 (7) | O5—C21—C22—C23 | −166.3 (9) |
C15—N3—C11—O3 | 6.9 (12) | N5—C21—C22—C23 | 15.9 (10) |
C14—N3—C11—C12 | 0.3 (8) | C21—C22—C23—C24 | −24.7 (10) |
C15—N3—C11—C12 | −173.2 (7) | C21—N5—C24—C23 | −16.2 (10) |
O3—C11—C12—C17 | −0.9 (14) | C25—N5—C24—C23 | 165.4 (9) |
N3—C11—C12—C17 | 179.1 (7) | C22—C23—C24—N5 | 24.8 (10) |
O3—C11—C12—C13 | 179.0 (8) | Ca2—O6—C26—N6 | −154.4 (8) |
N3—C11—C12—C13 | −1.0 (9) | Ca2—O6—C26—C27 | 27.1 (14) |
C17—C12—C13—C14 | −178.8 (8) | C30—N6—C26—O6 | 0.6 (16) |
C11—C12—C13—C14 | 1.3 (9) | C29—N6—C26—O6 | 179.3 (9) |
C12—C13—C14—N3 | −1.2 (10) | C30—N6—C26—C27 | 179.2 (9) |
C12—C13—C14—S1 | −177.1 (7) | C29—N6—C26—C27 | −2.1 (11) |
C11—N3—C14—C13 | 0.6 (9) | O6—C26—C27—C28 | −165.5 (9) |
C15—N3—C14—C13 | 173.9 (7) | N6—C26—C27—C28 | 15.8 (10) |
C11—N3—C14—S1 | 177.0 (6) | C26—C27—C28—C29 | −22.4 (10) |
C15—N3—C14—S1 | −9.7 (11) | C26—N6—C29—C28 | −12.2 (12) |
Ca2—O4—C16—N4 | 17 (2) | C30—N6—C29—C28 | 166.4 (9) |
Ca2—O4—C16—C17 | −161.9 (13) | C27—C28—C29—N6 | 21.6 (11) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O3iii | 0.99 | 2.51 | 3.456 (12) | 159 |
C10—H10B···S2 | 0.98 | 2.97 | 3.820 (10) | 146 |
C15—H15A···O2i | 0.98 | 2.58 | 3.545 (10) | 167 |
C20—H20A···O6 | 0.98 | 2.53 | 3.504 (11) | 172 |
C22—H22A···S1iv | 0.99 | 2.93 | 3.839 (11) | 154 |
C23—H23B···N3iv | 0.99 | 2.69 | 3.655 (12) | 165 |
C27—H27A···O4ii | 0.99 | 2.63 | 3.444 (11) | 140 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z+1; (iv) x, y+1, z. |
Acknowledgements
The authors wish to acknowledge the assistance of Dr Matt Zeller in resolving some of the issues concerning the
observed in this structure.Funding information
RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.
References
Agrawal, A. G., Kumar, A. & Gide, P. S. (2015). Drug Dev. Ind. Pharm. 41, 594–604. CrossRef CAS PubMed Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Butcher, R. J. & Purdy, A. P. (2006). Acta Cryst. E62, m342–m344. CSD CrossRef IUCr Journals Google Scholar
Casida, M. E., Jamorski, C., Casida, K. C. & Salahub, D. R. (1998). J. Chem. Phys. 108, 4439–4449. Web of Science CrossRef CAS Google Scholar
Cheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. (1996). J. Chem. Phys. 104, 5497–5509. CrossRef CAS Web of Science Google Scholar
Curtiss, L. A., McGrath, M. P., Blaudeau, J.-P., Davis, N. E., Binning, R. C. Jr & Radom, L. (1995). J. Chem. Phys. 103, 6104–6113. CrossRef CAS Web of Science Google Scholar
Dewilde, S., Dehaen, W. & Binnemans, K. (2016). Green Chem. 18, 1639–1652. CrossRef CAS Google Scholar
Faghihi, K. (2009). J. Chil. Chem. Soc. 54, 138–140. CrossRef CAS Google Scholar
Faghihi, K., Shabanian, M. & Faraz, M. (2010). Bull. Chem. Soc. Ethiop. 24, 289–294. CAS Google Scholar
Fliegl, H., Jusélius, J. & Sundholm, D. (2016). J. Phys. Chem. A, 120, 5658–5664. CrossRef CAS PubMed Google Scholar
Fliegl, H., Pichierri, F. & Sundholm, D. (2015). J. Phys. Chem. A, 119, 2344–2350. CrossRef CAS PubMed Google Scholar
Fliegl, H., Sundholm, D., Taubert, S., Jusélius, J. & Klopper, W. (2009). J. Phys. Chem. A, 113, 8668–8676. CrossRef PubMed CAS Google Scholar
Fliegl, H., Taubert, S., Lehtonen, O. & Sundholm, D. (2011). Phys. Chem. Chem. Phys. 13, 20500–20518. CrossRef CAS PubMed Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision D. 01. Gaussian, Inc., Wallingford, CT, USA. Google Scholar
Furche, F. & Ahlrichs, R. (2002). J. Chem. Phys. 117, 7433–7447. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. (2005). J. Chem. Phys. 123, 174101. CrossRef PubMed Google Scholar
Hohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871. CrossRef Web of Science Google Scholar
Jarý, V., Havlák, L., Bárta, J., Buryi, M., Mihóková, E., Rejman, M., Laguta, V. & Nikl, M. (2015). Materials 8, 6978–6998. PubMed Google Scholar
Johansson, M. P., Jusélius, J. & Sundholm, D. (2005). Angew. Chem. Int. Ed. 44, 1843–1846. CrossRef CAS Google Scholar
Jung, D. E., Eom, Y., Yoon, H. Y., Lee, Y. & Kim, B. C. (2016). Macromol. Res. 24, 182–187. CrossRef CAS Google Scholar
Kang, M., Luo, D., Deng, Y., Li, R. & Lin, Z. (2014). Inorg. Chem. Commun. 47, 52–55. CSD CrossRef CAS Google Scholar
Kim, T., Kim, M.-A., Hwang, Y.-C., Rosa, V., Del Fabbro, M. & Min, K. (2020). J. Appl. Oral Sci. 28, e20190516. CrossRef PubMed Google Scholar
Lim, M.-J., Jang, H.-J., Yu, M.-K., Lee, K. W. & Min, K.-S. (2017). Restor. Dent. Endod. 42, 290–300. CrossRef PubMed Google Scholar
London, F. (1937). J. Phys. Radium, 8, 397–409. CrossRef CAS Google Scholar
Mallakpour, S. & Kolahdoozan, M. (2008). React. Funct. Polym. 68, 91–96. CrossRef CAS Google Scholar
McLean, A. D. & Chandler, G. S. (1980). J. Chem. Phys. 72, 5639–5648. CrossRef CAS Web of Science Google Scholar
Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. (2017). Nature, 541, 200–203. CrossRef CAS PubMed Google Scholar
Purdy, A. P., Berry, A. D. & George, C. F. (1997). Inorg. Chem. 36, 3370–3375. CSD CrossRef PubMed CAS Web of Science Google Scholar
Qinghua, M. (2018). Private communication (refcode WIMBIG). CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, S. S., Tuenge, R. T., Kane, J. & Ling, M. (1994). J. Electrochem. Soc. 141, 2877–2883. CrossRef CAS Google Scholar
Taubert, S., Sundholm, D., Jusélius, J., Klopper, W. & Fliegl, H. (2008). J. Phys. Chem. A, 112, 13584–13592. CrossRef PubMed CAS Google Scholar
Trinajstić, N. (1968). Tetrahedron Lett. 9, 1529–1532. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.