research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structure, and theoretical studies of a calcium complex of a unique dianion derived from 1-methyl­pyrrolidin-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, bChemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, cChemistry Division, Code 6189, ASEE Postdoctoral Associate, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and dChemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by S. Parkin, University of Kentucky, USA (Received 5 October 2020; accepted 15 December 2020; online 1 January 2021)

The title compound, catena-poly[[tetra­kis­(1-methyl­pyrrolidin-2-one-κO)calcium(II)]-μ-(E)-1,1′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetra­hydro-[3,3′-bipyrrolyl­idene]-5,5′-bis­(thiol­ato)-κ2O:O′], [Ca(C10H8N2O2S2)(C5H9NO)4]n, 1, crystallizes in the triclinic space group P[\overline{1}]. The crystal studied was twinned by non-merohedry via two different twofold operations, about the normals to (001) and (1[\overline{1}]0), giving four twin domains with refined occupancies of 0.412 (4), 0.366 (4), 0.055 (1), 0.167 (4). The Ca atoms are located on centers of inversion. Each Ca is surrounded by four 1-methyl­pyrrolidin-2-one (NMP) ligands and coordinated through one of the two O atoms to two (E)-1,1′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetra­hydro-[3,3′-bipyrrolyl­idene]-5,5′-bis­(thiol­ate), [C10H8N2O2S2]2−, dianions (abbreviation: DMTBT). This dianion thus facilitates the formation of a 1-D polymer, which propagates in the [011] direction. These ribbons are linked by inter­molecular C—H⋯S inter­actions. Each Ca atom is in an octa­hedral CaO6 six-coordinate environment with Ca—O bond lengths ranging from 2.308 (6) to 2.341 (6) Å, cis bond angles ranging from 88.2 (2) to 91.8 (2)° and the trans angles all 180° due to the Ca atoms being located on centers of inversion. Theoretical calculations were carried out using density functional theory (DFT) and the results showed that although the central DMTBT dianion is planar there is likely some resonance across the central bond between both aza­pentyl rings, but this is not sufficient to establish a ring current. The calculated UV–vis spectrum shows a peak at 625 nm, which accounts for the deep blue–purple color of solutions of the complex.

1. Chemical context

There has been recent inter­est in ternary sulfides as two-color IR optical window materials (Jarý et al., 2015[Jarý, V., Havlák, L., Bárta, J., Buryi, M., Mihóková, E., Rejman, M., Laguta, V. & Nikl, M. (2015). Materials 8, 6978-6998.]) as well as other uses, such as phosphor materials (Sun et al., 1994[Sun, S. S., Tuenge, R. T., Kane, J. & Ling, M. (1994). J. Electrochem. Soc. 141, 2877-2883.]). In the synthesis of alkaline earth ternary sulfides, reactions using metal thiol­ates and H2S are an obvious avenue of study. An obstacle to such work is the lack of soluble alkaline earth thiol­ates. As part of a program for the investigation of precursors for the synthesis of a wide variety of metal sulfide materials, the reactions between alkaline earth amides and thiol­ate ligands were explored (Purdy et al., 1997[Purdy, A. P., Berry, A. D. & George, C. F. (1997). Inorg. Chem. 36, 3370-3375.]). When the barium complex, Ba(SCMe3)2, was crystallized from a mixed NMP solution over a period of years, an unusual barium sulfur cluster was obtained, [Ba6(C4H9S)10S(C5H9NO)6], containing a central μ6-sulfido atom surrounded by six Ba atoms and NMP ligands (Butcher & Purdy, 2006[Butcher, R. J. & Purdy, A. P. (2006). Acta Cryst. E62, m342-m344.]). On the other hand, when solutions of the analogous calcium complex are substituted, these solutions turn blue over time (or more quickly when heated).

[Scheme 1]

The solvent NMP, along with the presence of calcium ions, appears to play a crucial role in this reactivity. Solutions of calcium ions in N-methyl-2-pyrrolidine have shown unusual reactivity in many areas, including the synthesis of thermally stable polyamides (Mallakpour & Kolahdoozan, 2008[Mallakpour, S. & Kolahdoozan, M. (2008). React. Funct. Polym. 68, 91-96.]; Faghihi, 2009[Faghihi, K. (2009). J. Chil. Chem. Soc. 54, 138-140.]; Faghihi et al., 2010[Faghihi, K., Shabanian, M. & Faraz, M. (2010). Bull. Chem. Soc. Ethiop. 24, 289-294.]; Dewilde et al., 2016[Dewilde, S., Dehaen, W. & Binnemans, K. (2016). Green Chem. 18, 1639-1652.]), the synthesis and structural studies of functional coordination polymers from calcium carboxyl­ates based on cluster- and rod-like building blocks (Kang et al., 2014[Kang, M., Luo, D., Deng, Y., Li, R. & Lin, Z. (2014). Inorg. Chem. Commun. 47, 52-55.]), dental applications using calcium hydroxide paste along with NMP (Lim et al., 2017[Lim, M.-J., Jang, H.-J., Yu, M.-K., Lee, K. W. & Min, K.-S. (2017). Restor. Dent. Endod. 42, 290-300.]; Kim et al., 2020[Kim, T., Kim, M.-A., Hwang, Y.-C., Rosa, V., Del Fabbro, M. & Min, K. (2020). J. Appl. Oral Sci. 28, e20190516.]), the formulation of solid self-nanoemulsifying drug-delivery systems (Agrawal et al., 2015[Agrawal, A. G., Kumar, A. & Gide, P. S. (2015). Drug Dev. Ind. Pharm. 41, 594-604.]), and in lyotropic liquid crystalline behavior of poly(2-cyano-p-phenyl­ene terephthalamide) in N-methyl-2-pyrrolidone/calcium chloride solutions (Jung et al., 2016[Jung, D. E., Eom, Y., Yoon, H. Y., Lee, Y. & Kim, B. C. (2016). Macromol. Res. 24, 182-187.]).

The results of this unusual reactivity are explored in this paper.

2. Structural commentary

The title compound, C30H44CaN6O6S2, 1, crystallizes with the triclinic space group, P[\overline{1}]. The Ca atoms are located on centers of inversion. Each Ca atom is surrounded by four NMP ligands and coordinated through one of the two O atoms to two DMTBT dianions. This dianion thus results in the formation of a 1-D polymer, which extends in the [011] direction. Each Ca atom is in a CaO6 six-coordinate environment with Ca—O bond lengths ranging from 2.308 (6) to 2.341 (6) Å, cis bond angles ranging from 88.2 (2) to 91.8 (2)° and the trans angles all 180° due to the Ca atoms being located on centers of inversion. Thus each Ca atom has close to ideal octa­hedral geometry.

In view of the inter­est in combinations of NMP with Ca ions as a reaction medium, it is surprising to note that in the literature (Kang et al., 2014[Kang, M., Luo, D., Deng, Y., Li, R. & Lin, Z. (2014). Inorg. Chem. Commun. 47, 52-55.]; Qinghua, 2018[Qinghua, M. (2018). Private communication (refcode WIMBIG). CCDC, Cambridge, England.]) there are only three instances of structures containing Ca coordinated to NMP. In these structures, the Ca—O bond length varies from 2.244 (4) to 2.305 (3) Å, which match the values in 1. However, there are no previous structures containing the dianion or any related species. This dianion has resulted from the condensation of two mol­ecules of NMP along with the incorporation of two sulfur atoms in the form of C—S bonds (Fig. 1[link]). In view of the reactivity of Ca in NMP solutions as mentioned above, it appears that the calcium associated with NMP templates this reaction.

[Figure 1]
Figure 1
Diagram showing how the dianion has resulted from the condensation of two mol­ecules of NMP along with the incorporation of two sulfur atoms in the form of C—S bonds.

The two five-membered rings of the dianion (Fig. 2[link]) are planar (r.m.s. deviations for C11 to N3 and C16 to N4 of 0.005 and 0.009 Å, respectively) and the two rings are almost coplanar [dihedral angle between rings of only 1.0 (5)°]. The two nitro­gen atoms in the ring are almost trigonal [sum of angles about N3 and N4 of 359.5 (7) and 359.8 (7)°, respectively] with their attached methyl groups being only 0.157 (15) and 0.051 (15) Å out of the plane of their respective rings. Thus there must be considerable aromatic character in the linked five-membered rings of the dianion. The bond order of both the C—O and C—S moieties in both rings appear to be close to double bond in character with distances of 1.242 (9) and 1.256 (10) Å for C—O and 1.696 (9) and 1.713 (9) Å for C—S (Trinajstić, 1968[Trinajstić, N. (1968). Tetrahedron Lett. 9, 1529-1532.]).

[Figure 2]
Figure 2
Diagram showing the dianion linking the Ca centers and showing atom labeling for the asymmetric unit. Atomic displacement parameters are at the 30% probability level.

3. DFT calculations

The calculations for the DMTBT dianions were treated with density functional theory (DFT) within the Gaussian 09 suite (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision D. 01. Gaussian, Inc., Wallingford, CT, USA.]; Hohenberg & Kohn, 1964[Hohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864-B871.]). To approximate the exchange-correlation functional for this compound we used the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid HSE06 functional within an unrestricted self-consistent field for the singlet dianion ground state (Heyd et al., 2005[Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. (2005). J. Chem. Phys. 123, 174101.]). The elements composing the compound are expanded in the 6-311+G(d,p) Gaussian basis set, which is included in the geometry optimization with tight convergence criteria and ultrafine integration grid (McLean & Chandler, 1980[McLean, A. D. & Chandler, G. S. (1980). J. Chem. Phys. 72, 5639-5648.]; Curtiss et al., 1995[Curtiss, L. A., McGrath, M. P., Blaudeau, J.-P., Davis, N. E., Binning, R. C. Jr & Radom, L. (1995). J. Chem. Phys. 103, 6104-6113.]). The ground-state equilibrium structure for the dianion state is shown in Fig. 3[link] with bond lengths in Å overlaid. The optimized geometry was used in all subsequent calculations. The charge distribution is shown in Fig. 4[link] and from this it can be seen that the negative charge is distributed between the S and O atoms, with the O atom having the major part in each ring. To understand aromaticity in this compound, the ring currents were computed starting from the gauge-independent atomic orbitals (GIAO) method (London, 1937[London, F. (1937). J. Phys. Radium, 8, 397-409.]; Cheeseman et al., 1996[Cheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. (1996). J. Chem. Phys. 104, 5497-5509.]). The GIAO results were used to generate the signed modulus of the current density and average induced current with gauge-including magnetically induced current code (GIMIC) on a dense grid (Johansson et al., 2005[Johansson, M. P., Jusélius, J. & Sundholm, D. (2005). Angew. Chem. Int. Ed. 44, 1843-1846.]; Taubert et al., 2008[Taubert, S., Sundholm, D., Jusélius, J., Klopper, W. & Fliegl, H. (2008). J. Phys. Chem. A, 112, 13584-13592.]; Fliegl et al., 2009[Fliegl, H., Sundholm, D., Taubert, S., Jusélius, J. & Klopper, W. (2009). J. Phys. Chem. A, 113, 8668-8676.], 2011[Fliegl, H., Taubert, S., Lehtonen, O. & Sundholm, D. (2011). Phys. Chem. Chem. Phys. 13, 20500-20518.], 2015[Fliegl, H., Pichierri, F. & Sundholm, D. (2015). J. Phys. Chem. A, 119, 2344-2350.], 2016[Fliegl, H., Jusélius, J. & Sundholm, D. (2016). J. Phys. Chem. A, 120, 5658-5664.]). The results are shown in Fig. 5[link] and show that there likely is some resonance across the central bond between both aza­pentyl rings, but this is not sufficient to establish a ring current (Peeks et al., 2017[Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. (2017). Nature, 541, 200-203.]). The UV–vis spectrum (Fig. 6[link]) is computed with time-dependent self-consistent density functional theory (TD-SCF) with 1000 additional states (Casida et al., 1998[Casida, M. E., Jamorski, C., Casida, K. C. & Salahub, D. R. (1998). J. Chem. Phys. 108, 4439-4449.]; Furche & Ahlrichs, 2002[Furche, F. & Ahlrichs, R. (2002). J. Chem. Phys. 117, 7433-7447.]). This shows a peak at 625 nm, originating from the HOMO–LUMO transition (Fig. 6[link]), which accounts for the deep blue–purple color of solutions of the complex. The experimental λmax of the blue solution is at 671 nm, which may include colored compounds besides the title compound, as what crystallizes is not necessarily representative of the remaining solution. Thus, while we could obtain a spectrum similar to that generated from calculations, we cannot be sure that what is in solution is the same material that is in the crystals. The oxidation of NMP to the title dianion requires removal of ten hydrogen atoms, and this process must involve multiple steps that produce many different inter­mediates. An attempt to prepare this dianion by oxidation of NMP with S8 in the presence of CaS under an inert atmosphere produced purple- and blue-colored compounds, which have yet to be identified.

[Figure 3]
Figure 3
Ground state equilibrium structure for the DMTBTdianion. The bond lengths, in units of Å, are overlaid.
[Figure 4]
Figure 4
Ground state charge density for the DMTBT dianion. The electric potential ranges from −0.2 atomic units (red) to 0.2 atomic units (blue).
[Figure 5]
Figure 5
Signed modulus of the magnetically induced current density in the DMTBT dianion. Note, the total diatropic current is found to be 9.53 na T−1, paratropic is −8.44 na T−1, and total is 1.08 na T−1.
[Figure 6]
Figure 6
Calculated UV–vis spectrum of the DMTBT dianion from TD-SCF. The HOMO–LUMO states featuring the dominant transition are shown above the spectrum.

4. Supra­molecular features

The Ca atoms are located on centers of inversion. Each Ca is surrounded by 4 NMP ligands and coordinated through one of the two O atoms to two DMTBT dianions. This dianion thus facilitates the formation of 1-D ribbons, which propagate in the [011] direction. These ribbons are linked by C—H⋯S inter­actions (Table 1[link]), as shown in Fig. 7[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.99 2.51 3.456 (12) 159
C10—H10B⋯S2 0.98 2.97 3.820 (10) 146
C15—H15A⋯O2ii 0.98 2.58 3.545 (10) 167
C20—H20A⋯O6 0.98 2.53 3.504 (11) 172
C22—H22A⋯S1iii 0.99 2.93 3.839 (11) 154
C23—H23B⋯N3iii 0.99 2.69 3.655 (12) 165
C27—H27A⋯O4iv 0.99 2.63 3.444 (11) 140
Symmetry codes: (i) [-x, -y, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) x, y+1, z; (iv) [-x+1, -y+1, -z].
[Figure 7]
Figure 7
Diagram showing how the dianion links the Ca centers into ribbons in the [011] direction. All hydrogen atoms omitted except those involved in C—H⋯S inter­actions. Dashed lines indicate the inter-ribbon C—H⋯S inter­actions linking these ribbons.

5. Database survey

A search of the Cambridge Structural Database [CSD version 5.41 (November 2019); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] for both dianion and structures containing NMP coordinated to Ca gave only three examples of the latter [POMSER and POMSOB (Kang et al., 2014[Kang, M., Luo, D., Deng, Y., Li, R. & Lin, Z. (2014). Inorg. Chem. Commun. 47, 52-55.]); WIMBIG (Qinghua, 2018[Qinghua, M. (2018). Private communication (refcode WIMBIG). CCDC, Cambridge, England.])] and no examples of the former.

6. Synthesis and crystallization

Ca(SCMe3)2 (Purdy et al., 1997[Purdy, A. P., Berry, A. D. & George, C. F. (1997). Inorg. Chem. 36, 3370-3375.]) was dissolved in N-methyl-2-pyrrolidone containing about 10% C6D6 and a drop of tetra­methyl­silane and sealed in an NMR tube. After ∼6.5 years, a mass of deep-blue crystals was discovered in the NMR tube. One was selected and transferred to the cold stream of the diffractometer at 100 K. While perfectly stable under an inert atmosphere, the color changes in a few minutes after exposure to air. 13C NMR spectra of the solution showed nothing that can be attributed to the title compound, so it is likely that the concentration is too low to be observed. A UV–vis spectrum of the solution showed a λmax at 671 nm. For an attempt to use Ca to template the sulfur oxidation of NMP, 0.53 g of CaS, 0.54 g of S8, and 20 mL of dry NMP were stirred in an H-tube for 373 K under N2 for 3 d. A pink–purple solution formed, but turned blue when the filtered solution was heated over CaS, allowing H2S to escape, and then turned pink again when concentrated.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms for the major component were located in difference Fourier maps and included in idealized positions using a riding model with atomic displacement parameters of Uiso(H) = 1.2Ueq(C, N) [1.5Ueq(C) for CH3], with C—H distances ranging from 0.95 to 0.99 Å. The crystal was twinned by non-merohedry via two different twofold operations, about the normals to (001) and (1[\overline{1}]0), giving four twin domains with refined occupancies of 0.412 (4), 0.366 (4), 0.055 (1), 0.167 (4).

Table 2
Experimental details

Crystal data
Chemical formula [Ca(C10H8N2O2S2)(C5H9NO)4]
Mr 688.91
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.6686 (13), 10.5190 (15), 18.998 (3)
α, β, γ (°) 75.488 (9), 76.847 (7), 80.905 (6)
V3) 1623.6 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.25 × 0.21 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.569, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 8230, 8230, 5186
Rint 0.083
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.111, 0.301, 1.06
No. of reflections 8230
No. of parameters 418
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.70
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

catena-Poly[[tetrakis(1-methylpyrrolidin-2-one-κO)calcium(II)]-µ-(E)-1,1'-dimethyl-2,2'-dioxo-1,1',2,2'-tetrahydro-[3,3'-bipyrrolylidene]-5,5'-bis(thiolato)-κ2O:O'] top
Crystal data top
[Ca(C10H8N2O2S2)(C5H9NO)4]Z = 2
Mr = 688.91F(000) = 732
Triclinic, P1Dx = 1.409 Mg m3
a = 8.6686 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5190 (15) ÅCell parameters from 4441 reflections
c = 18.998 (3) Åθ = 2.8–28.1°
α = 75.488 (9)°µ = 0.37 mm1
β = 76.847 (7)°T = 100 K
γ = 80.905 (6)°Plate, blue-crimson
V = 1623.6 (4) Å30.25 × 0.21 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
5186 reflections with I > 2σ(I)
φ and ω scansRint = 0.083
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.569, Tmax = 0.745h = 1111
8230 measured reflectionsk = 1314
8230 independent reflectionsl = 025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.111Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.301H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + 10.0576P]
where P = (Fo2 + 2Fc2)/3
8230 reflections(Δ/σ)max < 0.001
418 parametersΔρmax = 1.14 e Å3
0 restraintsΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a four-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.5000000.0000000.5000000.0209 (5)
Ca20.5000000.5000000.0000000.0207 (5)
S10.8711 (3)0.0571 (2)0.14841 (12)0.0295 (5)
S20.0342 (3)0.4917 (2)0.34997 (12)0.0309 (5)
O10.2279 (7)0.0055 (7)0.5364 (3)0.0338 (15)
O20.4684 (7)0.2267 (6)0.4928 (3)0.0296 (13)
O30.4856 (7)0.0391 (6)0.3747 (3)0.0262 (13)
O40.4201 (7)0.3985 (6)0.1239 (3)0.0247 (13)
O50.5191 (7)0.6900 (6)0.0382 (3)0.0310 (14)
O60.2373 (7)0.5739 (6)0.0113 (3)0.0283 (13)
N10.0137 (10)0.1047 (8)0.5747 (4)0.0386 (19)
N20.4026 (9)0.4436 (7)0.4464 (4)0.0258 (15)
N30.6702 (7)0.0260 (6)0.2776 (3)0.0182 (13)
N40.2341 (8)0.4610 (7)0.2207 (3)0.0216 (14)
N50.3706 (9)0.8684 (7)0.0771 (4)0.0291 (16)
N60.0237 (10)0.6894 (8)0.0595 (5)0.042 (2)
C10.0984 (11)0.0092 (10)0.5796 (6)0.036 (2)
C20.0476 (12)0.0938 (10)0.6544 (6)0.041 (2)
H2A0.0168670.1739040.6450370.049*
H2B0.1348840.1197630.6826010.049*
C30.0935 (13)0.0196 (11)0.6954 (6)0.044 (3)
H3A0.0612270.0164840.7326600.053*
H3B0.1780660.0778990.7208470.053*
C40.1524 (11)0.0942 (11)0.6338 (5)0.039 (2)
H4A0.2434780.0710000.6179400.047*
H4B0.1841560.1776750.6510720.047*
C50.0042 (15)0.2138 (12)0.5117 (6)0.054 (3)
H5A0.0876330.1948290.4734250.081*
H5B0.0081720.2936860.5266330.081*
H5C0.1019350.2275530.4917970.081*
C60.4926 (10)0.3304 (8)0.4429 (5)0.0241 (16)
C70.6206 (10)0.3457 (9)0.3749 (5)0.0289 (18)
H7A0.6171760.2807470.3456830.035*
H7B0.7268970.3328150.3881680.035*
C80.5860 (13)0.4870 (9)0.3308 (5)0.039 (2)
H8A0.5561920.4863070.2836470.047*
H8B0.6806170.5357700.3195900.047*
C90.4453 (10)0.5516 (9)0.3816 (5)0.0298 (19)
H9A0.4784780.6252780.3963860.036*
H9B0.3544120.5854440.3560790.036*
C100.2645 (10)0.4624 (9)0.5035 (5)0.033 (2)
H10A0.2627990.3856810.5453340.049*
H10B0.1675970.4723030.4834350.049*
H10C0.2695870.5420610.5204460.049*
C110.5490 (9)0.0573 (8)0.3071 (5)0.0207 (16)
C120.5132 (10)0.1665 (8)0.2445 (4)0.0227 (16)
C130.6225 (10)0.1396 (8)0.1799 (4)0.0229 (17)
H13A0.6297400.1934680.1312700.027*
C140.7155 (10)0.0228 (8)0.1998 (4)0.0236 (17)
C150.7302 (10)0.1537 (8)0.3191 (5)0.0244 (17)
H15A0.6850790.1620700.3720770.037*
H15B0.8466210.1601000.3111370.037*
H15C0.6991040.2246430.3019920.037*
C160.3566 (9)0.3793 (8)0.1907 (4)0.0207 (16)
C170.3937 (9)0.2709 (8)0.2528 (4)0.0217 (16)
C180.2858 (9)0.2971 (8)0.3173 (4)0.0189 (15)
H18A0.2820920.2437900.3659550.023*
C190.1869 (10)0.4118 (8)0.2988 (5)0.0241 (17)
C200.1567 (10)0.5776 (8)0.1775 (5)0.0268 (18)
H20A0.1724380.5689000.1261400.040*
H20B0.2030800.6560720.1786200.040*
H20C0.0424240.5864950.1987350.040*
C210.4733 (10)0.7619 (9)0.0845 (5)0.0280 (18)
C220.5330 (12)0.7414 (10)0.1554 (5)0.038 (2)
H22A0.6415390.7685510.1457540.045*
H22B0.5337490.6480170.1829510.045*
C230.4100 (12)0.8321 (10)0.1980 (5)0.038 (2)
H23A0.3246930.7819270.2321820.045*
H23B0.4614340.8732660.2268680.045*
C240.3430 (11)0.9365 (10)0.1375 (5)0.034 (2)
H24A0.2279430.9623130.1538600.041*
H24B0.4004541.0162030.1228620.041*
C250.2933 (13)0.9182 (10)0.0144 (6)0.042 (2)
H25A0.3131950.8525320.0161070.064*
H25B0.3358891.0002030.0153390.064*
H25C0.1783540.9358110.0320240.064*
C260.1555 (11)0.6123 (9)0.0607 (5)0.033 (2)
C270.1989 (12)0.5684 (9)0.1368 (5)0.035 (2)
H27A0.3128630.5747080.1597080.042*
H27B0.1743540.4770440.1306140.042*
C280.0932 (13)0.6667 (12)0.1818 (6)0.045 (3)
H28A0.0516920.6239840.2134780.055*
H28B0.1527310.7400550.2138600.055*
C290.0437 (12)0.7182 (10)0.1257 (6)0.040 (2)
H29A0.0730010.8142450.1423620.048*
H29B0.1388930.6712700.1172710.048*
C300.0501 (13)0.7456 (11)0.0025 (6)0.044 (2)
H30A0.0075740.6957020.0462470.066*
H30B0.1654650.7419330.0122620.066*
H30C0.0279470.8377800.0082530.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0226 (11)0.0206 (11)0.0142 (10)0.0017 (9)0.0007 (8)0.0005 (8)
Ca20.0218 (11)0.0214 (11)0.0161 (10)0.0035 (9)0.0017 (8)0.0044 (8)
S10.0307 (11)0.0307 (11)0.0220 (10)0.0046 (9)0.0012 (8)0.0072 (8)
S20.0275 (11)0.0376 (12)0.0226 (10)0.0054 (9)0.0006 (8)0.0069 (9)
O10.030 (3)0.037 (4)0.032 (3)0.005 (3)0.003 (3)0.011 (3)
O20.039 (3)0.023 (3)0.024 (3)0.000 (3)0.003 (3)0.004 (2)
O30.029 (3)0.025 (3)0.020 (3)0.003 (2)0.001 (2)0.002 (2)
O40.028 (3)0.028 (3)0.015 (3)0.000 (2)0.000 (2)0.004 (2)
O50.033 (3)0.028 (3)0.033 (3)0.006 (3)0.003 (3)0.017 (3)
O60.024 (3)0.029 (3)0.027 (3)0.008 (2)0.007 (2)0.004 (2)
N10.039 (5)0.042 (5)0.032 (4)0.004 (4)0.002 (3)0.012 (4)
N20.029 (4)0.022 (3)0.024 (3)0.001 (3)0.003 (3)0.002 (3)
N30.021 (3)0.020 (3)0.012 (3)0.001 (3)0.002 (2)0.003 (2)
N40.024 (3)0.023 (3)0.015 (3)0.001 (3)0.003 (3)0.005 (3)
N50.032 (4)0.031 (4)0.026 (4)0.002 (3)0.004 (3)0.014 (3)
N60.037 (5)0.036 (5)0.049 (5)0.000 (4)0.015 (4)0.003 (4)
C10.024 (4)0.040 (5)0.050 (6)0.000 (4)0.004 (4)0.026 (5)
C20.035 (5)0.037 (5)0.058 (6)0.004 (4)0.022 (5)0.013 (5)
C30.040 (6)0.055 (7)0.043 (6)0.016 (5)0.001 (5)0.024 (5)
C40.025 (4)0.052 (6)0.044 (6)0.008 (4)0.004 (4)0.028 (5)
C50.061 (8)0.050 (7)0.047 (6)0.016 (6)0.007 (6)0.001 (5)
C60.028 (4)0.022 (4)0.026 (4)0.000 (3)0.009 (3)0.010 (3)
C70.027 (4)0.031 (5)0.030 (4)0.002 (4)0.004 (3)0.013 (4)
C80.053 (6)0.029 (5)0.028 (5)0.002 (4)0.001 (4)0.002 (4)
C90.029 (4)0.030 (5)0.028 (4)0.000 (4)0.008 (4)0.002 (4)
C100.029 (5)0.035 (5)0.034 (5)0.001 (4)0.002 (4)0.014 (4)
C110.021 (4)0.018 (4)0.027 (4)0.002 (3)0.008 (3)0.008 (3)
C120.027 (4)0.023 (4)0.019 (4)0.002 (3)0.006 (3)0.005 (3)
C130.029 (4)0.023 (4)0.015 (3)0.004 (3)0.002 (3)0.006 (3)
C140.032 (4)0.021 (4)0.017 (4)0.007 (3)0.003 (3)0.002 (3)
C150.027 (4)0.018 (4)0.028 (4)0.001 (3)0.009 (3)0.005 (3)
C160.016 (4)0.022 (4)0.024 (4)0.006 (3)0.003 (3)0.002 (3)
C170.021 (4)0.028 (4)0.017 (4)0.004 (3)0.007 (3)0.004 (3)
C180.018 (3)0.020 (4)0.015 (3)0.001 (3)0.002 (3)0.000 (3)
C190.024 (4)0.026 (4)0.022 (4)0.004 (3)0.004 (3)0.003 (3)
C200.026 (4)0.025 (4)0.028 (4)0.002 (3)0.006 (3)0.005 (3)
C210.029 (4)0.031 (5)0.024 (4)0.003 (4)0.004 (3)0.015 (3)
C220.039 (5)0.038 (5)0.033 (5)0.001 (4)0.005 (4)0.007 (4)
C230.035 (5)0.050 (6)0.034 (5)0.008 (4)0.006 (4)0.018 (4)
C240.034 (5)0.036 (5)0.032 (5)0.001 (4)0.000 (4)0.018 (4)
C250.043 (6)0.042 (6)0.035 (5)0.011 (5)0.011 (4)0.002 (4)
C260.031 (5)0.023 (4)0.041 (5)0.006 (4)0.007 (4)0.000 (4)
C270.036 (5)0.031 (5)0.043 (5)0.010 (4)0.014 (4)0.007 (4)
C280.042 (6)0.055 (7)0.043 (6)0.005 (5)0.013 (5)0.013 (5)
C290.039 (5)0.036 (5)0.042 (5)0.004 (4)0.022 (4)0.003 (4)
C300.042 (6)0.049 (6)0.044 (6)0.003 (5)0.007 (5)0.020 (5)
Geometric parameters (Å, º) top
Ca1—O12.308 (6)C7—C81.533 (12)
Ca1—O1i2.308 (6)C7—H7A0.9900
Ca1—O22.329 (6)C7—H7B0.9900
Ca1—O2i2.329 (6)C8—C91.552 (13)
Ca1—O3i2.341 (6)C8—H8A0.9900
Ca1—O32.341 (6)C8—H8B0.9900
Ca2—O4ii2.322 (5)C9—H9A0.9900
Ca2—O42.322 (5)C9—H9B0.9900
Ca2—O62.327 (6)C10—H10A0.9800
Ca2—O6ii2.327 (6)C10—H10B0.9800
Ca2—O5ii2.331 (6)C10—H10C0.9800
Ca2—O52.331 (6)C11—C121.483 (11)
S1—C141.713 (9)C12—C171.399 (10)
S2—C191.696 (9)C12—C131.429 (11)
O1—C11.244 (11)C13—C141.376 (11)
O2—C61.264 (10)C13—H13A0.9500
O3—C111.256 (10)C15—H15A0.9800
O4—C161.242 (9)C15—H15B0.9800
O5—C211.258 (10)C15—H15C0.9800
O6—C261.253 (11)C16—C171.475 (11)
N1—C11.283 (12)C17—C181.422 (11)
N1—C51.433 (13)C18—C191.382 (11)
N1—C41.444 (12)C18—H18A0.9500
N2—C61.324 (10)C20—H20A0.9800
N2—C101.446 (11)C20—H20B0.9800
N2—C91.473 (11)C20—H20C0.9800
N3—C111.369 (10)C21—C221.506 (13)
N3—C141.422 (9)C22—C231.540 (13)
N3—C151.460 (10)C22—H22A0.9900
N4—C161.369 (10)C22—H22B0.9900
N4—C191.430 (10)C23—C241.528 (14)
N4—C201.453 (10)C23—H23A0.9900
N5—C211.315 (11)C23—H23B0.9900
N5—C251.443 (12)C24—H24A0.9900
N5—C241.456 (11)C24—H24B0.9900
N6—C261.291 (12)C25—H25A0.9800
N6—C301.426 (13)C25—H25B0.9800
N6—C291.450 (12)C25—H25C0.9800
C1—C21.576 (15)C26—C271.573 (14)
C2—C31.510 (14)C27—C281.501 (14)
C2—H2A0.9900C27—H27A0.9900
C2—H2B0.9900C27—H27B0.9900
C3—C41.562 (15)C28—C291.532 (15)
C3—H3A0.9900C28—H28A0.9900
C3—H3B0.9900C28—H28B0.9900
C4—H4A0.9900C29—H29A0.9900
C4—H4B0.9900C29—H29B0.9900
C5—H5A0.9800C30—H30A0.9800
C5—H5B0.9800C30—H30B0.9800
C5—H5C0.9800C30—H30C0.9800
C6—C71.492 (12)
O1—Ca1—O1i180.0N2—C9—H9B110.9
O1—Ca1—O290.3 (2)C8—C9—H9B110.9
O1i—Ca1—O289.7 (2)H9A—C9—H9B108.9
O1—Ca1—O2i89.7 (2)N2—C10—H10A109.5
O1i—Ca1—O2i90.3 (2)N2—C10—H10B109.5
O2—Ca1—O2i180.0 (3)H10A—C10—H10B109.5
O1—Ca1—O3i88.3 (2)N2—C10—H10C109.5
O1i—Ca1—O3i91.7 (2)H10A—C10—H10C109.5
O2—Ca1—O3i89.9 (2)H10B—C10—H10C109.5
O2i—Ca1—O3i90.1 (2)O3—C11—N3124.0 (7)
O1—Ca1—O391.7 (2)O3—C11—C12129.5 (7)
O1i—Ca1—O388.3 (2)N3—C11—C12106.5 (7)
O2—Ca1—O390.1 (2)C17—C12—C13130.6 (7)
O2i—Ca1—O389.9 (2)C17—C12—C11123.3 (7)
O3i—Ca1—O3180.0C13—C12—C11106.1 (7)
O4ii—Ca2—O4180.0 (3)C14—C13—C12108.8 (7)
O4ii—Ca2—O688.6 (2)C14—C13—H13A125.6
O4—Ca2—O691.4 (2)C12—C13—H13A125.6
O4ii—Ca2—O6ii91.4 (2)C13—C14—N3108.4 (7)
O4—Ca2—O6ii88.6 (2)C13—C14—S1130.8 (6)
O6—Ca2—O6ii180.0N3—C14—S1120.7 (6)
O4ii—Ca2—O5ii88.2 (2)N3—C15—H15A109.5
O4—Ca2—O5ii91.8 (2)N3—C15—H15B109.5
O6—Ca2—O5ii89.7 (2)H15A—C15—H15B109.5
O6ii—Ca2—O5ii90.3 (2)N3—C15—H15C109.5
O4ii—Ca2—O591.8 (2)H15A—C15—H15C109.5
O4—Ca2—O588.2 (2)H15B—C15—H15C109.5
O6—Ca2—O590.3 (2)O4—C16—N4124.3 (7)
O6ii—Ca2—O589.7 (2)O4—C16—C17129.3 (7)
O5ii—Ca2—O5180.0 (3)N4—C16—C17106.3 (7)
C1—O1—Ca1152.9 (6)C12—C17—C18130.2 (7)
C6—O2—Ca1137.1 (5)C12—C17—C16123.7 (7)
C11—O3—Ca1151.9 (5)C18—C17—C16106.1 (7)
C16—O4—Ca2162.2 (5)C19—C18—C17110.0 (7)
C21—O5—Ca2149.4 (6)C19—C18—H18A125.0
C26—O6—Ca2139.4 (6)C17—C18—H18A125.0
C1—N1—C5121.3 (9)C18—C19—N4106.7 (7)
C1—N1—C4117.0 (9)C18—C19—S2132.3 (6)
C5—N1—C4121.6 (9)N4—C19—S2121.1 (6)
C6—N2—C10125.4 (7)N4—C20—H20A109.5
C6—N2—C9113.8 (7)N4—C20—H20B109.5
C10—N2—C9120.6 (7)H20A—C20—H20B109.5
C11—N3—C14110.1 (6)N4—C20—H20C109.5
C11—N3—C15124.3 (6)H20A—C20—H20C109.5
C14—N3—C15125.3 (7)H20B—C20—H20C109.5
C16—N4—C19110.9 (7)O5—C21—N5125.2 (8)
C16—N4—C20124.0 (6)O5—C21—C22124.8 (8)
C19—N4—C20124.9 (7)N5—C21—C22109.9 (7)
C21—N5—C25124.3 (8)C21—C22—C23102.2 (8)
C21—N5—C24114.1 (7)C21—C22—H22A111.3
C25—N5—C24121.5 (8)C23—C22—H22A111.3
C26—N6—C30122.3 (9)C21—C22—H22B111.3
C26—N6—C29116.1 (9)C23—C22—H22B111.3
C30—N6—C29121.7 (8)H22A—C22—H22B109.2
O1—C1—N1129.4 (10)C24—C23—C22104.4 (7)
O1—C1—C2122.8 (9)C24—C23—H23A110.9
N1—C1—C2107.8 (8)C22—C23—H23A110.9
C3—C2—C1103.3 (8)C24—C23—H23B110.9
C3—C2—H2A111.1C22—C23—H23B110.9
C1—C2—H2A111.1H23A—C23—H23B108.9
C3—C2—H2B111.1N5—C24—C23102.4 (7)
C1—C2—H2B111.1N5—C24—H24A111.3
H2A—C2—H2B109.1C23—C24—H24A111.3
C2—C3—C4104.6 (8)N5—C24—H24B111.3
C2—C3—H3A110.8C23—C24—H24B111.3
C4—C3—H3A110.8H24A—C24—H24B109.2
C2—C3—H3B110.8N5—C25—H25A109.5
C4—C3—H3B110.8N5—C25—H25B109.5
H3A—C3—H3B108.9H25A—C25—H25B109.5
N1—C4—C3102.6 (7)N5—C25—H25C109.5
N1—C4—H4A111.2H25A—C25—H25C109.5
C3—C4—H4A111.2H25B—C25—H25C109.5
N1—C4—H4B111.2O6—C26—N6128.3 (10)
C3—C4—H4B111.2O6—C26—C27123.7 (8)
H4A—C4—H4B109.2N6—C26—C27108.0 (8)
N1—C5—H5A109.5C28—C27—C26102.0 (8)
N1—C5—H5B109.5C28—C27—H27A111.4
H5A—C5—H5B109.5C26—C27—H27A111.4
N1—C5—H5C109.5C28—C27—H27B111.4
H5A—C5—H5C109.5C26—C27—H27B111.4
H5B—C5—H5C109.5H27A—C27—H27B109.2
O2—C6—N2121.9 (8)C27—C28—C29106.0 (8)
O2—C6—C7127.1 (7)C27—C28—H28A110.5
N2—C6—C7111.0 (7)C29—C28—H28A110.5
C6—C7—C8105.3 (7)C27—C28—H28B110.5
C6—C7—H7A110.7C29—C28—H28B110.5
C8—C7—H7A110.7H28A—C28—H28B108.7
C6—C7—H7B110.7N6—C29—C28102.5 (8)
C8—C7—H7B110.7N6—C29—H29A111.3
H7A—C7—H7B108.8C28—C29—H29A111.3
C7—C8—C9105.4 (7)N6—C29—H29B111.3
C7—C8—H8A110.7C28—C29—H29B111.3
C9—C8—H8A110.7H29A—C29—H29B109.2
C7—C8—H8B110.7N6—C30—H30A109.5
C9—C8—H8B110.7N6—C30—H30B109.5
H8A—C8—H8B108.8H30A—C30—H30B109.5
N2—C9—C8104.1 (7)N6—C30—H30C109.5
N2—C9—H9A110.9H30A—C30—H30C109.5
C8—C9—H9A110.9H30B—C30—H30C109.5
Ca1—O1—C1—N1101.2 (16)C19—N4—C16—O4179.8 (7)
Ca1—O1—C1—C277.4 (17)C20—N4—C16—O43.3 (13)
C5—N1—C1—O12.4 (17)C19—N4—C16—C170.7 (9)
C4—N1—C1—O1179.6 (10)C20—N4—C16—C17177.2 (7)
C5—N1—C1—C2178.9 (9)C13—C12—C17—C18179.8 (9)
C4—N1—C1—C21.6 (12)C11—C12—C17—C180.1 (14)
O1—C1—C2—C3166.4 (9)C13—C12—C17—C160.6 (14)
N1—C1—C2—C312.5 (10)C11—C12—C17—C16179.5 (7)
C1—C2—C3—C420.1 (10)O4—C16—C17—C120.6 (13)
C1—N1—C4—C314.5 (12)N4—C16—C17—C12180.0 (7)
C5—N1—C4—C3168.3 (9)O4—C16—C17—C18179.7 (8)
C2—C3—C4—N120.9 (10)N4—C16—C17—C180.3 (9)
Ca1—O2—C6—N2148.7 (7)C12—C17—C18—C19179.4 (8)
Ca1—O2—C6—C732.1 (14)C16—C17—C18—C190.3 (9)
C10—N2—C6—O23.1 (13)C17—C18—C19—N40.7 (9)
C9—N2—C6—O2177.5 (8)C17—C18—C19—S2178.6 (7)
C10—N2—C6—C7177.5 (8)C16—N4—C19—C180.9 (9)
C9—N2—C6—C73.2 (10)C20—N4—C19—C18177.4 (7)
O2—C6—C7—C8175.1 (9)C16—N4—C19—S2178.5 (6)
N2—C6—C7—C85.6 (10)C20—N4—C19—S22.1 (11)
C6—C7—C8—C95.7 (10)Ca2—O5—C21—N598.8 (13)
C6—N2—C9—C80.7 (10)Ca2—O5—C21—C2283.7 (15)
C10—N2—C9—C8174.0 (8)C25—N5—C21—O50.7 (15)
C7—C8—C9—N24.0 (10)C24—N5—C21—O5177.7 (9)
Ca1—O3—C11—N353.7 (15)C25—N5—C21—C22178.5 (9)
Ca1—O3—C11—C12126.3 (10)C24—N5—C21—C220.2 (11)
C14—N3—C11—O3179.7 (7)O5—C21—C22—C23166.3 (9)
C15—N3—C11—O36.9 (12)N5—C21—C22—C2315.9 (10)
C14—N3—C11—C120.3 (8)C21—C22—C23—C2424.7 (10)
C15—N3—C11—C12173.2 (7)C21—N5—C24—C2316.2 (10)
O3—C11—C12—C170.9 (14)C25—N5—C24—C23165.4 (9)
N3—C11—C12—C17179.1 (7)C22—C23—C24—N524.8 (10)
O3—C11—C12—C13179.0 (8)Ca2—O6—C26—N6154.4 (8)
N3—C11—C12—C131.0 (9)Ca2—O6—C26—C2727.1 (14)
C17—C12—C13—C14178.8 (8)C30—N6—C26—O60.6 (16)
C11—C12—C13—C141.3 (9)C29—N6—C26—O6179.3 (9)
C12—C13—C14—N31.2 (10)C30—N6—C26—C27179.2 (9)
C12—C13—C14—S1177.1 (7)C29—N6—C26—C272.1 (11)
C11—N3—C14—C130.6 (9)O6—C26—C27—C28165.5 (9)
C15—N3—C14—C13173.9 (7)N6—C26—C27—C2815.8 (10)
C11—N3—C14—S1177.0 (6)C26—C27—C28—C2922.4 (10)
C15—N3—C14—S19.7 (11)C26—N6—C29—C2812.2 (12)
Ca2—O4—C16—N417 (2)C30—N6—C29—C28166.4 (9)
Ca2—O4—C16—C17161.9 (13)C27—C28—C29—N621.6 (11)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3iii0.992.513.456 (12)159
C10—H10B···S20.982.973.820 (10)146
C15—H15A···O2i0.982.583.545 (10)167
C20—H20A···O60.982.533.504 (11)172
C22—H22A···S1iv0.992.933.839 (11)154
C23—H23B···N3iv0.992.693.655 (12)165
C27—H27A···O4ii0.992.633.444 (11)140
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x, y+1, z.
 

Acknowledgements

The authors wish to acknowledge the assistance of Dr Matt Zeller in resolving some of the issues concerning the twinning observed in this structure.

Funding information

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

First citationAgrawal, A. G., Kumar, A. & Gide, P. S. (2015). Drug Dev. Ind. Pharm. 41, 594–604.  CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J. & Purdy, A. P. (2006). Acta Cryst. E62, m342–m344.  CSD CrossRef IUCr Journals Google Scholar
First citationCasida, M. E., Jamorski, C., Casida, K. C. & Salahub, D. R. (1998). J. Chem. Phys. 108, 4439–4449.  Web of Science CrossRef CAS Google Scholar
First citationCheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. (1996). J. Chem. Phys. 104, 5497–5509.  CrossRef CAS Web of Science Google Scholar
First citationCurtiss, L. A., McGrath, M. P., Blaudeau, J.-P., Davis, N. E., Binning, R. C. Jr & Radom, L. (1995). J. Chem. Phys. 103, 6104–6113.  CrossRef CAS Web of Science Google Scholar
First citationDewilde, S., Dehaen, W. & Binnemans, K. (2016). Green Chem. 18, 1639–1652.  CrossRef CAS Google Scholar
First citationFaghihi, K. (2009). J. Chil. Chem. Soc. 54, 138–140.  CrossRef CAS Google Scholar
First citationFaghihi, K., Shabanian, M. & Faraz, M. (2010). Bull. Chem. Soc. Ethiop. 24, 289–294.  CAS Google Scholar
First citationFliegl, H., Jusélius, J. & Sundholm, D. (2016). J. Phys. Chem. A, 120, 5658–5664.  CrossRef CAS PubMed Google Scholar
First citationFliegl, H., Pichierri, F. & Sundholm, D. (2015). J. Phys. Chem. A, 119, 2344–2350.  CrossRef CAS PubMed Google Scholar
First citationFliegl, H., Sundholm, D., Taubert, S., Jusélius, J. & Klopper, W. (2009). J. Phys. Chem. A, 113, 8668–8676.  CrossRef PubMed CAS Google Scholar
First citationFliegl, H., Taubert, S., Lehtonen, O. & Sundholm, D. (2011). Phys. Chem. Chem. Phys. 13, 20500–20518.  CrossRef CAS PubMed Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 09. Revision D. 01. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationFurche, F. & Ahlrichs, R. (2002). J. Chem. Phys. 117, 7433–7447.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. (2005). J. Chem. Phys. 123, 174101.  CrossRef PubMed Google Scholar
First citationHohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871.  CrossRef Web of Science Google Scholar
First citationJarý, V., Havlák, L., Bárta, J., Buryi, M., Mihóková, E., Rejman, M., Laguta, V. & Nikl, M. (2015). Materials 8, 6978–6998.  PubMed Google Scholar
First citationJohansson, M. P., Jusélius, J. & Sundholm, D. (2005). Angew. Chem. Int. Ed. 44, 1843–1846.  CrossRef CAS Google Scholar
First citationJung, D. E., Eom, Y., Yoon, H. Y., Lee, Y. & Kim, B. C. (2016). Macromol. Res. 24, 182–187.  CrossRef CAS Google Scholar
First citationKang, M., Luo, D., Deng, Y., Li, R. & Lin, Z. (2014). Inorg. Chem. Commun. 47, 52–55.  CSD CrossRef CAS Google Scholar
First citationKim, T., Kim, M.-A., Hwang, Y.-C., Rosa, V., Del Fabbro, M. & Min, K. (2020). J. Appl. Oral Sci. 28, e20190516.  CrossRef PubMed Google Scholar
First citationLim, M.-J., Jang, H.-J., Yu, M.-K., Lee, K. W. & Min, K.-S. (2017). Restor. Dent. Endod. 42, 290–300.  CrossRef PubMed Google Scholar
First citationLondon, F. (1937). J. Phys. Radium, 8, 397–409.  CrossRef CAS Google Scholar
First citationMallakpour, S. & Kolahdoozan, M. (2008). React. Funct. Polym. 68, 91–96.  CrossRef CAS Google Scholar
First citationMcLean, A. D. & Chandler, G. S. (1980). J. Chem. Phys. 72, 5639–5648.  CrossRef CAS Web of Science Google Scholar
First citationPeeks, M. D., Claridge, T. D. W. & Anderson, H. L. (2017). Nature, 541, 200–203.  CrossRef CAS PubMed Google Scholar
First citationPurdy, A. P., Berry, A. D. & George, C. F. (1997). Inorg. Chem. 36, 3370–3375.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationQinghua, M. (2018). Private communication (refcode WIMBIG). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, S. S., Tuenge, R. T., Kane, J. & Ling, M. (1994). J. Electrochem. Soc. 141, 2877–2883.  CrossRef CAS Google Scholar
First citationTaubert, S., Sundholm, D., Jusélius, J., Klopper, W. & Fliegl, H. (2008). J. Phys. Chem. A, 112, 13584–13592.  CrossRef PubMed CAS Google Scholar
First citationTrinajstić, N. (1968). Tetrahedron Lett. 9, 1529–1532.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds