research communications
Hirshfeld surface analysis and DFT study of 1-ethyl-3-phenyl-1,2-dihydroquinoxalin-2-one
aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: ashraf.yemen7@gmail.com
In the title molecule, C16H14N2O, the dihydroquinoxaline moiety is not planar as there is a dihedral angle of 4.51 (5)° between the constituent rings. In the crystal, C—H⋯O hydrogen bonds form helical chains about the crystallographic 21 screw axis in the b-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (51.7%), H⋯C/C⋯H (26%) and H⋯O/O⋯H (8.5%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 3.8918 eV.
Keywords: crystal structure; dihydroquinoxaline; hydrogen bond.
CCDC reference: 2047850
1. Chemical context
Nitrogen-based structures have attracted attention in recent years because of their interesting properties in structural and inorganic chemistry (Chkirate et al., 2019; 2020a,b). The family of nitrogenous drugs, particularly those containing the quinoxaline moiety, is important in medicinal chemistry because of their wide range of pharmacological activities, which include anticancer, anti-inflammatory, antibacterial, antituberculosis, anti-glycation, anti-analgesic and antifungal properties, and for their antioxidant potential. In particular, quinoxalin-2-one derivatives are active anti-tumor agents with tyrosine kinase receptor inhibition properties (Galal et al., 2014). They can also selectively antagonize the glycoprotein in cancer cells (Sun et al., 2009). Quinoxalin-2-one derivatives are also potential antagonist ligands for imaging the A2A adenosine receptor by positron emission tomography (PET) (Holschbach et al., 2005). Given the wide range of therapeutic applications for such compounds, we have already reported a route for the preparation of quinoxalin-2-one derivatives using N-alkylation reactions carried out with di-halogenated carbon chains (Benzeid et al., 2011); a similar approach yielded the title compound, C16H14N2O, (I). In addition to the synthesis, we also report the molecular and along with a Hirshfeld surface analysis and a density functional theory (DFT) computational study carried out at the B3LYP/6–311 G(d,p) level.
2. Structural commentary
The molecular structure of (I) is depicted in Fig. 1. The dihydroquinoxaline moiety is not planar, as indicated by the dihedral angle of 4.51 (5)° between the constituent rings. Alternatively, the maximum deviations from the mean plane (r.m.s. deviation = 0.060 Å) of the ten-membered, fused ring system are 0.096 (1) Å (C8) and −0.057 (1) Å (C7). The mean planes of the C11–C16 and C1/C6/N1/C7/C8/N2 rings are inclined to one another by 30.87 (4)°. The C6—N1—C9—C10 torsion angle is −78.78 (10)°, indicating the ethyl substituent is rotated well out of the plane of the dihydroquinoxaline moiety (Fig. 1).
3. Supramolecular features
In the crystal, helical chains about the crystallographic 21 axes are formed by C9—H9B⋯O1 hydrogen bonds (Table 1, Figs. 2 and 3). The chains pack via normal van der Waals contacts.
4. Hirshfeld surface
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). A view of the three-dimensional Hirshfeld surface of (I), plotted over dnorm is shown in Fig. 4. The overall two-dimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, C⋯N/N⋯C and C⋯O/O⋯C contacts are illustrated in Fig. 5b–h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interactions are H⋯H, contributing 51.7% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at de = di = 1.07 Å. For C—H interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26% contribution to the HS), Fig. 5c, have tips at de + di = 2.79 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H, Fig. 5e (8.5%), have the tips at de + di = 2.26 Å. The C⋯C contacts, Fig. 5f (6.1%), have the tips at de + di = 3.45 Å. The H⋯N/N⋯H contacts, Fig. 5d, contribute 6% to the HS and appear as a pair of scattered points of spikes with the tips at de + di = 2.67 Å. The C⋯N/N⋯C contacts, Fig. 5g, contribute 1.5% to the HS, appearing as pair of scattered points of spikes with the tips at de + di = 3.30 Å. Finally, the C⋯O/O⋯C contacts, Fig. 5h, make only a 0.2% contribution to the HS and have a low-density distribution of points.
5. DFT calculations
The optimized structure of (I) in the gas phase was calculated by density functional theory (DFT) using a standard B3LYP functional and the 6–311 G(d,p) basis-set (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results related to bond lengths and angles are in good agreement (Table 2). Calculated numerical values for (I) including (χ), hardness (η), (I), (μ), (A), (ω) and softness (σ) are collated in Table 3. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending over the whole 1-ethyl-3-phenyl-1,2-dihydroquinoxalin-2-one system. The energy band gap [ΔE = ELUMO - EHOMO] of the molecule is 3.8918 eV, and the frontier molecular orbital energies, EHOMO and ELUMO, are −6.1381 and −2.2463 eV, respectively.
|
|
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, updated March 2020; Groom et al., 2016) with the quinoxaline-2-one fragment yielded multiple matches. Of these, two had a phenyl at position 3 and are thus most comparable to (I). The first [(II), refcode NIBXEE; Abad et al., 2018a)] has (oxiran-2-yl) methyl on nitrogen 1, and the second [(III), IDOSUR; Daouda et al., 2013)] has a 3-ethyloxazolidin-2-one on nitrogen 1 (Fig. 7). Other structures having the quinoxaline-2-one moiety were observed by changing the substituents of positions 1 and 3 in the examples NAYTAJ (1-ethyl; Mamedov et al., 2005a), DUSHUV01 (1-benzyl-3-methyl; Ramli et al., 2018), DUMRUB {1-([1-(3-azido-2-hydroxypropyl)-1H-1,2,3-triazol-4-yl]methyl)-3-methyl; Abad et al., 2020}, HIRZOA {1- [(1-butyl-1H-1,2,3-triazol-4-yl)methyl]-3-methyl; Abad et al., 2018b} and SENYUG [3- (indolizin-2-yl)-1-ethyl; Mamedov et al., 2005b]. The dihedral angle between the dihydroquinoxaline ring system and the phenyl ring is 28.4 (2)° in NIBXEE and the N—C—C— O torsion angle is 87.8 (5)°; the mean plane through the fused-ring system forms a dihedral angle of 30.72 (5)° with the attached phenyl ring. The molecular conformation is enforced by C—H⋯O hydrogen bonds in IDOSUR. In (I), the dihydroquinoxaline moiety is not planar, as indicated by the dihedral angle of 4.51 (5)° between the constituent rings. The phenyl ring is tilted towards the pyrazine ring by 30.87 (4)°, which is approximately the same as in IDOSUR but more tilted than in NIBXEE.
7. Synthesis and crystallization
To a solution of 3-phenylquinoxalin-2(1H)-one (0.7 g, 0.0032 mol) in N,N-dimethylformamide (20 ml) were added bromoethane (0.48 ml), potassium carbonate K2CO3 (0.5g, 0.004 mol) and a catalytic quantity of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was separated by on a silica gel column using a hexane/ethyl acetate 9:1 mixture as The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound (yield: 85%).
8. Refinement
Crystal data, data collection and structure . Hydrogen atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 4Supporting information
CCDC reference: 2047850
https://doi.org/10.1107/S2056989020015819/pk2652sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015819/pk2652Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015819/pk2652Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H14N2O | F(000) = 528 |
Mr = 250.29 | Dx = 1.335 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2572 (9) Å | Cell parameters from 9889 reflections |
b = 9.0531 (9) Å | θ = 2.4–29.2° |
c = 15.0557 (14) Å | µ = 0.09 mm−1 |
β = 99.329 (1)° | T = 150 K |
V = 1245.1 (2) Å3 | Plate, colourless |
Z = 4 | 0.50 × 0.47 × 0.16 mm |
Bruker SMART APEX CCD diffractometer | 3364 independent reflections |
Radiation source: fine-focus sealed tube | 2925 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 2.4° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.96, Tmax = 0.99 | l = −20→20 |
23365 measured reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.130 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0911P)2 + 0.1012P] where P = (Fo2 + 2Fc2)/3 |
3364 reflections | (Δ/σ)max < 0.001 |
228 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.43347 (7) | 0.55741 (7) | 0.27640 (5) | 0.02811 (19) | |
N1 | 0.45495 (8) | 0.30830 (7) | 0.26163 (5) | 0.01831 (17) | |
N2 | 0.71192 (8) | 0.31976 (7) | 0.38726 (5) | 0.01948 (18) | |
C1 | 0.66994 (9) | 0.19050 (9) | 0.34103 (6) | 0.01852 (19) | |
C2 | 0.75776 (10) | 0.06426 (9) | 0.36083 (6) | 0.0229 (2) | |
H2 | 0.8512 (14) | 0.0771 (12) | 0.4013 (9) | 0.030 (3)* | |
C3 | 0.71308 (11) | −0.07042 (10) | 0.32364 (6) | 0.0254 (2) | |
H3 | 0.7731 (13) | −0.1609 (13) | 0.3384 (9) | 0.029 (3)* | |
C4 | 0.57963 (11) | −0.08094 (10) | 0.26512 (7) | 0.0262 (2) | |
H4 | 0.5463 (15) | −0.1782 (14) | 0.2407 (10) | 0.040 (4)* | |
C5 | 0.49306 (10) | 0.04224 (10) | 0.24245 (6) | 0.0237 (2) | |
H5 | 0.3962 (14) | 0.0325 (13) | 0.2015 (9) | 0.032 (3)* | |
C6 | 0.53750 (9) | 0.18006 (9) | 0.28052 (6) | 0.01830 (19) | |
C7 | 0.49871 (9) | 0.44227 (9) | 0.30059 (6) | 0.01918 (19) | |
C8 | 0.62953 (9) | 0.43608 (9) | 0.37231 (5) | 0.01762 (19) | |
C9 | 0.31974 (9) | 0.30696 (10) | 0.19483 (6) | 0.0233 (2) | |
H9A | 0.2631 (14) | 0.3931 (15) | 0.2067 (9) | 0.033 (3)* | |
H9B | 0.2651 (13) | 0.2186 (14) | 0.2059 (8) | 0.029 (3)* | |
C10 | 0.35231 (12) | 0.31217 (12) | 0.09942 (7) | 0.0316 (2) | |
H10A | 0.4106 (16) | 0.4010 (16) | 0.0903 (10) | 0.043 (4)* | |
H10B | 0.4032 (16) | 0.2247 (17) | 0.0845 (10) | 0.047 (4)* | |
H10C | 0.2620 (16) | 0.3135 (15) | 0.0563 (11) | 0.048 (4)* | |
C11 | 0.66935 (9) | 0.56627 (9) | 0.43138 (6) | 0.01939 (19) | |
C12 | 0.56472 (10) | 0.66442 (10) | 0.45417 (6) | 0.0239 (2) | |
H12 | 0.4642 (14) | 0.6541 (13) | 0.4277 (9) | 0.029 (3)* | |
C13 | 0.60553 (11) | 0.77375 (11) | 0.51836 (7) | 0.0288 (2) | |
H13 | 0.5343 (14) | 0.8431 (14) | 0.5340 (9) | 0.034 (3)* | |
C14 | 0.75007 (12) | 0.78690 (11) | 0.55996 (7) | 0.0311 (2) | |
H14 | 0.7760 (14) | 0.8637 (16) | 0.6076 (10) | 0.040 (3)* | |
C15 | 0.85551 (12) | 0.69263 (11) | 0.53570 (7) | 0.0313 (2) | |
H15 | 0.9599 (15) | 0.7034 (14) | 0.5636 (10) | 0.041 (4)* | |
C16 | 0.81542 (10) | 0.58303 (10) | 0.47181 (7) | 0.0258 (2) | |
H16 | 0.8876 (14) | 0.5150 (15) | 0.4564 (8) | 0.034 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0285 (3) | 0.0206 (3) | 0.0317 (4) | 0.0062 (2) | −0.0059 (3) | −0.0015 (3) |
N1 | 0.0178 (3) | 0.0182 (4) | 0.0182 (3) | −0.0006 (2) | 0.0006 (3) | −0.0008 (2) |
N2 | 0.0208 (3) | 0.0179 (3) | 0.0192 (4) | 0.0000 (2) | 0.0017 (3) | 0.0004 (2) |
C1 | 0.0208 (4) | 0.0172 (4) | 0.0180 (4) | 0.0004 (3) | 0.0042 (3) | 0.0004 (3) |
C2 | 0.0256 (4) | 0.0208 (4) | 0.0223 (4) | 0.0040 (3) | 0.0043 (3) | 0.0021 (3) |
C3 | 0.0346 (5) | 0.0181 (4) | 0.0254 (5) | 0.0048 (3) | 0.0103 (4) | 0.0023 (3) |
C4 | 0.0361 (5) | 0.0177 (4) | 0.0264 (5) | −0.0035 (3) | 0.0097 (4) | −0.0020 (3) |
C5 | 0.0279 (4) | 0.0204 (4) | 0.0226 (4) | −0.0041 (3) | 0.0039 (3) | −0.0012 (3) |
C6 | 0.0215 (4) | 0.0169 (4) | 0.0172 (4) | −0.0006 (3) | 0.0051 (3) | 0.0008 (3) |
C7 | 0.0192 (4) | 0.0178 (4) | 0.0200 (4) | 0.0001 (3) | 0.0015 (3) | −0.0010 (3) |
C8 | 0.0182 (4) | 0.0172 (4) | 0.0170 (4) | −0.0010 (3) | 0.0014 (3) | 0.0000 (3) |
C9 | 0.0190 (4) | 0.0247 (4) | 0.0244 (4) | −0.0025 (3) | −0.0021 (3) | −0.0022 (3) |
C10 | 0.0377 (5) | 0.0328 (5) | 0.0216 (5) | −0.0009 (4) | −0.0036 (4) | −0.0013 (4) |
C11 | 0.0234 (4) | 0.0164 (4) | 0.0178 (4) | −0.0024 (3) | 0.0018 (3) | 0.0005 (3) |
C12 | 0.0258 (4) | 0.0226 (4) | 0.0242 (4) | −0.0026 (3) | 0.0066 (3) | −0.0014 (3) |
C13 | 0.0387 (5) | 0.0233 (4) | 0.0271 (5) | −0.0036 (4) | 0.0137 (4) | −0.0047 (4) |
C14 | 0.0465 (6) | 0.0249 (5) | 0.0217 (5) | −0.0114 (4) | 0.0054 (4) | −0.0050 (4) |
C15 | 0.0337 (5) | 0.0284 (5) | 0.0284 (5) | −0.0075 (4) | −0.0052 (4) | −0.0023 (4) |
C16 | 0.0251 (4) | 0.0227 (4) | 0.0272 (5) | −0.0014 (3) | −0.0023 (3) | −0.0015 (3) |
O1—C7 | 1.2299 (10) | C9—C10 | 1.5156 (14) |
N1—C7 | 1.3791 (10) | C9—H9A | 0.972 (13) |
N1—C6 | 1.3936 (10) | C9—H9B | 0.975 (13) |
N1—C9 | 1.4732 (11) | C10—H10A | 0.990 (14) |
N2—C8 | 1.2983 (11) | C10—H10B | 0.966 (15) |
N2—C1 | 1.3846 (11) | C10—H10C | 0.972 (16) |
C1—C2 | 1.4063 (11) | C11—C12 | 1.3976 (12) |
C1—C6 | 1.4071 (12) | C11—C16 | 1.3983 (12) |
C2—C3 | 1.3770 (13) | C12—C13 | 1.3920 (13) |
C2—H2 | 0.980 (13) | C12—H12 | 0.955 (12) |
C3—C4 | 1.3995 (14) | C13—C14 | 1.3875 (15) |
C3—H3 | 0.995 (12) | C13—H13 | 0.967 (12) |
C4—C5 | 1.3834 (13) | C14—C15 | 1.3893 (16) |
C4—H4 | 0.985 (14) | C14—H14 | 1.000 (15) |
C5—C6 | 1.4065 (11) | C15—C16 | 1.3899 (13) |
C5—H5 | 1.006 (12) | C15—H15 | 0.994 (14) |
C7—C8 | 1.4872 (11) | C16—H16 | 0.964 (13) |
C8—C11 | 1.4864 (11) | ||
C7—N1—C6 | 122.16 (7) | N1—C9—H9A | 107.0 (8) |
C7—N1—C9 | 117.14 (7) | C10—C9—H9A | 110.2 (8) |
C6—N1—C9 | 120.63 (7) | N1—C9—H9B | 107.3 (7) |
C8—N2—C1 | 119.29 (7) | C10—C9—H9B | 112.1 (7) |
N2—C1—C2 | 118.35 (8) | H9A—C9—H9B | 108.4 (11) |
N2—C1—C6 | 121.76 (7) | C9—C10—H10A | 110.7 (9) |
C2—C1—C6 | 119.72 (8) | C9—C10—H10B | 112.0 (9) |
C3—C2—C1 | 120.54 (9) | H10A—C10—H10B | 109.7 (12) |
C3—C2—H2 | 122.3 (7) | C9—C10—H10C | 110.6 (9) |
C1—C2—H2 | 117.2 (7) | H10A—C10—H10C | 109.0 (12) |
C2—C3—C4 | 119.51 (8) | H10B—C10—H10C | 104.7 (12) |
C2—C3—H3 | 121.2 (7) | C12—C11—C16 | 118.94 (8) |
C4—C3—H3 | 119.3 (7) | C12—C11—C8 | 122.45 (8) |
C5—C4—C3 | 121.16 (8) | C16—C11—C8 | 118.36 (8) |
C5—C4—H4 | 119.7 (8) | C13—C12—C11 | 120.11 (9) |
C3—C4—H4 | 119.2 (8) | C13—C12—H12 | 119.7 (7) |
C4—C5—C6 | 119.67 (9) | C11—C12—H12 | 120.1 (7) |
C4—C5—H5 | 120.2 (7) | C14—C13—C12 | 120.51 (9) |
C6—C5—H5 | 120.0 (7) | C14—C13—H13 | 118.7 (8) |
N1—C6—C5 | 122.78 (8) | C12—C13—H13 | 120.8 (8) |
N1—C6—C1 | 117.87 (7) | C13—C14—C15 | 119.73 (9) |
C5—C6—C1 | 119.34 (7) | C13—C14—H14 | 119.0 (8) |
O1—C7—N1 | 121.54 (8) | C15—C14—H14 | 121.2 (8) |
O1—C7—C8 | 123.36 (7) | C14—C15—C16 | 120.02 (9) |
N1—C7—C8 | 115.10 (7) | C14—C15—H15 | 120.3 (8) |
N2—C8—C11 | 117.24 (7) | C16—C15—H15 | 119.7 (8) |
N2—C8—C7 | 122.87 (7) | C15—C16—C11 | 120.64 (9) |
C11—C8—C7 | 119.89 (7) | C15—C16—H16 | 120.3 (8) |
N1—C9—C10 | 111.67 (7) | C11—C16—H16 | 119.0 (8) |
C8—N2—C1—C2 | −177.53 (8) | C1—N2—C8—C11 | 172.67 (7) |
C8—N2—C1—C6 | −2.33 (12) | C1—N2—C8—C7 | −6.49 (12) |
N2—C1—C2—C3 | 173.30 (8) | O1—C7—C8—N2 | −168.24 (9) |
C6—C1—C2—C3 | −2.01 (13) | N1—C7—C8—N2 | 11.27 (12) |
C1—C2—C3—C4 | 0.51 (14) | O1—C7—C8—C11 | 12.63 (13) |
C2—C3—C4—C5 | 1.36 (14) | N1—C7—C8—C11 | −167.87 (7) |
C3—C4—C5—C6 | −1.71 (14) | C7—N1—C9—C10 | 98.17 (9) |
C7—N1—C6—C5 | 178.92 (8) | C6—N1—C9—C10 | −78.78 (10) |
C9—N1—C6—C5 | −4.29 (13) | N2—C8—C11—C12 | −148.33 (9) |
C7—N1—C6—C1 | −0.46 (12) | C7—C8—C11—C12 | 30.85 (12) |
C9—N1—C6—C1 | 176.34 (7) | N2—C8—C11—C16 | 25.81 (12) |
C4—C5—C6—N1 | −179.18 (8) | C7—C8—C11—C16 | −155.00 (8) |
C4—C5—C6—C1 | 0.19 (13) | C16—C11—C12—C13 | −2.08 (14) |
N2—C1—C6—N1 | 5.90 (12) | C8—C11—C12—C13 | 172.04 (8) |
C2—C1—C6—N1 | −178.96 (8) | C11—C12—C13—C14 | 0.30 (14) |
N2—C1—C6—C5 | −173.50 (8) | C12—C13—C14—C15 | 1.64 (15) |
C2—C1—C6—C5 | 1.64 (12) | C13—C14—C15—C16 | −1.78 (15) |
C6—N1—C7—O1 | 172.14 (8) | C14—C15—C16—C11 | −0.03 (15) |
C9—N1—C7—O1 | −4.76 (13) | C12—C11—C16—C15 | 1.95 (14) |
C6—N1—C7—C8 | −7.37 (12) | C8—C11—C16—C15 | −172.41 (9) |
C9—N1—C7—C8 | 175.73 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O1i | 0.975 (13) | 2.396 (13) | 3.3340 (11) | 161.3 (10) |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
X-ray | B3LYP/6–311G(d,p) | |
C1—C6 | 1.4071 (12) | 1.4149 |
N2—C1 | 1.3846 (11) | 1.3724 |
N2—C8 | 1.2983 (11) | 1.299 |
C8—C11 | 1.4864 (11) | 1.486 |
C7—C8 | 1.4872 (11) | 1.4949 |
O1—C7 | 1.2299 (10) | 1.2235 |
N1—C7 | 1.3791 (10) | 1.3974 |
N1—C9 | 1.4732 (11) | 1.4745 |
C9—C10 | 1.5156 (14) | 1.5289 |
N1—C6 | 1.3936 (10) | 1.3893 |
C6—N1—C9 | 120.63 (7) | 121.2759 |
C7—N1—C6 | 122.16 (7) | 122.6246 |
C7—N1—C9 | 117.14 (7) | 116.0858 |
C8—N2—C1 | 119.29 (7) | 120.9715 |
O1—C7—N1 | 121.54 (8) | 120.1959 |
O1—C7—C8 | 123.36 (7) | 124.593 |
N1—C9—C10 | 111.67 (7) | 112.8427 |
N1—C6—C5 | 122.78 (8) | 123.4659 |
N2—C8—C11 | 117.24 (7) | 117.5205 |
Molecular property | Compound (I) |
Total energy TE (eV) | -21853.0851 |
EHOMO (eV) | -6.1381 |
ELUMO (eV) | -2.2463 |
Gap, ΔE (eV) | 3.8918 |
Dipole moment, µ (Debye) | 3.0212 |
Ionization potential, I (eV) | 6.1381 |
Electron affinity, A | 2.2463 |
Electronegativity, χ | 4.1922 |
Hardness, η | 1.9459 |
Electrophilicity, index ω | 4.5158 |
Softness, σ | 0.5139 |
Fraction of electrons transferred, ΔN | 0.7215 |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610. Google Scholar
Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Moftah, H., Elmgirhi, S. A., Habib, M., Guerfel, T. T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, e4055. Web of Science CSD CrossRef Google Scholar
Abad, N., Ramli, Y., Hökelek, T., Sebbar, N. K., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1815–1820. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 111092. Web of Science CSD CrossRef PubMed Google Scholar
Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221. Web of Science CSD CrossRef CAS Google Scholar
Daouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662. CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Holschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421–437. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005a). Zh. Org. Khim. 41, 609–616. Google Scholar
Mamedov, V. A., Kalinin, A. A., Yanilkin, V. V., Gubaidullin, A. T., Latypov, Sh. K., Balandina, A. A., Isaikina, O. G., Toropchina, A. V., Nastapova, N. V., Iglamova, N. A. & Litvinov, I. A. (2005b). Izv. Akad. Nauk, Ser. Khim. 11, 2534–2542. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202–208. Web of Science CrossRef PubMed CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.