research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of 1-ethyl-3-phenyl-1,2-di­hydro­quinoxalin-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University, Rabat, Morocco, bDepartment of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: ashraf.yemen7@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 3 November 2020; accepted 2 December 2020; online 1 January 2021)

In the title mol­ecule, C16H14N2O, the di­hydro­quinoxaline moiety is not planar as there is a dihedral angle of 4.51 (5)° between the constituent rings. In the crystal, C—H⋯O hydrogen bonds form helical chains about the crystallographic 21 screw axis in the b-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (51.7%), H⋯C/C⋯H (26%) and H⋯O/O⋯H (8.5%) inter­actions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 3.8918 eV.

1. Chemical context

Nitro­gen-based structures have attracted attention in recent years because of their inter­esting properties in structural and inorganic chemistry (Chkirate et al., 2019[Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21-28.]; 2020a[Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 111092.],b[Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210-2221.]). The family of nitro­genous drugs, particularly those containing the quinoxaline moiety, is important in medicinal chemistry because of their wide range of pharmacological activities, which include anti­cancer, anti-inflammatory, anti­bacterial, anti­tuberculosis, anti-glycation, anti-analgesic and anti­fungal properties, and for their anti­oxidant potential. In particular, quinoxalin-2-one derivatives are active anti-tumor agents with tyrosine kinase receptor inhibition properties (Galal et al., 2014[Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122-132.]). They can also selectively antagonize the glycoprotein in cancer cells (Sun et al., 2009[Sun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202-208.]). Quinoxalin-2-one derivatives are also potential antagonist ligands for imaging the A2A adenosine receptor by positron emission tomography (PET) (Holschbach et al., 2005[Holschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421-437.]). Given the wide range of therapeutic applications for such compounds, we have already reported a route for the preparation of quinoxalin-2-one derivatives using N-alkyl­ation reactions carried out with di-halogenated carbon chains (Benzeid et al., 2011[Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.]); a similar approach yielded the title compound, C16H14N2O, (I). In addition to the synthesis, we also report the mol­ecular and crystal structure along with a Hirshfeld surface analysis and a density functional theory (DFT) computational study carried out at the B3LYP/6–311 G(d,p) level.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is depicted in Fig. 1[link]. The di­hydro­quinoxaline moiety is not planar, as indicated by the dihedral angle of 4.51 (5)° between the constituent rings. Alternatively, the maximum deviations from the mean plane (r.m.s. deviation = 0.060 Å) of the ten-membered, fused ring system are 0.096 (1) Å (C8) and −0.057 (1) Å (C7). The mean planes of the C11–C16 and C1/C6/N1/C7/C8/N2 rings are inclined to one another by 30.87 (4)°. The C6—N1—C9—C10 torsion angle is −78.78 (10)°, indicating the ethyl substituent is rotated well out of the plane of the di­hydro­quinoxaline moiety (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, helical chains about the crystallographic 21 axes are formed by C9—H9B⋯O1 hydrogen bonds (Table 1[link], Figs. 2[link] and 3[link]). The chains pack via normal van der Waals contacts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.975 (13) 2.396 (13) 3.3340 (11) 161.3 (10)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing view along the a-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.
[Figure 3]
Figure 3
Packing view along the b-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.

4. Hirshfeld surface

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). A view of the three-dimensional Hirshfeld surface of (I)[link], plotted over dnorm is shown in Fig. 4[link]. The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) is shown in Fig. 5[link]a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C, C⋯N/N⋯C and C⋯O/O⋯C contacts are illustrated in Fig. 5[link]bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­actions are H⋯H, contributing 51.7% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.07 Å. For C—H inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (26% contribution to the HS), Fig. 5[link]c, have tips at de + di = 2.79 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H, Fig. 5[link]e (8.5%), have the tips at de + di = 2.26 Å. The C⋯C contacts, Fig. 5[link]f (6.1%), have the tips at de + di = 3.45 Å. The H⋯N/N⋯H contacts, Fig. 5[link]d, contribute 6% to the HS and appear as a pair of scattered points of spikes with the tips at de + di = 2.67 Å. The C⋯N/N⋯C contacts, Fig. 5[link]g, contribute 1.5% to the HS, appearing as pair of scattered points of spikes with the tips at de + di = 3.30 Å. Finally, the C⋯O/O⋯C contacts, Fig. 5[link]h, make only a 0.2% contribution to the HS and have a low-density distribution of points.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) C⋯N/N⋯C and (h) C⋯O/O⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from points on the Hirshfeld surface.

5. DFT calculations

The optimized structure of (I)[link] in the gas phase was calculated by density functional theory (DFT) using a standard B3LYP functional and the 6–311 G(d,p) basis-set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results related to bond lengths and angles are in good agreement (Table 2[link]). Calculated numerical values for (I)[link] including electronegativity (χ), hardness (η), ionization potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ) are collated in Table 3[link]. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane extending over the whole 1-ethyl-3-phenyl-1,2-di­hydro­quinoxalin-2-one system. The energy band gap [ΔE = ELUMO - EHOMO] of the mol­ecule is 3.8918 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −6.1381 and −2.2463 eV, respectively.

Table 2
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °)

  X-ray B3LYP/6–311G(d,p)
C1—C6 1.4071 (12) 1.4149
N2—C1 1.3846 (11) 1.3724
N2—C8 1.2983 (11) 1.299
C8—C11 1.4864 (11) 1.486
C7—C8 1.4872 (11) 1.4949
O1—C7 1.2299 (10) 1.2235
N1—C7 1.3791 (10) 1.3974
N1—C9 1.4732 (11) 1.4745
C9—C10 1.5156 (14) 1.5289
N1—C6 1.3936 (10) 1.3893
C6—N1—C9 120.63 (7) 121.2759
C7—N1—C6 122.16 (7) 122.6246
C7—N1—C9 117.14 (7) 116.0858
C8—N2—C1 119.29 (7) 120.9715
O1—C7—N1 121.54 (8) 120.1959
O1—C7—C8 123.36 (7) 124.593
N1—C9—C10 111.67 (7) 112.8427
N1—C6—C5 122.78 (8) 123.4659
N2—C8—C11 117.24 (7) 117.5205

Table 3
Calculated energies

Mol­ecular property Compound (I)
Total energy TE (eV) −21853.0851
EHOMO (eV) −6.1381
ELUMO (eV) −2.2463
Gap, ΔE (eV) 3.8918
Dipole moment, μ (Debye) 3.0212
Ionization potential, I (eV) 6.1381
Electron affinity, A 2.2463
Electronegativity, χ 4.1922
Hardness, η 1.9459
Electrophilicity, index ω 4.5158
Softness, σ 0.5139
Fraction of electrons transferred, ΔN 0.7215
[Figure 6]
Figure 6
The energy band gap of (I)[link].

6. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, updated March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the quinoxaline-2-one fragment yielded multiple matches. Of these, two had a phenyl at position 3 and are thus most comparable to (I)[link]. The first [(II), refcode NIBXEE; Abad et al., 2018a[Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.])] has (oxiran-2-yl) methyl on nitro­gen 1, and the second [(III), IDOSUR; Daouda et al., 2013[Daouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662.])] has a 3-ethyl­oxazolidin-2-one on nitro­gen 1 (Fig. 7[link]). Other structures having the quinoxaline-2-one moiety were observed by changing the substituents of positions 1 and 3 in the examples NAYTAJ (1-ethyl; Mamedov et al., 2005a[Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005a). Zh. Org. Khim. 41, 609-616.]), DUSHUV01 (1-benzyl-3-methyl; Ramli et al., 2018[Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]), DUMRUB {1-([1-(3-azido-2-hy­droxy­prop­yl)-1H-1,2,3-triazol-4-yl]meth­yl)-3-meth­yl; Abad et al., 2020[Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Moftah, H., Elmgirhi, S. A., Habib, M., Guerfel, T. T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, e4055.]}, HIRZOA {1- [(1-butyl-1H-1,2,3-triazol-4-yl)meth­yl]-3-methyl; Abad et al., 2018b[Abad, N., Ramli, Y., Hökelek, T., Sebbar, N. K., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1815-1820.]} and SENYUG [3- (indolizin-2-yl)-1-ethyl; Mamedov et al., 2005b[Mamedov, V. A., Kalinin, A. A., Yanilkin, V. V., Gubaidullin, A. T., Latypov, Sh. K., Balandina, A. A., Isaikina, O. G., Toropchina, A. V., Nastapova, N. V., Iglamova, N. A. & Litvinov, I. A. (2005b). Izv. Akad. Nauk, Ser. Khim. 11, 2534-2542.]]. The dihedral angle between the di­hydro­quinoxaline ring system and the phenyl ring is 28.4 (2)° in NIBXEE and the N—C—C— O torsion angle is 87.8 (5)°; the mean plane through the fused-ring system forms a dihedral angle of 30.72 (5)° with the attached phenyl ring. The mol­ecular conformation is enforced by C—H⋯O hydrogen bonds in IDOSUR. In (I)[link], the di­hydro­quinoxaline moiety is not planar, as indicated by the dihedral angle of 4.51 (5)° between the constituent rings. The phenyl ring is tilted towards the pyrazine ring by 30.87 (4)°, which is approximately the same as in IDOSUR but more tilted than in NIBXEE.

[Figure 7]
Figure 7
Structures similar to (I)[link]: (II) (CSD refcode NIBXEE) and (III) (CSD refcode IDOSUR) obtained in the database search. The search fragment is indicated in blue.

7. Synthesis and crystallization

To a solution of 3-phenyl­quinoxalin-2(1H)-one (0.7 g, 0.0032 mol) in N,N-di­methyl­formamide (20 ml) were added bromo­ethane (0.48 ml), potassium carbonate K2CO3 (0.5g, 0.004 mol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was separated by chromatography on a silica gel column using a hexa­ne/ethyl acetate 9:1 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colourless plates of the title compound (yield: 85%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C16H14N2O
Mr 250.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 9.2572 (9), 9.0531 (9), 15.0557 (14)
β (°) 99.329 (1)
V3) 1245.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.47 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.96, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 23365, 3364, 2925
Rint 0.025
(sin θ/λ)max−1) 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.130, 1.09
No. of reflections 3364
No. of parameters 228
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.41, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Ethyl-3-phenyl-1,2-dihydroquinoxalin-2-one top
Crystal data top
C16H14N2OF(000) = 528
Mr = 250.29Dx = 1.335 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2572 (9) ÅCell parameters from 9889 reflections
b = 9.0531 (9) Åθ = 2.4–29.2°
c = 15.0557 (14) ŵ = 0.09 mm1
β = 99.329 (1)°T = 150 K
V = 1245.1 (2) Å3Plate, colourless
Z = 40.50 × 0.47 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3364 independent reflections
Radiation source: fine-focus sealed tube2925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 29.3°, θmin = 2.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.96, Tmax = 0.99l = 2020
23365 measured reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.130All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0911P)2 + 0.1012P]
where P = (Fo2 + 2Fc2)/3
3364 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43347 (7)0.55741 (7)0.27640 (5)0.02811 (19)
N10.45495 (8)0.30830 (7)0.26163 (5)0.01831 (17)
N20.71192 (8)0.31976 (7)0.38726 (5)0.01948 (18)
C10.66994 (9)0.19050 (9)0.34103 (6)0.01852 (19)
C20.75776 (10)0.06426 (9)0.36083 (6)0.0229 (2)
H20.8512 (14)0.0771 (12)0.4013 (9)0.030 (3)*
C30.71308 (11)0.07042 (10)0.32364 (6)0.0254 (2)
H30.7731 (13)0.1609 (13)0.3384 (9)0.029 (3)*
C40.57963 (11)0.08094 (10)0.26512 (7)0.0262 (2)
H40.5463 (15)0.1782 (14)0.2407 (10)0.040 (4)*
C50.49306 (10)0.04224 (10)0.24245 (6)0.0237 (2)
H50.3962 (14)0.0325 (13)0.2015 (9)0.032 (3)*
C60.53750 (9)0.18006 (9)0.28052 (6)0.01830 (19)
C70.49871 (9)0.44227 (9)0.30059 (6)0.01918 (19)
C80.62953 (9)0.43608 (9)0.37231 (5)0.01762 (19)
C90.31974 (9)0.30696 (10)0.19483 (6)0.0233 (2)
H9A0.2631 (14)0.3931 (15)0.2067 (9)0.033 (3)*
H9B0.2651 (13)0.2186 (14)0.2059 (8)0.029 (3)*
C100.35231 (12)0.31217 (12)0.09942 (7)0.0316 (2)
H10A0.4106 (16)0.4010 (16)0.0903 (10)0.043 (4)*
H10B0.4032 (16)0.2247 (17)0.0845 (10)0.047 (4)*
H10C0.2620 (16)0.3135 (15)0.0563 (11)0.048 (4)*
C110.66935 (9)0.56627 (9)0.43138 (6)0.01939 (19)
C120.56472 (10)0.66442 (10)0.45417 (6)0.0239 (2)
H120.4642 (14)0.6541 (13)0.4277 (9)0.029 (3)*
C130.60553 (11)0.77375 (11)0.51836 (7)0.0288 (2)
H130.5343 (14)0.8431 (14)0.5340 (9)0.034 (3)*
C140.75007 (12)0.78690 (11)0.55996 (7)0.0311 (2)
H140.7760 (14)0.8637 (16)0.6076 (10)0.040 (3)*
C150.85551 (12)0.69263 (11)0.53570 (7)0.0313 (2)
H150.9599 (15)0.7034 (14)0.5636 (10)0.041 (4)*
C160.81542 (10)0.58303 (10)0.47181 (7)0.0258 (2)
H160.8876 (14)0.5150 (15)0.4564 (8)0.034 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (3)0.0206 (3)0.0317 (4)0.0062 (2)0.0059 (3)0.0015 (3)
N10.0178 (3)0.0182 (4)0.0182 (3)0.0006 (2)0.0006 (3)0.0008 (2)
N20.0208 (3)0.0179 (3)0.0192 (4)0.0000 (2)0.0017 (3)0.0004 (2)
C10.0208 (4)0.0172 (4)0.0180 (4)0.0004 (3)0.0042 (3)0.0004 (3)
C20.0256 (4)0.0208 (4)0.0223 (4)0.0040 (3)0.0043 (3)0.0021 (3)
C30.0346 (5)0.0181 (4)0.0254 (5)0.0048 (3)0.0103 (4)0.0023 (3)
C40.0361 (5)0.0177 (4)0.0264 (5)0.0035 (3)0.0097 (4)0.0020 (3)
C50.0279 (4)0.0204 (4)0.0226 (4)0.0041 (3)0.0039 (3)0.0012 (3)
C60.0215 (4)0.0169 (4)0.0172 (4)0.0006 (3)0.0051 (3)0.0008 (3)
C70.0192 (4)0.0178 (4)0.0200 (4)0.0001 (3)0.0015 (3)0.0010 (3)
C80.0182 (4)0.0172 (4)0.0170 (4)0.0010 (3)0.0014 (3)0.0000 (3)
C90.0190 (4)0.0247 (4)0.0244 (4)0.0025 (3)0.0021 (3)0.0022 (3)
C100.0377 (5)0.0328 (5)0.0216 (5)0.0009 (4)0.0036 (4)0.0013 (4)
C110.0234 (4)0.0164 (4)0.0178 (4)0.0024 (3)0.0018 (3)0.0005 (3)
C120.0258 (4)0.0226 (4)0.0242 (4)0.0026 (3)0.0066 (3)0.0014 (3)
C130.0387 (5)0.0233 (4)0.0271 (5)0.0036 (4)0.0137 (4)0.0047 (4)
C140.0465 (6)0.0249 (5)0.0217 (5)0.0114 (4)0.0054 (4)0.0050 (4)
C150.0337 (5)0.0284 (5)0.0284 (5)0.0075 (4)0.0052 (4)0.0023 (4)
C160.0251 (4)0.0227 (4)0.0272 (5)0.0014 (3)0.0023 (3)0.0015 (3)
Geometric parameters (Å, º) top
O1—C71.2299 (10)C9—C101.5156 (14)
N1—C71.3791 (10)C9—H9A0.972 (13)
N1—C61.3936 (10)C9—H9B0.975 (13)
N1—C91.4732 (11)C10—H10A0.990 (14)
N2—C81.2983 (11)C10—H10B0.966 (15)
N2—C11.3846 (11)C10—H10C0.972 (16)
C1—C21.4063 (11)C11—C121.3976 (12)
C1—C61.4071 (12)C11—C161.3983 (12)
C2—C31.3770 (13)C12—C131.3920 (13)
C2—H20.980 (13)C12—H120.955 (12)
C3—C41.3995 (14)C13—C141.3875 (15)
C3—H30.995 (12)C13—H130.967 (12)
C4—C51.3834 (13)C14—C151.3893 (16)
C4—H40.985 (14)C14—H141.000 (15)
C5—C61.4065 (11)C15—C161.3899 (13)
C5—H51.006 (12)C15—H150.994 (14)
C7—C81.4872 (11)C16—H160.964 (13)
C8—C111.4864 (11)
C7—N1—C6122.16 (7)N1—C9—H9A107.0 (8)
C7—N1—C9117.14 (7)C10—C9—H9A110.2 (8)
C6—N1—C9120.63 (7)N1—C9—H9B107.3 (7)
C8—N2—C1119.29 (7)C10—C9—H9B112.1 (7)
N2—C1—C2118.35 (8)H9A—C9—H9B108.4 (11)
N2—C1—C6121.76 (7)C9—C10—H10A110.7 (9)
C2—C1—C6119.72 (8)C9—C10—H10B112.0 (9)
C3—C2—C1120.54 (9)H10A—C10—H10B109.7 (12)
C3—C2—H2122.3 (7)C9—C10—H10C110.6 (9)
C1—C2—H2117.2 (7)H10A—C10—H10C109.0 (12)
C2—C3—C4119.51 (8)H10B—C10—H10C104.7 (12)
C2—C3—H3121.2 (7)C12—C11—C16118.94 (8)
C4—C3—H3119.3 (7)C12—C11—C8122.45 (8)
C5—C4—C3121.16 (8)C16—C11—C8118.36 (8)
C5—C4—H4119.7 (8)C13—C12—C11120.11 (9)
C3—C4—H4119.2 (8)C13—C12—H12119.7 (7)
C4—C5—C6119.67 (9)C11—C12—H12120.1 (7)
C4—C5—H5120.2 (7)C14—C13—C12120.51 (9)
C6—C5—H5120.0 (7)C14—C13—H13118.7 (8)
N1—C6—C5122.78 (8)C12—C13—H13120.8 (8)
N1—C6—C1117.87 (7)C13—C14—C15119.73 (9)
C5—C6—C1119.34 (7)C13—C14—H14119.0 (8)
O1—C7—N1121.54 (8)C15—C14—H14121.2 (8)
O1—C7—C8123.36 (7)C14—C15—C16120.02 (9)
N1—C7—C8115.10 (7)C14—C15—H15120.3 (8)
N2—C8—C11117.24 (7)C16—C15—H15119.7 (8)
N2—C8—C7122.87 (7)C15—C16—C11120.64 (9)
C11—C8—C7119.89 (7)C15—C16—H16120.3 (8)
N1—C9—C10111.67 (7)C11—C16—H16119.0 (8)
C8—N2—C1—C2177.53 (8)C1—N2—C8—C11172.67 (7)
C8—N2—C1—C62.33 (12)C1—N2—C8—C76.49 (12)
N2—C1—C2—C3173.30 (8)O1—C7—C8—N2168.24 (9)
C6—C1—C2—C32.01 (13)N1—C7—C8—N211.27 (12)
C1—C2—C3—C40.51 (14)O1—C7—C8—C1112.63 (13)
C2—C3—C4—C51.36 (14)N1—C7—C8—C11167.87 (7)
C3—C4—C5—C61.71 (14)C7—N1—C9—C1098.17 (9)
C7—N1—C6—C5178.92 (8)C6—N1—C9—C1078.78 (10)
C9—N1—C6—C54.29 (13)N2—C8—C11—C12148.33 (9)
C7—N1—C6—C10.46 (12)C7—C8—C11—C1230.85 (12)
C9—N1—C6—C1176.34 (7)N2—C8—C11—C1625.81 (12)
C4—C5—C6—N1179.18 (8)C7—C8—C11—C16155.00 (8)
C4—C5—C6—C10.19 (13)C16—C11—C12—C132.08 (14)
N2—C1—C6—N15.90 (12)C8—C11—C12—C13172.04 (8)
C2—C1—C6—N1178.96 (8)C11—C12—C13—C140.30 (14)
N2—C1—C6—C5173.50 (8)C12—C13—C14—C151.64 (15)
C2—C1—C6—C51.64 (12)C13—C14—C15—C161.78 (15)
C6—N1—C7—O1172.14 (8)C14—C15—C16—C110.03 (15)
C9—N1—C7—O14.76 (13)C12—C11—C16—C151.95 (14)
C6—N1—C7—C87.37 (12)C8—C11—C16—C15172.41 (9)
C9—N1—C7—C8175.73 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.975 (13)2.396 (13)3.3340 (11)161.3 (10)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Comparison of selected (X-ray and DFT) bond lengths and angles (Å, °) top
X-rayB3LYP/6–311G(d,p)
C1—C61.4071 (12)1.4149
N2—C11.3846 (11)1.3724
N2—C81.2983 (11)1.299
C8—C111.4864 (11)1.486
C7—C81.4872 (11)1.4949
O1—C71.2299 (10)1.2235
N1—C71.3791 (10)1.3974
N1—C91.4732 (11)1.4745
C9—C101.5156 (14)1.5289
N1—C61.3936 (10)1.3893
C6—N1—C9120.63 (7)121.2759
C7—N1—C6122.16 (7)122.6246
C7—N1—C9117.14 (7)116.0858
C8—N2—C1119.29 (7)120.9715
O1—C7—N1121.54 (8)120.1959
O1—C7—C8123.36 (7)124.593
N1—C9—C10111.67 (7)112.8427
N1—C6—C5122.78 (8)123.4659
N2—C8—C11117.24 (7)117.5205
Calculated energies top
Molecular propertyCompound (I)
Total energy TE (eV)-21853.0851
EHOMO (eV)-6.1381
ELUMO (eV)-2.2463
Gap, ΔE (eV)3.8918
Dipole moment, µ (Debye)3.0212
Ionization potential, I (eV)6.1381
Electron affinity, A2.2463
Electronegativity, χ4.1922
Hardness, η1.9459
Electrophilicity, index ω4.5158
Softness, σ0.5139
Fraction of electrons transferred, ΔN0.7215
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.  Google Scholar
First citationAbad, N., Hajji, M., Ramli, Y., Belkhiria, M., Moftah, H., Elmgirhi, S. A., Habib, M., Guerfel, T. T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, e4055.  Web of Science CSD CrossRef Google Scholar
First citationAbad, N., Ramli, Y., Hökelek, T., Sebbar, N. K., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1815–1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBenzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 111092.  Web of Science CSD CrossRef PubMed Google Scholar
First citationChkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019). J. Inorg. Biochem. 191, 21–28.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaouda, B., Doumbia, M. L., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o662.  CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGalal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Soliman, S. M., Mortier, J., Wolber, G. & El Diwani, H. I. (2014). Eur. J. Med. Chem. 86, 122–132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHolschbach, M. H., Bier, D., Wutz, W., Sihver, W., Schüller, M. & Olsson, R. A. (2005). Eur. J. Med. Chem. 40, 421–437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Isaikina, O. G. & Litvinov, I. A. (2005a). Zh. Org. Khim. 41, 609–616.  Google Scholar
First citationMamedov, V. A., Kalinin, A. A., Yanilkin, V. V., Gubaidullin, A. T., Latypov, Sh. K., Balandina, A. A., Isaikina, O. G., Toropchina, A. V., Nastapova, N. V., Iglamova, N. A. & Litvinov, I. A. (2005b). Izv. Akad. Nauk, Ser. Khim. 11, 2534–2542.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, L.-R., Li, X., Cheng, Y.-N., Yuan, H.-Y., Chen, M.-H., Tang, W., Ward, S. G. & Qu, X.-J. (2009). Biomed. Pharmacother. 63, 202–208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western AustraliaGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds