research communications
of 2-hydroxy-2-phenylacetophenone oxime
aDepartment of Metallurgical and Materials Engineering, Faculty of Technology, Selçuk University, 42130 Selçuklu, Konya, Turkey
*Correspondence e-mail: akduran@gmail.com
The title compound [systematic name: 2-(N-hydroxyimino)-1,2-diphenylethanol], C14H13NO2, consists of hydroxy phenylacetophenone and oxime units, in which the phenyl rings are oriented at a dihedral angle of 80.54 (7)°. In the crystal, intermolecular O—HOxm⋯NOxm, O—HHydr⋯OHydr, O—H′Hydr⋯OHydr and O—HOxm⋯OHydr hydrogen bonds link the molecules into infinite chains along the c-axis direction. π–π contacts between inversion-related of the phenyl ring adjacent to the oxime group have a centroid–centroid separation of 3.904 (3) Å and a weak C—H⋯π(ring) interaction is also observed. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (58.4%) and H⋯C/C⋯H (26.4%) contacts. Hydrogen bonding and van der Waals contacts are the dominant interactions in the crystal packing.
Keywords: crystal structure; hydrogen bond; phenylacetophenone; oxime.
CCDC reference: 2049764
1. Chemical context
Intermolecular hydrogen bonding has received considerable attention among the directional non-covalent intermolecular interactions (Etter et al., 1990). Hydrogen bonds combine moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures. The oxime (–C=N—OH) moiety, which is similar to carboxylic acid in that it contains one hydrogen-bond donor and two acceptor atoms, is a that has not been extensively explored in crystal engineering. Structurally characterized oxime moieties are much less common than carboxylic acids and but from a supramolecular perspective, this functionality does have some unique and desirable features (Aakeröy et al., 2001). Oxime groups possess stronger hydrogen-bonding capabilities than and carboxylic acids (Marsman et al., 1999). The hydrogen-bond systems in the crystals of have been analysed and a correlation between patterns of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982). Oxime and dioxime derivatives are very important in the chemical industry, photography, agriculture, textiles, technological improvement, dye chemistry, semiconductor manufacturing and medicine (Sevagapandian et al., 2000; Schrauzer et al., 1965; Thomas & Underhill, 1972; Underhill et al., 1973; Chakravorty, 1974; Kurita, 1998; Mathur & Narang, 1990; Ravi Kumar, 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984). Some oxime complexes also have anticarcinogenic activities (Sevagapandian et al., 2000; Srivastava et al., 1997). The crystallization and the molecular and crystal structures of the title compound, (I), are reported herein. Its magnetic properties have previously been studied by (EPR) (Sayin et al., 2012).
2. Structural commentary
As shown in Fig. 1, the title compound, (I), consists of hydroxy phenylacetophenone and oxime units, where the phenyl, A (C1–C6) and B (C9–C14), rings are oriented at a dihedral angle of 80.54 (7)°. The dihedral angle between the oxime plane C (O1/N1/C7) and phenyl rings A and B are 39.48 (9) and 80.11 (14)°, respectively. The base of the oxime moiety is approximately coplanar with the A phenyl ring plane, as indicated by the O1—N1—C7—C1 torsion angle of 1.0 (3)°. In the oxime moiety, the O1—N1 [1.4026 (18) Å] bond length and the O1—N1—C7 [115.36 (14)°] bond angle may be compared with the corresponding values of O1—N2 [1.423 (3) Å], O2—N3 [1.396 (3) Å], O2—N3—C10 [111.5 (2)°] and O1—N2—C9 [109.4 (2)°] in the glyoxime moiety reported in 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime [(II); (Hökelek et al., 2001)], reflecting the types and electron-withdrawing or donating properties of the substituents bonded to the carbon atoms of the glyoxime moiety.
3. Supramolecular features
In the crystal, intermolecular O—HOxm⋯OHydr, O—HOxm⋯NOxm, O—HHydr⋯OHydr and O—H′Hydr⋯OHydr hydrogen bonds (Table 1, Fig. 2) [Oxm = oxime and Hydr = hydroxy] form R12(5) and R22(6) ring motifs (Etter et al., 1990) between inversion-related molecules, which link to form extended chains along the c-axis direction (Figs. 2 and 3). π–π contacts between inversion-related phenyl rings [Cg1⋯Cg1i = 3.904 (1) Å; symmetry code: (i) − x, − y, 1 − z), where Cg1 is the centroid of ring A (C1–C6)] and a weak C—H⋯π(ring) interaction (Table 1) are also observed. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (58.4%) and H⋯C/C⋯H (26.4%) interactions, but a full Hirshfeld surface analysis is complicated by the disorder. Hydrogen bonding and van der Waals interactions comprise the dominant contacts in the crystal packing (Table 2).
|
4. Synthesis and crystallization
The alpha-benzoinoxime [ABO (C14H13NO2) powder was purchased from Merck, and crystallized by slow evaporation from a concentrated solution in ethanol as colourless crystals at room temperature.
5. Refinement
Experimental details including the crystal data, data collection and . The hydroxy H atoms were located in a difference-Fourier map and refined isotropically. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydrogen attached to O2 is disordered over two sites (H2 and H2′) in a 0.5:0.5 ratio and was refined with restraints.
are summarized in Table 3
|
Supporting information
CCDC reference: 2049764
https://doi.org/10.1107/S2056989020016163/pk2654sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020016163/pk2654Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020016163/pk2654Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).C14H13NO2 | F(000) = 960 |
Mr = 227.25 | Dx = 1.294 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.3559 (2) Å | Cell parameters from 2607 reflections |
b = 10.7032 (2) Å | θ = 3.1–21.7° |
c = 8.9667 (2) Å | µ = 0.09 mm−1 |
β = 93.220 (2)° | T = 296 K |
V = 2333.80 (7) Å3 | Block, colourless |
Z = 8 | 0.15 × 0.11 × 0.10 mm |
Bruker APEXII QUAZAR three-circle diffractometer | Rint = 0.048 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 27.5°, θmin = 1.7° |
φ and ω scans | h = −31→31 |
15784 measured reflections | k = −13→13 |
2673 independent reflections | l = −11→11 |
1781 reflections with I > 2σ(I) |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.124 | w = 1/[σ2(Fo2) + (0.0438P)2 + 1.7468P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2673 reflections | Δρmax = 0.17 e Å−3 |
158 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.06576 (6) | 0.67667 (13) | 0.19541 (13) | 0.0449 (3) | |
H1 | 0.0363 (8) | 0.676 (2) | 0.1336 (17) | 0.067* | |
O2 | 0.01347 (5) | 0.60393 (13) | 0.59737 (16) | 0.0451 (4) | |
H2 | 0.0037 (6) | 0.602 (4) | 0.684 (4) | 0.068* | 0.5 |
H2' | 0.0059 (5) | 0.544 (4) | 0.542 (5) | 0.068* | 0.5 |
N1 | 0.04995 (6) | 0.66307 (14) | 0.34255 (15) | 0.0373 (4) | |
C1 | 0.14866 (7) | 0.63331 (17) | 0.41569 (19) | 0.0362 (4) | |
C2 | 0.17398 (8) | 0.71174 (19) | 0.3165 (2) | 0.0463 (5) | |
H2A | 0.153310 | 0.771694 | 0.263426 | 0.056* | |
C3 | 0.22965 (8) | 0.7011 (2) | 0.2964 (2) | 0.0582 (6) | |
H3 | 0.246113 | 0.754405 | 0.230145 | 0.070* | |
C4 | 0.26080 (9) | 0.6132 (3) | 0.3727 (3) | 0.0644 (7) | |
H4 | 0.298150 | 0.605990 | 0.357871 | 0.077* | |
C5 | 0.23633 (9) | 0.5359 (2) | 0.4713 (3) | 0.0627 (6) | |
H5 | 0.257333 | 0.475965 | 0.523500 | 0.075* | |
C6 | 0.18100 (8) | 0.5459 (2) | 0.4939 (2) | 0.0483 (5) | |
H6 | 0.165180 | 0.493550 | 0.562321 | 0.058* | |
C7 | 0.08910 (7) | 0.64245 (15) | 0.44001 (19) | 0.0330 (4) | |
C8 | 0.07095 (7) | 0.62830 (17) | 0.59889 (19) | 0.0359 (4) | |
H8 | 0.090620 | 0.557401 | 0.645918 | 0.043* | |
C9 | 0.08441 (7) | 0.74454 (18) | 0.68979 (19) | 0.0390 (4) | |
C10 | 0.06246 (10) | 0.8580 (2) | 0.6490 (3) | 0.0572 (6) | |
H10 | 0.038643 | 0.864319 | 0.564624 | 0.069* | |
C11 | 0.07566 (12) | 0.9636 (2) | 0.7335 (3) | 0.0782 (8) | |
H11 | 0.060924 | 1.040773 | 0.705199 | 0.094* | |
C12 | 0.11041 (13) | 0.9541 (3) | 0.8583 (3) | 0.0877 (10) | |
H12 | 0.119636 | 1.025026 | 0.914105 | 0.105* | |
C13 | 0.13143 (13) | 0.8414 (3) | 0.9010 (3) | 0.0878 (10) | |
H13 | 0.154334 | 0.834930 | 0.987246 | 0.105* | |
C14 | 0.11882 (10) | 0.7366 (2) | 0.8165 (2) | 0.0632 (6) | |
H14 | 0.133716 | 0.659731 | 0.845480 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0426 (7) | 0.0630 (9) | 0.0294 (6) | −0.0031 (7) | 0.0029 (5) | 0.0015 (6) |
O2 | 0.0370 (7) | 0.0526 (8) | 0.0470 (8) | −0.0134 (6) | 0.0130 (6) | −0.0077 (6) |
N1 | 0.0383 (8) | 0.0432 (9) | 0.0308 (7) | −0.0034 (7) | 0.0054 (6) | −0.0022 (6) |
C1 | 0.0342 (9) | 0.0406 (10) | 0.0338 (9) | −0.0037 (8) | 0.0034 (7) | −0.0074 (7) |
C2 | 0.0434 (11) | 0.0530 (12) | 0.0429 (11) | −0.0069 (9) | 0.0069 (8) | −0.0014 (9) |
C3 | 0.0432 (12) | 0.0805 (16) | 0.0521 (12) | −0.0137 (11) | 0.0145 (10) | −0.0048 (11) |
C4 | 0.0346 (11) | 0.0986 (19) | 0.0609 (14) | 0.0020 (12) | 0.0093 (10) | −0.0156 (13) |
C5 | 0.0434 (13) | 0.0808 (17) | 0.0636 (14) | 0.0150 (11) | −0.0004 (11) | −0.0021 (12) |
C6 | 0.0399 (11) | 0.0557 (12) | 0.0495 (11) | 0.0024 (9) | 0.0044 (9) | 0.0001 (9) |
C7 | 0.0340 (9) | 0.0317 (9) | 0.0335 (9) | −0.0053 (7) | 0.0037 (7) | −0.0035 (7) |
C8 | 0.0305 (9) | 0.0408 (10) | 0.0367 (9) | −0.0052 (7) | 0.0049 (7) | 0.0021 (8) |
C9 | 0.0397 (10) | 0.0472 (11) | 0.0309 (9) | −0.0124 (8) | 0.0087 (7) | −0.0013 (8) |
C10 | 0.0651 (14) | 0.0509 (13) | 0.0559 (13) | −0.0012 (11) | 0.0056 (11) | −0.0080 (10) |
C11 | 0.093 (2) | 0.0522 (15) | 0.092 (2) | −0.0077 (13) | 0.0314 (17) | −0.0185 (14) |
C12 | 0.114 (2) | 0.093 (2) | 0.0601 (16) | −0.0545 (19) | 0.0367 (16) | −0.0357 (16) |
C13 | 0.108 (2) | 0.112 (3) | 0.0429 (14) | −0.059 (2) | −0.0020 (14) | −0.0092 (15) |
C14 | 0.0712 (15) | 0.0747 (16) | 0.0428 (11) | −0.0246 (13) | −0.0062 (10) | 0.0051 (11) |
O1—N1 | 1.4026 (18) | C5—H5 | 0.9300 |
O1—H1 | 0.88 (2) | C6—H6 | 0.9300 |
O2—C8 | 1.424 (2) | C7—C8 | 1.523 (2) |
O2—H2 | 0.82 (4) | C8—C9 | 1.513 (2) |
O2—H2' | 0.83 (4) | C8—H8 | 0.9800 |
N1—C7 | 1.276 (2) | C9—C10 | 1.368 (3) |
C1—C6 | 1.388 (3) | C9—C14 | 1.376 (3) |
C1—C2 | 1.392 (3) | C10—C11 | 1.388 (3) |
C1—C7 | 1.482 (2) | C10—H10 | 0.9300 |
C2—C3 | 1.383 (3) | C11—C12 | 1.369 (4) |
C2—H2A | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.368 (3) | C12—C13 | 1.356 (4) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.372 (3) | C13—C14 | 1.379 (4) |
C4—H4 | 0.9300 | C13—H13 | 0.9300 |
C5—C6 | 1.378 (3) | C14—H14 | 0.9300 |
O1···C2 | 2.819 (3) | N1···H1i | 2.13 (2) |
O1···N1i | 2.823 (2) | H2'···N1iv | 2.83 (2) |
C8···O1ii | 3.381 (2) | H14···C6ii | 2.79 |
O2···O2iii | 2.850 (3) | C6···H8 | 2.66 |
O2···O2iv | 2.881 (3) | C7···H10 | 2.92 |
O2···N1 | 2.577 (2) | C8···H2iii | 2.76 (2) |
O1···H2A | 2.41 | C8···H6 | 2.75 |
H8···O1ii | 2.62 | C8···H2'iv | 2.87 (2) |
O2···H10 | 2.87 | C9···H2iii | 2.92 (2) |
O2···H1i | 2.465 (17) | H1···H2'i | 2.31 |
H2···O2iii | 2.03 (2) | H2'···H1ii | 2.59 (2) |
H2'···O2iv | 2.05 (3) | H2A···H13v | 2.57 |
N1···N1i | 2.867 (2) | H6···H8 | 2.12 |
N1···H2A | 2.90 | H8···H14 | 2.30 |
N1···H2' | 2.49 (2) | ||
N1—O1—H1 | 109.5 | O2—C8—C9 | 109.82 (14) |
C8—O2—H2 | 109.5 | O2—C8—C7 | 110.26 (14) |
C8—O2—H2' | 109.5 | C9—C8—C7 | 110.90 (14) |
C7—N1—O1 | 115.36 (14) | O2—C8—H8 | 108.6 |
C6—C1—C2 | 118.06 (17) | C9—C8—H8 | 108.6 |
C6—C1—C7 | 120.16 (16) | C7—C8—H8 | 108.6 |
C2—C1—C7 | 121.77 (17) | C10—C9—C14 | 119.1 (2) |
C3—C2—C1 | 120.5 (2) | C10—C9—C8 | 121.08 (17) |
C3—C2—H2A | 119.8 | C14—C9—C8 | 119.82 (19) |
C1—C2—H2A | 119.8 | C9—C10—C11 | 120.1 (2) |
C4—C3—C2 | 120.8 (2) | C9—C10—H10 | 119.9 |
C4—C3—H3 | 119.6 | C11—C10—H10 | 119.9 |
C2—C3—H3 | 119.6 | C12—C11—C10 | 119.9 (3) |
C3—C4—C5 | 119.3 (2) | C12—C11—H11 | 120.0 |
C3—C4—H4 | 120.4 | C10—C11—H11 | 120.0 |
C5—C4—H4 | 120.4 | C13—C12—C11 | 120.2 (2) |
C4—C5—C6 | 120.8 (2) | C13—C12—H12 | 119.9 |
C4—C5—H5 | 119.6 | C11—C12—H12 | 119.9 |
C6—C5—H5 | 119.6 | C12—C13—C14 | 119.9 (3) |
C5—C6—C1 | 120.7 (2) | C12—C13—H13 | 120.0 |
C5—C6—H6 | 119.7 | C14—C13—H13 | 120.0 |
C1—C6—H6 | 119.7 | C9—C14—C13 | 120.7 (3) |
N1—C7—C1 | 127.62 (15) | C9—C14—H14 | 119.7 |
N1—C7—C8 | 114.40 (15) | C13—C14—H14 | 119.7 |
C1—C7—C8 | 117.97 (15) | ||
C6—C1—C2—C3 | 0.6 (3) | C1—C7—C8—O2 | −163.47 (15) |
C7—C1—C2—C3 | 179.89 (18) | N1—C7—C8—C9 | −104.31 (17) |
C1—C2—C3—C4 | 0.3 (3) | C1—C7—C8—C9 | 74.7 (2) |
C2—C3—C4—C5 | −0.7 (3) | O2—C8—C9—C10 | −61.5 (2) |
C3—C4—C5—C6 | 0.0 (4) | C7—C8—C9—C10 | 60.6 (2) |
C4—C5—C6—C1 | 1.0 (3) | O2—C8—C9—C14 | 117.82 (19) |
C2—C1—C6—C5 | −1.3 (3) | C7—C8—C9—C14 | −120.07 (19) |
C7—C1—C6—C5 | 179.46 (18) | C14—C9—C10—C11 | 1.1 (3) |
O1—N1—C7—C1 | 1.0 (3) | C8—C9—C10—C11 | −179.54 (19) |
O1—N1—C7—C8 | 179.88 (13) | C9—C10—C11—C12 | −0.5 (4) |
C6—C1—C7—N1 | −141.68 (19) | C10—C11—C12—C13 | −0.9 (4) |
C2—C1—C7—N1 | 39.1 (3) | C11—C12—C13—C14 | 1.5 (4) |
C6—C1—C7—C8 | 39.5 (2) | C10—C9—C14—C13 | −0.5 (3) |
C2—C1—C7—C8 | −139.75 (17) | C8—C9—C14—C13 | −179.8 (2) |
N1—C7—C8—O2 | 17.5 (2) | C12—C13—C14—C9 | −0.9 (4) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) −x, y, −z+3/2; (iv) −x, −y+1, −z+1; (v) x, y, z−1. |
Cg2 is the centroid of the phenyl ring B (C9—C14). |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.88 (2) | 2.47 (2) | 3.2638 (19) | 151 (1.47) |
O1—H1···N1i | 0.88 (2) | 2.13 (2) | 2.8236 (19) | 135 (1.69) |
O2—H2···O2iii | 0.82 (4) | 2.03 (2) | 2.850 (3) | 175 (1.99) |
O2—H2′···O2iv | 0.83 (4) | 2.05 (3) | 2.881 (3) | 180 (2.38) |
C4—H4···Cg2vi | 0.93 | 2.91 | 3.792 (3) | 159 |
Symmetry codes: (i) −x, y, −z+1/2; (iii) −x, y, −z+3/2; (iv) −x, −y+1, −z+1; (vi) −x+1/2, −y+1/2, −z. |
Acknowledgements
NA is grateful to Professor Tuncer Hökelek from Hacettepe University, Turkey for helpful discussions and technical facilities provided, and Professor Ülkü Sayın from Selçuk University, Turkey for her constant assistance during the crystallization process.
References
Aakeröy, C. B., Beatty, A. M. & Leinen, D. S. (2001). Cryst. Growth Des. 1, 47–52. Web of Science CSD CrossRef Google Scholar
Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakravorty, A. (1974). Coord. Chem. Rev. 13, 1–46. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Forman, S. E. (1964). J. Org. Chem. 29, 3323–3327. CrossRef CAS Web of Science Google Scholar
Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249. Web of Science CSD CrossRef IUCr Journals Google Scholar
Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361–368. CrossRef CAS Web of Science Google Scholar
Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133. CSD CrossRef CAS Web of Science Google Scholar
Kurita, K. (1998). Polym. Degrad. Stabil. 59, 117–120. CrossRef CAS Google Scholar
Marsman, A. W., Leussink, E. D., Zwikker, J. W., Jenneskens, L. W., Smeets, W. J. J., Veldman, N. & Spek, A. L. (1999). Chem. Mater. 11, 1484–1491. CSD CrossRef CAS Google Scholar
Mathur, N. K. & Narang, C. K. (1990). J. Chem. Educ. 67, 938–942. CrossRef CAS Google Scholar
Ravi Kumar, M. N. V. (2000). React. Funct. Polym. 46, 1–27. CrossRef Google Scholar
Sayin, U., Dereli, Ö., Türkkan, E. & Ozmen, A. (2012). Radiat. Phys. Chem. 81, 146–151. CrossRef CAS Google Scholar
Schrauzer, G. N., Windgassen, R. J. & Kohnle, J. (1965). Chem. Ber. 98, 3324–3333. CrossRef Google Scholar
Sevagapandian, S., Rajagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388–393. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & F. de Morais, L. P. (1997). J. Mol. Struct. 406, 159–167. Google Scholar
Thomas, T. W. & Underhill, A. E. (1972). Chem. Soc. Rev. 1, 99–120. CrossRef CAS Google Scholar
Underhill, A. E., Watkins, D. M. & Pethig, R. (1973). Inorg. Nucl. Chem. Lett. 9, 1269–1273.62 CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.