research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-hy­dr­oxy-2-phenyl­aceto­phenone oxime

CROSSMARK_Color_square_no_text.svg

aDepartment of Metallurgical and Materials Engineering, Faculty of Technology, Selçuk University, 42130 Selçuklu, Konya, Turkey
*Correspondence e-mail: akduran@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 27 November 2020; accepted 11 December 2020; online 1 January 2021)

The title compound [systematic name: 2-(N-hy­droxy­imino)-1,2-di­phenyl­ethanol], C14H13NO2, consists of hy­droxy phenyl­aceto­phenone and oxime units, in which the phenyl rings are oriented at a dihedral angle of 80.54 (7)°. In the crystal, inter­molecular O—HOxm⋯NOxm, O—HHydr⋯OHydr, O—H′Hydr⋯OHydr and O—HOxm⋯OHydr hydrogen bonds link the mol­ecules into infinite chains along the c-axis direction. ππ contacts between inversion-related of the phenyl ring adjacent to the oxime group have a centroid–centroid separation of 3.904 (3) Å and a weak C—H⋯π(ring) inter­action is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (58.4%) and H⋯C/C⋯H (26.4%) contacts. Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing.

1. Chemical context

Inter­molecular hydrogen bonding has received considerable attention among the directional non-covalent inter­molecular inter­actions (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). Hydrogen bonds combine moderate strength and directionality (Karle et al., 1996[Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128-7133.]) in linking mol­ecules to form supra­molecular structures. The oxime (–C=N—OH) moiety, which is similar to carb­oxy­lic acid in that it contains one hydrogen-bond donor and two acceptor atoms, is a functional group that has not been extensively explored in crystal engineering. Structurally characterized oxime moieties are much less common than carb­oxy­lic acids and amides, but from a supra­molecular perspective, this functionality does have some unique and desirable features (Aakeröy et al., 2001[Aakeröy, C. B., Beatty, A. M. & Leinen, D. S. (2001). Cryst. Growth Des. 1, 47-52.]). Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols and carb­oxy­lic acids (Marsman et al., 1999[Marsman, A. W., Leussink, E. D., Zwikker, J. W., Jenneskens, L. W., Smeets, W. J. J., Veldman, N. & Spek, A. L. (1999). Chem. Mater. 11, 1484-1491.]). The hydrogen-bond systems in the crystals of oximes have been analysed and a correlation between patterns of hydrogen bonding and N—O bond lengths has been suggested (Bertolasi et al., 1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]). Oxime and dioxime derivatives are very important in the chemical industry, photography, agriculture, textiles, technological improvement, dye chemistry, semiconductor manufacturing and medicine (Sevagapandian et al., 2000[Sevagapandian, S., Rajagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388-393.]; Schrauzer et al., 1965[Schrauzer, G. N., Windgassen, R. J. & Kohnle, J. (1965). Chem. Ber. 98, 3324-3333.]; Thomas & Underhill, 1972[Thomas, T. W. & Underhill, A. E. (1972). Chem. Soc. Rev. 1, 99-120.]; Underhill et al., 1973[Underhill, A. E., Watkins, D. M. & Pethig, R. (1973). Inorg. Nucl. Chem. Lett. 9, 1269-1273.62]; Chakravorty, 1974[Chakravorty, A. (1974). Coord. Chem. Rev. 13, 1-46.]; Kurita, 1998[Kurita, K. (1998). Polym. Degrad. Stabil. 59, 117-120.]; Mathur & Narang, 1990[Mathur, N. K. & Narang, C. K. (1990). J. Chem. Educ. 67, 938-942.]; Ravi Kumar, 2000[Ravi Kumar, M. N. V. (2000). React. Funct. Polym. 46, 1-27.]). They have a broad pharmacological activity spectrum, encompassing anti­bacterial, anti­depressant and anti­fungal activities (Forman, 1964[Forman, S. E. (1964). J. Org. Chem. 29, 3323-3327.]; Holan et al., 1984[Holan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361-368.]). Some oxime complexes also have anti­carcinogenic activities (Sevagapandian et al., 2000[Sevagapandian, S., Rajagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388-393.]; Srivastava et al., 1997[Srivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & F. de Morais, L. P. (1997). J. Mol. Struct. 406, 159-167.]). The crystallization and the mol­ecular and crystal structures of the title compound, (I)[link], are reported herein. Its magnetic properties have previously been studied by electron paramagnetic resonance (EPR) (Sayin et al., 2012[Sayin, U., Dereli, Ö., Türkkan, E. & Ozmen, A. (2012). Radiat. Phys. Chem. 81, 146-151.]).

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the title compound, (I)[link], consists of hy­droxy phenyl­aceto­phenone and oxime units, where the phenyl, A (C1–C6) and B (C9–C14), rings are oriented at a dihedral angle of 80.54 (7)°. The dihedral angle between the oxime plane C (O1/N1/C7) and phenyl rings A and B are 39.48 (9) and 80.11 (14)°, respectively. The base of the oxime moiety is approximately coplanar with the A phenyl ring plane, as indicated by the O1—N1—C7—C1 torsion angle of 1.0 (3)°. In the oxime moiety, the O1—N1 [1.4026 (18) Å] bond length and the O1—N1—C7 [115.36 (14)°] bond angle may be compared with the corresponding values of O1—N2 [1.423 (3) Å], O2—N3 [1.396 (3) Å], O2—N3—C10 [111.5 (2)°] and O1—N2—C9 [109.4 (2)°] in the glyoxime moiety reported in 1-(2,6-di­methyl­phenyl­amino)­propane-1,2-dione dioxime [(II); (Hökelek et al., 2001[Hökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247-o1249.])], reflecting the types and electron-withdrawing or donating properties of the substituents bonded to the carbon atoms of the glyoxime moiety.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The hydrogen attached to hydroxyl oxygen O2 is disordered in a 50:50 ratio, as indicated by dashed bonds.

3. Supra­molecular features

In the crystal, inter­molecular O—HOxm⋯OHydr, O—HOxm⋯NOxm, O—HHydr⋯OHydr and O—H′Hydr⋯OHydr hydrogen bonds (Table 1[link], Fig. 2[link]) [Oxm = oxime and Hydr = hy­droxy] form R12(5) and R22(6) ring motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) between inversion-related mol­ecules, which link to form extended chains along the c-axis direction (Figs. 2[link] and 3[link]). ππ contacts between inversion-related phenyl rings [Cg1⋯Cg1i = 3.904 (1) Å; symmetry code: (i) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z), where Cg1 is the centroid of ring A (C1–C6)] and a weak C—H⋯π(ring) inter­action (Table 1[link]) are also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (58.4%) and H⋯C/C⋯H (26.4%) inter­actions, but a full Hirshfeld surface analysis is complicated by the disorder. Hydrogen bonding and van der Waals inter­actions comprise the dominant contacts in the crystal packing (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the phenyl ring B (C9—C14).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.88 (2) 2.47 (2) 3.2638 (19) 151 (1.47)
O1—H1⋯N1i 0.88 (2) 2.13 (2) 2.8236 (19) 135 (1.69)
O2—H2⋯O2iii 0.82 (4) 2.03 (2) 2.850 (3) 175 (1.99)
O2—H2′⋯O2iv 0.83 (4) 2.05 (3) 2.881 (3) 180 (2.38)
C4—H4⋯Cg2vi 0.93 2.91 3.792 (3) 159
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{3\over 2}}]; (iv) [-x, -y+1, -z+1]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Selected interatomic distances (Å)

O1⋯C2 2.819 (3) N1⋯H1i 2.13 (2)
O1⋯N1i 2.823 (2) H2′⋯N1iv 2.83 (2)
C8⋯O1ii 3.381 (2) H14⋯C6ii 2.79
O2⋯O2iii 2.850 (3) C6⋯H8 2.66
O2⋯O2iv 2.881 (3) C7⋯H10 2.92
O2⋯N1 2.577 (2) C8⋯H2iii 2.76 (2)
O1⋯H2A 2.41 C8⋯H6 2.75
H8⋯O1ii 2.62 C8⋯H2′iv 2.87 (2)
O2⋯H10 2.87 C9⋯H2iii 2.92 (2)
O2⋯H1i 2.465 (17) H1⋯H2′i 2.31
H2⋯O2iii 2.03 (2) H2′⋯H1ii 2.59 (2)
H2′⋯O2iv 2.05 (3) H2A⋯H13v 2.57
N1⋯N1i 2.867 (2) H6⋯H8 2.12
N1⋯H2A 2.90 H8⋯H14 2.30
N1⋯H2′ 2.49 (2)    
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{3\over 2}}]; (iv) [-x, -y+1, -z+1]; (v) [x, y, z-1].
[Figure 2]
Figure 2
A partial packing diagram. The O—HOxm⋯NOxm, O—HHydr⋯OHydr, O—H′Hydr⋯OHydr and O—HOxm⋯OHydr hydrogen bonds [Oxm = oxime and Hydr = hy­droxy] are shown as thin dashed lines. Bonds involving the disordered hydroxyl hydrogen are shown as thick dashed lines. The remaining hydrogen atoms have been omitted for the sake of clarity.
[Figure 3]
Figure 3
A packing diagram viewed down the c axis. The O—HOxm⋯NOxm, O—HHydr⋯OHydr, O—H′Hydr⋯OHydr and O—HOxm⋯OHydr hydrogen bonds [Oxm = oxime and Hydr = hy­droxy] hydrogen bonds are shown as dashed lines. The remaining hydrogen atoms have been omitted for clarity.

4. Synthesis and crystallization

The alpha-benzoinoxime [ABO (C14H13NO2) powder was purchased from Merck, and crystallized by slow evaporation from a concentrated solution in ethanol as colourless crystals at room temperature.

5. Refinement

Experimental details including the crystal data, data collection and refinement are summarized in Table 3[link]. The hy­droxy H atoms were located in a difference-Fourier map and refined isotropically. The C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The hydrogen attached to O2 is disordered over two sites (H2 and H2′) in a 0.5:0.5 ratio and was refined with restraints.

Table 3
Experimental details

Crystal data
Chemical formula C14H13NO2
Mr 227.25
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 24.3559 (2), 10.7032 (2), 8.9667 (2)
β (°) 93.220 (2)
V3) 2333.80 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker APEXII QUAZAR three-circle
No. of measured, independent and observed [I > 2σ(I)] reflections 15784, 2673, 1781
Rint 0.048
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.124, 1.03
No. of reflections 2673
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2020).

2-(N-Hydroxyimino)-1,2-diphenylethanol top
Crystal data top
C14H13NO2F(000) = 960
Mr = 227.25Dx = 1.294 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.3559 (2) ÅCell parameters from 2607 reflections
b = 10.7032 (2) Åθ = 3.1–21.7°
c = 8.9667 (2) ŵ = 0.09 mm1
β = 93.220 (2)°T = 296 K
V = 2333.80 (7) Å3Block, colourless
Z = 80.15 × 0.11 × 0.10 mm
Data collection top
Bruker APEXII QUAZAR three-circle
diffractometer
Rint = 0.048
Detector resolution: 8.3333 pixels mm-1θmax = 27.5°, θmin = 1.7°
φ and ω scansh = 3131
15784 measured reflectionsk = 1313
2673 independent reflectionsl = 1111
1781 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.7468P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2673 reflectionsΔρmax = 0.17 e Å3
158 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.06576 (6)0.67667 (13)0.19541 (13)0.0449 (3)
H10.0363 (8)0.676 (2)0.1336 (17)0.067*
O20.01347 (5)0.60393 (13)0.59737 (16)0.0451 (4)
H20.0037 (6)0.602 (4)0.684 (4)0.068*0.5
H2'0.0059 (5)0.544 (4)0.542 (5)0.068*0.5
N10.04995 (6)0.66307 (14)0.34255 (15)0.0373 (4)
C10.14866 (7)0.63331 (17)0.41569 (19)0.0362 (4)
C20.17398 (8)0.71174 (19)0.3165 (2)0.0463 (5)
H2A0.1533100.7716940.2634260.056*
C30.22965 (8)0.7011 (2)0.2964 (2)0.0582 (6)
H30.2461130.7544050.2301450.070*
C40.26080 (9)0.6132 (3)0.3727 (3)0.0644 (7)
H40.2981500.6059900.3578710.077*
C50.23633 (9)0.5359 (2)0.4713 (3)0.0627 (6)
H50.2573330.4759650.5235000.075*
C60.18100 (8)0.5459 (2)0.4939 (2)0.0483 (5)
H60.1651800.4935500.5623210.058*
C70.08910 (7)0.64245 (15)0.44001 (19)0.0330 (4)
C80.07095 (7)0.62830 (17)0.59889 (19)0.0359 (4)
H80.0906200.5574010.6459180.043*
C90.08441 (7)0.74454 (18)0.68979 (19)0.0390 (4)
C100.06246 (10)0.8580 (2)0.6490 (3)0.0572 (6)
H100.0386430.8643190.5646240.069*
C110.07566 (12)0.9636 (2)0.7335 (3)0.0782 (8)
H110.0609241.0407730.7051990.094*
C120.11041 (13)0.9541 (3)0.8583 (3)0.0877 (10)
H120.1196361.0250260.9141050.105*
C130.13143 (13)0.8414 (3)0.9010 (3)0.0878 (10)
H130.1543340.8349300.9872460.105*
C140.11882 (10)0.7366 (2)0.8165 (2)0.0632 (6)
H140.1337160.6597310.8454800.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0426 (7)0.0630 (9)0.0294 (6)0.0031 (7)0.0029 (5)0.0015 (6)
O20.0370 (7)0.0526 (8)0.0470 (8)0.0134 (6)0.0130 (6)0.0077 (6)
N10.0383 (8)0.0432 (9)0.0308 (7)0.0034 (7)0.0054 (6)0.0022 (6)
C10.0342 (9)0.0406 (10)0.0338 (9)0.0037 (8)0.0034 (7)0.0074 (7)
C20.0434 (11)0.0530 (12)0.0429 (11)0.0069 (9)0.0069 (8)0.0014 (9)
C30.0432 (12)0.0805 (16)0.0521 (12)0.0137 (11)0.0145 (10)0.0048 (11)
C40.0346 (11)0.0986 (19)0.0609 (14)0.0020 (12)0.0093 (10)0.0156 (13)
C50.0434 (13)0.0808 (17)0.0636 (14)0.0150 (11)0.0004 (11)0.0021 (12)
C60.0399 (11)0.0557 (12)0.0495 (11)0.0024 (9)0.0044 (9)0.0001 (9)
C70.0340 (9)0.0317 (9)0.0335 (9)0.0053 (7)0.0037 (7)0.0035 (7)
C80.0305 (9)0.0408 (10)0.0367 (9)0.0052 (7)0.0049 (7)0.0021 (8)
C90.0397 (10)0.0472 (11)0.0309 (9)0.0124 (8)0.0087 (7)0.0013 (8)
C100.0651 (14)0.0509 (13)0.0559 (13)0.0012 (11)0.0056 (11)0.0080 (10)
C110.093 (2)0.0522 (15)0.092 (2)0.0077 (13)0.0314 (17)0.0185 (14)
C120.114 (2)0.093 (2)0.0601 (16)0.0545 (19)0.0367 (16)0.0357 (16)
C130.108 (2)0.112 (3)0.0429 (14)0.059 (2)0.0020 (14)0.0092 (15)
C140.0712 (15)0.0747 (16)0.0428 (11)0.0246 (13)0.0062 (10)0.0051 (11)
Geometric parameters (Å, º) top
O1—N11.4026 (18)C5—H50.9300
O1—H10.88 (2)C6—H60.9300
O2—C81.424 (2)C7—C81.523 (2)
O2—H20.82 (4)C8—C91.513 (2)
O2—H2'0.83 (4)C8—H80.9800
N1—C71.276 (2)C9—C101.368 (3)
C1—C61.388 (3)C9—C141.376 (3)
C1—C21.392 (3)C10—C111.388 (3)
C1—C71.482 (2)C10—H100.9300
C2—C31.383 (3)C11—C121.369 (4)
C2—H2A0.9300C11—H110.9300
C3—C41.368 (3)C12—C131.356 (4)
C3—H30.9300C12—H120.9300
C4—C51.372 (3)C13—C141.379 (4)
C4—H40.9300C13—H130.9300
C5—C61.378 (3)C14—H140.9300
O1···C22.819 (3)N1···H1i2.13 (2)
O1···N1i2.823 (2)H2'···N1iv2.83 (2)
C8···O1ii3.381 (2)H14···C6ii2.79
O2···O2iii2.850 (3)C6···H82.66
O2···O2iv2.881 (3)C7···H102.92
O2···N12.577 (2)C8···H2iii2.76 (2)
O1···H2A2.41C8···H62.75
H8···O1ii2.62C8···H2'iv2.87 (2)
O2···H102.87C9···H2iii2.92 (2)
O2···H1i2.465 (17)H1···H2'i2.31
H2···O2iii2.03 (2)H2'···H1ii2.59 (2)
H2'···O2iv2.05 (3)H2A···H13v2.57
N1···N1i2.867 (2)H6···H82.12
N1···H2A2.90H8···H142.30
N1···H2'2.49 (2)
N1—O1—H1109.5O2—C8—C9109.82 (14)
C8—O2—H2109.5O2—C8—C7110.26 (14)
C8—O2—H2'109.5C9—C8—C7110.90 (14)
C7—N1—O1115.36 (14)O2—C8—H8108.6
C6—C1—C2118.06 (17)C9—C8—H8108.6
C6—C1—C7120.16 (16)C7—C8—H8108.6
C2—C1—C7121.77 (17)C10—C9—C14119.1 (2)
C3—C2—C1120.5 (2)C10—C9—C8121.08 (17)
C3—C2—H2A119.8C14—C9—C8119.82 (19)
C1—C2—H2A119.8C9—C10—C11120.1 (2)
C4—C3—C2120.8 (2)C9—C10—H10119.9
C4—C3—H3119.6C11—C10—H10119.9
C2—C3—H3119.6C12—C11—C10119.9 (3)
C3—C4—C5119.3 (2)C12—C11—H11120.0
C3—C4—H4120.4C10—C11—H11120.0
C5—C4—H4120.4C13—C12—C11120.2 (2)
C4—C5—C6120.8 (2)C13—C12—H12119.9
C4—C5—H5119.6C11—C12—H12119.9
C6—C5—H5119.6C12—C13—C14119.9 (3)
C5—C6—C1120.7 (2)C12—C13—H13120.0
C5—C6—H6119.7C14—C13—H13120.0
C1—C6—H6119.7C9—C14—C13120.7 (3)
N1—C7—C1127.62 (15)C9—C14—H14119.7
N1—C7—C8114.40 (15)C13—C14—H14119.7
C1—C7—C8117.97 (15)
C6—C1—C2—C30.6 (3)C1—C7—C8—O2163.47 (15)
C7—C1—C2—C3179.89 (18)N1—C7—C8—C9104.31 (17)
C1—C2—C3—C40.3 (3)C1—C7—C8—C974.7 (2)
C2—C3—C4—C50.7 (3)O2—C8—C9—C1061.5 (2)
C3—C4—C5—C60.0 (4)C7—C8—C9—C1060.6 (2)
C4—C5—C6—C11.0 (3)O2—C8—C9—C14117.82 (19)
C2—C1—C6—C51.3 (3)C7—C8—C9—C14120.07 (19)
C7—C1—C6—C5179.46 (18)C14—C9—C10—C111.1 (3)
O1—N1—C7—C11.0 (3)C8—C9—C10—C11179.54 (19)
O1—N1—C7—C8179.88 (13)C9—C10—C11—C120.5 (4)
C6—C1—C7—N1141.68 (19)C10—C11—C12—C130.9 (4)
C2—C1—C7—N139.1 (3)C11—C12—C13—C141.5 (4)
C6—C1—C7—C839.5 (2)C10—C9—C14—C130.5 (3)
C2—C1—C7—C8139.75 (17)C8—C9—C14—C13179.8 (2)
N1—C7—C8—O217.5 (2)C12—C13—C14—C90.9 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x, y, z+3/2; (iv) x, y+1, z+1; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the phenyl ring B (C9—C14).
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.88 (2)2.47 (2)3.2638 (19)151 (1.47)
O1—H1···N1i0.88 (2)2.13 (2)2.8236 (19)135 (1.69)
O2—H2···O2iii0.82 (4)2.03 (2)2.850 (3)175 (1.99)
O2—H2···O2iv0.83 (4)2.05 (3)2.881 (3)180 (2.38)
C4—H4···Cg2vi0.932.913.792 (3)159
Symmetry codes: (i) x, y, z+1/2; (iii) x, y, z+3/2; (iv) x, y+1, z+1; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

NA is grateful to Professor Tuncer Hökelek from Hacettepe University, Turkey for helpful discussions and technical facilities provided, and Professor Ülkü Sayın from Selçuk University, Turkey for her constant assistance during the crystallization process.

References

First citationAakeröy, C. B., Beatty, A. M. & Leinen, D. S. (2001). Cryst. Growth Des. 1, 47–52.  Web of Science CSD CrossRef Google Scholar
First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravorty, A. (1974). Coord. Chem. Rev. 13, 1–46.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForman, S. E. (1964). J. Org. Chem. 29, 3323–3327.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Zülfikaroğlu, A. & Batı, H. (2001). Acta Cryst. E57, o1247–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolan, G., Johnson, W. M. P., Rihs, K. & Virgona, C. T. (1984). Pestic. Sci. 15, 361–368.  CrossRef CAS Web of Science Google Scholar
First citationKarle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133.  CSD CrossRef CAS Web of Science Google Scholar
First citationKurita, K. (1998). Polym. Degrad. Stabil. 59, 117–120.  CrossRef CAS Google Scholar
First citationMarsman, A. W., Leussink, E. D., Zwikker, J. W., Jenneskens, L. W., Smeets, W. J. J., Veldman, N. & Spek, A. L. (1999). Chem. Mater. 11, 1484–1491.  CSD CrossRef CAS Google Scholar
First citationMathur, N. K. & Narang, C. K. (1990). J. Chem. Educ. 67, 938–942.  CrossRef CAS Google Scholar
First citationRavi Kumar, M. N. V. (2000). React. Funct. Polym. 46, 1–27.  CrossRef Google Scholar
First citationSayin, U., Dereli, Ö., Türkkan, E. & Ozmen, A. (2012). Radiat. Phys. Chem. 81, 146–151.  CrossRef CAS Google Scholar
First citationSchrauzer, G. N., Windgassen, R. J. & Kohnle, J. (1965). Chem. Ber. 98, 3324–3333.  CrossRef Google Scholar
First citationSevagapandian, S., Rajagopal, G., Nehru, K. & Athappan, P. (2000). Transition Met. Chem. 25, 388–393.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, R. M., Brinn, I. M., Machuca-Herrera, J. O., Faria, H. B., Carpenter, G. B., Andrade, D., Venkatesh, C. G. & F. de Morais, L. P. (1997). J. Mol. Struct. 406, 159–167.  Google Scholar
First citationThomas, T. W. & Underhill, A. E. (1972). Chem. Soc. Rev. 1, 99–120.  CrossRef CAS Google Scholar
First citationUnderhill, A. E., Watkins, D. M. & Pethig, R. (1973). Inorg. Nucl. Chem. Lett. 9, 1269–1273.62  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds