research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of [Al(H2O)6](SO4)NO3·2H2O and [Al(H2O)6](SO4)Cl·H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
*Correspondence e-mail: fredric.svensson@slu.se

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 September 2020; accepted 1 December 2020; online 1 January 2021)

Two novel aluminium double salts, [Al(H2O)6](SO4)NO3·2H2O, hexa­qua­alumin­ium sulfate nitrate dihydrate, (1), and [Al(H2O)6](SO4)Cl·H2O, hexaqua­aluminium sulfate chloride hydrate, (2), were obtained in the form of single crystals. Their crystal structures are each based on an octa­hedral [Al(H2O)6]3+ unit and both structures have in common one charge-balancing SO42− anion. The final positive charge from the aluminium(III) cation is balanced by an NO3 or a Cl anion for (1) and (2), respectively. Compound (1) further contains two unligated water mol­ecules while compound (2) only contains one unligated water mol­ecule. In the crystal structures, all components are spatially separated and inter­actions are mediated via medium–strong hydrogen bonding, compared to many other reported aluminium sulfates where corner-sharing of the building units is common. The two compounds represent rare cases where one aluminium(III) cation is charge-balanced by two different anions.

1. Chemical context

Aluminium is one of the most common elements in Earth's crust and is predominantly found in oxides and silicates. The far most common oxidation state for inorganic compounds is +III. Aluminium is found in many double salts with numerous other cations and sulfate, such as the industrially important alums MAl(SO4)2·12H2O (M = monovalent cation; Greenwood & Earnshaw, 1997[Greenwood, N. N. & Earnshaw, A. (1997). Chemistry of the Elements. London: Butterworth-Heinemann.]). At low pH, aluminium mainly exists in solution as the [Al(H2O)6]3+ cation (Hay & Myneni, 2008[Hay, M. B. & Myneni, S. C. B. (2008). J. Phys. Chem. A, 112, 10595-10603.]).

One of the title compounds, [Al(H2O)6](SO4)NO3·2H2O, (1), was obtained as an unintentional side product when attempting to synthesize an aluminium-modified bis­muth-titanium oxo-complex. Efforts to obtain (1) by other routes resulted in the formation of [Al(H2O)6]SO4Cl·H2O (2).

2. Structural commentary

The crystal structure of (1) comprises an [Al(H2O)6]3+ cation charge-balanced by one sulfate and one nitrate anion as well as two unligated water mol­ecules; all building units are separated from each other (Fig. 1[link]). Bond lengths in the components are summarized in Table 1[link]. The aqua ligands (O1–O6) of the complex cations serve as hydrogen-bonding donor groups. They connect through O—H⋯O hydrogen bonds to the two types of anions and to the two unbound water mol­ecules, forming a three-dimensional network (Fig. 2[link], Table 2[link]). Hydrogen bonds involving H8 and H12 are bifurcated. The water mol­ecules OW1 and OW2 likewise serve as donor groups, whereby OW1 hydrogen-bonds to the nitrate anion (O12, O13) and to the second water mol­ecule OW2. The latter hydrogen bond involving H14 is also bifurcated. Inter­estingly, OW2 shows only one hydrogen bond to a nitrate anion (H16⋯O12); the second H atom (H15) is not engaged in hydrogen-bonding. The H⋯O distances involving the [Al(H2O)6]3+ group are between 1.76 (3) and 2.35 (3) Å and thus can be considered as medium–strong whereas the H⋯O distances [2.05 (2) to 2.55 (3) Å] involving the unbound water mol­ecules as donor groups indicate much weaker hydrogen bonds.

Table 1
Selected bond lengths (Å) for (1)

Al1—O6 1.869 (2) S1—O10 1.466 (2)
Al1—O5 1.872 (2) S1—O7 1.470 (2)
Al1—O2 1.876 (2) S1—O9 1.479 (2)
Al1—O3 1.880 (2) N1—O12 1.209 (4)
Al1—O1 1.880 (2) N1—O11 1.225 (4)
Al1—O4 1.887 (2) N1—O13 1.232 (4)
S1—O8 1.464 (2)    

Table 2
Hydrogen-bond geometry (Å, °) for (1)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O10 0.85 (1) 1.78 (1) 2.627 (3) 173 (4)
O1—H2⋯O7i 0.85 (1) 1.85 (1) 2.689 (3) 171 (4)
O2—H3⋯O8ii 0.85 (1) 1.84 (1) 2.684 (3) 176 (4)
O2—H4⋯OW1 0.85 (1) 1.76 (1) 2.600 (3) 171 (4)
O3—H5⋯O7iii 0.85 (1) 1.83 (1) 2.675 (3) 178 (4)
O3—H6⋯O9i 0.85 (1) 1.83 (1) 2.670 (3) 169 (4)
O4—H7⋯O8iv 0.85 (1) 1.91 (1) 2.745 (3) 168 (4)
O4—H8⋯O11v 0.85 (1) 2.12 (2) 2.884 (4) 150 (4)
O4—H8⋯O13v 0.85 (1) 2.13 (3) 2.870 (4) 147 (4)
O5—H9⋯O9vi 0.85 (1) 1.80 (1) 2.650 (3) 179 (4)
O5—H10⋯O10iv 0.85 (1) 1.79 (1) 2.640 (3) 175 (4)
O6—H11⋯OW2 0.85 (1) 1.79 (2) 2.596 (4) 160 (4)
O6—H12⋯O11vii 0.85 (1) 2.35 (3) 3.044 (4) 139 (3)
O6—H12⋯O12vii 0.85 (1) 2.06 (2) 2.876 (4) 162 (4)
OW1—H13⋯O13 0.86 (1) 2.05 (2) 2.850 (5) 155 (3)
OW1—H14⋯O12vii 0.86 (1) 2.52 (4) 3.109 (5) 127 (4)
OW1—H14⋯OW2viii 0.86 (1) 2.55 (4) 3.073 (6) 120 (3)
OW2—H16⋯O12viii 0.86 (1) 2.20 (3) 2.908 (5) 139 (3)
Symmetry codes: (i) [-x+2, -y-1, -z+1]; (ii) [-x+2, -y, -z+1]; (iii) [-x+1, -y-1, -z+1]; (iv) [-x+1, -y, -z+1]; (v) [x, y-1, z]; (vi) [x-1, y, z]; (vii) [-x+1, -y+1, -z]; (viii) [-x+1, -y, -z].
[Figure 1]
Figure 1
The asymmetric unit of (1), representing the building units. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing in the crystal structure of compound (1). Hydrogen bonding is indicated by dotted lines.

In the crystal structure of compound (2), the charge-balancing nitrate anion of (1) is exchanged for a chloride anion, and the formula unit only contains one additional water mol­ecule (Fig. 3[link]). Table 3[link] collates bond lengths of the individual building units. The [Al(H2O)6]3+ cation donates hydrogen bonds through the aqua ligands (O1– O6) to the sulfate group, the unligated water mol­ecule and to the chloride anion, resulting in a three-dimensional network (Fig. 4[link], Table 4[link]). Each sulfate group is hydrogen-bonded to four different [Al(H2O)6]3+ cations, and the unbound water mol­ecule exclusively hydrogen-bonds to the chloride anions, partly with a bifurcated bond. The O⋯H distances vary between 1.726 (11) and 1.917 (11) Å and thus are slightly stronger than in (1).

Table 3
Selected bond lengths (Å) for (2)

Al1—O3 1.8624 (17) Al1—O2 1.8940 (17)
Al1—O5 1.8718 (18) S1—O10 1.4670 (16)
Al1—O6 1.8752 (17) S1—O9 1.4672 (16)
Al1—O1 1.8798 (17) S1—O8 1.4753 (16)
Al1—O4 1.8855 (17) S1—O7 1.4767 (16)

Table 4
Hydrogen-bond geometry (Å, °) for (2)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O9i 0.85 (1) 1.88 (1) 2.714 (2) 165 (3)
O1—H2⋯O8ii 0.85 (1) 1.85 (1) 2.690 (2) 170 (3)
O2—H3⋯OW1iii 0.85 (1) 1.85 (1) 2.692 (2) 178 (3)
O2—H4⋯O10 0.85 (1) 1.92 (1) 2.767 (2) 177 (3)
O3—H5⋯O7iv 0.85 (1) 1.78 (1) 2.629 (2) 174 (3)
O3—H6⋯O7 0.85 (1) 1.73 (1) 2.578 (2) 176 (3)
O4—H7⋯Cl1v 0.85 (1) 2.18 (1) 3.0311 (18) 177 (3)
O4—H8⋯O10vi 0.85 (1) 1.83 (1) 2.669 (2) 176 (3)
O5—H9⋯OW1 0.85 (1) 1.82 (1) 2.650 (2) 166 (3)
O5—H10⋯Cl1 0.85 (1) 2.17 (1) 3.0120 (18) 171 (3)
O6—H11⋯O8vii 0.85 (1) 1.83 (1) 2.672 (2) 172 (3)
O6—H12⋯O9ii 0.85 (1) 1.83 (1) 2.671 (2) 171 (3)
OW1—H13⋯Cl1viii 0.85 (1) 2.33 (2) 3.083 (2) 149 (3)
OW1—H14⋯Cl1i 0.84 (1) 2.68 (2) 3.390 (2) 143 (3)
OW1—H14⋯Cl1iii 0.84 (1) 2.74 (3) 3.280 (2) 123 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) [-x+2, -y+1, -z+2]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+2, -y+1, -z+1]; (vi) x+1, y, z; (vii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) [-x+3, -y+1, -z+2].
[Figure 3]
Figure 3
The asymmetric unit of (2), representing the building units. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
Packing in the crystal structure of compound (2). Hydrogen bonding is indicated by dotted lines.

According to the Pearson concept, sulfate, nitrate, and chloride are all considered inter­mediate hard bases while Al3+ is a hard acid. The higher charge (2+) of the sulfate group compared to the nitrate group and chloride is a likely reason that the sulfate group is present in both structures while the two latter ones can be inter­changed, possibly related to their relative abundance. The chloride ions in the reaction mixture of (1) might also have been bonded to the titanium(IV) and bis­muth(III) cations, preventing the formation of (2). In particular Bi3+ tends to form insoluble BiOCl. Furthermore, (1) contains two extra water mol­ecules while (2) only contains one of them. The average Al—O bond lengths are 1.880 and 1.884 Å for (1) and (2), respectively, which is slightly shorter than the literature average distance of 1.90 Å (Hay & Myneni, 2008[Hay, M. B. & Myneni, S. C. B. (2008). J. Phys. Chem. A, 112, 10595-10603.]; Veillard, 1977[Veillard, M. (1977). J. Am. Chem. Soc. 99, 7194-7199.]).

Structures of aluminium sulfate, Al2(SO4)3, and derivatives thereof have been reported with different amounts of additional structural water and varying connectivities. Sabelli & Ferroni (1978[Sabelli, C. & Ferroni, R. T. (1978). Acta Cryst. B34, 2407-2412.]) reported an aluminium sulfate structure (Al2(OH)4SO4·7H2O) where six hydrated aluminum(III) ions are connected via edge- and face sharing. These aluminum `hexa­mers' are linked via hydrogen bonding with unligated water and sulfate ions. In the crystal structure of Al2(SO4)3·8H2O, hydrated aluminum(III) ions are connected via corner sharing with sulfate groups and a rather extensive hydrogen-bond network between sulfate, aqua ligands, and unligated, structural water mol­ecules (Fischer et al., 1996[Fischer, T., Eisenmann, B. & Kniep, R. Z. (1996). Z. Kristallogr. 211, 473-474.]). In the Al(SO4)OH structure reported by Anderson et al. (2015[Anderson, A. J., Yang, H. X. & Downs, R. T. (2015). Am. Mineral. 100, 330-333.]), each sulfate group connects three different aluminium(III) ions via corner sharing. The structures of the two reported compounds herein are more open and the principal building units are only connected via hydrogen bonding, which may be due to the presence of another anion (NO3/Cl).

3. Database survey

According to a database survey using the Inorganic Crystal Structure Database (ICSD), aluminium compounds with an additional cation charge-balanced by sulfate anions appear to be common [e.g. KAl(SO4)2, FeAl(SO4)3 (Demartin et al., 2010[Demartin, F., Castellano, C., Gramaccioli, C. M. & Campostrini, I. (2010). Can. Mineral. 48, 323-333.]), or CsAl(SO4)2 (Beattie et al., 1981[Beattie, J. K., Best, S. P., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 2105-2111.])]. However, compounds with aluminium as the single cation but with two different anions were found to be much less common although examples include Al(H2PO4)2F (Parnham & Morris, 2006[Parnham, E. R. & Morris, R. E. (2006). J. Mater. Chem. 16, 3682-3684.]) or Al(SO4)OH (Anderson et al., 2015[Anderson, A. J., Yang, H. X. & Downs, R. T. (2015). Am. Mineral. 100, 330-333.]).

4. Synthesis and crystallization

Compound (1) was obtained by mixing equimolar solutions of TiOSO4 (Aldrich) and Bi(NO3)3·5H2O (Aldrich), both dissolved in 1 M nitric acid (Sigma–Aldrich), and two equivalents of AlCl3·6H2O (Mallinckrodt Chemical Works) dissolved in 1 M hydro­chloric acid (Sigma–Aldrich). Colorless needle-shaped crystals formed on a glass substrate after about a week of slow evaporation of the solvent at room temperature. Elemental analysis by energy-dispersive X-ray spectroscopy using a Hitachi TM-1000 scanning electron microscope with an Oxford Instruments EDS system revealed a molar Al:S ratio of 1.37 (expected 1:1). In an attempt to synthesize compound (1) by a direct route, aluminium(III) chloride was changed to aluminium(III) lactate to avoid chloride ions. This resulted in formation of crystals with very poor quality that were not suitable for X-ray diffraction.

Compound (2) was obtained by dissolving 1 M AlCl3·6H2O in 1 ml of 1 M hydro­chloric acid and adding one equivalent of 1 M sulfuric acid (Sigma–Aldrich), or making a 1 M AlCl3·6H2O solution in 0.5 ml of 1 M H2SO2 plus 0.5 ml of 1 M HNO3. The solution was poured into a Petri dish and left for slow evaporation. After a few days of evaporation of the solvent, colorless block-shaped crystals suitable for single X-ray crystal diffraction were obtained. The crystals were somewhat fragile. EDS analysis of (2) revealed an S:Al:Cl molar composition of 0.9:0.9:1.17 (expected 1:1:1).

For the data collection, both types of crystals were mounted on a glass needle and protected by a layer of paraffin oil.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In each of the two structures, all hydrogen atoms were discernible in difference-Fourier maps. They were refined with O—H distance restraints of 0.85 (1) Å and a common Uiso(H) parameter. Reasonable geometries for the unligated water water mol­ecules were ensured by using restrained H⋯H distances of 1.55 (1) Å.

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula [Al(H2O)6](NO3)(SO4)·2H2O [Al(H2O)6]Cl(SO4)·H2O
Mr 329.18 284.60
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 6.088 (4), 7.377 (5), 13.721 (9) 6.1640 (14), 22.933 (5), 7.2876 (14)
α, β, γ (°) 77.340 (6), 89.561 (7), 82.712 (7) 90, 97.328 (2), 90
V3) 596.3 (7) 1021.8 (4)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.43 0.71
Crystal size (mm) 0.20 × 0.02 × 0.02 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.919, 0.992 0.872, 0.933
No. of measured, independent and observed [I > 2σ(I)] reflections 4506, 1642, 1519 8454, 1457, 1304
Rint 0.026 0.044
θmax (°) 23.4 23.3
(sin θ/λ)max−1) 0.559 0.556
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.10 0.024, 0.064, 1.03
No. of reflections 1642 1457
No. of parameters 213 170
No. of restraints 97 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.38 0.20, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexaquaaluminium sulfate nitrate dihydrate (1) top
Crystal data top
[Al(H2O)6](NO3)(SO4)·2H2OZ = 2
Mr = 329.18F(000) = 344
triclinic, P1Dx = 1.833 Mg m3
a = 6.088 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.377 (5) ÅCell parameters from 3914 reflections
c = 13.721 (9) Åθ = 2.9–23.4°
α = 77.340 (6)°µ = 0.43 mm1
β = 89.561 (7)°T = 296 K
γ = 82.712 (7)°Needle, colorless
V = 596.3 (7) Å30.20 × 0.02 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1642 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 23.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 66
Tmin = 0.919, Tmax = 0.992k = 88
4506 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.6205P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1642 reflectionsΔρmax = 0.50 e Å3
213 parametersΔρmin = 0.38 e Å3
97 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.49771 (11)0.14486 (9)0.30419 (5)0.0196 (2)
S11.01766 (9)0.31760 (8)0.62701 (4)0.0206 (2)
O10.7790 (3)0.2120 (2)0.36672 (13)0.0244 (4)
O20.5436 (3)0.1080 (2)0.27387 (14)0.0283 (4)
O30.4467 (3)0.3969 (2)0.33515 (14)0.0290 (5)
O40.2144 (3)0.0792 (3)0.24229 (14)0.0286 (4)
O50.3748 (3)0.1058 (2)0.42456 (13)0.0270 (4)
O60.6292 (3)0.1776 (3)0.18465 (14)0.0316 (5)
O70.9553 (3)0.4996 (2)0.67900 (14)0.0288 (4)
O81.0542 (3)0.2042 (3)0.69915 (14)0.0315 (5)
O91.2243 (3)0.3510 (2)0.57270 (14)0.0322 (5)
O100.8384 (3)0.2193 (3)0.55706 (14)0.0353 (5)
N10.2189 (5)0.8543 (4)0.0100 (2)0.0446 (7)
O110.2452 (5)1.0059 (4)0.0276 (2)0.0725 (8)
O120.2331 (6)0.8332 (5)0.0748 (2)0.0901 (10)
O130.1767 (6)0.7326 (4)0.0821 (2)0.0823 (9)
OW10.3034 (5)0.3374 (4)0.1321 (2)0.0754 (8)
OW20.7579 (7)0.4488 (6)0.0962 (4)0.1134 (14)
H10.809 (7)0.220 (6)0.4280 (11)0.069 (3)*
H20.867 (6)0.294 (4)0.347 (3)0.069 (3)*
H30.672 (3)0.139 (6)0.279 (3)0.069 (3)*
H40.478 (6)0.187 (4)0.225 (2)0.069 (3)*
H50.320 (3)0.432 (6)0.332 (3)0.069 (3)*
H60.540 (5)0.487 (4)0.364 (3)0.069 (3)*
H70.117 (5)0.004 (4)0.256 (3)0.069 (3)*
H80.193 (7)0.087 (6)0.1826 (13)0.069 (3)*
H90.327 (7)0.183 (5)0.473 (2)0.069 (3)*
H100.313 (6)0.001 (3)0.431 (3)0.069 (3)*
H110.648 (7)0.279 (3)0.164 (3)0.069 (3)*
H120.657 (7)0.083 (4)0.141 (2)0.069 (3)*
H130.265 (7)0.451 (2)0.137 (3)0.069 (3)*
H140.367 (7)0.298 (4)0.083 (2)0.069 (3)*
H150.616 (2)0.421 (5)0.091 (3)0.069 (3)*
H160.831 (5)0.555 (3)0.092 (3)0.069 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0169 (4)0.0196 (4)0.0222 (4)0.0027 (3)0.0003 (3)0.0041 (3)
S10.0178 (4)0.0187 (4)0.0248 (4)0.0008 (2)0.0005 (2)0.0046 (2)
O10.0199 (9)0.0249 (9)0.0279 (10)0.0008 (7)0.0036 (7)0.0068 (8)
O20.0250 (10)0.0236 (10)0.0349 (11)0.0063 (8)0.0027 (8)0.0011 (8)
O30.0202 (9)0.0205 (10)0.0453 (12)0.0043 (7)0.0014 (8)0.0040 (8)
O40.0209 (9)0.0333 (11)0.0323 (10)0.0002 (8)0.0040 (8)0.0106 (8)
O50.0313 (10)0.0220 (10)0.0255 (10)0.0014 (8)0.0054 (8)0.0032 (7)
O60.0321 (10)0.0358 (11)0.0268 (10)0.0035 (9)0.0052 (8)0.0075 (8)
O70.0229 (9)0.0220 (9)0.0406 (11)0.0050 (7)0.0033 (8)0.0039 (8)
O80.0263 (9)0.0310 (10)0.0411 (11)0.0042 (8)0.0033 (8)0.0158 (8)
O90.0282 (10)0.0257 (10)0.0373 (11)0.0021 (8)0.0103 (8)0.0012 (8)
O100.0368 (11)0.0348 (11)0.0313 (10)0.0134 (8)0.0101 (8)0.0107 (8)
N10.0476 (15)0.0430 (16)0.0396 (16)0.0011 (12)0.0073 (12)0.0053 (12)
O110.0610 (16)0.0542 (16)0.103 (2)0.0068 (13)0.0250 (15)0.0186 (15)
O120.126 (3)0.100 (2)0.0455 (16)0.008 (2)0.0206 (16)0.0325 (16)
O130.098 (2)0.0772 (19)0.0586 (17)0.0316 (17)0.0027 (15)0.0257 (15)
OW10.085 (2)0.0536 (16)0.0713 (19)0.0160 (15)0.0088 (16)0.0071 (14)
OW20.092 (3)0.107 (3)0.171 (4)0.005 (2)0.016 (3)0.101 (3)
Geometric parameters (Å, º) top
Al1—O61.869 (2)S1—O101.466 (2)
Al1—O51.872 (2)S1—O71.470 (2)
Al1—O21.876 (2)S1—O91.479 (2)
Al1—O31.880 (2)N1—O121.209 (4)
Al1—O11.880 (2)N1—O111.225 (4)
Al1—O41.887 (2)N1—O131.232 (4)
S1—O81.464 (2)
O6—Al1—O5177.66 (9)O2—Al1—O490.05 (8)
O6—Al1—O290.30 (9)O3—Al1—O489.21 (8)
O5—Al1—O287.90 (8)O1—Al1—O4179.48 (9)
O6—Al1—O390.38 (9)O8—S1—O10109.31 (11)
O5—Al1—O391.45 (9)O8—S1—O7110.17 (12)
O2—Al1—O3179.02 (8)O10—S1—O7108.97 (12)
O6—Al1—O188.42 (9)O8—S1—O9109.41 (12)
O5—Al1—O190.10 (9)O10—S1—O9110.42 (12)
O2—Al1—O190.37 (8)O7—S1—O9108.55 (11)
O3—Al1—O190.36 (8)O12—N1—O11119.5 (3)
O6—Al1—O491.88 (9)O12—N1—O13124.4 (3)
O5—Al1—O489.61 (9)O11—N1—O13116.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O100.85 (1)1.78 (1)2.627 (3)173 (4)
O1—H2···O7i0.85 (1)1.85 (1)2.689 (3)171 (4)
O2—H3···O8ii0.85 (1)1.84 (1)2.684 (3)176 (4)
O2—H4···OW10.85 (1)1.76 (1)2.600 (3)171 (4)
O3—H5···O7iii0.85 (1)1.83 (1)2.675 (3)178 (4)
O3—H6···O9i0.85 (1)1.83 (1)2.670 (3)169 (4)
O4—H7···O8iv0.85 (1)1.91 (1)2.745 (3)168 (4)
O4—H8···O11v0.85 (1)2.12 (2)2.884 (4)150 (4)
O4—H8···O13v0.85 (1)2.13 (3)2.870 (4)147 (4)
O5—H9···O9vi0.85 (1)1.80 (1)2.650 (3)179 (4)
O5—H10···O10iv0.85 (1)1.79 (1)2.640 (3)175 (4)
O6—H11···OW20.85 (1)1.79 (2)2.596 (4)160 (4)
O6—H12···O11vii0.85 (1)2.35 (3)3.044 (4)139 (3)
O6—H12···O12vii0.85 (1)2.06 (2)2.876 (4)162 (4)
OW1—H13···O130.86 (1)2.05 (2)2.850 (5)155 (3)
OW1—H14···O12vii0.86 (1)2.52 (4)3.109 (5)127 (4)
OW1—H14···OW2viii0.86 (1)2.55 (4)3.073 (6)120 (3)
OW2—H16···O12viii0.86 (1)2.20 (3)2.908 (5)139 (3)
Symmetry codes: (i) x+2, y1, z+1; (ii) x+2, y, z+1; (iii) x+1, y1, z+1; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x1, y, z; (vii) x+1, y+1, z; (viii) x+1, y, z.
Hexaquaaluminium sulfate chloride monohydrate (2) top
Crystal data top
[Al(H2O)6]Cl(SO4)·H2OF(000) = 592
Mr = 284.60Dx = 1.850 Mg m3
monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1640 (14) ÅCell parameters from 3645 reflections
b = 22.933 (5) Åθ = 3.0–23.3°
c = 7.2876 (14) ŵ = 0.71 mm1
β = 97.328 (2)°T = 296 K
V = 1021.8 (4) Å3Block, coloress
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1457 independent reflections
Radiation source: fine-focus sealed tube1304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 23.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 66
Tmin = 0.872, Tmax = 0.933k = 2525
8454 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.8819P]
where P = (Fo2 + 2Fc2)/3
1457 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.20 e Å3
14 restraintsΔρmin = 0.29 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.94442 (10)0.36368 (3)0.83030 (9)0.01735 (19)
S10.41721 (9)0.32296 (2)0.34162 (7)0.01806 (17)
O10.8883 (3)0.34621 (7)1.0718 (2)0.0242 (4)
O20.6779 (3)0.40544 (7)0.7845 (2)0.0236 (4)
O30.7994 (3)0.29620 (7)0.7410 (2)0.0236 (4)
O41.0001 (3)0.38033 (7)0.5873 (2)0.0243 (4)
O51.0925 (3)0.43174 (7)0.9146 (2)0.0262 (4)
O61.2075 (3)0.32177 (7)0.8685 (2)0.0218 (4)
O70.5853 (3)0.28049 (7)0.4172 (2)0.0288 (4)
O80.2061 (2)0.29253 (7)0.2976 (2)0.0251 (4)
O90.4791 (3)0.34900 (7)0.1719 (2)0.0257 (4)
O100.3963 (2)0.36795 (7)0.4814 (2)0.0237 (4)
Cl11.22318 (11)0.52579 (3)0.66184 (10)0.0399 (2)
OW11.2769 (3)0.47795 (8)1.2298 (3)0.0329 (4)
H10.768 (3)0.3524 (14)1.115 (4)0.054 (3)*
H20.977 (4)0.3286 (12)1.152 (3)0.054 (3)*
H30.691 (5)0.4422 (5)0.783 (5)0.054 (3)*
H40.588 (4)0.3942 (14)0.693 (3)0.054 (3)*
H50.734 (5)0.2727 (11)0.805 (4)0.054 (3)*
H60.734 (5)0.2915 (14)0.632 (2)0.054 (3)*
H70.933 (4)0.4067 (10)0.520 (4)0.054 (3)*
H81.126 (3)0.3750 (14)0.557 (4)0.054 (3)*
H91.143 (5)0.4415 (13)1.025 (2)0.054 (3)*
H101.130 (5)0.4554 (11)0.834 (3)0.054 (3)*
H111.215 (5)0.2853 (5)0.855 (4)0.054 (3)*
H121.304 (4)0.3305 (14)0.957 (3)0.054 (3)*
H131.400 (3)0.4634 (13)1.270 (4)0.054 (3)*
H141.220 (5)0.4762 (14)1.329 (3)0.054 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0135 (4)0.0205 (4)0.0175 (4)0.0001 (3)0.0002 (3)0.0011 (3)
S10.0136 (3)0.0220 (3)0.0178 (3)0.0011 (2)0.0007 (2)0.0008 (2)
O10.0173 (9)0.0370 (10)0.0184 (9)0.0042 (8)0.0026 (7)0.0054 (7)
O20.0171 (9)0.0264 (9)0.0260 (9)0.0017 (7)0.0017 (7)0.0001 (8)
O30.0230 (9)0.0267 (10)0.0194 (9)0.0064 (7)0.0034 (7)0.0031 (7)
O40.0193 (9)0.0306 (10)0.0236 (9)0.0051 (7)0.0052 (7)0.0074 (7)
O50.0265 (9)0.0250 (10)0.0256 (10)0.0063 (7)0.0028 (8)0.0010 (8)
O60.0176 (9)0.0234 (9)0.0233 (9)0.0033 (7)0.0022 (7)0.0020 (8)
O70.0267 (9)0.0316 (10)0.0253 (9)0.0133 (8)0.0071 (7)0.0062 (8)
O80.0188 (9)0.0258 (9)0.0286 (9)0.0053 (7)0.0042 (7)0.0044 (7)
O90.0210 (9)0.0364 (10)0.0197 (9)0.0048 (7)0.0030 (7)0.0009 (7)
O100.0202 (9)0.0260 (9)0.0249 (9)0.0015 (7)0.0027 (7)0.0049 (7)
Cl10.0288 (4)0.0426 (4)0.0458 (4)0.0069 (3)0.0045 (3)0.0166 (3)
OW10.0298 (10)0.0329 (11)0.0349 (11)0.0066 (8)0.0000 (8)0.0006 (9)
Geometric parameters (Å, º) top
Al1—O31.8624 (17)Al1—O21.8940 (17)
Al1—O51.8718 (18)S1—O101.4670 (16)
Al1—O61.8752 (17)S1—O91.4672 (16)
Al1—O11.8798 (17)S1—O81.4753 (16)
Al1—O41.8855 (17)S1—O71.4767 (16)
O3—Al1—O5178.65 (8)O5—Al1—O290.67 (8)
O3—Al1—O689.63 (8)O6—Al1—O2178.38 (8)
O5—Al1—O690.14 (8)O1—Al1—O290.78 (8)
O3—Al1—O190.72 (8)O4—Al1—O289.41 (7)
O5—Al1—O190.61 (8)O10—S1—O9110.75 (10)
O6—Al1—O190.61 (7)O10—S1—O8109.30 (10)
O3—Al1—O488.68 (8)O9—S1—O8109.04 (9)
O5—Al1—O489.99 (8)O10—S1—O7108.95 (9)
O6—Al1—O489.19 (7)O9—S1—O7109.71 (10)
O1—Al1—O4179.37 (8)O8—S1—O7109.07 (10)
O3—Al1—O289.53 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O9i0.85 (1)1.88 (1)2.714 (2)165 (3)
O1—H2···O8ii0.85 (1)1.85 (1)2.690 (2)170 (3)
O2—H3···OW1iii0.85 (1)1.85 (1)2.692 (2)178 (3)
O2—H4···O100.85 (1)1.92 (1)2.767 (2)177 (3)
O3—H5···O7iv0.85 (1)1.78 (1)2.629 (2)174 (3)
O3—H6···O70.85 (1)1.73 (1)2.578 (2)176 (3)
O4—H7···Cl1v0.85 (1)2.18 (1)3.0311 (18)177 (3)
O4—H8···O10vi0.85 (1)1.83 (1)2.669 (2)176 (3)
O5—H9···OW10.85 (1)1.82 (1)2.650 (2)166 (3)
O5—H10···Cl10.85 (1)2.17 (1)3.0120 (18)171 (3)
O6—H11···O8vii0.85 (1)1.83 (1)2.672 (2)172 (3)
O6—H12···O9ii0.85 (1)1.83 (1)2.671 (2)171 (3)
OW1—H13···Cl1viii0.85 (1)2.33 (2)3.083 (2)149 (3)
OW1—H14···Cl1i0.84 (1)2.68 (2)3.390 (2)143 (3)
OW1—H14···Cl1iii0.84 (1)2.74 (3)3.280 (2)123 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+1, y, z; (vii) x+1, y+1/2, z+1/2; (viii) x+3, y+1, z+2.
 

Acknowledgements

Professor Vadim Kessler is acknowledged for valuable discussions.

Funding information

The support from the Swedish Research Council (Vetenskapsrådet) (grant 2014–3938) is gratefully acknowledged.

References

First citationAnderson, A. J., Yang, H. X. & Downs, R. T. (2015). Am. Mineral. 100, 330–333.  CrossRef ICSD Google Scholar
First citationBeattie, J. K., Best, S. P., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 2105–2111.  CrossRef ICSD Web of Science Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemartin, F., Castellano, C., Gramaccioli, C. M. & Campostrini, I. (2010). Can. Mineral. 48, 323–333.  Web of Science CrossRef ICSD CAS Google Scholar
First citationFischer, T., Eisenmann, B. & Kniep, R. Z. (1996). Z. Kristallogr. 211, 473–474.  CAS Google Scholar
First citationGreenwood, N. N. & Earnshaw, A. (1997). Chemistry of the Elements. London: Butterworth–Heinemann.  Google Scholar
First citationHay, M. B. & Myneni, S. C. B. (2008). J. Phys. Chem. A, 112, 10595–10603.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParnham, E. R. & Morris, R. E. (2006). J. Mater. Chem. 16, 3682–3684.  CrossRef ICSD CAS Google Scholar
First citationSabelli, C. & Ferroni, R. T. (1978). Acta Cryst. B34, 2407–2412.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVeillard, M. (1977). J. Am. Chem. Soc. 99, 7194–7199.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds