- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Database survey
- 5. Hirshfeld surface analysis
- 6. Frontier molecular orbital analyses
- 7. Molecular electrostatic potentials
- 8. Molecular docking study
- 9. Synthesis and crystallization
- 10. Refinement
- Supporting information
- References
- 1. Chemical context
- 2. Structural commentary
- 3. Supramolecular features
- 4. Database survey
- 5. Hirshfeld surface analysis
- 6. Frontier molecular orbital analyses
- 7. Molecular electrostatic potentials
- 8. Molecular docking study
- 9. Synthesis and crystallization
- 10. Refinement
- Supporting information
- References
research communications
Hirshfeld surface analysis, DFT and molecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)ethoxy]quinoline-4-carboxylate
aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V, University, Rabat, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and eLaboratory of analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, abdulmalikabudunia@gmail.com
In the molecular structure of the title compound, C20H21N3O7, the quinoline ring system is slightly bent, with a dihedral angle between the phenyl and the pyridine rings of 3.47 (7)°. In the crystal, corrugated layers of molecules extending along the ab plane are generated by C—H⋯O hydrogen bonds. The intermolecular interactions were quantified by Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are from H⋯H (42.3%), H⋯O/O⋯H (34.5%) and H⋯C/ C⋯H (17.6%) contacts. Molecular orbital calculations providing electron-density plots of the HOMO and LUMO as well as molecular electrostatic potentials (MEP) were computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. A molecular docking study between the title molecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a good agent because of its affinity and ability to adhere to the active sites of the protein.
Keywords: crystal structure; Covid-19; DFT; Hirshfeld surface analysis; oxazolidine; quinoline; Molecular docking.
CCDC reference: 2048734
1. Chemical context
Quinoline and its derivatives have attracted the interest of synthetic and biological chemists because of their interesting chemical and pharmacological properties (Chu et al., 2019), including antibacterial (Bouzian et al., 2020), anticancer (Tang et al., 2018), antitubercular (Xu et al., 2017), anti-COVID19 (Gao et al., 2020), antimalarial (Hu et al., 2017), antileishmanial (Palit et al., 2009) and anti-inflammatory (Pinz et al., 2016) activities. Furthermore, many studies have shown that quinoline derivatives are good corrosion inhibitors (Douche et al. 2020).
In a continuation of our research work devoted to the syntheses and crystal structures of quinoline derivatives (Bouzian et al., 2019a), we report herein the molecular and crystal structures, Hirshfeld surface analysis, DFT and molecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)ethoxy]quinoline-4-carboxylate.
2. Structural commentary
In the title molecule (Fig. 1), the phenyl and pyridine rings of the quinoline system are slightly bent, with a dihedral angle between their mean planes of 3.47 (7)°. The oxazolidine ring (N2/O2/C12–C14) adopts an with puckering parameters of Q(2) = 0.112 (2) Å and φ(2) = 115.3 (10)°. The C14 atom is at the envelope flap position, and it deviates from the least-square plane through the remaining four atoms by 0.070 (2) Å. The other oxazolidine ring (N3/O7/C18–C20) has a twisted conformation along the C20—C19 bond, with puckering parameters Q(2) = 0.1732 (18) Å and φ(2) = 299.7 (6)°. The dihedral angles between the mean planes of the oxazolidine rings and the quinoline ring systems are 38.04 (9)° for (N2/O2/C12–C14) and 57.34 (8)° for (N3/O7/C18–C20). The molecular conformation is stabilized by an intramolecular C20—H20B⋯O4 contact (Fig. 1, Table 1), producing an S(8) ring motif.
3. Supramolecular features
In the crystal, C11—H11A⋯O3i and C17—H17A⋯O6ii hydrogen bonds between methylene groups and carbonyl O atoms as well as C19—H19B⋯O3iii hydrogen bonds lead to the formation of corrugated layers extending parallel to (001) (Fig. 2, Table 1). Notable C—H⋯π and π–π interactions are not observed.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016) using ethyl quinoline-4-carboxylate as the main skeleton revealed the presence of ten structures with different substituents on the quinoline ring. The three structures most similar to the title compound are ethyl 2-(2,4,5-trimethoxyphenyl)quinoline-4-carboxylate (OJAGUD; Shrungesh Kumar et al., 2015), ethyl 2-(3,5-difluorophenyl)quinoline-4-carboxylate (UHUHAI; Sunitha et al., 2015) and ethyl 6-chloro-2-ethoxyquinoline-4-carboxylate (XOFGAD; Bouzian et al., 2019b). In OJAGUD, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.028 Å) and the trimethoxybenzene ring is 43.38 (5)°. A short intramolecular C—H⋯O contact closes an S(6) ring. In the inversion dimers linked by pairs of weak C—H⋯O interactions generate R2 2(6) loops. In UHUHAI, the two rings of the quinoline system have a dihedral angle of 2.28 (8)° between their mean planes. The plane of the attached benzene ring is inclined to the plane of the quinoline system by 7.65 (7)°. There is a short intramolecular C—H⋯O contact involving the carbonyl group. In XOFGAD, the molecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-ethoxyquinoline mean plane. There is an intramolecular C— H⋯O hydrogen bond forming an S(6) graph-set motif. Weak intermolecular π–π interactions are observed in this crystal structure.
5. Hirshfeld surface analysis
Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.1538 (red) to 1.1337 (blue) a.u. (Fig. 3a). The pale-red spots symbolize short contacts and negative dnorm values on the surface and correspond to the C—H⋯O interactions (Table 1). The shape-index map of the title molecule was generated in the range −1 to 1 Å (Fig. 3b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. The absence of adjacent red and blue triangles in the shape-index map, which generally indicate π–π interactions, reveals that this kind of interaction is not present in the title compound. The curvedness map was generated in the range −4.0 to 4.0 Å (Fig. 3c). It shows large regions of green with a relatively flat (i.e. planar) surface area while the blue regions demonstrate areas of curvature. The overall two-dimensional fingerprint plot is illustrated in Fig. 4a, with those delineated into H⋯H, H⋯O/O⋯H, H⋯C/ C⋯H, H⋯N/N⋯H and C⋯N/N⋯C contacts associated with their relative contributions to the Hirshfeld surface given in Fig. 4a–f, respectively. The most important intermolecular interactions are H⋯H, contributing 42.3% to the overall crystal packing. H⋯O/O⋯H contacts arising from intermolecular C—H⋯O hydrogen bonding (Table 1) make a 34.5% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.35 Å (Fig. 4c). The pair of wings in the fingerprint plot delineated into H⋯C/ C⋯H contacts (17.6% contribution to the Hirshfeld surface) have a nearly symmetrical distribution of points, with the tips at de + di ∼2.54 Å. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. H⋯N/N⋯H of 2.0% and C⋯N/N⋯C of 1.2%.
6. Frontier molecular orbital analyses
The energy levels for the title compound were computed on basis of density functional theory (DFT) using the standard B3LYP functional and 6–311G++ (d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The HOMO (highest occupied molecular orbital) acts as an and the LUMO (lowest occupied molecular orbital) as an The energy levels, energy gaps, the (IP), (EA), the (μ), the (χ), chemical hardness (η), chemical softness (σ), and the index (ω) are given in Table 2. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5. If a molecule has a large HOMO–LUMO energy gap, it can be considered as hard with a low polarizability and a low chemical reactivity. Based on the numerical values collated in Table 2, the title compound can be classified as a hard material with a HOMO–LUMO energy gap of 4.2907 eV.
|
7. Molecular electrostatic potentials
The molecular electrostatic potential (MEP) map (Fig. 6) was calculated at the B3LYP/6-311G++ (d,p) level of theory. In the MEP diagram, the molecular electrostatic potential is in the range −7.122 e−2 to 7.122 e−2, and the different electrostatic potentials at the surface of the molecule are represented by different colours. Electrostatic potentials increase in the order of red < yellow < green < blue, and red indicates the electron-rich region and blue indicates the electron-deficient region. As shown in Fig. 6, the carbonyl groups are surrounded by negative charges, indicating some possible nucleophilic attack sites. In addition, the positive charge regions are located on the H atoms.
8. Molecular docking study
A molecular docking study was performed to determine possible intermolecular interactions between the COVID-19 main protease (PDB ID: 6LU7) and the title molecule. The et al., 2020). The molecular docking study was carried out using PyRx AutoDock Vina Wizard. The intermolecular interactions between the title compound and the target protein were visualized by using the Discovery Studio 2020 Client program (Biovia, 2017). The active sites of this target protein are residues LYS102, VAL104, GLN110, THR111, ASN151, ASP153 and SER158. Grid box sizes were determined as 25 × 25 × 25 Å3 and x, y, z centers: −10.865636, 12.146782, and 68.902236. The binding affinity energy values and their r.m.s.d. (root-mean-square deviation) values for nine different poses of the ligand docked onto receptor 6LU7 are listed in Table 3. According to the affinity binding energies, the best binding was determined with −6.3 (kcal mol−1) energy and nine active hydrogen-bonding sites. The 2D and 3D visuals of the intermolecular interactions for the best binding pose of the title compound docked into macromolecule 6LU7 can be seen in Fig. 7. Table 4 lists details of intermolecular hydrogen-bonding interactions between the title molecule and the macromolecule 6LU7. Additionally in Fig. 7, π–σ and alkyl interactions and their bonding distances are shown. The title molecule appears to be a good agent because of its affinity and ability to adhere to the active sites of the protein.
of COVID-19 main protease in a complex with an inhibitor N3 was taken from the RSCB Protein Data Bank (PDB ID: 6LU7; Jin
|
|
9. Synthesis and crystallization
A solution of 0.8 g (4.23 mmol) of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid in 30 ml of DMF was mixed with 1.5 g (8.46 mmol) bis(2-chloroethyl)amine hydrochloride, 2.33 g (16,92 mmol) K2CO3 and 0.13 g (0.423 mmol) tetra-n-butylammonium bromide (TBAB). The reaction mixture was stirred at 363 K for 9 h in DMF. After removal of formed salts by filtration, DMF was evaporated under reduced pressure, and the residue obtained was dissolved in dichloromethane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate/hexane (2/8 v/v)]. Colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution.
10. Refinement
Crystal data, data collection and structure . Hydrogen atoms were discernible from difference Fourier maps and were refined freely.
details are summarized in Table 5
|
Supporting information
CCDC reference: 2048734
https://doi.org/10.1107/S2056989020015960/wm5588sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020015960/wm5588Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020015960/wm5588Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C20H21N3O7 | F(000) = 872 |
Mr = 415.40 | Dx = 1.444 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 6.0686 (5) Å | Cell parameters from 9277 reflections |
b = 19.2791 (15) Å | θ = 3.6–72.3° |
c = 16.3795 (13) Å | µ = 0.93 mm−1 |
β = 94.185 (4)° | T = 150 K |
V = 1911.2 (3) Å3 | Column, colourless |
Z = 4 | 0.23 × 0.08 × 0.05 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3711 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 3072 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.042 |
ω scans | θmax = 72.3°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −7→6 |
k = −21→23 | |
14512 measured reflections | l = −20→18 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6581P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.22 e Å−3 |
3711 reflections | Δρmin = −0.19 e Å−3 |
356 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0026 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37759 (18) | 0.21379 (5) | 0.57549 (6) | 0.0312 (3) | |
O2 | 0.7629 (2) | 0.08767 (7) | 0.44369 (8) | 0.0493 (3) | |
O3 | 0.7633 (2) | 0.07204 (8) | 0.57987 (8) | 0.0506 (3) | |
O4 | 1.1362 (2) | 0.34395 (7) | 0.75827 (7) | 0.0530 (4) | |
O5 | 1.07647 (17) | 0.32859 (5) | 0.62287 (6) | 0.0297 (2) | |
O6 | 0.68920 (19) | 0.45136 (7) | 0.59441 (7) | 0.0426 (3) | |
O7 | 0.76696 (19) | 0.50976 (7) | 0.71190 (7) | 0.0410 (3) | |
N1 | 0.4550 (2) | 0.18848 (6) | 0.71212 (8) | 0.0307 (3) | |
N2 | 0.4425 (2) | 0.08645 (7) | 0.49889 (8) | 0.0292 (3) | |
N3 | 1.0450 (2) | 0.48184 (6) | 0.63804 (8) | 0.0284 (3) | |
C1 | 0.7992 (3) | 0.23409 (7) | 0.78094 (9) | 0.0275 (3) | |
C2 | 0.9438 (3) | 0.23392 (9) | 0.85269 (10) | 0.0355 (4) | |
C3 | 0.8913 (3) | 0.19732 (9) | 0.92045 (10) | 0.0410 (4) | |
C4 | 0.6930 (3) | 0.16004 (9) | 0.92016 (10) | 0.0409 (4) | |
C5 | 0.5501 (3) | 0.15931 (9) | 0.85188 (10) | 0.0367 (4) | |
C6 | 0.6007 (3) | 0.19519 (8) | 0.78029 (9) | 0.0295 (3) | |
C7 | 0.5068 (2) | 0.21938 (7) | 0.64584 (9) | 0.0273 (3) | |
C8 | 0.6967 (3) | 0.26216 (7) | 0.63962 (9) | 0.0270 (3) | |
C9 | 0.8405 (3) | 0.27009 (7) | 0.70638 (9) | 0.0263 (3) | |
C10 | 0.2011 (3) | 0.16344 (8) | 0.57237 (10) | 0.0316 (3) | |
C11 | 0.2925 (3) | 0.09066 (8) | 0.56362 (10) | 0.0296 (3) | |
C12 | 0.6613 (3) | 0.08141 (8) | 0.51449 (10) | 0.0343 (4) | |
C13 | 0.5965 (4) | 0.09582 (12) | 0.37669 (12) | 0.0521 (5) | |
C14 | 0.3811 (4) | 0.10463 (13) | 0.41522 (11) | 0.0503 (5) | |
C15 | 1.0341 (3) | 0.31748 (8) | 0.70093 (9) | 0.0296 (3) | |
C16 | 1.2533 (3) | 0.37628 (8) | 0.60659 (10) | 0.0307 (3) | |
C17 | 1.1579 (3) | 0.44476 (8) | 0.57658 (10) | 0.0305 (3) | |
C18 | 0.8247 (2) | 0.47778 (8) | 0.64262 (9) | 0.0293 (3) | |
C19 | 0.9624 (4) | 0.54073 (12) | 0.75294 (14) | 0.0536 (5) | |
C20 | 1.1552 (3) | 0.50923 (9) | 0.71305 (11) | 0.0368 (4) | |
H2 | 1.087 (3) | 0.2562 (10) | 0.8534 (10) | 0.035 (5)* | |
H3 | 0.995 (4) | 0.1973 (11) | 0.9668 (13) | 0.051 (6)* | |
H4 | 0.662 (3) | 0.1323 (10) | 0.9671 (12) | 0.044 (5)* | |
H5 | 0.409 (3) | 0.1320 (10) | 0.8502 (12) | 0.047 (5)* | |
H8 | 0.718 (3) | 0.2863 (9) | 0.5880 (11) | 0.031 (4)* | |
H10A | 0.104 (3) | 0.1775 (9) | 0.5222 (11) | 0.033 (4)* | |
H10B | 0.116 (3) | 0.1663 (9) | 0.6224 (11) | 0.034 (4)* | |
H11A | 0.158 (3) | 0.0587 (9) | 0.5522 (11) | 0.037 (5)* | |
H11B | 0.378 (3) | 0.0759 (9) | 0.6148 (11) | 0.034 (5)* | |
H13A | 0.593 (5) | 0.0502 (15) | 0.3426 (16) | 0.084 (8)* | |
H13B | 0.637 (5) | 0.1344 (15) | 0.3451 (17) | 0.087 (9)* | |
H14A | 0.267 (5) | 0.0739 (14) | 0.3906 (16) | 0.075 (8)* | |
H14B | 0.331 (5) | 0.1581 (17) | 0.4123 (17) | 0.099 (10)* | |
H16A | 1.355 (3) | 0.3820 (9) | 0.6562 (11) | 0.031 (4)* | |
H16B | 1.332 (3) | 0.3535 (9) | 0.5624 (11) | 0.035 (5)* | |
H17A | 1.281 (3) | 0.4738 (10) | 0.5615 (12) | 0.044 (5)* | |
H17B | 1.047 (3) | 0.4375 (9) | 0.5297 (11) | 0.029 (4)* | |
H19A | 0.942 (5) | 0.5932 (16) | 0.7433 (17) | 0.092 (9)* | |
H19B | 0.962 (4) | 0.5331 (13) | 0.8072 (17) | 0.073 (8)* | |
H20A | 1.268 (4) | 0.5440 (13) | 0.6998 (15) | 0.068 (7)* | |
H20B | 1.224 (3) | 0.4711 (11) | 0.7450 (12) | 0.048 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0313 (6) | 0.0295 (5) | 0.0318 (6) | −0.0034 (4) | −0.0036 (4) | 0.0011 (4) |
O2 | 0.0420 (7) | 0.0586 (8) | 0.0491 (7) | −0.0029 (6) | 0.0164 (6) | −0.0012 (6) |
O3 | 0.0275 (6) | 0.0764 (10) | 0.0462 (7) | 0.0044 (6) | −0.0090 (5) | −0.0006 (7) |
O4 | 0.0718 (9) | 0.0576 (8) | 0.0280 (6) | −0.0357 (7) | −0.0071 (6) | 0.0048 (6) |
O5 | 0.0317 (6) | 0.0320 (5) | 0.0259 (5) | −0.0065 (4) | 0.0062 (4) | 0.0000 (4) |
O6 | 0.0255 (6) | 0.0581 (8) | 0.0438 (7) | −0.0046 (5) | −0.0020 (5) | −0.0064 (6) |
O7 | 0.0361 (7) | 0.0504 (7) | 0.0372 (6) | 0.0060 (5) | 0.0066 (5) | −0.0059 (5) |
N1 | 0.0342 (7) | 0.0287 (6) | 0.0296 (7) | −0.0023 (5) | 0.0055 (5) | −0.0018 (5) |
N2 | 0.0276 (7) | 0.0309 (7) | 0.0284 (6) | 0.0029 (5) | −0.0026 (5) | 0.0007 (5) |
N3 | 0.0232 (6) | 0.0301 (6) | 0.0316 (7) | −0.0013 (5) | −0.0009 (5) | −0.0002 (5) |
C1 | 0.0368 (8) | 0.0227 (7) | 0.0233 (7) | −0.0003 (6) | 0.0048 (6) | −0.0011 (5) |
C2 | 0.0455 (10) | 0.0336 (8) | 0.0269 (8) | −0.0060 (7) | 0.0000 (7) | 0.0012 (6) |
C3 | 0.0607 (12) | 0.0382 (9) | 0.0234 (8) | −0.0038 (8) | −0.0020 (7) | 0.0022 (7) |
C4 | 0.0638 (12) | 0.0347 (8) | 0.0252 (8) | −0.0061 (8) | 0.0103 (8) | 0.0022 (7) |
C5 | 0.0480 (10) | 0.0327 (8) | 0.0307 (8) | −0.0067 (7) | 0.0118 (7) | −0.0007 (6) |
C6 | 0.0370 (9) | 0.0257 (7) | 0.0266 (7) | 0.0001 (6) | 0.0071 (6) | −0.0018 (6) |
C7 | 0.0288 (8) | 0.0244 (7) | 0.0284 (7) | 0.0020 (6) | 0.0005 (6) | −0.0017 (6) |
C8 | 0.0315 (8) | 0.0245 (7) | 0.0251 (7) | 0.0019 (6) | 0.0035 (6) | 0.0012 (6) |
C9 | 0.0326 (8) | 0.0218 (7) | 0.0250 (7) | −0.0002 (6) | 0.0047 (6) | −0.0004 (5) |
C10 | 0.0252 (8) | 0.0298 (8) | 0.0389 (9) | −0.0008 (6) | −0.0021 (7) | −0.0017 (7) |
C11 | 0.0261 (8) | 0.0292 (8) | 0.0331 (8) | −0.0003 (6) | −0.0001 (6) | 0.0016 (6) |
C12 | 0.0285 (8) | 0.0347 (8) | 0.0399 (9) | −0.0005 (6) | 0.0029 (7) | −0.0017 (7) |
C13 | 0.0700 (14) | 0.0514 (12) | 0.0361 (10) | −0.0016 (10) | 0.0106 (9) | 0.0036 (9) |
C14 | 0.0582 (13) | 0.0632 (13) | 0.0283 (9) | 0.0099 (10) | −0.0041 (8) | 0.0066 (8) |
C15 | 0.0362 (9) | 0.0264 (7) | 0.0262 (7) | −0.0026 (6) | 0.0029 (6) | 0.0010 (6) |
C16 | 0.0258 (8) | 0.0319 (8) | 0.0351 (8) | −0.0035 (6) | 0.0071 (6) | 0.0039 (6) |
C17 | 0.0263 (8) | 0.0339 (8) | 0.0321 (8) | −0.0012 (6) | 0.0062 (6) | 0.0055 (6) |
C18 | 0.0249 (8) | 0.0328 (8) | 0.0303 (8) | 0.0008 (6) | 0.0026 (6) | 0.0033 (6) |
C19 | 0.0502 (12) | 0.0574 (13) | 0.0509 (12) | 0.0130 (10) | −0.0111 (9) | −0.0218 (10) |
C20 | 0.0340 (9) | 0.0346 (9) | 0.0406 (9) | −0.0054 (7) | −0.0059 (7) | −0.0023 (7) |
O1—C7 | 1.3499 (18) | C4—H4 | 0.97 (2) |
O1—C10 | 1.4437 (19) | C5—C6 | 1.414 (2) |
O2—C12 | 1.358 (2) | C5—H5 | 1.00 (2) |
O2—C13 | 1.445 (3) | C7—C8 | 1.427 (2) |
O3—C12 | 1.211 (2) | C8—C9 | 1.357 (2) |
O4—C15 | 1.2006 (19) | C8—H8 | 0.982 (18) |
O5—C15 | 1.3396 (18) | C9—C15 | 1.496 (2) |
O5—C16 | 1.4526 (18) | C10—C11 | 1.519 (2) |
O6—C18 | 1.2100 (19) | C10—H10A | 1.013 (18) |
O7—C18 | 1.3596 (19) | C10—H10B | 1.001 (19) |
O7—C19 | 1.449 (2) | C11—H11A | 1.026 (19) |
N1—C7 | 1.2969 (19) | C11—H11B | 0.994 (19) |
N1—C6 | 1.379 (2) | C13—C14 | 1.502 (3) |
N2—C12 | 1.338 (2) | C13—H13A | 1.04 (3) |
N2—C14 | 1.437 (2) | C13—H13B | 0.95 (3) |
N2—C11 | 1.449 (2) | C14—H14A | 0.98 (3) |
N3—C18 | 1.347 (2) | C14—H14B | 1.08 (3) |
N3—C17 | 1.447 (2) | C16—C17 | 1.509 (2) |
N3—C20 | 1.455 (2) | C16—H16A | 0.992 (18) |
C1—C2 | 1.415 (2) | C16—H16B | 0.997 (18) |
C1—C6 | 1.418 (2) | C17—H17A | 0.98 (2) |
C1—C9 | 1.443 (2) | C17—H17B | 0.992 (18) |
C2—C3 | 1.372 (2) | C19—C20 | 1.509 (3) |
C2—H2 | 0.969 (19) | C19—H19A | 1.03 (3) |
C3—C4 | 1.401 (3) | C19—H19B | 0.90 (3) |
C3—H3 | 0.95 (2) | C20—H20A | 0.99 (3) |
C4—C5 | 1.364 (3) | C20—H20B | 0.98 (2) |
C7—O1—C10 | 117.84 (12) | C10—C11—H11B | 110.9 (11) |
C12—O2—C13 | 108.82 (14) | H11A—C11—H11B | 109.8 (15) |
C15—O5—C16 | 118.18 (12) | O3—C12—N2 | 128.04 (16) |
C18—O7—C19 | 108.80 (13) | O3—C12—O2 | 122.28 (15) |
C7—N1—C6 | 117.04 (13) | N2—C12—O2 | 109.68 (14) |
C12—N2—C14 | 112.61 (15) | O2—C13—C14 | 105.94 (15) |
C12—N2—C11 | 122.16 (13) | O2—C13—H13A | 107.6 (15) |
C14—N2—C11 | 123.44 (14) | C14—C13—H13A | 109.5 (16) |
C18—N3—C17 | 122.17 (13) | O2—C13—H13B | 107.9 (17) |
C18—N3—C20 | 111.80 (13) | C14—C13—H13B | 114.0 (18) |
C17—N3—C20 | 123.69 (13) | H13A—C13—H13B | 112 (2) |
C2—C1—C6 | 118.71 (14) | N2—C14—C13 | 101.55 (16) |
C2—C1—C9 | 124.65 (14) | N2—C14—H14A | 111.9 (15) |
C6—C1—C9 | 116.63 (14) | C13—C14—H14A | 111.7 (16) |
C3—C2—C1 | 120.43 (16) | N2—C14—H14B | 109.2 (15) |
C3—C2—H2 | 118.6 (11) | C13—C14—H14B | 110.1 (16) |
C1—C2—H2 | 120.8 (10) | H14A—C14—H14B | 112 (2) |
C2—C3—C4 | 120.73 (17) | O4—C15—O5 | 123.69 (14) |
C2—C3—H3 | 117.8 (13) | O4—C15—C9 | 125.14 (14) |
C4—C3—H3 | 121.5 (13) | O5—C15—C9 | 111.15 (13) |
C5—C4—C3 | 120.16 (15) | O5—C16—C17 | 110.03 (13) |
C5—C4—H4 | 119.7 (12) | O5—C16—H16A | 110.2 (10) |
C3—C4—H4 | 120.0 (12) | C17—C16—H16A | 111.8 (10) |
C4—C5—C6 | 120.75 (16) | O5—C16—H16B | 104.6 (11) |
C4—C5—H5 | 121.2 (11) | C17—C16—H16B | 110.0 (10) |
C6—C5—H5 | 118.0 (11) | H16A—C16—H16B | 109.9 (15) |
N1—C6—C5 | 117.43 (15) | N3—C17—C16 | 113.29 (13) |
N1—C6—C1 | 123.35 (13) | N3—C17—H17A | 107.6 (12) |
C5—C6—C1 | 119.20 (15) | C16—C17—H17A | 107.4 (12) |
N1—C7—O1 | 121.12 (14) | N3—C17—H17B | 106.3 (10) |
N1—C7—C8 | 124.86 (14) | C16—C17—H17B | 110.5 (10) |
O1—C7—C8 | 114.01 (13) | H17A—C17—H17B | 111.9 (15) |
C9—C8—C7 | 118.89 (14) | O6—C18—N3 | 128.17 (15) |
C9—C8—H8 | 121.5 (10) | O6—C18—O7 | 122.10 (14) |
C7—C8—H8 | 119.6 (10) | N3—C18—O7 | 109.72 (13) |
C8—C9—C1 | 119.10 (14) | O7—C19—C20 | 105.53 (14) |
C8—C9—C15 | 118.85 (13) | O7—C19—H19A | 104.5 (16) |
C1—C9—C15 | 122.03 (13) | C20—C19—H19A | 114.5 (17) |
O1—C10—C11 | 110.45 (12) | O7—C19—H19B | 109.2 (17) |
O1—C10—H10A | 103.6 (10) | C20—C19—H19B | 114.8 (17) |
C11—C10—H10A | 111.5 (10) | H19A—C19—H19B | 108 (2) |
O1—C10—H10B | 111.0 (10) | N3—C20—C19 | 100.86 (14) |
C11—C10—H10B | 110.0 (10) | N3—C20—H20A | 110.0 (14) |
H10A—C10—H10B | 110.3 (14) | C19—C20—H20A | 113.2 (14) |
N2—C11—C10 | 111.95 (13) | N3—C20—H20B | 109.4 (12) |
N2—C11—H11A | 111.4 (10) | C19—C20—H20B | 112.7 (12) |
C10—C11—H11A | 106.3 (10) | H20A—C20—H20B | 110.3 (18) |
N2—C11—H11B | 106.5 (11) | ||
C6—C1—C2—C3 | −0.7 (2) | C11—N2—C12—O3 | 8.8 (3) |
C9—C1—C2—C3 | −179.17 (16) | C14—N2—C12—O2 | −6.6 (2) |
C1—C2—C3—C4 | −0.6 (3) | C11—N2—C12—O2 | −171.89 (13) |
C2—C3—C4—C5 | 0.5 (3) | C13—O2—C12—O3 | 177.93 (17) |
C3—C4—C5—C6 | 0.8 (3) | C13—O2—C12—N2 | −1.40 (19) |
C7—N1—C6—C5 | −177.44 (14) | C12—O2—C13—C14 | 8.3 (2) |
C7—N1—C6—C1 | 0.5 (2) | C12—N2—C14—C13 | 11.2 (2) |
C4—C5—C6—N1 | 175.98 (15) | C11—N2—C14—C13 | 176.20 (15) |
C4—C5—C6—C1 | −2.1 (2) | O2—C13—C14—N2 | −11.2 (2) |
C2—C1—C6—N1 | −175.98 (14) | C16—O5—C15—O4 | −1.1 (2) |
C9—C1—C6—N1 | 2.7 (2) | C16—O5—C15—C9 | 177.08 (12) |
C2—C1—C6—C5 | 2.0 (2) | C8—C9—C15—O4 | 158.27 (17) |
C9—C1—C6—C5 | −179.41 (13) | C1—C9—C15—O4 | −20.1 (2) |
C6—N1—C7—O1 | 177.84 (13) | C8—C9—C15—O5 | −19.91 (19) |
C6—N1—C7—C8 | −3.2 (2) | C1—C9—C15—O5 | 161.75 (13) |
C10—O1—C7—N1 | −10.2 (2) | C15—O5—C16—C17 | −103.49 (15) |
C10—O1—C7—C8 | 170.70 (13) | C18—N3—C17—C16 | −95.85 (17) |
N1—C7—C8—C9 | 2.4 (2) | C20—N3—C17—C16 | 65.35 (19) |
O1—C7—C8—C9 | −178.56 (13) | O5—C16—C17—N3 | 66.50 (17) |
C7—C8—C9—C1 | 1.1 (2) | C17—N3—C18—O6 | −9.0 (3) |
C7—C8—C9—C15 | −177.26 (13) | C20—N3—C18—O6 | −172.23 (16) |
C2—C1—C9—C8 | 175.18 (15) | C17—N3—C18—O7 | 171.83 (13) |
C6—C1—C9—C8 | −3.4 (2) | C20—N3—C18—O7 | 8.61 (18) |
C2—C1—C9—C15 | −6.5 (2) | C19—O7—C18—O6 | −175.41 (17) |
C6—C1—C9—C15 | 174.97 (13) | C19—O7—C18—N3 | 3.81 (19) |
C7—O1—C10—C11 | −75.87 (16) | C18—O7—C19—C20 | −13.9 (2) |
C12—N2—C11—C10 | 105.84 (17) | C18—N3—C20—C19 | −16.32 (19) |
C14—N2—C11—C10 | −57.8 (2) | C17—N3—C20—C19 | −179.25 (16) |
O1—C10—C11—N2 | −48.92 (18) | O7—C19—C20—N3 | 17.5 (2) |
C14—N2—C12—O3 | 174.08 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4 | 0.969 (19) | 2.335 (18) | 2.919 (2) | 118.1 (13) |
C20—H20B···O4 | 0.98 (2) | 2.52 (2) | 3.275 (2) | 133.7 (15) |
C11—H11A···O3i | 1.026 (19) | 2.486 (19) | 3.262 (2) | 131.8 (13) |
C17—H17A···O6ii | 0.98 (2) | 2.53 (2) | 3.219 (2) | 127.0 (15) |
C19—H19B···O3iii | 0.90 (3) | 2.51 (3) | 3.157 (2) | 129 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2. |
FMO | Energy |
E(HOMO) | -6.2102 |
E(LUMO) | -1.9195 |
Energy gap (ΔE) | 4.2907 |
Ionization potential (IP) | 6.2102 |
Electron affinity (EA) | 1.9195 |
Chemical potential (µ) | –4.0649 |
Electronegativity (χ) | 4.0649 |
Chemical hardness (η) | 2.1454 |
Chemical softness (σ) | 0.2331 |
Electrophilicity index (ω) | 3.8509 |
Ligand | Affinity (kcal mol-1) | r.m.s.d./ub | r.m.s.d./Ib |
6LU7_ligand | -6.3 | 0.0 | 0.0 |
6LU7_ligand | -6.1 | 4.8 | 2.164 |
6LU7_ligand | -5.8 | 20.521 | 17.722 |
6LU7_ligand | -5.7 | 20.874 | 18.477 |
6LU7_ligand | -5.7 | 20.28 | 17.737 |
6LU7_ligand | -5.6 | 21.789 | 19.301 |
6LU7_ligand | -5.6 | 20.948 | 18.265 |
6LU7_ligand | -5.5 | 21.63 | 19.349 |
6LU7_ligand | -5.4 | 21.972 | 19.381 |
Residue group | Ligand group | Distance | Hydrogen bond |
NH3 group in LYS102 | O atom in ethyl acetate | 2.55 | Conventional |
NH2 group in GLN110 | O atom in oxazolidine | 2.55 | Conventional |
NH group in THR111 | O atom in oxazolidine | 1.92 | Conventional |
OH group in THR111 | O atom in oxazolidine | 2.28 | Conventional |
O atom in THR111 | CH2 group in 1-methoxypropane | 3.55 | Carbon |
NH2 group in ASN151 | O atom in 1-methoxypropane | 2.71 | Conventional |
O atom in ASP153 | CH2 group in ethyl acetate | 2.79 | Carbon |
OH group in SER158 | O atom in ethyl acetate | 2.12 | Conventional |
OH group in SER158 | O atom in oxazolidine | 2.60 | Conventional |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Biovia (2017). Discovery studio visualizer. Vol. 936. Biovia, San Diego, CA, USA. Google Scholar
Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940. CSD CrossRef Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117. Web of Science CrossRef CAS PubMed Google Scholar
Douche, D., Elmsellem, H., Anouar, E. H., Guo, L., Hafez, B., Tüzün, B., El Louzi, A., Bougrin, K., Karrouchi, K. & Himmi, B. (2020). J. Mol. Liq. 308, 113042. CrossRef Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gao, J., Tian, Z. & Yang, X. (2020). Biosci. Trends, 14, 72-73. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47. Web of Science CrossRef CAS PubMed Google Scholar
Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289–293. Web of Science CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853. Web of Science CrossRef PubMed CAS Google Scholar
Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122–128. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514–o515. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.