research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­­oxy]quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Heterocyclic Organic Chemistry URAC 21, Pole of Competence, Pharmacochemistry, Av Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V, University, Rabat, Morocco, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and eLaboratory of analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: cemle28baydere@hotmail.com, abdulmalikabudunia@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 November 2020; accepted 7 December 2020; online 1 January 2021)

In the mol­ecular structure of the title compound, C20H21N3O7, the quinoline ring system is slightly bent, with a dihedral angle between the phenyl and the pyridine rings of 3.47 (7)°. In the crystal, corrugated layers of mol­ecules extending along the ab plane are generated by C—H⋯O hydrogen bonds. The inter­molecular inter­actions were qu­anti­fied by Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are from H⋯H (42.3%), H⋯O/O⋯H (34.5%) and H⋯C/ C⋯H (17.6%) contacts. Mol­ecular orbital calculations providing electron-density plots of the HOMO and LUMO as well as mol­ecular electrostatic potentials (MEP) were computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. A mol­ecular docking study between the title mol­ecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a good agent because of its affinity and ability to adhere to the active sites of the protein.

1. Chemical context

Quinoline and its derivatives have attracted the inter­est of synthetic and biological chemists because of their inter­esting chemical and pharmacological properties (Chu et al., 2019[Chu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101-117.]), including anti­bacterial (Bouzian et al., 2020[Bouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.]), anti­cancer (Tang et al., 2018[Tang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201-213.]), anti­tubercular (Xu et al., 2017[Xu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429-440.]), anti-COVID19 (Gao et al., 2020[Gao, J., Tian, Z. & Yang, X. (2020). Biosci. Trends, 14, 72-73.]), anti­malarial (Hu et al., 2017[Hu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22-47.]), anti­leishmanial (Palit et al., 2009[Palit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845-853.]) and anti-inflammatory (Pinz et al., 2016[Pinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122-128.]) activities. Furthermore, many studies have shown that quinoline derivatives are good corrosion inhibitors (Douche et al. 2020[Douche, D., Elmsellem, H., Anouar, E. H., Guo, L., Hafez, B., Tüzün, B., El Louzi, A., Bougrin, K., Karrouchi, K. & Himmi, B. (2020). J. Mol. Liq. 308, 113042.]).

[Scheme 1]

In a continuation of our research work devoted to the syntheses and crystal structures of quinoline derivatives (Bouzian et al., 2019a[Bouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980-983.]), we report herein the mol­ecular and crystal structures, Hirshfeld surface analysis, DFT and mol­ecular docking investigation of 2-(2-oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­oxy]quinoline-4-carboxyl­ate.

2. Structural commentary

In the title mol­ecule (Fig. 1[link]), the phenyl and pyridine rings of the quinoline system are slightly bent, with a dihedral angle between their mean planes of 3.47 (7)°. The oxazolidine ring (N2/O2/C12–C14) adopts an envelope conformation, with puckering parameters of Q(2) = 0.112 (2) Å and φ(2) = 115.3 (10)°. The C14 atom is at the envelope flap position, and it deviates from the least-square plane through the remaining four atoms by 0.070 (2) Å. The other oxazolidine ring (N3/O7/C18–C20) has a twisted conformation along the C20—C19 bond, with puckering parameters Q(2) = 0.1732 (18) Å and φ(2) = 299.7 (6)°. The dihedral angles between the mean planes of the oxazolidine rings and the quinoline ring systems are 38.04 (9)° for (N2/O2/C12–C14) and 57.34 (8)° for (N3/O7/C18–C20). The mol­ecular conformation is stabilized by an intra­molecular C20—H20B⋯O4 contact (Fig. 1[link], Table 1[link]), producing an S(8) ring motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4 0.969 (19) 2.335 (18) 2.919 (2) 118.1 (13)
C20—H20B⋯O4 0.98 (2) 2.52 (2) 3.275 (2) 133.7 (15)
C11—H11A⋯O3i 1.026 (19) 2.486 (19) 3.262 (2) 131.8 (13)
C17—H17A⋯O6ii 0.98 (2) 2.53 (2) 3.219 (2) 127.0 (15)
C19—H19B⋯O3iii 0.90 (3) 2.51 (3) 3.157 (2) 129 (2)
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is indicated by a dashed line.

3. Supra­molecular features

In the crystal, C11—H11A⋯O3i and C17—H17A⋯O6ii hydrogen bonds between methyl­ene groups and carbonyl O atoms as well as C19—H19B⋯O3iii hydrogen bonds lead to the formation of corrugated layers extending parallel to (001) (Fig. 2[link], Table 1[link]). Notable C—H⋯π and ππ inter­actions are not observed.

[Figure 2]
Figure 2
The crystal packing of the title compound, with C11—H11A⋯O3i, C17—H17A⋯O6ii and C19—H19B⋯O3iii inter­actions shown as black, blue and green dashed lines, respectively.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ethyl quinoline-4-carboxyl­ate as the main skeleton revealed the presence of ten structures with different substituents on the quinoline ring. The three structures most similar to the title compound are ethyl 2-(2,4,5-tri­meth­oxy­phen­yl)quinoline-4-carboxyl­ate (OJAGUD; Shrungesh Kumar et al., 2015[Shrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514-o515.]), ethyl 2-(3,5-di­fluoro­phen­yl)quinoline-4-carboxyl­ate (UHUHAI; Sunitha et al., 2015[Sunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341-o342.]) and ethyl 6-chloro-2-eth­oxy­quinoline-4-carboxyl­ate (XOFGAD; Bouzian et al., 2019b[Bouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912-916.]). In OJAGUD, the dihedral angle between the quinoline ring system (r.m.s. deviation = 0.028 Å) and the tri­meth­oxy­benzene ring is 43.38 (5)°. A short intra­molecular C—H⋯O contact closes an S(6) ring. In the crystal structure, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R2 2(6) loops. In UHUHAI, the two rings of the quinoline system have a dihedral angle of 2.28 (8)° between their mean planes. The plane of the attached benzene ring is inclined to the plane of the quinoline system by 7.65 (7)°. There is a short intra­molecular C—H⋯O contact involving the carbonyl group. In XOFGAD, the mol­ecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-eth­oxy­quinoline mean plane. There is an intra­molecular C— H⋯O hydrogen bond forming an S(6) graph-set motif. Weak inter­molecular ππ inter­actions are observed in this crystal structure.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to qu­antify the inter­molecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional dnorm surface plotted over a fixed colour scale of −0.1538 (red) to 1.1337 (blue) a.u. (Fig. 3[link]a). The pale-red spots symbolize short contacts and negative dnorm values on the surface and correspond to the C—H⋯O inter­actions (Table 1[link]). The shape-index map of the title mol­ecule was generated in the range −1 to 1 Å (Fig. 3[link]b). The convex blue regions symbolize hydrogen-donor groups and the concave red regions hydrogen-acceptor groups. The absence of adjacent red and blue triangles in the shape-index map, which generally indicate ππ inter­actions, reveals that this kind of inter­action is not present in the title compound. The curvedness map was generated in the range −4.0 to 4.0 Å (Fig. 3[link]c). It shows large regions of green with a relatively flat (i.e. planar) surface area while the blue regions demonstrate areas of curvature. The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]a, with those delineated into H⋯H, H⋯O/O⋯H, H⋯C/ C⋯H, H⋯N/N⋯H and C⋯N/N⋯C contacts associated with their relative contributions to the Hirshfeld surface given in Fig. 4[link]af, respectively. The most important inter­molecular inter­actions are H⋯H, contributing 42.3% to the overall crystal packing. H⋯O/O⋯H contacts arising from inter­molecular C—H⋯O hydrogen bonding (Table 1[link]) make a 34.5% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region de + di ∼2.35 Å (Fig. 4[link]c). The pair of wings in the fingerprint plot delineated into H⋯C/ C⋯H contacts (17.6% contribution to the Hirshfeld surface) have a nearly symmetrical distribution of points, with the tips at de + di ∼2.54 Å. The contributions of the other contacts to the Hirshfeld surface are negligible, i.e. H⋯N/N⋯H of 2.0% and C⋯N/N⋯C of 1.2%.

[Figure 3]
Figure 3
(a) dnorm mapped on the Hirshfeld surface to visualize the inter­molecular inter­actions, (b) shape-index map of the title compound and (c) curvedness map of the title compound using a range from −4 to 4 Å.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/ C⋯H, (e) H⋯N/N⋯H and (f) C⋯N/N⋯C inter­actions.

6. Frontier mol­ecular orbital analyses

The energy levels for the title compound were computed on basis of density functional theory (DFT) using the standard B3LYP functional and 6–311G++ (d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA.]). The HOMO (highest occupied mol­ecular orbital) acts as an electron donor and the LUMO (lowest occupied mol­ecular orbital) as an electron acceptor. The energy levels, energy gaps, the ionization potential (IP), electron affinity (EA), the chemical potential (μ), the electronegativity (χ), chemical hardness (η), chemical softness (σ), and the electrophilicity index (ω) are given in Table 2[link]. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 5[link]. If a mol­ecule has a large HOMO–LUMO energy gap, it can be considered as hard with a low polarizability and a low chemical reactivity. Based on the numerical values collated in Table 2[link], the title compound can be classified as a hard material with a HOMO–LUMO energy gap of 4.2907 eV.

Table 2
Calculated frontier mol­ecular orbital energies (eV)

FMO Energy
E(HOMO) −6.2102
E(LUMO) −1.9195
Energy gap (ΔE) 4.2907
Ionization potential (IP) 6.2102
Electron affinity (EA) 1.9195
Chemical potential (μ) –4.0649
Electronegativity (χ) 4.0649
Chemical hardness (η) 2.1454
Chemical softness (σ) 0.2331
Electrophilicity index (ω) 3.8509
[Figure 5]
Figure 5
Mol­ecular orbital energy levels of the title compound.

7. Mol­ecular electrostatic potentials

The mol­ecular electrostatic potential (MEP) map (Fig. 6[link]) was calculated at the B3LYP/6-311G++ (d,p) level of theory. In the MEP diagram, the mol­ecular electrostatic potential is in the range −7.122 e−2 to 7.122 e−2, and the different electrostatic potentials at the surface of the mol­ecule are represented by different colours. Electrostatic potentials increase in the order of red < yellow < green < blue, and red indicates the electron-rich region and blue indicates the electron-deficient region. As shown in Fig. 6[link], the carbonyl groups are surrounded by negative charges, indicating some possible nucleophilic attack sites. In addition, the positive charge regions are located on the H atoms.

[Figure 6]
Figure 6
Theoretical mol­ecular electrostatic potential surface calculated at the DFT/B3LYP/6–311 G++ (d,p) basis set level.

8. Mol­ecular docking study

A mol­ecular docking study was performed to determine possible inter­molecular inter­actions between the COVID-19 main protease (PDB ID: 6LU7) and the title mol­ecule. The crystal structure of COVID-19 main protease in a complex with an inhibitor N3 was taken from the RSCB Protein Data Bank (PDB ID: 6LU7; Jin et al., 2020[Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289-293.]). The mol­ecular docking study was carried out using PyRx AutoDock Vina Wizard. The inter­molecular inter­actions between the title compound and the target protein were visualized by using the Discovery Studio 2020 Client program (Biovia, 2017[Biovia (2017). Discovery studio visualizer. Vol. 936. Biovia, San Diego, CA, USA.]). The active sites of this target protein are residues LYS102, VAL104, GLN110, THR111, ASN151, ASP153 and SER158. Grid box sizes were determined as 25 × 25 × 25 Å3 and x, y, z centers: −10.865636, 12.146782, and 68.902236. The binding affinity energy values and their r.m.s.d. (root-mean-square deviation) values for nine different poses of the ligand docked onto receptor 6LU7 are listed in Table 3[link]. According to the affinity binding energies, the best binding was determined with −6.3 (kcal mol−1) energy and nine active hydrogen-bonding sites. The 2D and 3D visuals of the inter­molecular inter­actions for the best binding pose of the title compound docked into macromolecule 6LU7 can be seen in Fig. 7[link]. Table 4[link] lists details of inter­molecular hydrogen-bonding inter­actions between the title mol­ecule and the macromolecule 6LU7. Additionally in Fig. 7[link], πσ and alkyl inter­actions and their bonding distances are shown. The title mol­ecule appears to be a good agent because of its affinity and ability to adhere to the active sites of the protein.

Table 3
The list of binding affinities and r.m.s.d. values of different sites in protein (6LU7) of the title compound

Ligand Affinity (kcal mol−1) r.m.s.d./ub r.m.s.d./Ib
6LU7_ligand −6.3 0.0 0.0
6LU7_ligand −6.1 4.8 2.164
6LU7_ligand −5.8 20.521 17.722
6LU7_ligand −5.7 20.874 18.477
6LU7_ligand −5.7 20.28 17.737
6LU7_ligand −5.6 21.789 19.301
6LU7_ligand −5.6 20.948 18.265
6LU7_ligand −5.5 21.63 19.349
6LU7_ligand −5.4 21.972 19.381

Table 4
The inter­molecular hydrogen-bonding inter­actions with the distances (Å) between the title mol­ecule and the macromolecule 6LU7

Residue group Ligand group Distance Hydrogen bond
NH3 group in LYS102 O atom in ethyl acetate 2.55 Conventional
NH2 group in GLN110 O atom in oxazolidine 2.55 Conventional
NH group in THR111 O atom in oxazolidine 1.92 Conventional
OH group in THR111 O atom in oxazolidine 2.28 Conventional
O atom in THR111 CH2 group in 1-meth­oxy­propane 3.55 Carbon
NH2 group in ASN151 O atom in 1-meth­oxy­propane 2.71 Conventional
O atom in ASP153 CH2 group in ethyl acetate 2.79 Carbon
OH group in SER158 O atom in ethyl acetate 2.12 Conventional
OH group in SER158 O atom in oxazolidine 2.60 Conventional
[Figure 7]
Figure 7
Three- and two-dimensional visuals of the inter­molecular inter­actions for the best binding pose of the title compound docking with the residues of macromolecule 6LU7.

9. Synthesis and crystallization

A solution of 0.8 g (4.23 mmol) of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid in 30 ml of DMF was mixed with 1.5 g (8.46 mmol) bis­(2-chloro­eth­yl)amine hydro­chloride, 2.33 g (16,92 mmol) K2CO3 and 0.13 g (0.423 mmol) tetra-n-butyl­ammonium bromide (TBAB). The reaction mixture was stirred at 363 K for 9 h in DMF. After removal of formed salts by filtration, DMF was evaporated under reduced pressure, and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate/hexane (2/8 v/v)]. Colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms were discernible from difference Fourier maps and were refined freely.

Table 5
Experimental details

Crystal data
Chemical formula C20H21N3O7
Mr 415.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.0686 (5), 19.2791 (15), 16.3795 (13)
β (°) 94.185 (4)
V3) 1911.2 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.93
Crystal size (mm) 0.23 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 14512, 3711, 3072
Rint 0.042
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.05
No. of reflections 3711
No. of parameters 356
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(2-Oxo-1,3-oxazolidin-3-yl)ethyl 2-[2-(2-oxo-1,3-oxazolidin-3-yl)ethoxy]quinoline-4-carboxylate top
Crystal data top
C20H21N3O7F(000) = 872
Mr = 415.40Dx = 1.444 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 6.0686 (5) ÅCell parameters from 9277 reflections
b = 19.2791 (15) Åθ = 3.6–72.3°
c = 16.3795 (13) ŵ = 0.93 mm1
β = 94.185 (4)°T = 150 K
V = 1911.2 (3) Å3Column, colourless
Z = 40.23 × 0.08 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3711 independent reflections
Radiation source: INCOATEC IµS micro–focus source3072 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.042
ω scansθmax = 72.3°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 76
k = 2123
14512 measured reflectionsl = 2018
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6581P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
3711 reflectionsΔρmin = 0.19 e Å3
356 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0026 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37759 (18)0.21379 (5)0.57549 (6)0.0312 (3)
O20.7629 (2)0.08767 (7)0.44369 (8)0.0493 (3)
O30.7633 (2)0.07204 (8)0.57987 (8)0.0506 (3)
O41.1362 (2)0.34395 (7)0.75827 (7)0.0530 (4)
O51.07647 (17)0.32859 (5)0.62287 (6)0.0297 (2)
O60.68920 (19)0.45136 (7)0.59441 (7)0.0426 (3)
O70.76696 (19)0.50976 (7)0.71190 (7)0.0410 (3)
N10.4550 (2)0.18848 (6)0.71212 (8)0.0307 (3)
N20.4425 (2)0.08645 (7)0.49889 (8)0.0292 (3)
N31.0450 (2)0.48184 (6)0.63804 (8)0.0284 (3)
C10.7992 (3)0.23409 (7)0.78094 (9)0.0275 (3)
C20.9438 (3)0.23392 (9)0.85269 (10)0.0355 (4)
C30.8913 (3)0.19732 (9)0.92045 (10)0.0410 (4)
C40.6930 (3)0.16004 (9)0.92016 (10)0.0409 (4)
C50.5501 (3)0.15931 (9)0.85188 (10)0.0367 (4)
C60.6007 (3)0.19519 (8)0.78029 (9)0.0295 (3)
C70.5068 (2)0.21938 (7)0.64584 (9)0.0273 (3)
C80.6967 (3)0.26216 (7)0.63962 (9)0.0270 (3)
C90.8405 (3)0.27009 (7)0.70638 (9)0.0263 (3)
C100.2011 (3)0.16344 (8)0.57237 (10)0.0316 (3)
C110.2925 (3)0.09066 (8)0.56362 (10)0.0296 (3)
C120.6613 (3)0.08141 (8)0.51449 (10)0.0343 (4)
C130.5965 (4)0.09582 (12)0.37669 (12)0.0521 (5)
C140.3811 (4)0.10463 (13)0.41522 (11)0.0503 (5)
C151.0341 (3)0.31748 (8)0.70093 (9)0.0296 (3)
C161.2533 (3)0.37628 (8)0.60659 (10)0.0307 (3)
C171.1579 (3)0.44476 (8)0.57658 (10)0.0305 (3)
C180.8247 (2)0.47778 (8)0.64262 (9)0.0293 (3)
C190.9624 (4)0.54073 (12)0.75294 (14)0.0536 (5)
C201.1552 (3)0.50923 (9)0.71305 (11)0.0368 (4)
H21.087 (3)0.2562 (10)0.8534 (10)0.035 (5)*
H30.995 (4)0.1973 (11)0.9668 (13)0.051 (6)*
H40.662 (3)0.1323 (10)0.9671 (12)0.044 (5)*
H50.409 (3)0.1320 (10)0.8502 (12)0.047 (5)*
H80.718 (3)0.2863 (9)0.5880 (11)0.031 (4)*
H10A0.104 (3)0.1775 (9)0.5222 (11)0.033 (4)*
H10B0.116 (3)0.1663 (9)0.6224 (11)0.034 (4)*
H11A0.158 (3)0.0587 (9)0.5522 (11)0.037 (5)*
H11B0.378 (3)0.0759 (9)0.6148 (11)0.034 (5)*
H13A0.593 (5)0.0502 (15)0.3426 (16)0.084 (8)*
H13B0.637 (5)0.1344 (15)0.3451 (17)0.087 (9)*
H14A0.267 (5)0.0739 (14)0.3906 (16)0.075 (8)*
H14B0.331 (5)0.1581 (17)0.4123 (17)0.099 (10)*
H16A1.355 (3)0.3820 (9)0.6562 (11)0.031 (4)*
H16B1.332 (3)0.3535 (9)0.5624 (11)0.035 (5)*
H17A1.281 (3)0.4738 (10)0.5615 (12)0.044 (5)*
H17B1.047 (3)0.4375 (9)0.5297 (11)0.029 (4)*
H19A0.942 (5)0.5932 (16)0.7433 (17)0.092 (9)*
H19B0.962 (4)0.5331 (13)0.8072 (17)0.073 (8)*
H20A1.268 (4)0.5440 (13)0.6998 (15)0.068 (7)*
H20B1.224 (3)0.4711 (11)0.7450 (12)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (6)0.0295 (5)0.0318 (6)0.0034 (4)0.0036 (4)0.0011 (4)
O20.0420 (7)0.0586 (8)0.0491 (7)0.0029 (6)0.0164 (6)0.0012 (6)
O30.0275 (6)0.0764 (10)0.0462 (7)0.0044 (6)0.0090 (5)0.0006 (7)
O40.0718 (9)0.0576 (8)0.0280 (6)0.0357 (7)0.0071 (6)0.0048 (6)
O50.0317 (6)0.0320 (5)0.0259 (5)0.0065 (4)0.0062 (4)0.0000 (4)
O60.0255 (6)0.0581 (8)0.0438 (7)0.0046 (5)0.0020 (5)0.0064 (6)
O70.0361 (7)0.0504 (7)0.0372 (6)0.0060 (5)0.0066 (5)0.0059 (5)
N10.0342 (7)0.0287 (6)0.0296 (7)0.0023 (5)0.0055 (5)0.0018 (5)
N20.0276 (7)0.0309 (7)0.0284 (6)0.0029 (5)0.0026 (5)0.0007 (5)
N30.0232 (6)0.0301 (6)0.0316 (7)0.0013 (5)0.0009 (5)0.0002 (5)
C10.0368 (8)0.0227 (7)0.0233 (7)0.0003 (6)0.0048 (6)0.0011 (5)
C20.0455 (10)0.0336 (8)0.0269 (8)0.0060 (7)0.0000 (7)0.0012 (6)
C30.0607 (12)0.0382 (9)0.0234 (8)0.0038 (8)0.0020 (7)0.0022 (7)
C40.0638 (12)0.0347 (8)0.0252 (8)0.0061 (8)0.0103 (8)0.0022 (7)
C50.0480 (10)0.0327 (8)0.0307 (8)0.0067 (7)0.0118 (7)0.0007 (6)
C60.0370 (9)0.0257 (7)0.0266 (7)0.0001 (6)0.0071 (6)0.0018 (6)
C70.0288 (8)0.0244 (7)0.0284 (7)0.0020 (6)0.0005 (6)0.0017 (6)
C80.0315 (8)0.0245 (7)0.0251 (7)0.0019 (6)0.0035 (6)0.0012 (6)
C90.0326 (8)0.0218 (7)0.0250 (7)0.0002 (6)0.0047 (6)0.0004 (5)
C100.0252 (8)0.0298 (8)0.0389 (9)0.0008 (6)0.0021 (7)0.0017 (7)
C110.0261 (8)0.0292 (8)0.0331 (8)0.0003 (6)0.0001 (6)0.0016 (6)
C120.0285 (8)0.0347 (8)0.0399 (9)0.0005 (6)0.0029 (7)0.0017 (7)
C130.0700 (14)0.0514 (12)0.0361 (10)0.0016 (10)0.0106 (9)0.0036 (9)
C140.0582 (13)0.0632 (13)0.0283 (9)0.0099 (10)0.0041 (8)0.0066 (8)
C150.0362 (9)0.0264 (7)0.0262 (7)0.0026 (6)0.0029 (6)0.0010 (6)
C160.0258 (8)0.0319 (8)0.0351 (8)0.0035 (6)0.0071 (6)0.0039 (6)
C170.0263 (8)0.0339 (8)0.0321 (8)0.0012 (6)0.0062 (6)0.0055 (6)
C180.0249 (8)0.0328 (8)0.0303 (8)0.0008 (6)0.0026 (6)0.0033 (6)
C190.0502 (12)0.0574 (13)0.0509 (12)0.0130 (10)0.0111 (9)0.0218 (10)
C200.0340 (9)0.0346 (9)0.0406 (9)0.0054 (7)0.0059 (7)0.0023 (7)
Geometric parameters (Å, º) top
O1—C71.3499 (18)C4—H40.97 (2)
O1—C101.4437 (19)C5—C61.414 (2)
O2—C121.358 (2)C5—H51.00 (2)
O2—C131.445 (3)C7—C81.427 (2)
O3—C121.211 (2)C8—C91.357 (2)
O4—C151.2006 (19)C8—H80.982 (18)
O5—C151.3396 (18)C9—C151.496 (2)
O5—C161.4526 (18)C10—C111.519 (2)
O6—C181.2100 (19)C10—H10A1.013 (18)
O7—C181.3596 (19)C10—H10B1.001 (19)
O7—C191.449 (2)C11—H11A1.026 (19)
N1—C71.2969 (19)C11—H11B0.994 (19)
N1—C61.379 (2)C13—C141.502 (3)
N2—C121.338 (2)C13—H13A1.04 (3)
N2—C141.437 (2)C13—H13B0.95 (3)
N2—C111.449 (2)C14—H14A0.98 (3)
N3—C181.347 (2)C14—H14B1.08 (3)
N3—C171.447 (2)C16—C171.509 (2)
N3—C201.455 (2)C16—H16A0.992 (18)
C1—C21.415 (2)C16—H16B0.997 (18)
C1—C61.418 (2)C17—H17A0.98 (2)
C1—C91.443 (2)C17—H17B0.992 (18)
C2—C31.372 (2)C19—C201.509 (3)
C2—H20.969 (19)C19—H19A1.03 (3)
C3—C41.401 (3)C19—H19B0.90 (3)
C3—H30.95 (2)C20—H20A0.99 (3)
C4—C51.364 (3)C20—H20B0.98 (2)
C7—O1—C10117.84 (12)C10—C11—H11B110.9 (11)
C12—O2—C13108.82 (14)H11A—C11—H11B109.8 (15)
C15—O5—C16118.18 (12)O3—C12—N2128.04 (16)
C18—O7—C19108.80 (13)O3—C12—O2122.28 (15)
C7—N1—C6117.04 (13)N2—C12—O2109.68 (14)
C12—N2—C14112.61 (15)O2—C13—C14105.94 (15)
C12—N2—C11122.16 (13)O2—C13—H13A107.6 (15)
C14—N2—C11123.44 (14)C14—C13—H13A109.5 (16)
C18—N3—C17122.17 (13)O2—C13—H13B107.9 (17)
C18—N3—C20111.80 (13)C14—C13—H13B114.0 (18)
C17—N3—C20123.69 (13)H13A—C13—H13B112 (2)
C2—C1—C6118.71 (14)N2—C14—C13101.55 (16)
C2—C1—C9124.65 (14)N2—C14—H14A111.9 (15)
C6—C1—C9116.63 (14)C13—C14—H14A111.7 (16)
C3—C2—C1120.43 (16)N2—C14—H14B109.2 (15)
C3—C2—H2118.6 (11)C13—C14—H14B110.1 (16)
C1—C2—H2120.8 (10)H14A—C14—H14B112 (2)
C2—C3—C4120.73 (17)O4—C15—O5123.69 (14)
C2—C3—H3117.8 (13)O4—C15—C9125.14 (14)
C4—C3—H3121.5 (13)O5—C15—C9111.15 (13)
C5—C4—C3120.16 (15)O5—C16—C17110.03 (13)
C5—C4—H4119.7 (12)O5—C16—H16A110.2 (10)
C3—C4—H4120.0 (12)C17—C16—H16A111.8 (10)
C4—C5—C6120.75 (16)O5—C16—H16B104.6 (11)
C4—C5—H5121.2 (11)C17—C16—H16B110.0 (10)
C6—C5—H5118.0 (11)H16A—C16—H16B109.9 (15)
N1—C6—C5117.43 (15)N3—C17—C16113.29 (13)
N1—C6—C1123.35 (13)N3—C17—H17A107.6 (12)
C5—C6—C1119.20 (15)C16—C17—H17A107.4 (12)
N1—C7—O1121.12 (14)N3—C17—H17B106.3 (10)
N1—C7—C8124.86 (14)C16—C17—H17B110.5 (10)
O1—C7—C8114.01 (13)H17A—C17—H17B111.9 (15)
C9—C8—C7118.89 (14)O6—C18—N3128.17 (15)
C9—C8—H8121.5 (10)O6—C18—O7122.10 (14)
C7—C8—H8119.6 (10)N3—C18—O7109.72 (13)
C8—C9—C1119.10 (14)O7—C19—C20105.53 (14)
C8—C9—C15118.85 (13)O7—C19—H19A104.5 (16)
C1—C9—C15122.03 (13)C20—C19—H19A114.5 (17)
O1—C10—C11110.45 (12)O7—C19—H19B109.2 (17)
O1—C10—H10A103.6 (10)C20—C19—H19B114.8 (17)
C11—C10—H10A111.5 (10)H19A—C19—H19B108 (2)
O1—C10—H10B111.0 (10)N3—C20—C19100.86 (14)
C11—C10—H10B110.0 (10)N3—C20—H20A110.0 (14)
H10A—C10—H10B110.3 (14)C19—C20—H20A113.2 (14)
N2—C11—C10111.95 (13)N3—C20—H20B109.4 (12)
N2—C11—H11A111.4 (10)C19—C20—H20B112.7 (12)
C10—C11—H11A106.3 (10)H20A—C20—H20B110.3 (18)
N2—C11—H11B106.5 (11)
C6—C1—C2—C30.7 (2)C11—N2—C12—O38.8 (3)
C9—C1—C2—C3179.17 (16)C14—N2—C12—O26.6 (2)
C1—C2—C3—C40.6 (3)C11—N2—C12—O2171.89 (13)
C2—C3—C4—C50.5 (3)C13—O2—C12—O3177.93 (17)
C3—C4—C5—C60.8 (3)C13—O2—C12—N21.40 (19)
C7—N1—C6—C5177.44 (14)C12—O2—C13—C148.3 (2)
C7—N1—C6—C10.5 (2)C12—N2—C14—C1311.2 (2)
C4—C5—C6—N1175.98 (15)C11—N2—C14—C13176.20 (15)
C4—C5—C6—C12.1 (2)O2—C13—C14—N211.2 (2)
C2—C1—C6—N1175.98 (14)C16—O5—C15—O41.1 (2)
C9—C1—C6—N12.7 (2)C16—O5—C15—C9177.08 (12)
C2—C1—C6—C52.0 (2)C8—C9—C15—O4158.27 (17)
C9—C1—C6—C5179.41 (13)C1—C9—C15—O420.1 (2)
C6—N1—C7—O1177.84 (13)C8—C9—C15—O519.91 (19)
C6—N1—C7—C83.2 (2)C1—C9—C15—O5161.75 (13)
C10—O1—C7—N110.2 (2)C15—O5—C16—C17103.49 (15)
C10—O1—C7—C8170.70 (13)C18—N3—C17—C1695.85 (17)
N1—C7—C8—C92.4 (2)C20—N3—C17—C1665.35 (19)
O1—C7—C8—C9178.56 (13)O5—C16—C17—N366.50 (17)
C7—C8—C9—C11.1 (2)C17—N3—C18—O69.0 (3)
C7—C8—C9—C15177.26 (13)C20—N3—C18—O6172.23 (16)
C2—C1—C9—C8175.18 (15)C17—N3—C18—O7171.83 (13)
C6—C1—C9—C83.4 (2)C20—N3—C18—O78.61 (18)
C2—C1—C9—C156.5 (2)C19—O7—C18—O6175.41 (17)
C6—C1—C9—C15174.97 (13)C19—O7—C18—N33.81 (19)
C7—O1—C10—C1175.87 (16)C18—O7—C19—C2013.9 (2)
C12—N2—C11—C10105.84 (17)C18—N3—C20—C1916.32 (19)
C14—N2—C11—C1057.8 (2)C17—N3—C20—C19179.25 (16)
O1—C10—C11—N248.92 (18)O7—C19—C20—N317.5 (2)
C14—N2—C12—O3174.08 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O40.969 (19)2.335 (18)2.919 (2)118.1 (13)
C20—H20B···O40.98 (2)2.52 (2)3.275 (2)133.7 (15)
C11—H11A···O3i1.026 (19)2.486 (19)3.262 (2)131.8 (13)
C17—H17A···O6ii0.98 (2)2.53 (2)3.219 (2)127.0 (15)
C19—H19B···O3iii0.90 (3)2.51 (3)3.157 (2)129 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y+1/2, z+3/2.
Calculated frontier molecular orbital energies (eV) top
FMOEnergy
E(HOMO)-6.2102
E(LUMO)-1.9195
Energy gap (ΔE)4.2907
Ionization potential (IP)6.2102
Electron affinity (EA)1.9195
Chemical potential (µ)–4.0649
Electronegativity (χ)4.0649
Chemical hardness (η)2.1454
Chemical softness (σ)0.2331
Electrophilicity index (ω)3.8509
The list of binding affinities and r.m.s.d. values of different sites in protein (6LU7) of the title compound top
LigandAffinity (kcal mol-1)r.m.s.d./ubr.m.s.d./Ib
6LU7_ligand-6.30.00.0
6LU7_ligand-6.14.82.164
6LU7_ligand-5.820.52117.722
6LU7_ligand-5.720.87418.477
6LU7_ligand-5.720.2817.737
6LU7_ligand-5.621.78919.301
6LU7_ligand-5.620.94818.265
6LU7_ligand-5.521.6319.349
6LU7_ligand-5.421.97219.381
The intermolecular hydrogen-bonding interactions with the distances (Å) between the title molecule and the macromolecule 6LU7 top
Residue groupLigand groupDistanceHydrogen bond
NH3 group in LYS102O atom in ethyl acetate2.55Conventional
NH2 group in GLN110O atom in oxazolidine2.55Conventional
NH group in THR111O atom in oxazolidine1.92Conventional
OH group in THR111O atom in oxazolidine2.28Conventional
O atom in THR111CH2 group in 1-methoxypropane3.55Carbon
NH2 group in ASN151O atom in 1-methoxypropane2.71Conventional
O atom in ASP153CH2 group in ethyl acetate2.79Carbon
OH group in SER158O atom in ethyl acetate2.12Conventional
OH group in SER158O atom in oxazolidine2.60Conventional
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBiovia (2017). Discovery studio visualizer. Vol. 936. Biovia, San Diego, CA, USA.  Google Scholar
First citationBouzian, Y., Faizi, M. S. H., Mague, J. T., Otmani, B. E., Dege, N., Karrouchi, K. & Essassi, E. M. (2019a). Acta Cryst. E75, 980–983.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Karrouchi, K., Anouar, E. H., Bouhfid, R., Arshad, S. & Essassi, E. M. (2019b). Acta Cryst. E75, 912–916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouzian, Y., Karrouchi, K., Sert, Y., Lai, C.-H., Mahi, L., Ahabchane, N. H., Talbaoui, A., Mague, J. T. & Essassi, E. M. (2020). J. Mol. Struct. 1209, 127940.  CSD CrossRef Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, X. M., Wang, C., Liu, W., Liang, L. L., Gong, K. K., Zhao, C. Y. & Sun, K. L. (2019). Eur. J. Med. Chem. 161, 101–117.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDouche, D., Elmsellem, H., Anouar, E. H., Guo, L., Hafez, B., Tüzün, B., El Louzi, A., Bougrin, K., Karrouchi, K. & Himmi, B. (2020). J. Mol. Liq. 308, 113042.  CrossRef Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Rev. A.02. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGao, J., Tian, Z. & Yang, X. (2020). Biosci. Trends, 14, 72-73.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, Y. Q., Gao, C., Zhang, S., Xu, L., Xu, Z., Feng, L. S., Wu, X. & Zhao, F. (2017). Eur. J. Med. Chem. 139, 22–47.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z. & Yang, H. (2020). Nature, 582, 289–293.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalit, P., Paira, P., Hazra, A., Banerjee, S., Gupta, A. D., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPinz, M., Reis, A. S., Duarte, V., da Rocha, M. J., Goldani, B. S., Alves, D., Savegnago, L., Luchese, C. & Wilhelm, E. A. (2016). Eur. J. Pharmacol. 780, 122–128.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShrungesh Kumar, T. O., Naveen, S., Kumara, M. N., Mahadevan, K. M. & Lokanath, N. K. (2015). Acta Cryst. E71, o514–o515.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSunitha, V. M., Naveen, S., Manjunath, H. R., Benaka Prasad, S. B., Manivannan, V. & Lokanath, N. K. (2015). Acta Cryst. E71, o341–o342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Q. D., Duan, Y. L., Xiong, H. H., Chen, T., Xiao, Z., Wang, L. X., Xiao, Y. Y., Huang, S. M., Xiong, Y., Zhu, W., Gong, P. & Zheng, P. (2018). Eur. J. Med. Chem. 158, 201–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z., Gao, C., Ren, Q. C., Song, X. F., Feng, L. S. & Lv, Z. S. (2017). Eur. J. Med. Chem. 139, 429–440.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds