research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and energy framework study of 6-formyl-7,8,9,11-tetra­hydro-5H-pyrido[2,1-b]quinazolin-11-one

CROSSMARK_Color_square_no_text.svg

aArifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, 100125, Durmon Yuli St. 33, Tashkent, Uzbekistan, bS. Yunusov Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, cNational University of Uzbekistan named after Mirzo Ulugbek, 100174, University Str. 4, Olmazor District, Tashkent, Uzbekistan, and dInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
*Correspondence e-mail: a_tojiboev@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 November 2020; accepted 9 December 2020; online 1 January 2021)

At 100 K, the title compound, C13H12N2O2, crystallizes in the ortho­rhom­bic space group Pna21 with two very similar mol­ecules in the asymmetric unit. An intra­molecular N—H⋯O hydrogen bond leads to an S(6) graph-set motif in each of the mol­ecules. Inter­molecular ππ stacking and C=O⋯π inter­actions involving the aldehyde O atoms link mol­ecules into stacks parallel to [100]. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing stem from H⋯H (49.4%) and H⋯O/O⋯H (21.5%) inter­actions. Energy framework calculations reveal a significant contribution of dispersion energy. The crystal studied was refined as a two-component inversion twin.

1. Chemical context

Two major aspects contribute to the inter­est in modified structural analogues of quinazoline alkaloids. On the one hand, they are attractive targets for the development of methods in organic synthesis; reactions sufficiently general to target a wide range of derivatives of a given lead structure should be easy to carry out and warrant high yields. On the other hand, substituted quinazolines allow the study of structure–property relationships with respect to their biological activities (Shakhidoyatov, 1988[Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and their Biological Activity, p. 60. Tashkent: Fan. [In Russian]]; Shakhidoyatov & Elmuradov, 2014[Shakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781-800.]).

The quinazoline alkaloid 7,8,9,11-tetra­hydro-5H-pyrido[2,1-b]quinazolin-11-one (mackinazolinone alkaloid) was first isolated from the plant Mackinlaya subulata Philipson (Fitzgerald et al., 1966[Fitzgerald, J. S., Johns, S. R., Lamberton, J. A. & Redcliffe, A. H. (1966). Aust. J. Chem. 19, 151-159.]). A simple method for the synthesis of mackinazolinone via condensation of anthranilic acid with δ-valerolactam promoted the use of this compound as a synthon for chemical transformations (Shakhidoyatov et al., 1976[Shakhidoyatov, K. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadyrov, C. S. (1976). Chem. Heterocycl. Compd. 11, 1564-1569.]; Oripov et al., 1979[Oripov, E., Shakhidoyatov, K. M., Kadyrov, C. S. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556-564.]).

The title compound, 6-formyl-7,8,9,11-tetra­hydro-5H-pyrido[2,1-b]quinazolin-11-one (1) (Fig. 1[link]), does react with primary amines (Zhurakulov & Vinogradova, 2015[Zhurakulov, Sh. N. & Vinogradova, V. I. (2015). Uzbek Chemical Journal, 5, 25-29.], 2016[Zhurakulov, Sh. N. & Vinogradova, V. I. (2016). Int. J. Chem. Phys. Sci. 5, 1-7.]), but does not react with pseudoephedrine or 1-(phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline in a range of solvents with different polarities such as aceto­nitrile, chloro­form, ethanol, tri­fluoro­acetic acid, acetic acid, benzene, DMF or dioxane. The existence of several tautomeric forms for compound (1) may be the reason for this selectivity towards primary amines.

[Figure 1]
Figure 1
Chemical scheme showing the synthesis of the title compound.

Based on 1H NMR data and quantum-chemical calculations, Zhurakulov et al. (2016[Zhurakulov, Sh. N., Vinogradova, V. I. & Levkovich, M. G. (2016). Uzbek Chemical Journal, 4, 75-81.]) confirmed that the tautomer with the intra­molecular hydrogen bond represents the energetically favourable form. In order to establish the tautomeric form of (1) in the solid state, we studied its mol­ecular and crystal structure. We also report the analysis of the Hirshfeld surface and the energy framework of crystalline (1).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two mol­ecules A and B (Fig. 2[link]). They are almost superimposable, with an r.m.s. of 0.023 Å (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]); an overlay of A and B is depicted in the supporting information (Fig. S1). In contrast to the quinazolinone moiety, the alkyl ring is not planar. The maximum deviation from the least-squares plane through each of the mol­ecules is encountered for the atoms C2A and C2B and amounts to 0.515 (3) and 0.521 (3) Å, respectively. The almost coplanar arrangement of the aldehyde group and the pyrimidine ring in either mol­ecule A and B enables an intra­molecular N—H⋯O inter­action (Table 1[link]) and formation of an S(6) graph-set motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5A—H5A⋯O2A 0.93 (3) 1.77 (3) 2.592 (3) 146 (3)
N5B—H5B⋯O2B 0.90 (3) 1.82 (3) 2.582 (3) 141 (3)
C1A—H1A2⋯O1Ai 0.99 2.57 3.535 (3) 164
C6A—H6A⋯O1Aii 0.95 2.39 3.230 (4) 147
C6B—H6B⋯O1Bii 0.95 2.40 3.239 (4) 148
C8A—H8A⋯O1Biii 0.95 2.60 3.469 (4) 153
C1B—H1B2⋯O1Biv 0.99 2.59 3.550 (3) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x, y+1, z; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The asymmetric unit of (1) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif is shown with dashed lines.

Mol­ecules of (1) stack into columns parallel to [100] in an equidistant series of coplanar moieties; the independent mol­ecules A and B segregate into different stacks (Fig. 3[link]). The intra-stack arrangement does obviously not correspond to translation but involves the a glide plane with its mirror component along [010]. The carbonyl groups in subsequent mol­ecules of a stack are therefore oriented alternately in the positive and negative direction of the crystallographic b axis, and the same arrangement can be expected for their dipole moments. Although no `real' translation relates consecutive mol­ecules along [100], the rather regular arrangement of essentially planar objects at half a lattice parameter is reflected in moderate pseudosymmetry in reciprocal space: reflection intensities Ihkl are stronger for even indices h than for odd ones, with a ratio Ihkl, h = 2n: Ihkl, h = (2n + 1) of 1.5.

[Figure 3]
Figure 3
Packing in a view along [010]; the independent mol­ecules A (black) and B (red) stack into separate columns of equidistant mol­ecules along [100].

Compound (1) crystallizes in the non-centrosymmetric achiral space group Pna21, and its absolute structure deserves a comment. The absolute structure is linked to the direction of the polar screw axis along [001]. In the absence of heavy atoms, resonant scattering in (1) is minor, with Friedif (Flack & Shmueli, 2007[Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257-265.]) of 28. We have recently investigated a case of similar low resonant scattering in a Sohnke group, where the absolute structure could be linked to the absolute configuration of the target mol­ecule, and chemical and spectroscopic information could help (Wang & Englert, 2019[Wang, A. & Englert, U. (2019). Acta Cryst. C75, 1448-1453.]). As might be expected, the commonly used indicators for diffraction-based assignment of the absolute structure of (1) were associated with rather large standard uncertainties: the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) refined to 0.51 (7), and similar results were obtained for Parsons' quotient method [0.52 (5); Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]] and Hooft's Bayesian analysis [0.51 (5); Hooft et al., 2010[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665-668.]]. All of these indicators suggest that the specimen used for the diffraction experiment was a twin. Refinement converged for a volume ratio of 0.7 (2):0.3 (2) for the twin domains.

3. Supra­molecular features

Consecutive mol­ecules in each column along [100] inter­act via ππ stacking and C=O⋯π contacts (Fig. 4[link]). ππ stacking inter­actions occur between pyrimidine (Cg1, Cg7) and benzene (Cg3, Cg9) rings and involve contact distances of Cg1⋯Cg3(−[{1\over 2}] + x, [{3\over 2}] − y, z) = 3.5154 (18) Å (slippage 0.954 Å) and of Cg7⋯Cg9(−[{1\over 2}] + x, [{3\over 2}] − y, z) = 3.5159 (19) Å (slippage 1.054 Å).

[Figure 4]
Figure 4
Crystal packing of (1) in a view along [100]. Intra­molecular N—H⋯O hydrogen bonds are shown as light-blue and inter­molecular C—H⋯O hydrogen bonds as dark-blue dashed lines. Dashed red lines denote contacts C=O⋯Cg1 and C=O⋯Cg7 (slippage 1.676 Å for both), and dashed light-green lines Cg1⋯Cg3 and Cg7⋯Cg9 contacts. Cg3, Cg9, Cg1 and Cg7 correspond to the ring centroids C6A–C9A/C9AA/C5AA, C6B–C9B/C9BA/C5BA, N5A/C4AA/N10A/C10A/C9AA/C5AA and N5B/C4BA/N10B/C10B/C9BA/C5BA, respectively. For clarity, only H atoms H5A, H8A, H5B and H8B are shown.

Mol­ecules within each π-stacked column additionally inter­act via C=O⋯π contacts; they amount to C11A=O2ACg1(x + [{1\over 2}], −y + [{3\over 2}], z) = 3.212 (2) Å and C11B=O2BCg7(x − [{1\over 2}], −y + [{3\over 2}], z) = 3.215 (2) Å. Perpendicular to the stacking direction, non-classical C—H⋯O hydrogen bonds (Table 1[link]) link the columns along [001] (Fig. 4[link]) and thus form layers parallel to (010).

4. Hirshfeld surface analysis

In order to visualize inter­molecular inter­actions in (1), the Hirshfeld surface (HS) (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was analysed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) calculated with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The HS mapped with dnorm is represented in Fig. 5[link]. White surface areas indicate contacts with distances equal to the sum of van der Waals radii, whereas red and blue colours denote distances shorter (e.g. due to hydrogen bonds) or longer than the sum of the van der Waals radii, respectively.

[Figure 5]
Figure 5
Three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2446 to 1.1709 a.u.

The two-dimensional fingerprint plot for all contacts is depicted in Fig. 6[link]a. H⋯H contacts are responsible for the largest contribution (49.4%) to the Hirshfeld surface (Fig. 6[link]b). Besides these contacts, H⋯O/O⋯H (21.5%), H⋯C/C⋯H (14.9%), C⋯C (6.7%) and N⋯C/C⋯N (4.0%) inter­actions contribute significantly to the total Hirshfeld surface; their decomposed fingerprint plots are shown in Fig. 6[link]cf. The contributions of further contacts are only minor and amount to N⋯O/O⋯N (1.4%), C⋯O/O⋯C (1.4%), N⋯H/H⋯N (0.5%) and O⋯O (0.1%).

[Figure 6]
Figure 6
Hirshfeld fingerprint plots for (a) all contacts and decomposed into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) N⋯C/C⋯N contacts. di and de denote the closest inter­nal and external distances (in Å) from a point on the surface.

5. Inter­action energy calculations

Inter­molecular inter­action energies were calculated using the CE–HF/3-21G energy model available in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The total inter­molecular energy (Etot) is the sum of electrostatic (Eelec), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.019, 0.651, 0.901 and 0.811, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). According to these calculations, the major contribution of −306.5 kJ mol−1 is due to dispersion inter­actions (Fig. 7[link]). The other energy components have values of −91.5 kJ mol−1, −37.6 kJ mol−1 and 155.7 kJ mol−1 for the Eelec, Epol and Erep energies, respectively. The total inter­action energy resulting from these four components amounts to −267.1 kJ mol−1.

[Figure 7]
Figure 7
Energy frameworks for the electrostatic (red, top) and dispersion (green, middle) components and the total inter­action energy (blue, bottom). Cylinder radii are proportional to the corresponding energy; a scale factor of 80 and a cut-off value of 10 kJ mol−1 have been used.

6. Database survey

A search in the Cambridge Structural Database (CSD, version 5.41, update January 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed six matches for mol­ecules containing the 3-methyl-2-(propan-2-yl­idene)-2,3-di­hydro­quinazolin-4(1H)-one moiety with a similar planar conformation to that in the title structure: 3-(2-methyl­phen­yl)-2-(2-oxo­phenyl­eth­yl)-4(3H)-quinazol­inone (FABWUA10; Duke & Codding, 1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]), 3-(2-chloro­phen­yl)-2-[2-oxo-2-(4-pyrid­yl)eth­yl]-4(3H)-quinazolinone (FABXAH10; Duke & Codding, 1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]), 2-[2-oxo-2-(4-pyrid­yl)eth­yl]-3-phenyl-4(3H)quinazolinone (FABXEL10; Duke & Codding, 1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]), 3-(2-methyl­phen­yl)-2-[2-oxo-2-(4-pyrid­yl)eth­yl]-4(3H)-quinazolinone (HADLAZ; Duke & Codding, 1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]), 3-(4-chloro­phen­yl)-2-[2-oxo-2-(4-pyrid­yl)eth­yl]-4(3H)-quinazolinone (HADLED; Duke & Codding, 1993[Duke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719-726.]) and (E)-2-[2-oxo-2-(thio­phen-2-yl)ethyl­idene]-3-phenyl-2,3-di­hydro­quin­azolin-4(1H)-one (SATJOP; Narra et al., 2017[Narra, S. R., Avula, S., Kuchukulla, R. R., Nanubolu, J. B., Banda, N. & Yadla, R. (2017). Tetrahedron, 73, 4730-4738.]). A search for the 2-amino-1,4,5,6-tetra­hydro­pyridine-3-carbaldehyde moiety gave one hit with similar conformation: 1-methyl-2-(methyl­amino)-1,4,5,6-tetra­hydro­pyridine-3-carbaldehyde (MFHPYM10; Horváth et al., 1983[Horváth, A., Hermecz, I., Vasvári-Debreczy, L., Simon, K., Pongor-Csákvári, M., Mészáros, Z. & Tóth, G. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 369-377.]). Similar to in (1), all compounds mentioned above exist as the enamine tautomer in the crystalline state, and their intra­molecular N—H⋯O hydrogen bond between the ethanone and the amine N atom results in an S(6) graph set motif.

7. Synthesis and crystallization

Compound (1) was synthesized according to the method of Oripov et al. (1979[Oripov, E., Shakhidoyatov, K. M., Kadyrov, C. S. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556-564.]). Yield 12.55 g, 91%; m.p. 474–476 K (after crystallization from hexa­ne), Rf 0.78 (C6H6: MeOH 4:1). A detailed report on the synthesis of (1) and its characterization by 1H NMR is available in Zhurakulov et al. (2017[Zhurakulov, S. N., Levkovich, M. G. & Vinogradova, V. I. (2017). Chem. Sustainable Dev. 25, 265-269.]). Crystals suitable for X-ray diffraction were obtained from a methanol solution by slow evaporation of the solvent at room temperature.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to C were positioned geometrically, with C—H = 0.95 Å (for aromatic), 0.95 Å (for the aldehyde H atom), 0.99 Å (for methyl­ene H atoms) and were refined with Uiso(H) = 1.2Ueq(C). The enamine H atoms H5A and H5B were refined with a common isotropic displacement parameter; N—H distances were restrained to similarity.

Table 2
Experimental details

Crystal data
Chemical formula C13H12N2O2
Mr 228.25
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 8.284 (2), 8.006 (2), 31.637 (6)
V3) 2098.2 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.81
Crystal size (mm) 0.40 × 0.22 × 0.07
 
Data collection
Diffractometer Stoe Stadivari goniometer, Dectris Pilatus 200K area detector
Absorption correction Multi-scan (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.])
Tmin, Tmax 0.261, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15842, 3629, 3409
Rint 0.013
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.103, 1.03
No. of reflections 3629
No. of parameters 316
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.24
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.3 (2)
Computer programs: X-AREA (Stoe & Cie, 2017[Stoe & Cie (2017). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2017); cell refinement: X-AREA (Stoe & Cie, 2017); data reduction: X-AREA (Stoe & Cie, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Formyl-7,8,9,11-tetrahydro-5H-pyrido[2,1-b]quinazolin-11-one top
Crystal data top
C13H12N2O2Dx = 1.445 Mg m3
Mr = 228.25Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, Pna21Cell parameters from 17372 reflections
a = 8.284 (2) Åθ = 5.6–73.9°
b = 8.006 (2) ŵ = 0.81 mm1
c = 31.637 (6) ÅT = 100 K
V = 2098.2 (8) Å3Plate, brown
Z = 80.40 × 0.22 × 0.07 mm
F(000) = 960
Data collection top
Stoe Stadivari goniometer, Dectris Pilatus 200K area detector
diffractometer
3409 reflections with I > 2σ(I)
Radiation source: XENOCS microsourceRint = 0.013
rotation method, ω scansθmax = 72.8°, θmin = 5.6°
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
h = 710
Tmin = 0.261, Tmax = 1.000k = 79
15842 measured reflectionsl = 3538
3629 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0861P)2 + 0.1201P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max = 0.004
wR(F2) = 0.103Δρmax = 0.36 e Å3
S = 1.03Δρmin = 0.24 e Å3
3629 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
316 parametersExtinction coefficient: 0.0008 (2)
2 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.3 (2)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.6021 (2)0.3190 (2)0.91582 (6)0.0238 (4)
O2A0.9070 (2)0.9397 (2)0.81869 (6)0.0273 (4)
N10A0.7388 (2)0.4746 (2)0.86753 (6)0.0188 (4)
N5A0.7374 (4)0.7667 (3)0.87182 (9)0.0205 (6)
H5A0.785 (4)0.861 (3)0.8601 (12)0.031 (5)*
C10A0.6394 (3)0.4572 (3)0.90289 (7)0.0193 (4)
C4AA0.7900 (3)0.6267 (3)0.85180 (7)0.0183 (5)
C5AA0.6354 (3)0.7651 (3)0.90621 (10)0.0156 (6)
C9AA0.5867 (3)0.6135 (3)0.92277 (9)0.0199 (6)
C9A0.4876 (4)0.6078 (3)0.95915 (9)0.0198 (6)
H9A0.4509280.5041970.9701880.024*
C8A0.4454 (4)0.7578 (3)0.97834 (12)0.0208 (7)
H8A0.3862420.7563501.0040700.025*
C7A0.4889 (4)0.9111 (4)0.96020 (9)0.0201 (5)
H7A0.4507551.0120230.9724190.024*
C6A0.5870 (3)0.9174 (4)0.92456 (9)0.0221 (5)
H6A0.6204101.0212970.9129590.027*
C4A0.8927 (3)0.6410 (3)0.81695 (8)0.0219 (5)
C11A0.9422 (3)0.7999 (4)0.80294 (8)0.0236 (5)
H11A1.0102080.8018980.7787580.028*
C3A0.9495 (3)0.4844 (3)0.79423 (7)0.0251 (5)
H3A11.0554580.4491740.8056500.030*
H3A20.9627860.5081580.7637180.030*
C2A0.8267 (3)0.3449 (3)0.80027 (8)0.0261 (5)
H2A10.7250490.3742900.7856130.031*
H2A20.8686830.2403450.7876790.031*
C1A0.7936 (3)0.3181 (3)0.84685 (7)0.0234 (5)
H1A10.7096240.2311350.8502100.028*
H1A20.8931430.2779180.8608810.028*
O1B0.6478 (2)0.3186 (2)0.58347 (6)0.0246 (4)
O2B0.3447 (2)0.9370 (2)0.68172 (6)0.0260 (4)
N10B0.5127 (2)0.4739 (2)0.63232 (6)0.0182 (4)
N5B0.5164 (4)0.7649 (2)0.62934 (9)0.0175 (5)
H5B0.482 (4)0.861 (3)0.6411 (12)0.031 (5)*
C10B0.6112 (3)0.4574 (3)0.59674 (7)0.0188 (4)
C4BA0.4630 (3)0.6258 (3)0.64828 (8)0.0186 (5)
C5BA0.6149 (4)0.7667 (3)0.59430 (11)0.0206 (7)
C9BA0.6647 (3)0.6125 (3)0.57672 (8)0.0166 (5)
C9B0.7593 (4)0.6123 (3)0.54056 (10)0.0214 (6)
H9B0.7886390.5087580.5280720.026*
C8B0.8117 (4)0.7591 (3)0.52233 (13)0.0232 (8)
H8B0.8800040.7579980.4982170.028*
C7B0.7611 (4)0.9097 (4)0.54040 (10)0.0244 (6)
H7B0.7936491.0116740.5276070.029*
C6B0.6666 (3)0.9156 (4)0.57585 (9)0.0196 (5)
H6B0.6364231.0200040.5877480.023*
C4B0.3593 (3)0.6378 (3)0.68323 (8)0.0205 (5)
C11B0.3090 (3)0.7967 (4)0.69727 (8)0.0234 (4)
H11B0.2399860.7982230.7212550.028*
C3B0.3026 (3)0.4828 (3)0.70566 (7)0.0238 (5)
H3B10.1965400.4478610.6942400.029*
H3B20.2895410.5061690.7361970.029*
C2B0.4255 (3)0.3433 (3)0.69938 (8)0.0254 (5)
H2B10.5273090.3725140.7140230.030*
H2B20.3837410.2385070.7118610.030*
C1B0.4583 (3)0.3175 (3)0.65270 (7)0.0226 (5)
H1B10.5422500.2306280.6491730.027*
H1B20.3586470.2776730.6386690.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0349 (8)0.0136 (9)0.0228 (8)0.0017 (6)0.0023 (6)0.0010 (5)
O2A0.0321 (9)0.0214 (9)0.0282 (10)0.0033 (7)0.0001 (7)0.0003 (8)
N10A0.0238 (8)0.0142 (9)0.0185 (9)0.0011 (7)0.0015 (7)0.0010 (7)
N5A0.0249 (14)0.0170 (11)0.0196 (13)0.0012 (7)0.0001 (11)0.0019 (7)
C10A0.0225 (10)0.0184 (11)0.0170 (10)0.0010 (7)0.0047 (8)0.0013 (7)
C4AA0.0207 (10)0.0172 (12)0.0171 (11)0.0013 (8)0.0046 (8)0.0005 (8)
C5AA0.0155 (14)0.0179 (12)0.0133 (12)0.0008 (7)0.0040 (10)0.0000 (8)
C9AA0.0217 (12)0.0192 (15)0.0189 (12)0.0017 (8)0.0050 (11)0.0019 (10)
C9A0.0225 (12)0.0216 (14)0.0153 (11)0.0016 (9)0.0026 (9)0.0015 (9)
C8A0.0249 (17)0.0211 (16)0.0165 (17)0.0007 (8)0.0021 (11)0.0021 (7)
C7A0.0251 (12)0.0166 (12)0.0185 (12)0.0035 (10)0.0036 (10)0.0042 (10)
C6A0.0246 (12)0.0179 (13)0.0237 (12)0.0008 (10)0.0052 (11)0.0000 (10)
C4A0.0239 (12)0.0204 (12)0.0214 (12)0.0025 (10)0.0023 (9)0.0030 (10)
C11A0.0248 (11)0.0254 (13)0.0205 (12)0.0006 (11)0.0001 (9)0.0032 (11)
C3A0.0299 (11)0.0247 (12)0.0208 (12)0.0057 (9)0.0040 (8)0.0022 (9)
C2A0.0370 (12)0.0216 (10)0.0197 (12)0.0022 (9)0.0011 (8)0.0028 (8)
C1A0.0317 (11)0.0180 (13)0.0204 (13)0.0027 (9)0.0008 (9)0.0022 (8)
O1B0.0348 (8)0.0165 (9)0.0226 (8)0.0016 (6)0.0030 (6)0.0001 (5)
O2B0.0311 (8)0.0213 (8)0.0256 (9)0.0023 (8)0.0014 (6)0.0046 (7)
N10B0.0237 (9)0.0141 (9)0.0169 (8)0.0007 (7)0.0017 (7)0.0009 (7)
N5B0.0209 (12)0.0146 (11)0.0170 (12)0.0002 (7)0.0024 (10)0.0021 (7)
C10B0.0228 (10)0.0159 (10)0.0176 (10)0.0004 (8)0.0030 (8)0.0006 (7)
C4BA0.0213 (10)0.0150 (12)0.0194 (11)0.0006 (7)0.0065 (8)0.0005 (8)
C5BA0.0243 (17)0.0169 (13)0.0205 (15)0.0008 (8)0.0056 (12)0.0005 (9)
C9BA0.0197 (11)0.0139 (14)0.0163 (11)0.0004 (8)0.0030 (10)0.0017 (8)
C9B0.0228 (12)0.0178 (13)0.0235 (13)0.0027 (9)0.0029 (10)0.0008 (10)
C8B0.0207 (16)0.0280 (17)0.0209 (19)0.0026 (8)0.0001 (11)0.0022 (8)
C7B0.0235 (13)0.0231 (13)0.0265 (14)0.0021 (11)0.0043 (11)0.0065 (11)
C6B0.0238 (12)0.0144 (12)0.0205 (12)0.0001 (9)0.0038 (10)0.0025 (9)
C4B0.0200 (11)0.0262 (13)0.0154 (10)0.0002 (9)0.0031 (8)0.0023 (9)
C11B0.0240 (11)0.0261 (12)0.0201 (12)0.0003 (10)0.0019 (8)0.0017 (11)
C3B0.0314 (11)0.0215 (11)0.0185 (11)0.0044 (9)0.0031 (8)0.0004 (8)
C2B0.0380 (12)0.0210 (10)0.0170 (11)0.0012 (9)0.0015 (9)0.0035 (7)
C1B0.0330 (11)0.0129 (12)0.0220 (12)0.0020 (8)0.0005 (9)0.0021 (8)
Geometric parameters (Å, º) top
O1A—C10A1.220 (3)O1B—C10B1.226 (3)
O2A—C11A1.259 (4)O2B—C11B1.262 (4)
N10A—C4AA1.382 (3)N10B—C4BA1.380 (3)
N10A—C10A1.396 (3)N10B—C10B1.397 (3)
N10A—C1A1.485 (3)N10B—C1B1.478 (3)
N5A—C4AA1.359 (3)N5B—C4BA1.340 (3)
N5A—C5AA1.377 (4)N5B—C5BA1.377 (5)
N5A—H5A0.93 (2)N5B—H5B0.90 (2)
C10A—C9AA1.467 (3)C10B—C9BA1.463 (3)
C4AA—C4A1.397 (4)C4BA—C4B1.404 (4)
C5AA—C9AA1.382 (4)C5BA—C6B1.395 (4)
C5AA—C6A1.409 (4)C5BA—C9BA1.415 (4)
C9AA—C9A1.414 (4)C9BA—C9B1.386 (4)
C9A—C8A1.390 (4)C9B—C8B1.380 (4)
C9A—H9A0.9500C9B—H9B0.9500
C8A—C7A1.402 (4)C8B—C7B1.398 (4)
C8A—H8A0.9500C8B—H8B0.9500
C7A—C6A1.391 (4)C7B—C6B1.369 (4)
C7A—H7A0.9500C7B—H7B0.9500
C6A—H6A0.9500C6B—H6B0.9500
C4A—C11A1.409 (4)C4B—C11B1.410 (4)
C4A—C3A1.520 (3)C4B—C3B1.505 (3)
C11A—H11A0.9500C11B—H11B0.9500
C3A—C2A1.523 (3)C3B—C2B1.524 (3)
C3A—H3A10.9900C3B—H3B10.9900
C3A—H3A20.9900C3B—H3B20.9900
C2A—C1A1.514 (3)C2B—C1B1.516 (3)
C2A—H2A10.9900C2B—H2B10.9900
C2A—H2A20.9900C2B—H2B20.9900
C1A—H1A10.9900C1B—H1B10.9900
C1A—H1A20.9900C1B—H1B20.9900
C4AA—N10A—C10A123.88 (18)C4BA—N10B—C10B123.5 (2)
C4AA—N10A—C1A119.42 (18)C4BA—N10B—C1B119.72 (19)
C10A—N10A—C1A116.69 (17)C10B—N10B—C1B116.73 (18)
C4AA—N5A—C5AA123.9 (2)C4BA—N5B—C5BA124.3 (2)
C4AA—N5A—H5A110 (2)C4BA—N5B—H5B115 (3)
C5AA—N5A—H5A126 (2)C5BA—N5B—H5B121 (3)
O1A—C10A—N10A120.6 (2)O1B—C10B—N10B120.4 (2)
O1A—C10A—C9AA123.7 (2)O1B—C10B—C9BA123.1 (2)
N10A—C10A—C9AA115.7 (2)N10B—C10B—C9BA116.5 (2)
N5A—C4AA—N10A117.4 (2)N5B—C4BA—N10B118.1 (2)
N5A—C4AA—C4A119.7 (2)N5B—C4BA—C4B119.8 (2)
N10A—C4AA—C4A122.9 (2)N10B—C4BA—C4B122.1 (2)
N5A—C5AA—C9AA119.1 (2)N5B—C5BA—C6B121.8 (3)
N5A—C5AA—C6A119.5 (2)N5B—C5BA—C9BA118.7 (2)
C9AA—C5AA—C6A121.4 (3)C6B—C5BA—C9BA119.4 (3)
C5AA—C9AA—C9A120.4 (2)C9B—C9BA—C5BA119.3 (2)
C5AA—C9AA—C10A120.0 (2)C9B—C9BA—C10B121.8 (2)
C9A—C9AA—C10A119.6 (2)C5BA—C9BA—C10B118.8 (2)
C8A—C9A—C9AA118.3 (3)C8B—C9B—C9BA121.5 (3)
C8A—C9A—H9A120.9C8B—C9B—H9B119.3
C9AA—C9A—H9A120.9C9BA—C9B—H9B119.3
C9A—C8A—C7A120.8 (3)C9B—C8B—C7B118.0 (4)
C9A—C8A—H8A119.6C9B—C8B—H8B121.0
C7A—C8A—H8A119.6C7B—C8B—H8B121.0
C6A—C7A—C8A120.9 (3)C6B—C7B—C8B122.4 (3)
C6A—C7A—H7A119.5C6B—C7B—H7B118.8
C8A—C7A—H7A119.5C8B—C7B—H7B118.8
C7A—C6A—C5AA117.9 (3)C7B—C6B—C5BA119.3 (3)
C7A—C6A—H6A121.0C7B—C6B—H6B120.4
C5AA—C6A—H6A121.0C5BA—C6B—H6B120.4
C4AA—C4A—C11A120.0 (2)C4BA—C4B—C11B119.4 (2)
C4AA—C4A—C3A119.6 (2)C4BA—C4B—C3B120.4 (2)
C11A—C4A—C3A120.4 (3)C11B—C4B—C3B120.2 (2)
O2A—C11A—C4A127.6 (2)O2B—C11B—C4B127.6 (2)
O2A—C11A—H11A116.2O2B—C11B—H11B116.2
C4A—C11A—H11A116.2C4B—C11B—H11B116.2
C4A—C3A—C2A109.80 (19)C4B—C3B—C2B109.50 (19)
C4A—C3A—H3A1109.7C4B—C3B—H3B1109.8
C2A—C3A—H3A1109.7C2B—C3B—H3B1109.8
C4A—C3A—H3A2109.7C4B—C3B—H3B2109.8
C2A—C3A—H3A2109.7C2B—C3B—H3B2109.8
H3A1—C3A—H3A2108.2H3B1—C3B—H3B2108.2
C1A—C2A—C3A110.31 (19)C1B—C2B—C3B110.27 (19)
C1A—C2A—H2A1109.6C1B—C2B—H2B1109.6
C3A—C2A—H2A1109.6C3B—C2B—H2B1109.6
C1A—C2A—H2A2109.6C1B—C2B—H2B2109.6
C3A—C2A—H2A2109.6C3B—C2B—H2B2109.6
H2A1—C2A—H2A2108.1H2B1—C2B—H2B2108.1
N10A—C1A—C2A111.38 (18)N10B—C1B—C2B111.35 (18)
N10A—C1A—H1A1109.4N10B—C1B—H1B1109.4
C2A—C1A—H1A1109.4C2B—C1B—H1B1109.4
N10A—C1A—H1A2109.4N10B—C1B—H1B2109.4
C2A—C1A—H1A2109.4C2B—C1B—H1B2109.4
H1A1—C1A—H1A2108.0H1B1—C1B—H1B2108.0
C4AA—N10A—C10A—O1A178.06 (19)C4BA—N10B—C10B—O1B178.11 (19)
C1A—N10A—C10A—O1A0.6 (3)C1B—N10B—C10B—O1B0.6 (3)
C4AA—N10A—C10A—C9AA1.4 (3)C4BA—N10B—C10B—C9BA1.3 (3)
C1A—N10A—C10A—C9AA179.96 (19)C1B—N10B—C10B—C9BA179.99 (19)
C5AA—N5A—C4AA—N10A0.8 (4)C5BA—N5B—C4BA—N10B1.5 (4)
C5AA—N5A—C4AA—C4A179.6 (3)C5BA—N5B—C4BA—C4B178.3 (3)
C10A—N10A—C4AA—N5A1.1 (3)C10B—N10B—C4BA—N5B2.1 (3)
C1A—N10A—C4AA—N5A179.7 (2)C1B—N10B—C4BA—N5B179.2 (2)
C10A—N10A—C4AA—C4A178.4 (2)C10B—N10B—C4BA—C4B177.7 (2)
C1A—N10A—C4AA—C4A0.2 (3)C1B—N10B—C4BA—C4B1.0 (3)
C4AA—N5A—C5AA—C9AA2.4 (4)C4BA—N5B—C5BA—C6B179.9 (3)
C4AA—N5A—C5AA—C6A179.6 (3)C4BA—N5B—C5BA—C9BA0.1 (5)
N5A—C5AA—C9AA—C9A177.3 (3)N5B—C5BA—C9BA—C9B177.7 (3)
C6A—C5AA—C9AA—C9A0.7 (5)C6B—C5BA—C9BA—C9B2.3 (5)
N5A—C5AA—C9AA—C10A2.0 (4)N5B—C5BA—C9BA—C10B0.7 (4)
C6A—C5AA—C9AA—C10A179.9 (2)C6B—C5BA—C9BA—C10B179.2 (2)
O1A—C10A—C9AA—C5AA179.6 (2)O1B—C10B—C9BA—C9B1.1 (4)
N10A—C10A—C9AA—C5AA0.2 (3)N10B—C10B—C9BA—C9B178.3 (2)
O1A—C10A—C9AA—C9A0.4 (4)O1B—C10B—C9BA—C5BA179.5 (2)
N10A—C10A—C9AA—C9A179.1 (2)N10B—C10B—C9BA—C5BA0.2 (3)
C5AA—C9AA—C9A—C8A2.0 (4)C5BA—C9BA—C9B—C8B2.8 (5)
C10A—C9AA—C9A—C8A177.3 (3)C10B—C9BA—C9B—C8B178.8 (3)
C9AA—C9A—C8A—C7A5.1 (5)C9BA—C9B—C8B—C7B2.6 (6)
C9A—C8A—C7A—C6A5.5 (5)C9B—C8B—C7B—C6B1.9 (6)
C8A—C7A—C6A—C5AA2.7 (4)C8B—C7B—C6B—C5BA1.5 (5)
N5A—C5AA—C6A—C7A177.7 (3)N5B—C5BA—C6B—C7B178.4 (3)
C9AA—C5AA—C6A—C7A0.3 (5)C9BA—C5BA—C6B—C7B1.7 (5)
N5A—C4AA—C4A—C11A0.5 (4)N5B—C4BA—C4B—C11B1.7 (4)
N10A—C4AA—C4A—C11A179.0 (2)N10B—C4BA—C4B—C11B178.1 (2)
N5A—C4AA—C4A—C3A179.2 (2)N5B—C4BA—C4B—C3B178.1 (2)
N10A—C4AA—C4A—C3A1.3 (3)N10B—C4BA—C4B—C3B2.1 (3)
C4AA—C4A—C11A—O2A1.3 (4)C4BA—C4B—C11B—O2B0.8 (4)
C3A—C4A—C11A—O2A179.1 (2)C3B—C4B—C11B—O2B179.4 (2)
C4AA—C4A—C3A—C2A26.3 (3)C4BA—C4B—C3B—C2B26.0 (3)
C11A—C4A—C3A—C2A153.4 (2)C11B—C4B—C3B—C2B153.9 (2)
C4A—C3A—C2A—C1A54.1 (3)C4B—C3B—C2B—C1B54.1 (3)
C4AA—N10A—C1A—C2A28.9 (3)C4BA—N10B—C1B—C2B28.5 (3)
C10A—N10A—C1A—C2A152.38 (19)C10B—N10B—C1B—C2B152.68 (19)
C3A—C2A—C1A—N10A56.2 (2)C3B—C2B—C1B—N10B56.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5A—H5A···O2A0.93 (3)1.77 (3)2.592 (3)146 (3)
N5B—H5B···O2B0.90 (3)1.82 (3)2.582 (3)141 (3)
C1A—H1A2···O1Ai0.992.573.535 (3)164
C6A—H6A···O1Aii0.952.393.230 (4)147
C6B—H6B···O1Bii0.952.403.239 (4)148
C8A—H8A···O1Biii0.952.603.469 (4)153
C1B—H1B2···O1Biv0.992.593.550 (3)164
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1/2; (iv) x1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Institute of Inorganic Chemistry, RWTH Aachen University for providing laboratory facilities.

Funding information

AT is grateful to the Istedod Foundation of the Uzbekistan Government for financial support.

References

First citationDuke, N. E. C. & Codding, P. W. (1993). Acta Cryst. B49, 719–726.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFitzgerald, J. S., Johns, S. R., Lamberton, J. A. & Redcliffe, A. H. (1966). Aust. J. Chem. 19, 151–159.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHorváth, A., Hermecz, I., Vasvári-Debreczy, L., Simon, K., Pongor-Csákvári, M., Mészáros, Z. & Tóth, G. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 369–377.  Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNarra, S. R., Avula, S., Kuchukulla, R. R., Nanubolu, J. B., Banda, N. & Yadla, R. (2017). Tetrahedron, 73, 4730–4738.  CSD CrossRef CAS Google Scholar
First citationOripov, E., Shakhidoyatov, K. M., Kadyrov, C. S. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556–564.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShakhidoyatov, Kh. M. (1988). Quinazol-4-ones and their Biological Activity, p. 60. Tashkent: Fan. [In Russian]  Google Scholar
First citationShakhidoyatov, Kh. M. & Elmuradov, B. Zh. (2014). Chem. Nat. Compd. 50, 781–800.  Web of Science CrossRef CAS Google Scholar
First citationShakhidoyatov, K. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadyrov, C. S. (1976). Chem. Heterocycl. Compd. 11, 1564–1569.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2017). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWang, A. & Englert, U. (2019). Acta Cryst. C75, 1448–1453.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhurakulov, Sh. N. & Vinogradova, V. I. (2015). Uzbek Chemical Journal, 5, 25–29.  Google Scholar
First citationZhurakulov, Sh. N. & Vinogradova, V. I. (2016). Int. J. Chem. Phys. Sci. 5, 1–7.  CAS Google Scholar
First citationZhurakulov, Sh. N., Vinogradova, V. I. & Levkovich, M. G. (2016). Uzbek Chemical Journal, 4, 75–81.  Google Scholar
First citationZhurakulov, S. N., Levkovich, M. G. & Vinogradova, V. I. (2017). Chem. Sustainable Dev. 25, 265-269.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds