research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and mol­ecular structures of di­chlorido­palladium(II) containing 2-methyl- or 2-phenyl-8-(diphenyphosphan­yl)quinoline

CROSSMARK_Color_square_no_text.svg

aGraduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan, and bResearch Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 November 2020; accepted 10 December 2020; online 1 January 2021)

The crystal structures of di­chlorido­palladium(II) complexes bearing 2-methyl- and 2-phenyl-8-(di­phenyl­phosphan­yl)quinoline, namely, di­chlorido­[8-(di­phenyl­phosphan­yl)-2-methyl­quinoline-κ2N,P]palladium(II), [PdCl2(C22H18NP)] (1) and di­chlorido­[8-(di­phenyl­phosphan­yl)-2-phenyl­quinoline-κ2N,P]palladium(II), [PdCl2(C27H20NP)] (2), were analyzed and compared to that of the 8-(di­phenyl­phosphan­yl)quinoline (PQH) analogue (3). In all three complexes, the phosphanyl­quinoline moiety acts as a bidentate P,N-donating chelate ligand. In the PQH complex (3), the PdII center has a typical planar coordination environment; however, both the methyl- and phenyl-substituted phosphanyl­quinoline (PQMe and PQPh, respectively) complexes (1) and (2) exhibit a considerable tetra­hedral distortion around the PdII center, as parameterized by the τ4 values of 0.1555 (4) and 0.1438 (4) for (1) and (2), respectively. The steric inter­action from the substituted group introduced at the 2-position of the quinoline ring enforces the cis-positioned Cl ligand to be displaced from the ideal coordination plane. Also, the ideally planar phosphanyl­quinoline five-membered chelate ring shows a large bending deformation by the displacement of the PdII center from the quinoline plane. In addition, in the phenyl-substituted complex (3), the coordinating quinolyl and the substituted phenyl rings are not co-planar to each other, having a dihedral angle of 33.08 (7)°. This twist conformation prohibits any inter­molecular ππ stacking inter­action between the quinoline planes, which is observed in the crystals of complexes (1) and (2).

1. Chemical context

8-Quinolylphosphanes are competent ligands for various functional coordination compounds, because they consist of a strongly σ-donating phosphane donor group and a π-conjugated quinoline moiety and form a stable planar five-membered chelate ring on coordination to a metal center (Cai et al., 2018[Cai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606-1618.]; Hopkins et al., 2019[Hopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300-1310.]; Scattolin et al., 2017[Scattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210-5217.]). In one of our previous studies, it was revealed that 8-(di­phenyl­phosphan­yl)quinoline (PQH) in the simplest di­chlorido­palladium(II) complex, [PdCl2(PQH)] (3), exhibits a strong trans influence of the di­phenyl­phosphanyl donor group and an inter­molecular ππ stacking inter­action between the quinoline ring systems (Suzuki et al., 2015[Suzuki, T., Yamaguchi, H., Fujiki, M., Hashimoto, A. & Takagi, H. D. (2015). Acta Cryst. E71, 447-451.]). Also, in the bis­(PQH)-type NiII, PdII and PtII (MII) complexes, [MII(PQH)2]X2 (X = ClO4, BF4 or CF3SO3), the cis(P,P)-isomers are preferably formed due to the above-mentioned trans influence, but the mutually cis-positioned quinoline groups give a steric congestion between them, causing the coordination environment around MII to be distorted (Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]; Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Inorg. Chem. Accepted for publication. https://doi.org/10.1021/acs.inorgchem.0c02706.]). When a methyl or phenyl group substituted at the ortho-position of the quinoline-N atom of PQH is used for complexation, for example in 2-methyl-8-(di­phenyl­phos­phan­yl)quinoline (PQMe) (1) or 2-phenyl-8-(di­phenyl­phos­phan­yl)quinoline (PQPh) (2), a much larger steric hindrance would be expected at the cis-position of the coordinating quinoline-N donor site. In the present study we reveal the characteristic structural features of the simplest PdCl2 complexes bearing PQMe (1) and PQPh (2) chelate ligands.

[Scheme 1]

2. Structural commentary

In the crystals of (1) and (2), the quinolylphosphane moiety coordinates to a PdII center in a bidentate κ2P,N mode, and the coordination environment around the PdII center is roughly square-planar with two additional chlorido ligands. The analogous PQH complex (3) has a typical planar environment (Suzuki et al., 2015[Suzuki, T., Yamaguchi, H., Fujiki, M., Hashimoto, A. & Takagi, H. D. (2015). Acta Cryst. E71, 447-451.]); the τ4 value (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) indicating the tetra­hedral distortion around the four-coordinate PdII center is here only 0.0552 (4). The coordination plane (defined by the central Pd and four donor atoms) and the quinoline plane are almost co-planar, with their dihedral angle being 8.58 (3)°. The Pd1—P1 and Pd1—N1 bond lengths in the structure of (3) are 2.2026 (6) and 2.065 (2) Å, respectively, and the P1—Pd1—N1 chelate bite angle is 84.75 (6)°. The Pd—Cl1 (trans to P1) and Pd1—Cl2 (trans to N1) bond lengths are 2.3716 (7) and 2.2885 (8) Å, respectively, indicating a strong trans influence of the Ph2P– donor group.

In the PQMe complex (1) (Fig. 1[link]), the coordination environment around the PdII center is apparently distorted; the τ4 value is 0.1555 (4). The steric requirement from the 2-methyl substituent of the coordinating quinoline group causes the Cl ligand in the cis-position to be pushed away (Fig. 2[link]). Thus, the Cl1 atom is considerably displaced from the PdII coordination plane (defined by Pd1, Cl2, P1 and N1) by 0.554 (1) Å, and the P1—Pd1—Cl1 bond angle is 166.74 (2)°, as compared to the N1—Pd1—Cl2 angle of 171.32 (5)°. More importantly, the PQMe chelate ring is no longer planar. The Pd1 atom is displaced by 0.755 (2) Å from the chelating ligand plane (defined by P1, C8, C9 and N1), and the dihedral angle φC between the plane [Pd1,P1,N1] and the quinoline plane (defined by N1 and C1–C9) is 25.35 (3)°. Thus, an envelope-type deformation of the chelate ring is observed. This distortion would weaken the Pd—N bond, because the direction of the lone-pair electrons on the N atom does not match with the PdII acceptor d-orbital. In fact, the Pd1—N1 bond length of 2.0971 (17) Å in (1) is slightly longer than that in (3). Other coordination bonds and angles are collated in Table 1[link] and are comparable to those in (3).

Table 1
Selected geometric parameters (Å, °) for complex (1)[link]

Pd1—N1 2.0971 (17) Pd1—Cl2 2.2823 (6)
Pd1—P1 2.1910 (5) Pd1—Cl1 2.3742 (6)
       
N1—Pd1—P1 83.52 (5) N1—Pd1—Cl1 98.30 (5)
N1—Pd1—Cl2 171.32 (5) P1—Pd1—Cl1 166.74 (2)
P1—Pd1—Cl2 88.25 (2) Cl2—Pd1—Cl1 90.34 (2)
[Figure 1]
Figure 1
The mol­ecular structure of [PdCl2(PQMe)] (1), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Perspective (a) top and (b) side views of a dimeric unit of (1), showing the distortion of the coordination environment around PdII and the inter­molecular ππ stacking inter­action between the quinoline ring systems. Color code: Pd, blueish purple; P, orange; N, blue; C, black and H, gray.

The PQPh complex (2) shows a more explicit distortion of the coordination environment on the quinolylphosphane ligand due to the 2-phenyl substitution group (Figs. 3[link] and 4[link]). The τ4 value is 0.1438 (4), and the Cl1 atom is displaced from the PdII coordination plane (defined by Pd1, Cl2, P1 and N1) by 0.571 (1) Å. The P1—Pd1—Cl1 and N1—Pd1—Cl2 bond angles are 165.930 (19) and 173.78 (5)°, respectively. The Pd1 atom is displaced by 0.864 (2) Å from the chelating ligand plane (defined by P1, C8, C9 and N1), and the dihedral angle φC between the plane [Pd1,P1,N1] and the quinoline plane (defined by N1 and C1–C9) is 32.56 (3)°. In addition, the substituted phenyl plane is twisted from the attached quinoline plane with a dihedral angle of 33.08 (7)°. Table 2[link] lists selected bond lengths and angles.

Table 2
Selected geometric parameters (Å, °) for complex (2)[link]

Pd1—N1 2.0806 (15) Pd1—Cl2 2.2769 (5)
Pd1—P1 2.2036 (6) Pd1—Cl1 2.3738 (6)
       
N1—Pd1—P1 83.24 (5) N1—Pd1—Cl1 94.56 (5)
N1—Pd1—Cl2 173.78 (5) P1—Pd1—Cl1 165.930 (19)
P1—Pd1—Cl2 90.56 (2) Cl2—Pd1—Cl1 91.57 (2)
[Figure 3]
Figure 3
The mol­ecular structure of [PdCl2(PQPh)] (2), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
[Figure 4]
Figure 4
A perspective side view of (2), showing the distortion of the coordination environment around PdII. Color code: Pd, blueish purple; P, orange; N, blue; C, black and H, gray.

3. Supra­molecular features

In the crystal structure, the mol­ecular PQH complex (3) forms a dimer by an inter­molecular ππ stacking inter­action between the quinoline ring systems. A similar stacking inter­action is observed in the crystal structure of the PQMe complex (1) (Fig. 2[link]). The shortest inter­molecular contact distance is 3.322 (3) Å for C2⋯C6i [symmetry code: (i) −x + 1, −y + 1, −z). By contrast, the PQPh complex (2) does not show a similar stacking inter­action to the above examples, because the twist motion of the attached phenyl group prohibits a full ππ stacking inter­action between the mol­ecules (Fig. 4[link]). The shortest inter­molecular contact distance in (2) is 3.549 (3) Å for C2⋯C3ii [symmetry code (ii) −x + 1, −y + 2, −z + 1]. There are no other obvious supra­molecular features in the crystal structures of (1) and (2) (Figs. 5[link] and 6[link]).

[Figure 5]
Figure 5
The packing of [PdCl2(PQMe)] (1), viewed along the b axis. Color code: Pd, blueish purple; P, orange; N, blue; C, black and H, gray.
[Figure 6]
Figure 6
The packing of [PdCl2(PQPh)] (2), viewed along the b axis. Color code: Pd, blueish purple; P, orange; N, blue; C, black and H, gray.

4. Database survey

Crystal structures of the following transition-metal complexes containing PQMe or PQPh were retrieved from the Cambridge Structural Database (CSD, version 5.41, last update May 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): [Cu(PQMe)2]PF6 (refcode NOPNOW; Tsukuda et al., 2009[Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7-12.]), [Cu(PQMe){(Ph2PC6H4)2O}]BF4·CH2Cl2 (OGUYEV; Qin et al., 2009[Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388-9391.]), [{Ni(PQMe)Cl}2(μ-Cl)2]·CH2Cl2 (MUMDAZ; Sun et al., 2002[Sun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474-1478.]), two organometallic PdII complexes (BUPMIK and BUPMOQ; Canovese et al., 2015[Canovese, L., Visentin, F., Scattolin, T., Santo, C. & Bertolasi, V. (2015). Dalton Trans. 44, 15049-15058.]). We have recently reported some NiII, PdII and PtII (MII) complexes bearing PQR: [M(PQR)2]X2 (X = Br, BF4 or CF3SO3) (Mori et al., 2020[Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Inorg. Chem. Accepted for publication. https://doi.org/10.1021/acs.inorgchem.0c02706.]) and [Pt(ppy)(PQR)]BF4 [ppy = 2-(2′-pyrid­yl)phenyl; Mori & Suzuki, 2020[Mori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862.]]. A related palladium(II) complex containing 2-methyl-8-(methyl­phenyl­phosphan­yl)quinoline has also been reported (PUMDAD; Bock et al., 2010[Bock, F., Fischer, F., Radacki, K. & Schenk, W. A. (2010). Eur. J. Inorg. Chem. pp. 391-402.]).

5. Synthesis and crystallization

The ligands, PQMe and PQPh, were prepared according to the methods reported previously (Mori & Suzuki, 2020[Mori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862.]). Complex (1) was prepared as follows: under a nitro­gen atmosphere, a di­chloro­methane solution (10 ml) of PQMe (0.109 g, 0.334 mmol) was added under stirring to a di­chloro­methane solution (8 ml) of [PdCl2(PhCN)2] (PhCN = benzo­nitrile) (0.121 g, 0.315 mmol), and the mixture was stirred overnight at room temperature. The resulting solution was concentrated using a rotary evaporator, and diethyl ether was added under stirring to the concentrate, giving a yellow precipitate, which was collected by filtration, washed with diethyl ether (10 ml), and dried in vacuo. Yield: 0.142 g (92%). Analysis found: C, 51.03; H, 3.67; N, 2.99%. Calculated for C22H18Cl2NPPd·0.7H2O: C, 51.08; H, 3.78; N, 2.71%. Yellow needle-like crystals of (1) were obtained by recrystallization from an aceto­nitrile solution by diffusion of diisopropyl ether.

Complex (2) was prepared as follows: under a nitro­gen atmosphere, a di­chloro­methane solution (10 ml) of PQPh (0.071 g, 0.18 mmol) was added under stirring to a di­chloro­methane solution (10 ml) of [PdCl2(PhCN)2] (0.070 g, 0.18 mmol), and the mixture was stirred overnight at room temperature. The resulting brown precipitate was filtered off, and the filtrate was concentrated under reduced pressure. Diethyl ether was added under stirring to the concentrate, giving a yellow precipitate, which was collected by filtration, washed with diethyl ether (10 ml), and dried in vacuo. Yield: 0.041 g (40%). Analysis found: C, 56.23; H, 3.50; N, 2.56%. Calculated for C27H20Cl2NPPd: C, 57.22; H, 3.56; N, 2.47%. Yellow block-like crystals of (2) were obtained by recrystallization from an aceto­nitrile solution by diffusion of diisopropyl ether.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (aromatic) or 0.98 (meth­yl) Å and Uiso = 1.2Ueq(C). For the refinement of (2), two reflections (4[\overline{1}]1, [\overline{7}]98) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop.

Table 3
Experimental details

  Complex (1) Complex (2)
Crystal data
Chemical formula [PdCl2(C22H18NP)] [PdCl2(C27H20NP)]
Mr 504.64 566.71
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}]
Temperature (K) 188 188
a, b, c (Å) 13.8153 (5), 15.5676 (8), 18.9683 (5) 9.6582 (13), 9.8765 (14), 13.0748 (14)
α, β, γ (°) 90, 108.733 (2), 90 102.011 (4), 90.426 (4), 109.827 (4)
V3) 3863.4 (3) 1143.4 (3)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.33 1.13
Crystal size (mm) 0.50 × 0.20 × 0.15 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.662, 0.819 0.640, 0.797
No. of measured, independent and observed [I > 2σ(I)] reflections 18561, 4438, 3976 11339, 5194, 4682
Rint 0.039 0.027
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.05 0.025, 0.064, 1.06
No. of reflections 4438 5192
No. of parameters 245 289
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.34 0.74, −0.59
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]), Il Milione (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (CrystalMaker, 2017[CrystalMaker (2017). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010). Program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999) for complex1; Il Milione (Burla et al., 2012) for complex2. For both structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido[8-(diphenylphosphanyl)-2-methylquinoline-κ2N,P]palladium(II) (complex1) top
Crystal data top
[PdCl2(C22H18NP)]F(000) = 2016
Mr = 504.64Dx = 1.735 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 13.8153 (5) ÅCell parameters from 15062 reflections
b = 15.5676 (8) Åθ = 3.1–27.6°
c = 18.9683 (5) ŵ = 1.33 mm1
β = 108.733 (2)°T = 188 K
V = 3863.4 (3) Å3Needle, yellow
Z = 80.50 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4438 independent reflections
Radiation source: fine-focus sealed tube3976 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.039
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1717
Tmin = 0.662, Tmax = 0.819k = 2020
18561 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0257P)2 + 5.1054P]
where P = (Fo2 + 2Fc2)/3
4438 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.18958 (2)0.00853 (2)0.12906 (2)0.02335 (6)
Cl10.18633 (5)0.13050 (4)0.07691 (4)0.04342 (15)
Cl20.14113 (5)0.04783 (4)0.22366 (3)0.03709 (14)
P10.22803 (4)0.12790 (3)0.19320 (3)0.02356 (11)
N10.23191 (12)0.07847 (11)0.04910 (9)0.0238 (3)
C10.20531 (16)0.06113 (14)0.02343 (12)0.0274 (4)
C20.26023 (17)0.09721 (15)0.06751 (12)0.0314 (5)
H20.24390.08060.11820.038*
C30.33556 (16)0.15490 (15)0.03855 (12)0.0308 (5)
H30.37440.17640.06790.037*
C40.35637 (15)0.18305 (14)0.03552 (12)0.0269 (4)
C50.42756 (16)0.24877 (15)0.06901 (13)0.0314 (5)
H50.46670.27420.04150.038*
C60.44088 (16)0.27612 (15)0.13956 (13)0.0334 (5)
H60.48930.31990.16100.040*
C70.38300 (16)0.23959 (14)0.18060 (12)0.0303 (5)
H70.39020.26040.22910.036*
C80.31559 (15)0.17359 (13)0.15078 (11)0.0249 (4)
C90.30212 (14)0.14371 (13)0.07806 (11)0.0232 (4)
C100.11417 (19)0.00666 (15)0.06008 (13)0.0354 (5)
H10A0.05870.02180.04060.042*
H10B0.13210.05400.04970.042*
H10C0.09190.01640.11400.042*
C110.12787 (16)0.20610 (14)0.17993 (12)0.0268 (4)
C120.03231 (17)0.18947 (16)0.12721 (13)0.0340 (5)
H120.01900.13490.10370.041*
C130.04303 (18)0.25209 (18)0.10918 (15)0.0405 (6)
H130.10780.24080.07330.049*
C140.0230 (2)0.33035 (18)0.14365 (15)0.0447 (6)
H140.07440.37350.13180.054*
C150.0717 (2)0.34742 (17)0.19588 (15)0.0425 (6)
H150.08430.40230.21900.051*
C160.14790 (18)0.28583 (15)0.21475 (13)0.0338 (5)
H160.21240.29770.25060.041*
C170.29830 (16)0.11805 (14)0.29131 (11)0.0270 (4)
C180.25801 (18)0.14295 (16)0.34621 (13)0.0349 (5)
H180.19280.16970.33330.042*
C190.3144 (2)0.12828 (17)0.42099 (13)0.0404 (6)
H190.28800.14710.45890.048*
C200.4061 (2)0.08758 (16)0.44024 (13)0.0402 (6)
H200.44270.07710.49120.048*
C210.44627 (18)0.06140 (16)0.38595 (13)0.0384 (5)
H210.51020.03250.39940.046*
C220.39295 (17)0.07739 (15)0.31183 (13)0.0325 (5)
H220.42130.06040.27450.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02644 (9)0.02137 (9)0.02156 (9)0.00327 (6)0.00677 (6)0.00066 (6)
Cl10.0661 (4)0.0244 (3)0.0403 (3)0.0008 (3)0.0178 (3)0.0036 (2)
Cl20.0465 (3)0.0371 (3)0.0281 (3)0.0135 (2)0.0126 (2)0.0043 (2)
P10.0270 (3)0.0234 (3)0.0196 (2)0.0033 (2)0.00651 (19)0.00029 (19)
N10.0253 (8)0.0235 (8)0.0218 (8)0.0011 (7)0.0062 (6)0.0011 (7)
C10.0313 (10)0.0252 (10)0.0247 (10)0.0031 (8)0.0075 (8)0.0007 (8)
C20.0386 (12)0.0347 (12)0.0215 (10)0.0043 (10)0.0103 (9)0.0026 (9)
C30.0327 (11)0.0361 (12)0.0273 (11)0.0065 (9)0.0148 (9)0.0089 (9)
C40.0256 (10)0.0276 (10)0.0279 (11)0.0037 (8)0.0089 (8)0.0078 (8)
C50.0249 (10)0.0320 (11)0.0377 (12)0.0006 (9)0.0106 (9)0.0096 (9)
C60.0271 (10)0.0286 (11)0.0394 (13)0.0060 (9)0.0034 (9)0.0062 (9)
C70.0299 (10)0.0285 (11)0.0285 (11)0.0026 (9)0.0037 (8)0.0009 (9)
C80.0242 (10)0.0249 (10)0.0244 (10)0.0014 (8)0.0061 (8)0.0037 (8)
C90.0228 (9)0.0223 (9)0.0236 (10)0.0011 (8)0.0060 (7)0.0038 (8)
C100.0394 (13)0.0378 (13)0.0252 (12)0.0055 (10)0.0049 (9)0.0021 (9)
C110.0292 (10)0.0283 (10)0.0247 (10)0.0004 (8)0.0110 (8)0.0039 (8)
C120.0313 (11)0.0362 (12)0.0348 (12)0.0044 (10)0.0112 (9)0.0020 (10)
C130.0300 (11)0.0514 (16)0.0405 (14)0.0025 (11)0.0119 (10)0.0120 (12)
C140.0473 (14)0.0491 (16)0.0450 (15)0.0180 (12)0.0249 (12)0.0143 (12)
C150.0608 (16)0.0334 (13)0.0396 (14)0.0096 (12)0.0250 (12)0.0037 (11)
C160.0408 (12)0.0312 (12)0.0302 (12)0.0009 (10)0.0128 (9)0.0003 (9)
C170.0327 (11)0.0252 (10)0.0217 (10)0.0050 (8)0.0068 (8)0.0008 (8)
C180.0418 (13)0.0364 (12)0.0272 (11)0.0009 (10)0.0122 (9)0.0004 (10)
C190.0567 (15)0.0411 (14)0.0244 (12)0.0079 (12)0.0145 (10)0.0019 (10)
C200.0528 (15)0.0378 (13)0.0218 (11)0.0103 (11)0.0006 (10)0.0043 (10)
C210.0358 (12)0.0373 (13)0.0347 (13)0.0025 (10)0.0012 (10)0.0072 (10)
C220.0351 (11)0.0324 (12)0.0294 (12)0.0014 (9)0.0095 (9)0.0020 (9)
Geometric parameters (Å, º) top
Pd1—N12.0971 (17)C10—H10B0.9800
Pd1—P12.1910 (5)C10—H10C0.9800
Pd1—Cl22.2823 (6)C11—C161.391 (3)
Pd1—Cl12.3742 (6)C11—C121.401 (3)
P1—C111.799 (2)C12—C131.386 (3)
P1—C81.800 (2)C12—H120.9500
P1—C171.808 (2)C13—C141.368 (4)
N1—C11.333 (3)C13—H130.9500
N1—C91.390 (3)C14—C151.390 (4)
C1—C21.413 (3)C14—H140.9500
C1—C101.492 (3)C15—C161.384 (3)
C2—C31.351 (3)C15—H150.9500
C2—H20.9500C16—H160.9500
C3—C41.410 (3)C17—C181.384 (3)
C3—H30.9500C17—C221.391 (3)
C4—C91.406 (3)C18—C191.401 (3)
C4—C51.420 (3)C18—H180.9500
C5—C61.359 (3)C19—C201.358 (4)
C5—H50.9500C19—H190.9500
C6—C71.403 (3)C20—C211.379 (4)
C6—H60.9500C20—H200.9500
C7—C81.380 (3)C21—C221.384 (3)
C7—H70.9500C21—H210.9500
C8—C91.410 (3)C22—H220.9500
C10—H10A0.9800
N1—Pd1—P183.52 (5)C1—C10—H10A109.5
N1—Pd1—Cl2171.32 (5)C1—C10—H10B109.5
P1—Pd1—Cl288.25 (2)H10A—C10—H10B109.5
N1—Pd1—Cl198.30 (5)C1—C10—H10C109.5
P1—Pd1—Cl1166.74 (2)H10A—C10—H10C109.5
Cl2—Pd1—Cl190.34 (2)H10B—C10—H10C109.5
C11—P1—C8105.50 (10)C16—C11—C12120.1 (2)
C11—P1—C17109.64 (10)C16—C11—P1120.69 (17)
C8—P1—C17106.13 (10)C12—C11—P1118.75 (17)
C11—P1—Pd1117.25 (7)C13—C12—C11120.5 (2)
C8—P1—Pd199.48 (7)C13—C12—H12119.8
C17—P1—Pd1116.99 (7)C11—C12—H12119.8
C1—N1—C9118.82 (18)C14—C13—C12119.2 (2)
C1—N1—Pd1126.37 (14)C14—C13—H13120.4
C9—N1—Pd1114.50 (13)C12—C13—H13120.4
N1—C1—C2120.5 (2)C13—C14—C15120.7 (2)
N1—C1—C10120.52 (19)C13—C14—H14119.7
C2—C1—C10118.9 (2)C15—C14—H14119.7
C3—C2—C1120.9 (2)C16—C15—C14121.1 (2)
C3—C2—H2119.6C16—C15—H15119.5
C1—C2—H2119.6C14—C15—H15119.5
C2—C3—C4119.7 (2)C15—C16—C11118.5 (2)
C2—C3—H3120.1C15—C16—H16120.8
C4—C3—H3120.1C11—C16—H16120.8
C9—C4—C3117.4 (2)C18—C17—C22119.1 (2)
C9—C4—C5118.5 (2)C18—C17—P1122.53 (17)
C3—C4—C5124.0 (2)C22—C17—P1118.19 (16)
C6—C5—C4121.4 (2)C17—C18—C19119.3 (2)
C6—C5—H5119.3C17—C18—H18120.4
C4—C5—H5119.3C19—C18—H18120.4
C5—C6—C7119.9 (2)C20—C19—C18121.1 (2)
C5—C6—H6120.1C20—C19—H19119.5
C7—C6—H6120.1C18—C19—H19119.5
C8—C7—C6120.3 (2)C19—C20—C21120.1 (2)
C8—C7—H7119.9C19—C20—H20119.9
C6—C7—H7119.9C21—C20—H20119.9
C7—C8—C9120.40 (19)C20—C21—C22119.7 (2)
C7—C8—P1124.94 (17)C20—C21—H21120.2
C9—C8—P1114.22 (15)C22—C21—H21120.2
N1—C9—C4121.63 (19)C21—C22—C17120.8 (2)
N1—C9—C8118.93 (18)C21—C22—H22119.6
C4—C9—C8119.37 (19)C17—C22—H22119.6
C9—N1—C1—C211.2 (3)C7—C8—C9—C41.4 (3)
Pd1—N1—C1—C2162.19 (16)P1—C8—C9—C4171.46 (15)
C9—N1—C1—C10165.95 (19)C8—P1—C11—C1666.1 (2)
Pd1—N1—C1—C1020.7 (3)C17—P1—C11—C1647.8 (2)
N1—C1—C2—C35.1 (3)Pd1—P1—C11—C16175.63 (15)
C10—C1—C2—C3172.1 (2)C8—P1—C11—C12106.50 (18)
C1—C2—C3—C43.3 (3)C17—P1—C11—C12139.61 (17)
C2—C3—C4—C95.1 (3)Pd1—P1—C11—C123.1 (2)
C2—C3—C4—C5174.3 (2)C16—C11—C12—C130.1 (3)
C9—C4—C5—C62.6 (3)P1—C11—C12—C13172.52 (18)
C3—C4—C5—C6176.8 (2)C11—C12—C13—C140.2 (4)
C4—C5—C6—C70.5 (3)C12—C13—C14—C150.3 (4)
C5—C6—C7—C82.6 (3)C13—C14—C15—C160.4 (4)
C6—C7—C8—C91.7 (3)C14—C15—C16—C110.3 (4)
C6—C7—C8—P1173.74 (17)C12—C11—C16—C150.1 (3)
C11—P1—C8—C774.4 (2)P1—C11—C16—C15172.32 (18)
C17—P1—C8—C741.9 (2)C11—P1—C17—C1820.9 (2)
Pd1—P1—C8—C7163.70 (17)C8—P1—C17—C18134.36 (19)
C11—P1—C8—C998.03 (17)Pd1—P1—C17—C18115.78 (18)
C17—P1—C8—C9145.66 (15)C11—P1—C17—C22164.51 (17)
Pd1—P1—C8—C923.84 (16)C8—P1—C17—C2251.0 (2)
C1—N1—C9—C49.3 (3)Pd1—P1—C17—C2258.83 (19)
Pd1—N1—C9—C4164.82 (15)C22—C17—C18—C191.3 (3)
C1—N1—C9—C8167.77 (19)P1—C17—C18—C19175.92 (18)
Pd1—N1—C9—C818.1 (2)C17—C18—C19—C202.2 (4)
C3—C4—C9—N11.1 (3)C18—C19—C20—C211.3 (4)
C5—C4—C9—N1179.45 (18)C19—C20—C21—C220.5 (4)
C3—C4—C9—C8175.94 (19)C20—C21—C22—C171.3 (4)
C5—C4—C9—C83.5 (3)C18—C17—C22—C210.4 (3)
C7—C8—C9—N1178.54 (19)P1—C17—C22—C21174.44 (18)
P1—C8—C9—N15.7 (2)
Dichlorido[8-(diphenylphosphanyl)-2-phenylquinoline-κ2N</i.,P]palladium(II) (complex2) top
Crystal data top
[PdCl2(C27H20NP)]Z = 2
Mr = 566.71F(000) = 568
Triclinic, P1Dx = 1.646 Mg m3
a = 9.6582 (13) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.8765 (14) ÅCell parameters from 9246 reflections
c = 13.0748 (14) Åθ = 3.0–27.5°
α = 102.011 (4)°µ = 1.13 mm1
β = 90.426 (4)°T = 188 K
γ = 109.827 (4)°Block, yellow
V = 1143.4 (3) Å30.30 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5194 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1012
Tmin = 0.640, Tmax = 0.797k = 1212
11339 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.2021P]
where P = (Fo2 + 2Fc2)/3
5192 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.25082 (2)1.07058 (2)0.24836 (2)0.02194 (6)
Cl10.43029 (5)1.29486 (5)0.34148 (4)0.02876 (11)
Cl20.24428 (6)1.16677 (6)0.10529 (4)0.03346 (12)
P10.13193 (5)0.84625 (6)0.15446 (4)0.02330 (11)
N10.24296 (17)0.96063 (18)0.36894 (12)0.0247 (3)
C10.2588 (2)1.0232 (2)0.47079 (15)0.0286 (4)
C20.3092 (2)0.9587 (3)0.54451 (16)0.0352 (5)
H20.32541.00660.61680.042*
C30.3343 (2)0.8301 (3)0.51319 (16)0.0358 (5)
H30.37580.79270.56220.043*
C40.2985 (2)0.7512 (2)0.40669 (16)0.0307 (4)
C50.3080 (2)0.6111 (3)0.36724 (18)0.0363 (5)
H50.34350.56470.41300.044*
C60.2671 (2)0.5404 (3)0.26407 (19)0.0380 (5)
H60.27580.44650.23860.046*
C70.2116 (2)0.6075 (2)0.19524 (17)0.0332 (5)
H70.18020.55660.12430.040*
C80.2030 (2)0.7453 (2)0.23036 (15)0.0263 (4)
C90.2492 (2)0.8205 (2)0.33623 (15)0.0258 (4)
C100.2157 (2)1.1546 (2)0.50524 (15)0.0295 (4)
C110.0945 (2)1.1650 (2)0.45270 (16)0.0323 (4)
H110.04021.08790.39540.039*
C120.0535 (3)1.2877 (3)0.48423 (18)0.0404 (5)
H120.02791.29520.44760.049*
C130.1302 (3)1.3993 (3)0.56847 (19)0.0467 (6)
H130.10111.48290.59010.056*
C140.2493 (3)1.3890 (3)0.62121 (18)0.0452 (6)
H140.30261.46630.67880.054*
C150.2915 (2)1.2678 (3)0.59103 (16)0.0371 (5)
H150.37251.26090.62870.045*
C160.1809 (2)0.8010 (2)0.02145 (15)0.0259 (4)
C170.3276 (2)0.8225 (2)0.00430 (17)0.0353 (5)
H170.39980.85450.06220.042*
C180.3692 (3)0.7974 (3)0.09724 (19)0.0414 (5)
H180.46950.81100.10900.050*
C190.2635 (3)0.7524 (3)0.18145 (17)0.0399 (5)
H190.29190.73520.25100.048*
C200.1189 (3)0.7325 (3)0.16542 (16)0.0373 (5)
H200.04760.70190.22380.045*
C210.0756 (2)0.7571 (2)0.06359 (15)0.0294 (4)
H210.02480.74400.05240.035*
C220.0677 (2)0.7813 (2)0.14853 (14)0.0242 (4)
C230.1542 (2)0.6327 (2)0.12208 (16)0.0332 (5)
H230.10870.55990.11050.040*
C240.3069 (3)0.5900 (3)0.11247 (18)0.0415 (5)
H240.36600.48820.09480.050*
C250.3732 (2)0.6962 (3)0.12869 (17)0.0387 (5)
H250.47780.66680.12150.046*
C260.2891 (2)0.8431 (3)0.15501 (16)0.0343 (5)
H260.33550.91510.16650.041*
C270.1357 (2)0.8872 (2)0.16492 (15)0.0283 (4)
H270.07740.98930.18280.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02264 (9)0.02275 (9)0.02375 (9)0.01079 (6)0.00033 (5)0.00750 (6)
Cl10.0271 (2)0.0258 (3)0.0334 (2)0.00800 (19)0.00090 (17)0.00894 (18)
Cl20.0398 (3)0.0379 (3)0.0305 (3)0.0188 (2)0.00031 (19)0.0154 (2)
P10.0233 (3)0.0241 (3)0.0258 (2)0.0119 (2)0.00061 (17)0.00659 (18)
N10.0238 (8)0.0290 (9)0.0236 (8)0.0101 (7)0.0007 (6)0.0094 (6)
C10.0221 (10)0.0328 (11)0.0306 (10)0.0069 (8)0.0027 (7)0.0108 (8)
C20.0312 (12)0.0494 (14)0.0277 (10)0.0127 (10)0.0002 (8)0.0168 (9)
C30.0289 (11)0.0514 (14)0.0353 (11)0.0155 (10)0.0012 (8)0.0247 (10)
C40.0226 (10)0.0373 (12)0.0399 (11)0.0133 (9)0.0051 (8)0.0205 (9)
C50.0278 (11)0.0397 (13)0.0532 (14)0.0174 (10)0.0063 (9)0.0265 (10)
C60.0337 (12)0.0306 (12)0.0593 (14)0.0185 (10)0.0079 (10)0.0185 (10)
C70.0319 (12)0.0304 (12)0.0416 (12)0.0156 (9)0.0028 (8)0.0098 (9)
C80.0243 (10)0.0252 (10)0.0333 (10)0.0113 (8)0.0026 (7)0.0103 (8)
C90.0202 (10)0.0280 (10)0.0343 (10)0.0110 (8)0.0044 (7)0.0137 (8)
C100.0280 (11)0.0336 (11)0.0256 (10)0.0073 (9)0.0067 (7)0.0097 (8)
C110.0298 (11)0.0328 (12)0.0333 (11)0.0096 (9)0.0053 (8)0.0074 (8)
C120.0358 (13)0.0418 (14)0.0495 (13)0.0179 (11)0.0133 (10)0.0148 (10)
C130.0548 (16)0.0330 (13)0.0522 (14)0.0156 (12)0.0187 (11)0.0083 (10)
C140.0531 (16)0.0355 (13)0.0358 (12)0.0040 (11)0.0104 (10)0.0034 (9)
C150.0349 (12)0.0411 (13)0.0290 (11)0.0055 (10)0.0037 (8)0.0073 (9)
C160.0278 (10)0.0238 (10)0.0289 (10)0.0129 (8)0.0035 (7)0.0054 (7)
C170.0281 (11)0.0368 (13)0.0430 (12)0.0150 (10)0.0037 (8)0.0067 (9)
C180.0336 (13)0.0388 (13)0.0566 (15)0.0172 (10)0.0203 (10)0.0126 (10)
C190.0546 (15)0.0323 (12)0.0373 (12)0.0196 (11)0.0190 (10)0.0091 (9)
C200.0477 (14)0.0367 (13)0.0286 (11)0.0163 (11)0.0048 (9)0.0069 (9)
C210.0299 (11)0.0307 (11)0.0315 (10)0.0141 (9)0.0045 (8)0.0090 (8)
C220.0236 (10)0.0295 (10)0.0225 (9)0.0111 (8)0.0028 (7)0.0087 (7)
C230.0337 (12)0.0301 (12)0.0393 (11)0.0147 (9)0.0030 (8)0.0091 (9)
C240.0353 (13)0.0332 (13)0.0512 (14)0.0048 (10)0.0013 (10)0.0115 (10)
C250.0241 (11)0.0519 (15)0.0429 (12)0.0123 (10)0.0031 (8)0.0184 (10)
C260.0321 (12)0.0459 (14)0.0342 (11)0.0230 (10)0.0043 (8)0.0127 (9)
C270.0292 (11)0.0300 (11)0.0288 (10)0.0132 (9)0.0010 (7)0.0085 (8)
Geometric parameters (Å, º) top
Pd1—N12.0806 (15)C12—H120.9500
Pd1—P12.2036 (6)C13—C141.380 (4)
Pd1—Cl22.2769 (5)C13—H130.9500
Pd1—Cl12.3738 (6)C14—C151.376 (4)
P1—C221.8094 (19)C14—H140.9500
P1—C161.8112 (19)C15—H150.9500
P1—C81.821 (2)C16—C171.387 (3)
N1—C11.330 (2)C16—C211.394 (3)
N1—C91.383 (3)C17—C181.387 (3)
C1—C21.425 (3)C17—H170.9500
C1—C101.479 (3)C18—C191.387 (3)
C2—C31.354 (3)C18—H180.9500
C2—H20.9500C19—C201.367 (3)
C3—C41.423 (3)C19—H190.9500
C3—H30.9500C20—C211.396 (3)
C4—C51.406 (3)C20—H200.9500
C4—C91.422 (3)C21—H210.9500
C5—C61.370 (3)C22—C231.388 (3)
C5—H50.9500C22—C271.395 (3)
C6—C71.420 (3)C23—C241.387 (3)
C6—H60.9500C23—H230.9500
C7—C81.374 (3)C24—C251.385 (3)
C7—H70.9500C24—H240.9500
C8—C91.416 (3)C25—C261.368 (3)
C10—C151.398 (3)C25—H250.9500
C10—C111.398 (3)C26—C271.392 (3)
C11—C121.383 (3)C26—H260.9500
C11—H110.9500C27—H270.9500
C12—C131.380 (3)
N1—Pd1—P183.24 (5)C13—C12—C11120.5 (2)
N1—Pd1—Cl2173.78 (5)C13—C12—H12119.8
P1—Pd1—Cl290.56 (2)C11—C12—H12119.8
N1—Pd1—Cl194.56 (5)C12—C13—C14119.8 (2)
P1—Pd1—Cl1165.930 (19)C12—C13—H13120.1
Cl2—Pd1—Cl191.57 (2)C14—C13—H13120.1
C22—P1—C16106.75 (9)C15—C14—C13120.5 (2)
C22—P1—C8110.11 (9)C15—C14—H14119.7
C16—P1—C8106.83 (9)C13—C14—H14119.7
C22—P1—Pd1117.05 (7)C14—C15—C10120.3 (2)
C16—P1—Pd1117.40 (7)C14—C15—H15119.9
C8—P1—Pd197.85 (7)C10—C15—H15119.9
C1—N1—C9119.93 (16)C17—C16—C21119.90 (18)
C1—N1—Pd1124.98 (14)C17—C16—P1119.09 (15)
C9—N1—Pd1113.93 (11)C21—C16—P1120.78 (15)
N1—C1—C2119.8 (2)C18—C17—C16120.1 (2)
N1—C1—C10118.68 (17)C18—C17—H17119.9
C2—C1—C10121.43 (18)C16—C17—H17119.9
C3—C2—C1121.03 (19)C17—C18—C19119.6 (2)
C3—C2—H2119.5C17—C18—H18120.2
C1—C2—H2119.5C19—C18—H18120.2
C2—C3—C4119.82 (18)C20—C19—C18120.7 (2)
C2—C3—H3120.1C20—C19—H19119.7
C4—C3—H3120.1C18—C19—H19119.7
C5—C4—C3124.78 (19)C19—C20—C21120.2 (2)
C5—C4—C9118.47 (19)C19—C20—H20119.9
C3—C4—C9116.74 (19)C21—C20—H20119.9
C6—C5—C4121.20 (19)C16—C21—C20119.4 (2)
C6—C5—H5119.4C16—C21—H21120.3
C4—C5—H5119.4C20—C21—H21120.3
C5—C6—C7120.0 (2)C23—C22—C27119.44 (19)
C5—C6—H6120.0C23—C22—P1122.85 (16)
C7—C6—H6120.0C27—C22—P1117.58 (15)
C8—C7—C6120.6 (2)C24—C23—C22120.2 (2)
C8—C7—H7119.7C24—C23—H23119.9
C6—C7—H7119.7C22—C23—H23119.9
C7—C8—C9119.58 (17)C25—C24—C23119.9 (2)
C7—C8—P1126.59 (15)C25—C24—H24120.1
C9—C8—P1113.81 (14)C23—C24—H24120.1
N1—C9—C8118.45 (16)C26—C25—C24120.5 (2)
N1—C9—C4121.43 (17)C26—C25—H25119.8
C8—C9—C4120.11 (18)C24—C25—H25119.8
C15—C10—C11118.9 (2)C25—C26—C27120.2 (2)
C15—C10—C1121.50 (19)C25—C26—H26119.9
C11—C10—C1119.55 (18)C27—C26—H26119.9
C12—C11—C10120.0 (2)C26—C27—C22119.9 (2)
C12—C11—H11120.0C26—C27—H27120.1
C10—C11—H11120.0C22—C27—H27120.1
C9—N1—C1—C211.7 (3)C15—C10—C11—C121.6 (3)
Pd1—N1—C1—C2155.23 (15)C1—C10—C11—C12179.87 (19)
C9—N1—C1—C10165.13 (17)C10—C11—C12—C131.0 (3)
Pd1—N1—C1—C1028.0 (2)C11—C12—C13—C140.5 (4)
N1—C1—C2—C33.4 (3)C12—C13—C14—C150.6 (4)
C10—C1—C2—C3173.3 (2)C13—C14—C15—C101.2 (3)
C1—C2—C3—C45.3 (3)C11—C10—C15—C141.7 (3)
C2—C3—C4—C5174.4 (2)C1—C10—C15—C14179.83 (19)
C2—C3—C4—C95.5 (3)C22—P1—C16—C17172.40 (17)
C3—C4—C5—C6178.0 (2)C8—P1—C16—C1754.62 (19)
C9—C4—C5—C61.8 (3)Pd1—P1—C16—C1753.89 (19)
C4—C5—C6—C71.0 (3)C22—P1—C16—C2113.03 (19)
C5—C6—C7—C82.1 (3)C8—P1—C16—C21130.82 (17)
C6—C7—C8—C90.3 (3)Pd1—P1—C16—C21120.67 (16)
C6—C7—C8—P1178.71 (17)C21—C16—C17—C181.4 (3)
C22—P1—C8—C780.9 (2)P1—C16—C17—C18175.99 (17)
C16—P1—C8—C734.6 (2)C16—C17—C18—C190.8 (3)
Pd1—P1—C8—C7156.42 (18)C17—C18—C19—C200.0 (4)
C22—P1—C8—C997.56 (16)C18—C19—C20—C210.1 (4)
C16—P1—C8—C9146.89 (14)C17—C16—C21—C201.2 (3)
Pd1—P1—C8—C925.08 (15)P1—C16—C21—C20175.74 (16)
C1—N1—C9—C8167.48 (18)C19—C20—C21—C160.5 (3)
Pd1—N1—C9—C824.2 (2)C16—P1—C22—C2366.97 (18)
C1—N1—C9—C411.5 (3)C8—P1—C22—C2348.63 (19)
Pd1—N1—C9—C4156.78 (15)Pd1—P1—C22—C23159.13 (14)
C7—C8—C9—N1178.38 (19)C16—P1—C22—C27108.83 (15)
P1—C8—C9—N13.0 (2)C8—P1—C22—C27135.57 (15)
C7—C8—C9—C42.6 (3)Pd1—P1—C22—C2725.07 (16)
P1—C8—C9—C4176.01 (15)C27—C22—C23—C240.2 (3)
C5—C4—C9—N1177.37 (18)P1—C22—C23—C24175.97 (16)
C3—C4—C9—N12.8 (3)C22—C23—C24—C250.4 (3)
C5—C4—C9—C83.7 (3)C23—C24—C25—C260.5 (3)
C3—C4—C9—C8176.20 (18)C24—C25—C26—C270.5 (3)
N1—C1—C10—C15146.2 (2)C25—C26—C27—C220.3 (3)
C2—C1—C10—C1537.0 (3)C23—C22—C27—C260.2 (3)
N1—C1—C10—C1135.3 (3)P1—C22—C27—C26176.17 (15)
C2—C1—C10—C11141.5 (2)
 

Funding information

This work was partly supported by JSPS KAKENHI grant No. 18 K05146.

References

First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBock, F., Fischer, F., Radacki, K. & Schenk, W. A. (2010). Eur. J. Inorg. Chem. pp. 391–402.  CSD CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606–1618.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCanovese, L., Visentin, F., Scattolin, T., Santo, C. & Bertolasi, V. (2015). Dalton Trans. 44, 15049–15058.  CSD CrossRef CAS PubMed Google Scholar
First citationCrystalMaker (2017). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300–1310.  Web of Science CSD CrossRef CAS Google Scholar
First citationMori, M., Sunatsuki, Y. & Suzuki, T. (2020). Inorg. Chem. Accepted for publication. https://doi.org/10.1021/acs.inorgchem.0c02706.  Google Scholar
First citationMori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862.  Web of Science CSD CrossRef Google Scholar
First citationQin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388–9391.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210–5217.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474–1478.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Yamaguchi, H., Fujiki, M., Hashimoto, A. & Takagi, H. D. (2015). Acta Cryst. E71, 447–451.  CSD CrossRef IUCr Journals Google Scholar
First citationTsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds