research communications
Crystal and molecular structures of dichloridopalladium(II) containing 2-methyl- or 2-phenyl-8-(diphenyphosphanyl)quinoline
aGraduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan, and bResearch Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp
The crystal structures of dichloridopalladium(II) complexes bearing 2-methyl- and 2-phenyl-8-(diphenylphosphanyl)quinoline, namely, dichlorido[8-(diphenylphosphanyl)-2-methylquinoline-κ2N,P]palladium(II), [PdCl2(C22H18NP)] (1) and dichlorido[8-(diphenylphosphanyl)-2-phenylquinoline-κ2N,P]palladium(II), [PdCl2(C27H20NP)] (2), were analyzed and compared to that of the 8-(diphenylphosphanyl)quinoline (PQH) analogue (3). In all three complexes, the phosphanylquinoline moiety acts as a bidentate P,N-donating chelate ligand. In the PQH complex (3), the PdII center has a typical planar coordination environment; however, both the methyl- and phenyl-substituted phosphanylquinoline (PQMe and PQPh, respectively) complexes (1) and (2) exhibit a considerable tetrahedral distortion around the PdII center, as parameterized by the τ4 values of 0.1555 (4) and 0.1438 (4) for (1) and (2), respectively. The steric interaction from the substituted group introduced at the 2-position of the quinoline ring enforces the cis-positioned Cl ligand to be displaced from the ideal coordination plane. Also, the ideally planar phosphanylquinoline five-membered chelate ring shows a large bending deformation by the displacement of the PdII center from the quinoline plane. In addition, in the phenyl-substituted complex (3), the coordinating quinolyl and the substituted phenyl rings are not co-planar to each other, having a dihedral angle of 33.08 (7)°. This twist conformation prohibits any intermolecular π–π stacking interaction between the quinoline planes, which is observed in the crystals of complexes (1) and (2).
1. Chemical context
8-Quinolylphosphanes are competent ligands for various functional coordination compounds, because they consist of a strongly σ-donating phosphane donor group and a π-conjugated quinoline moiety and form a stable planar five-membered chelate ring on coordination to a metal center (Cai et al., 2018; Hopkins et al., 2019; Scattolin et al., 2017). In one of our previous studies, it was revealed that 8-(diphenylphosphanyl)quinoline (PQH) in the simplest dichloridopalladium(II) complex, [PdCl2(PQH)] (3), exhibits a strong trans influence of the diphenylphosphanyl donor group and an intermolecular π–π stacking interaction between the quinoline ring systems (Suzuki et al., 2015). Also, in the bis(PQH)-type NiII, PdII and PtII (MII) complexes, [MII(PQH)2]X2 (X = ClO4, BF4 or CF3SO3), the cis(P,P)-isomers are preferably formed due to the above-mentioned trans influence, but the mutually cis-positioned quinoline groups give a steric congestion between them, causing the coordination environment around MII to be distorted (Suzuki, 2004; Mori et al., 2020). When a methyl or phenyl group substituted at the ortho-position of the quinoline-N atom of PQH is used for complexation, for example in 2-methyl-8-(diphenylphosphanyl)quinoline (PQMe) (1) or 2-phenyl-8-(diphenylphosphanyl)quinoline (PQPh) (2), a much larger would be expected at the cis-position of the coordinating quinoline-N donor site. In the present study we reveal the characteristic structural features of the simplest PdCl2 complexes bearing PQMe (1) and PQPh (2) chelate ligands.
2. Structural commentary
In the crystals of (1) and (2), the quinolylphosphane moiety coordinates to a PdII center in a bidentate κ2P,N mode, and the coordination environment around the PdII center is roughly square-planar with two additional chlorido ligands. The analogous PQH complex (3) has a typical planar environment (Suzuki et al., 2015); the τ4 value (Yang et al., 2007) indicating the tetrahedral distortion around the four-coordinate PdII center is here only 0.0552 (4). The coordination plane (defined by the central Pd and four donor atoms) and the quinoline plane are almost co-planar, with their dihedral angle being 8.58 (3)°. The Pd1—P1 and Pd1—N1 bond lengths in the structure of (3) are 2.2026 (6) and 2.065 (2) Å, respectively, and the P1—Pd1—N1 chelate bite angle is 84.75 (6)°. The Pd—Cl1 (trans to P1) and Pd1—Cl2 (trans to N1) bond lengths are 2.3716 (7) and 2.2885 (8) Å, respectively, indicating a strong trans influence of the Ph2P– donor group.
In the PQMe complex (1) (Fig. 1), the coordination environment around the PdII center is apparently distorted; the τ4 value is 0.1555 (4). The steric requirement from the 2-methyl substituent of the coordinating quinoline group causes the Cl ligand in the cis-position to be pushed away (Fig. 2). Thus, the Cl1 atom is considerably displaced from the PdII coordination plane (defined by Pd1, Cl2, P1 and N1) by 0.554 (1) Å, and the P1—Pd1—Cl1 bond angle is 166.74 (2)°, as compared to the N1—Pd1—Cl2 angle of 171.32 (5)°. More importantly, the PQMe chelate ring is no longer planar. The Pd1 atom is displaced by 0.755 (2) Å from the chelating ligand plane (defined by P1, C8, C9 and N1), and the dihedral angle φC between the plane [Pd1,P1,N1] and the quinoline plane (defined by N1 and C1–C9) is 25.35 (3)°. Thus, an envelope-type deformation of the chelate ring is observed. This distortion would weaken the Pd—N bond, because the direction of the lone-pair electrons on the N atom does not match with the PdII acceptor d-orbital. In fact, the Pd1—N1 bond length of 2.0971 (17) Å in (1) is slightly longer than that in (3). Other coordination bonds and angles are collated in Table 1 and are comparable to those in (3).
|
The PQPh complex (2) shows a more explicit distortion of the coordination environment on the quinolylphosphane ligand due to the 2-phenyl substitution group (Figs. 3 and 4). The τ4 value is 0.1438 (4), and the Cl1 atom is displaced from the PdII coordination plane (defined by Pd1, Cl2, P1 and N1) by 0.571 (1) Å. The P1—Pd1—Cl1 and N1—Pd1—Cl2 bond angles are 165.930 (19) and 173.78 (5)°, respectively. The Pd1 atom is displaced by 0.864 (2) Å from the chelating ligand plane (defined by P1, C8, C9 and N1), and the dihedral angle φC between the plane [Pd1,P1,N1] and the quinoline plane (defined by N1 and C1–C9) is 32.56 (3)°. In addition, the substituted phenyl plane is twisted from the attached quinoline plane with a dihedral angle of 33.08 (7)°. Table 2 lists selected bond lengths and angles.
|
3. Supramolecular features
In the H complex (3) forms a dimer by an intermolecular π–π stacking interaction between the quinoline ring systems. A similar stacking interaction is observed in the of the PQMe complex (1) (Fig. 2). The shortest intermolecular contact distance is 3.322 (3) Å for C2⋯C6i [symmetry code: (i) −x + 1, −y + 1, −z). By contrast, the PQPh complex (2) does not show a similar stacking interaction to the above examples, because the twist motion of the attached phenyl group prohibits a full π–π stacking interaction between the molecules (Fig. 4). The shortest intermolecular contact distance in (2) is 3.549 (3) Å for C2⋯C3ii [symmetry code (ii) −x + 1, −y + 2, −z + 1]. There are no other obvious supramolecular features in the crystal structures of (1) and (2) (Figs. 5 and 6).
the molecular PQ4. Database survey
Crystal structures of the following transition-metal complexes containing PQMe or PQPh were retrieved from the Cambridge Structural Database (CSD, version 5.41, last update May 2020; Groom et al., 2016): [Cu(PQMe)2]PF6 (refcode NOPNOW; Tsukuda et al., 2009), [Cu(PQMe){(Ph2PC6H4)2O}]BF4·CH2Cl2 (OGUYEV; Qin et al., 2009), [{Ni(PQMe)Cl}2(μ-Cl)2]·CH2Cl2 (MUMDAZ; Sun et al., 2002), two organometallic PdII complexes (BUPMIK and BUPMOQ; Canovese et al., 2015). We have recently reported some NiII, PdII and PtII (MII) complexes bearing PQR: [M(PQR)2]X2 (X = Br, BF4 or CF3SO3) (Mori et al., 2020) and [Pt(ppy)(PQR)]BF4 [ppy = 2-(2′-pyridyl)phenyl; Mori & Suzuki, 2020]. A related palladium(II) complex containing 2-methyl-8-(methylphenylphosphanyl)quinoline has also been reported (PUMDAD; Bock et al., 2010).
5. Synthesis and crystallization
The ligands, PQMe and PQPh, were prepared according to the methods reported previously (Mori & Suzuki, 2020). Complex (1) was prepared as follows: under a nitrogen atmosphere, a dichloromethane solution (10 ml) of PQMe (0.109 g, 0.334 mmol) was added under stirring to a dichloromethane solution (8 ml) of [PdCl2(PhCN)2] (PhCN = benzonitrile) (0.121 g, 0.315 mmol), and the mixture was stirred overnight at room temperature. The resulting solution was concentrated using a rotary evaporator, and diethyl ether was added under stirring to the concentrate, giving a yellow precipitate, which was collected by filtration, washed with diethyl ether (10 ml), and dried in vacuo. Yield: 0.142 g (92%). Analysis found: C, 51.03; H, 3.67; N, 2.99%. Calculated for C22H18Cl2NPPd·0.7H2O: C, 51.08; H, 3.78; N, 2.71%. Yellow needle-like crystals of (1) were obtained by recrystallization from an acetonitrile solution by diffusion of diisopropyl ether.
Complex (2) was prepared as follows: under a nitrogen atmosphere, a dichloromethane solution (10 ml) of PQPh (0.071 g, 0.18 mmol) was added under stirring to a dichloromethane solution (10 ml) of [PdCl2(PhCN)2] (0.070 g, 0.18 mmol), and the mixture was stirred overnight at room temperature. The resulting brown precipitate was filtered off, and the filtrate was concentrated under reduced pressure. Diethyl ether was added under stirring to the concentrate, giving a yellow precipitate, which was collected by filtration, washed with diethyl ether (10 ml), and dried in vacuo. Yield: 0.041 g (40%). Analysis found: C, 56.23; H, 3.50; N, 2.56%. Calculated for C27H20Cl2NPPd: C, 57.22; H, 3.56; N, 2.47%. Yellow block-like crystals of (2) were obtained by recrystallization from an acetonitrile solution by diffusion of diisopropyl ether.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 (aromatic) or 0.98 (methyl) Å and Uiso = 1.2Ueq(C). For the of (2), two reflections (41, 98) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989020016096/wm5591sup1.cif
contains datablocks complex1, complex2. DOI:Structure factors: contains datablock complex1. DOI: https://doi.org/10.1107/S2056989020016096/wm5591complex1sup4.hkl
Structure factors: contains datablock complex2. DOI: https://doi.org/10.1107/S2056989020016096/wm5591complex2sup5.hkl
For both structures, data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010). Program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999) for complex1; Il Milione (Burla et al., 2012) for complex2. For both structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: CrystalMaker (CrystalMaker, 2017); software used to prepare material for publication: publCIF (Westrip, 2010).[PdCl2(C22H18NP)] | F(000) = 2016 |
Mr = 504.64 | Dx = 1.735 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 13.8153 (5) Å | Cell parameters from 15062 reflections |
b = 15.5676 (8) Å | θ = 3.1–27.6° |
c = 18.9683 (5) Å | µ = 1.33 mm−1 |
β = 108.733 (2)° | T = 188 K |
V = 3863.4 (3) Å3 | Needle, yellow |
Z = 8 | 0.50 × 0.20 × 0.15 mm |
Rigaku R-AXIS RAPID diffractometer | 4438 independent reflections |
Radiation source: fine-focus sealed tube | 3976 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.039 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −17→17 |
Tmin = 0.662, Tmax = 0.819 | k = −20→20 |
18561 measured reflections | l = −23→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0257P)2 + 5.1054P] where P = (Fo2 + 2Fc2)/3 |
4438 reflections | (Δ/σ)max < 0.001 |
245 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.18958 (2) | 0.00853 (2) | 0.12906 (2) | 0.02335 (6) | |
Cl1 | 0.18633 (5) | −0.13050 (4) | 0.07691 (4) | 0.04342 (15) | |
Cl2 | 0.14113 (5) | −0.04783 (4) | 0.22366 (3) | 0.03709 (14) | |
P1 | 0.22803 (4) | 0.12790 (3) | 0.19320 (3) | 0.02356 (11) | |
N1 | 0.23191 (12) | 0.07847 (11) | 0.04910 (9) | 0.0238 (3) | |
C1 | 0.20531 (16) | 0.06113 (14) | −0.02343 (12) | 0.0274 (4) | |
C2 | 0.26023 (17) | 0.09721 (15) | −0.06751 (12) | 0.0314 (5) | |
H2 | 0.2439 | 0.0806 | −0.1182 | 0.038* | |
C3 | 0.33556 (16) | 0.15490 (15) | −0.03855 (12) | 0.0308 (5) | |
H3 | 0.3744 | 0.1764 | −0.0679 | 0.037* | |
C4 | 0.35637 (15) | 0.18305 (14) | 0.03552 (12) | 0.0269 (4) | |
C5 | 0.42756 (16) | 0.24877 (15) | 0.06901 (13) | 0.0314 (5) | |
H5 | 0.4667 | 0.2742 | 0.0415 | 0.038* | |
C6 | 0.44088 (16) | 0.27612 (15) | 0.13956 (13) | 0.0334 (5) | |
H6 | 0.4893 | 0.3199 | 0.1610 | 0.040* | |
C7 | 0.38300 (16) | 0.23959 (14) | 0.18060 (12) | 0.0303 (5) | |
H7 | 0.3902 | 0.2604 | 0.2291 | 0.036* | |
C8 | 0.31559 (15) | 0.17359 (13) | 0.15078 (11) | 0.0249 (4) | |
C9 | 0.30212 (14) | 0.14371 (13) | 0.07806 (11) | 0.0232 (4) | |
C10 | 0.11417 (19) | 0.00666 (15) | −0.06008 (13) | 0.0354 (5) | |
H10A | 0.0587 | 0.0218 | −0.0406 | 0.042* | |
H10B | 0.1321 | −0.0540 | −0.0497 | 0.042* | |
H10C | 0.0919 | 0.0164 | −0.1140 | 0.042* | |
C11 | 0.12787 (16) | 0.20610 (14) | 0.17993 (12) | 0.0268 (4) | |
C12 | 0.03231 (17) | 0.18947 (16) | 0.12721 (13) | 0.0340 (5) | |
H12 | 0.0190 | 0.1349 | 0.1037 | 0.041* | |
C13 | −0.04303 (18) | 0.25209 (18) | 0.10918 (15) | 0.0405 (6) | |
H13 | −0.1078 | 0.2408 | 0.0733 | 0.049* | |
C14 | −0.0230 (2) | 0.33035 (18) | 0.14365 (15) | 0.0447 (6) | |
H14 | −0.0744 | 0.3735 | 0.1318 | 0.054* | |
C15 | 0.0717 (2) | 0.34742 (17) | 0.19588 (15) | 0.0425 (6) | |
H15 | 0.0843 | 0.4023 | 0.2190 | 0.051* | |
C16 | 0.14790 (18) | 0.28583 (15) | 0.21475 (13) | 0.0338 (5) | |
H16 | 0.2124 | 0.2977 | 0.2506 | 0.041* | |
C17 | 0.29830 (16) | 0.11805 (14) | 0.29131 (11) | 0.0270 (4) | |
C18 | 0.25801 (18) | 0.14295 (16) | 0.34621 (13) | 0.0349 (5) | |
H18 | 0.1928 | 0.1697 | 0.3333 | 0.042* | |
C19 | 0.3144 (2) | 0.12828 (17) | 0.42099 (13) | 0.0404 (6) | |
H19 | 0.2880 | 0.1471 | 0.4589 | 0.048* | |
C20 | 0.4061 (2) | 0.08758 (16) | 0.44024 (13) | 0.0402 (6) | |
H20 | 0.4427 | 0.0771 | 0.4912 | 0.048* | |
C21 | 0.44627 (18) | 0.06140 (16) | 0.38595 (13) | 0.0384 (5) | |
H21 | 0.5102 | 0.0325 | 0.3994 | 0.046* | |
C22 | 0.39295 (17) | 0.07739 (15) | 0.31183 (13) | 0.0325 (5) | |
H22 | 0.4213 | 0.0604 | 0.2745 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02644 (9) | 0.02137 (9) | 0.02156 (9) | −0.00327 (6) | 0.00677 (6) | 0.00066 (6) |
Cl1 | 0.0661 (4) | 0.0244 (3) | 0.0403 (3) | −0.0008 (3) | 0.0178 (3) | −0.0036 (2) |
Cl2 | 0.0465 (3) | 0.0371 (3) | 0.0281 (3) | −0.0135 (2) | 0.0126 (2) | 0.0043 (2) |
P1 | 0.0270 (3) | 0.0234 (3) | 0.0196 (2) | −0.0033 (2) | 0.00651 (19) | 0.00029 (19) |
N1 | 0.0253 (8) | 0.0235 (8) | 0.0218 (8) | −0.0011 (7) | 0.0062 (6) | 0.0011 (7) |
C1 | 0.0313 (10) | 0.0252 (10) | 0.0247 (10) | 0.0031 (8) | 0.0075 (8) | 0.0007 (8) |
C2 | 0.0386 (12) | 0.0347 (12) | 0.0215 (10) | 0.0043 (10) | 0.0103 (9) | 0.0026 (9) |
C3 | 0.0327 (11) | 0.0361 (12) | 0.0273 (11) | 0.0065 (9) | 0.0148 (9) | 0.0089 (9) |
C4 | 0.0256 (10) | 0.0276 (10) | 0.0279 (11) | 0.0037 (8) | 0.0089 (8) | 0.0078 (8) |
C5 | 0.0249 (10) | 0.0320 (11) | 0.0377 (12) | −0.0006 (9) | 0.0106 (9) | 0.0096 (9) |
C6 | 0.0271 (10) | 0.0286 (11) | 0.0394 (13) | −0.0060 (9) | 0.0034 (9) | 0.0062 (9) |
C7 | 0.0299 (10) | 0.0285 (11) | 0.0285 (11) | −0.0026 (9) | 0.0037 (8) | 0.0009 (9) |
C8 | 0.0242 (10) | 0.0249 (10) | 0.0244 (10) | −0.0014 (8) | 0.0061 (8) | 0.0037 (8) |
C9 | 0.0228 (9) | 0.0223 (9) | 0.0236 (10) | 0.0011 (8) | 0.0060 (7) | 0.0038 (8) |
C10 | 0.0394 (13) | 0.0378 (13) | 0.0252 (12) | −0.0055 (10) | 0.0049 (9) | −0.0021 (9) |
C11 | 0.0292 (10) | 0.0283 (10) | 0.0247 (10) | −0.0004 (8) | 0.0110 (8) | 0.0039 (8) |
C12 | 0.0313 (11) | 0.0362 (12) | 0.0348 (12) | −0.0044 (10) | 0.0112 (9) | 0.0020 (10) |
C13 | 0.0300 (11) | 0.0514 (16) | 0.0405 (14) | 0.0025 (11) | 0.0119 (10) | 0.0120 (12) |
C14 | 0.0473 (14) | 0.0491 (16) | 0.0450 (15) | 0.0180 (12) | 0.0249 (12) | 0.0143 (12) |
C15 | 0.0608 (16) | 0.0334 (13) | 0.0396 (14) | 0.0096 (12) | 0.0250 (12) | 0.0037 (11) |
C16 | 0.0408 (12) | 0.0312 (12) | 0.0302 (12) | 0.0009 (10) | 0.0128 (9) | −0.0003 (9) |
C17 | 0.0327 (11) | 0.0252 (10) | 0.0217 (10) | −0.0050 (8) | 0.0068 (8) | 0.0008 (8) |
C18 | 0.0418 (13) | 0.0364 (12) | 0.0272 (11) | 0.0009 (10) | 0.0122 (9) | 0.0004 (10) |
C19 | 0.0567 (15) | 0.0411 (14) | 0.0244 (12) | −0.0079 (12) | 0.0145 (10) | −0.0019 (10) |
C20 | 0.0528 (15) | 0.0378 (13) | 0.0218 (11) | −0.0103 (11) | 0.0006 (10) | 0.0043 (10) |
C21 | 0.0358 (12) | 0.0373 (13) | 0.0347 (13) | −0.0025 (10) | 0.0012 (10) | 0.0072 (10) |
C22 | 0.0351 (11) | 0.0324 (12) | 0.0294 (12) | −0.0014 (9) | 0.0095 (9) | 0.0020 (9) |
Pd1—N1 | 2.0971 (17) | C10—H10B | 0.9800 |
Pd1—P1 | 2.1910 (5) | C10—H10C | 0.9800 |
Pd1—Cl2 | 2.2823 (6) | C11—C16 | 1.391 (3) |
Pd1—Cl1 | 2.3742 (6) | C11—C12 | 1.401 (3) |
P1—C11 | 1.799 (2) | C12—C13 | 1.386 (3) |
P1—C8 | 1.800 (2) | C12—H12 | 0.9500 |
P1—C17 | 1.808 (2) | C13—C14 | 1.368 (4) |
N1—C1 | 1.333 (3) | C13—H13 | 0.9500 |
N1—C9 | 1.390 (3) | C14—C15 | 1.390 (4) |
C1—C2 | 1.413 (3) | C14—H14 | 0.9500 |
C1—C10 | 1.492 (3) | C15—C16 | 1.384 (3) |
C2—C3 | 1.351 (3) | C15—H15 | 0.9500 |
C2—H2 | 0.9500 | C16—H16 | 0.9500 |
C3—C4 | 1.410 (3) | C17—C18 | 1.384 (3) |
C3—H3 | 0.9500 | C17—C22 | 1.391 (3) |
C4—C9 | 1.406 (3) | C18—C19 | 1.401 (3) |
C4—C5 | 1.420 (3) | C18—H18 | 0.9500 |
C5—C6 | 1.359 (3) | C19—C20 | 1.358 (4) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C6—C7 | 1.403 (3) | C20—C21 | 1.379 (4) |
C6—H6 | 0.9500 | C20—H20 | 0.9500 |
C7—C8 | 1.380 (3) | C21—C22 | 1.384 (3) |
C7—H7 | 0.9500 | C21—H21 | 0.9500 |
C8—C9 | 1.410 (3) | C22—H22 | 0.9500 |
C10—H10A | 0.9800 | ||
N1—Pd1—P1 | 83.52 (5) | C1—C10—H10A | 109.5 |
N1—Pd1—Cl2 | 171.32 (5) | C1—C10—H10B | 109.5 |
P1—Pd1—Cl2 | 88.25 (2) | H10A—C10—H10B | 109.5 |
N1—Pd1—Cl1 | 98.30 (5) | C1—C10—H10C | 109.5 |
P1—Pd1—Cl1 | 166.74 (2) | H10A—C10—H10C | 109.5 |
Cl2—Pd1—Cl1 | 90.34 (2) | H10B—C10—H10C | 109.5 |
C11—P1—C8 | 105.50 (10) | C16—C11—C12 | 120.1 (2) |
C11—P1—C17 | 109.64 (10) | C16—C11—P1 | 120.69 (17) |
C8—P1—C17 | 106.13 (10) | C12—C11—P1 | 118.75 (17) |
C11—P1—Pd1 | 117.25 (7) | C13—C12—C11 | 120.5 (2) |
C8—P1—Pd1 | 99.48 (7) | C13—C12—H12 | 119.8 |
C17—P1—Pd1 | 116.99 (7) | C11—C12—H12 | 119.8 |
C1—N1—C9 | 118.82 (18) | C14—C13—C12 | 119.2 (2) |
C1—N1—Pd1 | 126.37 (14) | C14—C13—H13 | 120.4 |
C9—N1—Pd1 | 114.50 (13) | C12—C13—H13 | 120.4 |
N1—C1—C2 | 120.5 (2) | C13—C14—C15 | 120.7 (2) |
N1—C1—C10 | 120.52 (19) | C13—C14—H14 | 119.7 |
C2—C1—C10 | 118.9 (2) | C15—C14—H14 | 119.7 |
C3—C2—C1 | 120.9 (2) | C16—C15—C14 | 121.1 (2) |
C3—C2—H2 | 119.6 | C16—C15—H15 | 119.5 |
C1—C2—H2 | 119.6 | C14—C15—H15 | 119.5 |
C2—C3—C4 | 119.7 (2) | C15—C16—C11 | 118.5 (2) |
C2—C3—H3 | 120.1 | C15—C16—H16 | 120.8 |
C4—C3—H3 | 120.1 | C11—C16—H16 | 120.8 |
C9—C4—C3 | 117.4 (2) | C18—C17—C22 | 119.1 (2) |
C9—C4—C5 | 118.5 (2) | C18—C17—P1 | 122.53 (17) |
C3—C4—C5 | 124.0 (2) | C22—C17—P1 | 118.19 (16) |
C6—C5—C4 | 121.4 (2) | C17—C18—C19 | 119.3 (2) |
C6—C5—H5 | 119.3 | C17—C18—H18 | 120.4 |
C4—C5—H5 | 119.3 | C19—C18—H18 | 120.4 |
C5—C6—C7 | 119.9 (2) | C20—C19—C18 | 121.1 (2) |
C5—C6—H6 | 120.1 | C20—C19—H19 | 119.5 |
C7—C6—H6 | 120.1 | C18—C19—H19 | 119.5 |
C8—C7—C6 | 120.3 (2) | C19—C20—C21 | 120.1 (2) |
C8—C7—H7 | 119.9 | C19—C20—H20 | 119.9 |
C6—C7—H7 | 119.9 | C21—C20—H20 | 119.9 |
C7—C8—C9 | 120.40 (19) | C20—C21—C22 | 119.7 (2) |
C7—C8—P1 | 124.94 (17) | C20—C21—H21 | 120.2 |
C9—C8—P1 | 114.22 (15) | C22—C21—H21 | 120.2 |
N1—C9—C4 | 121.63 (19) | C21—C22—C17 | 120.8 (2) |
N1—C9—C8 | 118.93 (18) | C21—C22—H22 | 119.6 |
C4—C9—C8 | 119.37 (19) | C17—C22—H22 | 119.6 |
C9—N1—C1—C2 | 11.2 (3) | C7—C8—C9—C4 | −1.4 (3) |
Pd1—N1—C1—C2 | −162.19 (16) | P1—C8—C9—C4 | 171.46 (15) |
C9—N1—C1—C10 | −165.95 (19) | C8—P1—C11—C16 | −66.1 (2) |
Pd1—N1—C1—C10 | 20.7 (3) | C17—P1—C11—C16 | 47.8 (2) |
N1—C1—C2—C3 | −5.1 (3) | Pd1—P1—C11—C16 | −175.63 (15) |
C10—C1—C2—C3 | 172.1 (2) | C8—P1—C11—C12 | 106.50 (18) |
C1—C2—C3—C4 | −3.3 (3) | C17—P1—C11—C12 | −139.61 (17) |
C2—C3—C4—C9 | 5.1 (3) | Pd1—P1—C11—C12 | −3.1 (2) |
C2—C3—C4—C5 | −174.3 (2) | C16—C11—C12—C13 | 0.1 (3) |
C9—C4—C5—C6 | −2.6 (3) | P1—C11—C12—C13 | −172.52 (18) |
C3—C4—C5—C6 | 176.8 (2) | C11—C12—C13—C14 | −0.2 (4) |
C4—C5—C6—C7 | −0.5 (3) | C12—C13—C14—C15 | 0.3 (4) |
C5—C6—C7—C8 | 2.6 (3) | C13—C14—C15—C16 | −0.4 (4) |
C6—C7—C8—C9 | −1.7 (3) | C14—C15—C16—C11 | 0.3 (4) |
C6—C7—C8—P1 | −173.74 (17) | C12—C11—C16—C15 | −0.1 (3) |
C11—P1—C8—C7 | 74.4 (2) | P1—C11—C16—C15 | 172.32 (18) |
C17—P1—C8—C7 | −41.9 (2) | C11—P1—C17—C18 | 20.9 (2) |
Pd1—P1—C8—C7 | −163.70 (17) | C8—P1—C17—C18 | 134.36 (19) |
C11—P1—C8—C9 | −98.03 (17) | Pd1—P1—C17—C18 | −115.78 (18) |
C17—P1—C8—C9 | 145.66 (15) | C11—P1—C17—C22 | −164.51 (17) |
Pd1—P1—C8—C9 | 23.84 (16) | C8—P1—C17—C22 | −51.0 (2) |
C1—N1—C9—C4 | −9.3 (3) | Pd1—P1—C17—C22 | 58.83 (19) |
Pd1—N1—C9—C4 | 164.82 (15) | C22—C17—C18—C19 | 1.3 (3) |
C1—N1—C9—C8 | 167.77 (19) | P1—C17—C18—C19 | 175.92 (18) |
Pd1—N1—C9—C8 | −18.1 (2) | C17—C18—C19—C20 | −2.2 (4) |
C3—C4—C9—N1 | 1.1 (3) | C18—C19—C20—C21 | 1.3 (4) |
C5—C4—C9—N1 | −179.45 (18) | C19—C20—C21—C22 | 0.5 (4) |
C3—C4—C9—C8 | −175.94 (19) | C20—C21—C22—C17 | −1.3 (4) |
C5—C4—C9—C8 | 3.5 (3) | C18—C17—C22—C21 | 0.4 (3) |
C7—C8—C9—N1 | −178.54 (19) | P1—C17—C22—C21 | −174.44 (18) |
P1—C8—C9—N1 | −5.7 (2) |
[PdCl2(C27H20NP)] | Z = 2 |
Mr = 566.71 | F(000) = 568 |
Triclinic, P1 | Dx = 1.646 Mg m−3 |
a = 9.6582 (13) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 9.8765 (14) Å | Cell parameters from 9246 reflections |
c = 13.0748 (14) Å | θ = 3.0–27.5° |
α = 102.011 (4)° | µ = 1.13 mm−1 |
β = 90.426 (4)° | T = 188 K |
γ = 109.827 (4)° | Block, yellow |
V = 1143.4 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 5194 independent reflections |
Radiation source: fine-focus sealed tube | 4682 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −10→12 |
Tmin = 0.640, Tmax = 0.797 | k = −12→12 |
11339 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0323P)2 + 0.2021P] where P = (Fo2 + 2Fc2)/3 |
5192 reflections | (Δ/σ)max = 0.001 |
289 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.25082 (2) | 1.07058 (2) | 0.24836 (2) | 0.02194 (6) | |
Cl1 | 0.43029 (5) | 1.29486 (5) | 0.34148 (4) | 0.02876 (11) | |
Cl2 | 0.24428 (6) | 1.16677 (6) | 0.10529 (4) | 0.03346 (12) | |
P1 | 0.13193 (5) | 0.84625 (6) | 0.15446 (4) | 0.02330 (11) | |
N1 | 0.24296 (17) | 0.96063 (18) | 0.36894 (12) | 0.0247 (3) | |
C1 | 0.2588 (2) | 1.0232 (2) | 0.47079 (15) | 0.0286 (4) | |
C2 | 0.3092 (2) | 0.9587 (3) | 0.54451 (16) | 0.0352 (5) | |
H2 | 0.3254 | 1.0066 | 0.6168 | 0.042* | |
C3 | 0.3343 (2) | 0.8301 (3) | 0.51319 (16) | 0.0358 (5) | |
H3 | 0.3758 | 0.7927 | 0.5622 | 0.043* | |
C4 | 0.2985 (2) | 0.7512 (2) | 0.40669 (16) | 0.0307 (4) | |
C5 | 0.3080 (2) | 0.6111 (3) | 0.36724 (18) | 0.0363 (5) | |
H5 | 0.3435 | 0.5647 | 0.4130 | 0.044* | |
C6 | 0.2671 (2) | 0.5404 (3) | 0.26407 (19) | 0.0380 (5) | |
H6 | 0.2758 | 0.4465 | 0.2386 | 0.046* | |
C7 | 0.2116 (2) | 0.6075 (2) | 0.19524 (17) | 0.0332 (5) | |
H7 | 0.1802 | 0.5566 | 0.1243 | 0.040* | |
C8 | 0.2030 (2) | 0.7453 (2) | 0.23036 (15) | 0.0263 (4) | |
C9 | 0.2492 (2) | 0.8205 (2) | 0.33623 (15) | 0.0258 (4) | |
C10 | 0.2157 (2) | 1.1546 (2) | 0.50524 (15) | 0.0295 (4) | |
C11 | 0.0945 (2) | 1.1650 (2) | 0.45270 (16) | 0.0323 (4) | |
H11 | 0.0402 | 1.0879 | 0.3954 | 0.039* | |
C12 | 0.0535 (3) | 1.2877 (3) | 0.48423 (18) | 0.0404 (5) | |
H12 | −0.0279 | 1.2952 | 0.4476 | 0.049* | |
C13 | 0.1302 (3) | 1.3993 (3) | 0.56847 (19) | 0.0467 (6) | |
H13 | 0.1011 | 1.4829 | 0.5901 | 0.056* | |
C14 | 0.2493 (3) | 1.3890 (3) | 0.62121 (18) | 0.0452 (6) | |
H14 | 0.3026 | 1.4663 | 0.6788 | 0.054* | |
C15 | 0.2915 (2) | 1.2678 (3) | 0.59103 (16) | 0.0371 (5) | |
H15 | 0.3725 | 1.2609 | 0.6287 | 0.045* | |
C16 | 0.1809 (2) | 0.8010 (2) | 0.02145 (15) | 0.0259 (4) | |
C17 | 0.3276 (2) | 0.8225 (2) | 0.00430 (17) | 0.0353 (5) | |
H17 | 0.3998 | 0.8545 | 0.0622 | 0.042* | |
C18 | 0.3692 (3) | 0.7974 (3) | −0.09724 (19) | 0.0414 (5) | |
H18 | 0.4695 | 0.8110 | −0.1090 | 0.050* | |
C19 | 0.2635 (3) | 0.7524 (3) | −0.18145 (17) | 0.0399 (5) | |
H19 | 0.2919 | 0.7352 | −0.2510 | 0.048* | |
C20 | 0.1189 (3) | 0.7325 (3) | −0.16542 (16) | 0.0373 (5) | |
H20 | 0.0476 | 0.7019 | −0.2238 | 0.045* | |
C21 | 0.0756 (2) | 0.7571 (2) | −0.06359 (15) | 0.0294 (4) | |
H21 | −0.0248 | 0.7440 | −0.0524 | 0.035* | |
C22 | −0.0677 (2) | 0.7813 (2) | 0.14853 (14) | 0.0242 (4) | |
C23 | −0.1542 (2) | 0.6327 (2) | 0.12208 (16) | 0.0332 (5) | |
H23 | −0.1087 | 0.5599 | 0.1105 | 0.040* | |
C24 | −0.3069 (3) | 0.5900 (3) | 0.11247 (18) | 0.0415 (5) | |
H24 | −0.3660 | 0.4882 | 0.0948 | 0.050* | |
C25 | −0.3732 (2) | 0.6962 (3) | 0.12869 (17) | 0.0387 (5) | |
H25 | −0.4778 | 0.6668 | 0.1215 | 0.046* | |
C26 | −0.2891 (2) | 0.8431 (3) | 0.15501 (16) | 0.0343 (5) | |
H26 | −0.3355 | 0.9151 | 0.1665 | 0.041* | |
C27 | −0.1357 (2) | 0.8872 (2) | 0.16492 (15) | 0.0283 (4) | |
H27 | −0.0774 | 0.9893 | 0.1828 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.02264 (9) | 0.02275 (9) | 0.02375 (9) | 0.01079 (6) | 0.00033 (5) | 0.00750 (6) |
Cl1 | 0.0271 (2) | 0.0258 (3) | 0.0334 (2) | 0.00800 (19) | −0.00090 (17) | 0.00894 (18) |
Cl2 | 0.0398 (3) | 0.0379 (3) | 0.0305 (3) | 0.0188 (2) | −0.00031 (19) | 0.0154 (2) |
P1 | 0.0233 (3) | 0.0241 (3) | 0.0258 (2) | 0.0119 (2) | 0.00061 (17) | 0.00659 (18) |
N1 | 0.0238 (8) | 0.0290 (9) | 0.0236 (8) | 0.0101 (7) | 0.0007 (6) | 0.0094 (6) |
C1 | 0.0221 (10) | 0.0328 (11) | 0.0306 (10) | 0.0069 (8) | 0.0027 (7) | 0.0108 (8) |
C2 | 0.0312 (12) | 0.0494 (14) | 0.0277 (10) | 0.0127 (10) | 0.0002 (8) | 0.0168 (9) |
C3 | 0.0289 (11) | 0.0514 (14) | 0.0353 (11) | 0.0155 (10) | 0.0012 (8) | 0.0247 (10) |
C4 | 0.0226 (10) | 0.0373 (12) | 0.0399 (11) | 0.0133 (9) | 0.0051 (8) | 0.0205 (9) |
C5 | 0.0278 (11) | 0.0397 (13) | 0.0532 (14) | 0.0174 (10) | 0.0063 (9) | 0.0265 (10) |
C6 | 0.0337 (12) | 0.0306 (12) | 0.0593 (14) | 0.0185 (10) | 0.0079 (10) | 0.0185 (10) |
C7 | 0.0319 (12) | 0.0304 (12) | 0.0416 (12) | 0.0156 (9) | 0.0028 (8) | 0.0098 (9) |
C8 | 0.0243 (10) | 0.0252 (10) | 0.0333 (10) | 0.0113 (8) | 0.0026 (7) | 0.0103 (8) |
C9 | 0.0202 (10) | 0.0280 (10) | 0.0343 (10) | 0.0110 (8) | 0.0044 (7) | 0.0137 (8) |
C10 | 0.0280 (11) | 0.0336 (11) | 0.0256 (10) | 0.0073 (9) | 0.0067 (7) | 0.0097 (8) |
C11 | 0.0298 (11) | 0.0328 (12) | 0.0333 (11) | 0.0096 (9) | 0.0053 (8) | 0.0074 (8) |
C12 | 0.0358 (13) | 0.0418 (14) | 0.0495 (13) | 0.0179 (11) | 0.0133 (10) | 0.0148 (10) |
C13 | 0.0548 (16) | 0.0330 (13) | 0.0522 (14) | 0.0156 (12) | 0.0187 (11) | 0.0083 (10) |
C14 | 0.0531 (16) | 0.0355 (13) | 0.0358 (12) | 0.0040 (11) | 0.0104 (10) | 0.0034 (9) |
C15 | 0.0349 (12) | 0.0411 (13) | 0.0290 (11) | 0.0055 (10) | 0.0037 (8) | 0.0073 (9) |
C16 | 0.0278 (10) | 0.0238 (10) | 0.0289 (10) | 0.0129 (8) | 0.0035 (7) | 0.0054 (7) |
C17 | 0.0281 (11) | 0.0368 (13) | 0.0430 (12) | 0.0150 (10) | 0.0037 (8) | 0.0067 (9) |
C18 | 0.0336 (13) | 0.0388 (13) | 0.0566 (15) | 0.0172 (10) | 0.0203 (10) | 0.0126 (10) |
C19 | 0.0546 (15) | 0.0323 (12) | 0.0373 (12) | 0.0196 (11) | 0.0190 (10) | 0.0091 (9) |
C20 | 0.0477 (14) | 0.0367 (13) | 0.0286 (11) | 0.0163 (11) | 0.0048 (9) | 0.0069 (9) |
C21 | 0.0299 (11) | 0.0307 (11) | 0.0315 (10) | 0.0141 (9) | 0.0045 (8) | 0.0090 (8) |
C22 | 0.0236 (10) | 0.0295 (10) | 0.0225 (9) | 0.0111 (8) | 0.0028 (7) | 0.0087 (7) |
C23 | 0.0337 (12) | 0.0301 (12) | 0.0393 (11) | 0.0147 (9) | 0.0030 (8) | 0.0091 (9) |
C24 | 0.0353 (13) | 0.0332 (13) | 0.0512 (14) | 0.0048 (10) | 0.0013 (10) | 0.0115 (10) |
C25 | 0.0241 (11) | 0.0519 (15) | 0.0429 (12) | 0.0123 (10) | 0.0031 (8) | 0.0184 (10) |
C26 | 0.0321 (12) | 0.0459 (14) | 0.0342 (11) | 0.0230 (10) | 0.0043 (8) | 0.0127 (9) |
C27 | 0.0292 (11) | 0.0300 (11) | 0.0288 (10) | 0.0132 (9) | 0.0010 (7) | 0.0085 (8) |
Pd1—N1 | 2.0806 (15) | C12—H12 | 0.9500 |
Pd1—P1 | 2.2036 (6) | C13—C14 | 1.380 (4) |
Pd1—Cl2 | 2.2769 (5) | C13—H13 | 0.9500 |
Pd1—Cl1 | 2.3738 (6) | C14—C15 | 1.376 (4) |
P1—C22 | 1.8094 (19) | C14—H14 | 0.9500 |
P1—C16 | 1.8112 (19) | C15—H15 | 0.9500 |
P1—C8 | 1.821 (2) | C16—C17 | 1.387 (3) |
N1—C1 | 1.330 (2) | C16—C21 | 1.394 (3) |
N1—C9 | 1.383 (3) | C17—C18 | 1.387 (3) |
C1—C2 | 1.425 (3) | C17—H17 | 0.9500 |
C1—C10 | 1.479 (3) | C18—C19 | 1.387 (3) |
C2—C3 | 1.354 (3) | C18—H18 | 0.9500 |
C2—H2 | 0.9500 | C19—C20 | 1.367 (3) |
C3—C4 | 1.423 (3) | C19—H19 | 0.9500 |
C3—H3 | 0.9500 | C20—C21 | 1.396 (3) |
C4—C5 | 1.406 (3) | C20—H20 | 0.9500 |
C4—C9 | 1.422 (3) | C21—H21 | 0.9500 |
C5—C6 | 1.370 (3) | C22—C23 | 1.388 (3) |
C5—H5 | 0.9500 | C22—C27 | 1.395 (3) |
C6—C7 | 1.420 (3) | C23—C24 | 1.387 (3) |
C6—H6 | 0.9500 | C23—H23 | 0.9500 |
C7—C8 | 1.374 (3) | C24—C25 | 1.385 (3) |
C7—H7 | 0.9500 | C24—H24 | 0.9500 |
C8—C9 | 1.416 (3) | C25—C26 | 1.368 (3) |
C10—C15 | 1.398 (3) | C25—H25 | 0.9500 |
C10—C11 | 1.398 (3) | C26—C27 | 1.392 (3) |
C11—C12 | 1.383 (3) | C26—H26 | 0.9500 |
C11—H11 | 0.9500 | C27—H27 | 0.9500 |
C12—C13 | 1.380 (3) | ||
N1—Pd1—P1 | 83.24 (5) | C13—C12—C11 | 120.5 (2) |
N1—Pd1—Cl2 | 173.78 (5) | C13—C12—H12 | 119.8 |
P1—Pd1—Cl2 | 90.56 (2) | C11—C12—H12 | 119.8 |
N1—Pd1—Cl1 | 94.56 (5) | C12—C13—C14 | 119.8 (2) |
P1—Pd1—Cl1 | 165.930 (19) | C12—C13—H13 | 120.1 |
Cl2—Pd1—Cl1 | 91.57 (2) | C14—C13—H13 | 120.1 |
C22—P1—C16 | 106.75 (9) | C15—C14—C13 | 120.5 (2) |
C22—P1—C8 | 110.11 (9) | C15—C14—H14 | 119.7 |
C16—P1—C8 | 106.83 (9) | C13—C14—H14 | 119.7 |
C22—P1—Pd1 | 117.05 (7) | C14—C15—C10 | 120.3 (2) |
C16—P1—Pd1 | 117.40 (7) | C14—C15—H15 | 119.9 |
C8—P1—Pd1 | 97.85 (7) | C10—C15—H15 | 119.9 |
C1—N1—C9 | 119.93 (16) | C17—C16—C21 | 119.90 (18) |
C1—N1—Pd1 | 124.98 (14) | C17—C16—P1 | 119.09 (15) |
C9—N1—Pd1 | 113.93 (11) | C21—C16—P1 | 120.78 (15) |
N1—C1—C2 | 119.8 (2) | C18—C17—C16 | 120.1 (2) |
N1—C1—C10 | 118.68 (17) | C18—C17—H17 | 119.9 |
C2—C1—C10 | 121.43 (18) | C16—C17—H17 | 119.9 |
C3—C2—C1 | 121.03 (19) | C17—C18—C19 | 119.6 (2) |
C3—C2—H2 | 119.5 | C17—C18—H18 | 120.2 |
C1—C2—H2 | 119.5 | C19—C18—H18 | 120.2 |
C2—C3—C4 | 119.82 (18) | C20—C19—C18 | 120.7 (2) |
C2—C3—H3 | 120.1 | C20—C19—H19 | 119.7 |
C4—C3—H3 | 120.1 | C18—C19—H19 | 119.7 |
C5—C4—C3 | 124.78 (19) | C19—C20—C21 | 120.2 (2) |
C5—C4—C9 | 118.47 (19) | C19—C20—H20 | 119.9 |
C3—C4—C9 | 116.74 (19) | C21—C20—H20 | 119.9 |
C6—C5—C4 | 121.20 (19) | C16—C21—C20 | 119.4 (2) |
C6—C5—H5 | 119.4 | C16—C21—H21 | 120.3 |
C4—C5—H5 | 119.4 | C20—C21—H21 | 120.3 |
C5—C6—C7 | 120.0 (2) | C23—C22—C27 | 119.44 (19) |
C5—C6—H6 | 120.0 | C23—C22—P1 | 122.85 (16) |
C7—C6—H6 | 120.0 | C27—C22—P1 | 117.58 (15) |
C8—C7—C6 | 120.6 (2) | C24—C23—C22 | 120.2 (2) |
C8—C7—H7 | 119.7 | C24—C23—H23 | 119.9 |
C6—C7—H7 | 119.7 | C22—C23—H23 | 119.9 |
C7—C8—C9 | 119.58 (17) | C25—C24—C23 | 119.9 (2) |
C7—C8—P1 | 126.59 (15) | C25—C24—H24 | 120.1 |
C9—C8—P1 | 113.81 (14) | C23—C24—H24 | 120.1 |
N1—C9—C8 | 118.45 (16) | C26—C25—C24 | 120.5 (2) |
N1—C9—C4 | 121.43 (17) | C26—C25—H25 | 119.8 |
C8—C9—C4 | 120.11 (18) | C24—C25—H25 | 119.8 |
C15—C10—C11 | 118.9 (2) | C25—C26—C27 | 120.2 (2) |
C15—C10—C1 | 121.50 (19) | C25—C26—H26 | 119.9 |
C11—C10—C1 | 119.55 (18) | C27—C26—H26 | 119.9 |
C12—C11—C10 | 120.0 (2) | C26—C27—C22 | 119.9 (2) |
C12—C11—H11 | 120.0 | C26—C27—H27 | 120.1 |
C10—C11—H11 | 120.0 | C22—C27—H27 | 120.1 |
C9—N1—C1—C2 | 11.7 (3) | C15—C10—C11—C12 | 1.6 (3) |
Pd1—N1—C1—C2 | −155.23 (15) | C1—C10—C11—C12 | −179.87 (19) |
C9—N1—C1—C10 | −165.13 (17) | C10—C11—C12—C13 | −1.0 (3) |
Pd1—N1—C1—C10 | 28.0 (2) | C11—C12—C13—C14 | 0.5 (4) |
N1—C1—C2—C3 | −3.4 (3) | C12—C13—C14—C15 | −0.6 (4) |
C10—C1—C2—C3 | 173.3 (2) | C13—C14—C15—C10 | 1.2 (3) |
C1—C2—C3—C4 | −5.3 (3) | C11—C10—C15—C14 | −1.7 (3) |
C2—C3—C4—C5 | −174.4 (2) | C1—C10—C15—C14 | 179.83 (19) |
C2—C3—C4—C9 | 5.5 (3) | C22—P1—C16—C17 | −172.40 (17) |
C3—C4—C5—C6 | 178.0 (2) | C8—P1—C16—C17 | −54.62 (19) |
C9—C4—C5—C6 | −1.8 (3) | Pd1—P1—C16—C17 | 53.89 (19) |
C4—C5—C6—C7 | −1.0 (3) | C22—P1—C16—C21 | 13.03 (19) |
C5—C6—C7—C8 | 2.1 (3) | C8—P1—C16—C21 | 130.82 (17) |
C6—C7—C8—C9 | −0.3 (3) | Pd1—P1—C16—C21 | −120.67 (16) |
C6—C7—C8—P1 | −178.71 (17) | C21—C16—C17—C18 | −1.4 (3) |
C22—P1—C8—C7 | 80.9 (2) | P1—C16—C17—C18 | −175.99 (17) |
C16—P1—C8—C7 | −34.6 (2) | C16—C17—C18—C19 | 0.8 (3) |
Pd1—P1—C8—C7 | −156.42 (18) | C17—C18—C19—C20 | 0.0 (4) |
C22—P1—C8—C9 | −97.56 (16) | C18—C19—C20—C21 | −0.1 (4) |
C16—P1—C8—C9 | 146.89 (14) | C17—C16—C21—C20 | 1.2 (3) |
Pd1—P1—C8—C9 | 25.08 (15) | P1—C16—C21—C20 | 175.74 (16) |
C1—N1—C9—C8 | 167.48 (18) | C19—C20—C21—C16 | −0.5 (3) |
Pd1—N1—C9—C8 | −24.2 (2) | C16—P1—C22—C23 | 66.97 (18) |
C1—N1—C9—C4 | −11.5 (3) | C8—P1—C22—C23 | −48.63 (19) |
Pd1—N1—C9—C4 | 156.78 (15) | Pd1—P1—C22—C23 | −159.13 (14) |
C7—C8—C9—N1 | 178.38 (19) | C16—P1—C22—C27 | −108.83 (15) |
P1—C8—C9—N1 | −3.0 (2) | C8—P1—C22—C27 | 135.57 (15) |
C7—C8—C9—C4 | −2.6 (3) | Pd1—P1—C22—C27 | 25.07 (16) |
P1—C8—C9—C4 | 176.01 (15) | C27—C22—C23—C24 | −0.2 (3) |
C5—C4—C9—N1 | −177.37 (18) | P1—C22—C23—C24 | −175.97 (16) |
C3—C4—C9—N1 | 2.8 (3) | C22—C23—C24—C25 | 0.4 (3) |
C5—C4—C9—C8 | 3.7 (3) | C23—C24—C25—C26 | −0.5 (3) |
C3—C4—C9—C8 | −176.20 (18) | C24—C25—C26—C27 | 0.5 (3) |
N1—C1—C10—C15 | −146.2 (2) | C25—C26—C27—C22 | −0.3 (3) |
C2—C1—C10—C15 | 37.0 (3) | C23—C22—C27—C26 | 0.2 (3) |
N1—C1—C10—C11 | 35.3 (3) | P1—C22—C27—C26 | 176.17 (15) |
C2—C1—C10—C11 | −141.5 (2) |
Funding information
This work was partly supported by JSPS KAKENHI grant No. 18 K05146.
References
Beurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands. Google Scholar
Bock, F., Fischer, F., Radacki, K. & Schenk, W. A. (2010). Eur. J. Inorg. Chem. pp. 391–402. CSD CrossRef Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cai, T., Yang, Y., Li, W.-W., Qin, W.-B. & Wen, T.-B. (2018). Chem. Eur. J. 24, 1606–1618. Web of Science CSD CrossRef CAS PubMed Google Scholar
Canovese, L., Visentin, F., Scattolin, T., Santo, C. & Bertolasi, V. (2015). Dalton Trans. 44, 15049–15058. CSD CrossRef CAS PubMed Google Scholar
CrystalMaker (2017). CrystalMaker. CrystalMaker Software Ltd, Bicester, England. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hopkins, J. A., Lionetti, D., Day, V. W. & Blakemore, J. D. (2019). Organometallics, 38, 1300–1310. Web of Science CSD CrossRef CAS Google Scholar
Mori, M., Sunatsuki, Y. & Suzuki, T. (2020). Inorg. Chem. Accepted for publication. https://doi.org/10.1021/acs.inorgchem.0c02706. Google Scholar
Mori, M. & Suzuki, T. (2020). Inorg. Chim. Acta, 512, 119862. Web of Science CSD CrossRef Google Scholar
Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388–9391. Web of Science CSD CrossRef Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Scattolin, T., Visentin, F., Santo, C., Bertolasi, V. & Canovese, L. (2017). Dalton Trans. 46, 5210–5217. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474–1478. Web of Science CSD CrossRef CAS Google Scholar
Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876. Web of Science CSD CrossRef CAS Google Scholar
Suzuki, T., Yamaguchi, H., Fujiki, M., Hashimoto, A. & Takagi, H. D. (2015). Acta Cryst. E71, 447–451. CSD CrossRef IUCr Journals Google Scholar
Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.