research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Isolation and crystal structure of lawinal

CROSSMARK_Color_square_no_text.svg

aCenter of Chemical Innovation for Sustainability (CIS) and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand, and bSchool of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
*Correspondence e-mail: surat.lap@mfu.ac.th

Edited by A. S. Batsanov, University of Durham, England (Received 11 November 2020; accepted 22 December 2020; online 1 January 2021)

The structure of the natural product lawinal [systematic name: (−)-(2S)-5,7-dihy­droxy-6-methyl-4-oxo-2-phenyl­chromane-8-carbaldehyde, C17H14O5] at 150 K is reported. The compound crystallizes with monoclinic (I2) symmetry and with Z′ = 2. The absolute configuration could not be determined reliably from X-ray analysis only. However, our analysis returns the S-configuration at the C-2 position, consistent with previous stereochemical assignment from specific rotation. The independent mol­ecules form into alternating hydrogen-bonded chains with C—H⋯O=CH inter­molecular linkages that run parallel to the crystallographic a axis and are extended into the ac plane by ππ inter­actions between their phenyl substituents.

1. Chemical context

The small flowering plants of the Desmos genus belong to the Annona­ceae family, which comprises about 33 species and is distributed widely throughout Southern Asia and northern Australia (Brophy et al., 2002[Brophy, J. J., Goldsack, R. J. & Forster, P. I. (2002). J. Essent. Oil Res. 14, 298-301.]; Clement et al., 2017[Clement, J. A., Ondeyka, J. G. & Goetz, M. A. (2017). Phytochemistry Lett. 22, 117-121.]). Several species of this genus have been used as Chinese folk medicines (Wu et al., 2003[Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813-1815.]). The aerial part of D. chinensis has been used as an analgesic agent, and to treat vertigo, and parturition (Kummee & Intaraksa, 2008[Kummee, S. & Intaraksa, N. (2008). Songklanakarin J. Sci. Technol. 30, 635-639.]; Rahman et al., 2003[Rahman, M. M., Qais, N. & Rashid, M. A. (2003). Fitoterapia, 74, 511-514.]). In Thailand it is widely used traditionally to treat fever and dysentery (Bunyapraphatsara et al., 2000[Bunyapraphatsara, N., Dechsree, S., Yoosook, C., Herunsalee, A. & Panpisutchai, Y. (2000). Phytomedicine, 6, 421-424.]). The petroleum ether extracts of D. cochinchinensis roots have mainly been explored for their anti­malarial activity (Liao et al., 1989[Liao, S. X., Han, G. Y., Zhang, Y. R., Zheng, Q. T. & He, C. H. (1989). Yao xue xue bao. 24, 110-113.]). The Desmos genus is well known as an abundant source of flavonoids (Meesakul et al., 2019[Meesakul, P., Richardson, C., Pyne, S. G. & Laphookhieo, S. (2019). J. Nat. Prod. 82, 741-747.]; Bajgai et al., 2011[Bajgai, S. P., Prachyawarakorn, V., Mahidol, C., Ruchirawat, S. & Kittakoop, P. (2011). Phytochemistry, 72, 2062-2067.]; Kuo et al., 2015[Kuo, P. C., Thang, T. D., Huang, G. J., Huang, B. S., Hoa, L. T. M., Yang, M. & Wu, T. (2015). Chem. Nat. Compd. 51, 152-155.]), and their 2S absolute configuration has been commonly found (Meesakul et al., 2019[Meesakul, P., Richardson, C., Pyne, S. G. & Laphookhieo, S. (2019). J. Nat. Prod. 82, 741-747.]; Kuo et al., 2015[Kuo, P. C., Thang, T. D., Huang, G. J., Huang, B. S., Hoa, L. T. M., Yang, M. & Wu, T. (2015). Chem. Nat. Compd. 51, 152-155.]). Flavonoids exhibit inter­esting biological activities, including inhibition of HIV-1 replication in H9 lymphocytic cells (Wu et al., 2003[Wu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813-1815.]), anti­bacterial properties (Liao et al., 1989[Liao, S. X., Han, G. Y., Zhang, Y. R., Zheng, Q. T. & He, C. H. (1989). Yao xue xue bao. 24, 110-113.]) and show activities as α-glucosidase inhibitors (Meesakul et al., 2019[Meesakul, P., Richardson, C., Pyne, S. G. & Laphookhieo, S. (2019). J. Nat. Prod. 82, 741-747.]), anti­oxidants (Miller, 1996[Miller, A. L. (1996). Alt. Med. Rev. 1, 103-111.]), aromatase and lipoxygenase inhibitors (Bajgai et al., 2011[Bajgai, S. P., Prachyawarakorn, V., Mahidol, C., Ruchirawat, S. & Kittakoop, P. (2011). Phytochemistry, 72, 2062-2067.]).

[Scheme 1]

Herein, we report the isolation and crystal structure of the flavonoid, (−)(2S)-5,7-dihy­droxy-6-methyl-4-oxo-2-phenyl­chromane-8-carbaldehyde, commonly known as lawinal, isolated from the twig extract of D. dumosus.

2. Structural commentary

Lawinal crystallizes in the space group I2 with Z′ = 2. Because of the large standard deviation of the Flack parameter [−0.1 (5)], the absolute configuration cannot be assigned from the X-ray data (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). We explored applying the Bayesian statistical approach promoted by Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). Given that the compound comes from a natural product source and thus should be enanti­opure, the analysis, as implemented in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), returned a P2(true) value of 0.992 for the S-configuration at C2 in each mol­ecule (Fig. 1[link]). This is consistent with the stereochemical assignment by the method of specific rotation (Prawat et al., 2012[Prawat, U., Phupornprasert, D., Butsuri, A., Salae, A.-W., Boonsri, S. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 809-813.]; Wu et al., 2005[Wu, J. H., Shi, N., Pan, M. X., Wang, X. H. & Yi, Y. H. (2005). Chin. Pharm. J. 40, 495-497.]).

[Figure 1]
Figure 1
The contents of the asymmetric unit with complete atom labelling of one mol­ecule and selected heteroatom labelling of the second mol­ecule, for clarity. Intra­molecular hydrogen bonds are shown as dashed magenta lines. Displacement ellipsoids are plotted at the 50% probability level.

The unique mol­ecules adopt extremely similar conformations and an overlay of the mol­ecular structures is shown in Fig. 2[link]. The hydroxyl groups attached to C5 and C7 on each unique mol­ecule act as hydrogen-bond donors to the ketone and aldehyde functionalities, respectively. The positions of the hydroxyl hydrogen atoms were refined, the relatively long D—H distances (Table 1[link]) indicating strong intra­molecular stabil­ization. The hydrogen bond O7—H7⋯O9 is responsible for bringing the aldehyde group into approximate coplanarity with the chromanone ring system. In contrast, the phenyl substituents attached to C2 in each mol­ecule are approximately orthogonal to the chromanone ring systems [plane-to-plane angles of 99.4 (1) and 97.5 (1)° to the phenyl rings of the chromanones].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O9Ai 0.99 2.32 3.252 (3) 158
C3A—H3AB⋯O9ii 0.99 2.31 3.248 (3) 157
O7A—H7A⋯O9A 0.94 (3) 1.67 (3) 2.572 (2) 159 (4)
O5—H5⋯O4 0.94 (3) 1.70 (3) 2.579 (2) 154 (3)
O7—H7⋯O9 0.95 (3) 1.67 (3) 2.585 (2) 162 (3)
O5A—H5A⋯O4A 0.94 (3) 1.70 (3) 2.574 (2) 153 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
An overlay of the independent mol­ecules in the asymmetric unit. The dotted lines represent the intra­molecular hydrogen bonds.

3. Supra­molecular features

The shortest inter­molecular contacts to hydrogen-bond acceptors of the unique mol­ecules come from the pseudo-equatorial C—H bonds in the CH2 moieties of the chromanone rings to the aldehyde oxygen atoms, O9 and O9A (Table 1[link]). These C—H⋯O=CH connections assemble the unique mol­ecules into alternating chains that propagate parallel to the crystallographic a-axis, as shown in Fig. 3[link]. The supra­molecular alignment of these hydrogen bonded chains are controlled by ππ inter­actions of phenyl rings from adjacent chains. This links the chains into two-dimensional sheets in the ac plane. The plane-to-plane angle between phenyl rings is 4.7 (1)° and the distance from plane centroid to plane centroid, as indicated by the blue dashed line in Fig. 3[link], is 3.821 (2) Å.

[Figure 3]
Figure 3
A view parallel to the crystallographic b-axis, with intra­molecular and inter­molecular hydrogen bonds shown as dotted red lines and the ππ inter­actions as dashed blue lines. The inter­molecular hydrogen bonds link mol­ecules into chains propagating along the crystallographic a-axis direction and the ππ inter­actions link the hydrogen-bonded chains into two-dimensional sheets in the crystallographic ac plane. Displacement ellipsoids are plotted at the 50% probability level.

4. Synthesis and crystallization

Plant Material

Desmos dumosus twigs were collected from Doi Tung, Chiang Rai Province, Thailand, in February 2016. The plant was identified by Mr Matin Van de Bult (Doi Tung Development Project, Chiang Rai, Thailand). The specimen (MFU-NPR0110) was deposited at Mae Fah Luang University's Natural Products Research Laboratory.

Extraction and Isolation

Air-dried twigs of D. dumosus (7.00 kg) were extracted for three days at room temperature with EtOAc (20 L). Removal of the solvent under reduced pressure provided the crude extract (92.7 g), which was subjected to column chromatography over silica gel using a gradient of hexa­nes and EtOAc (100% hexa­nes to 100% EtOAc) to afford 12 fractions (D1-D12). Fraction D5 (7.70 g) was further fractionated by column chromatography over Sephadex-LH 20 resin eluting with 100% MeOH to provide nine subfractions (D5A-D5I). Subfraction D5E (1.45 g) was further separated by column chromatography over silica gel (1:4, v/v EtOAc/hexa­nes) to give lawinal (35.5 mg) as a faint yellow-coloured solid.

Crystallization and characterization data

Crystals grew from slow evaporation of a 1:4 di­chloro­methane:methanol solution. M.p. 488–489 K [Lit. (Prawat et al., 2012[Prawat, U., Phupornprasert, D., Butsuri, A., Salae, A.-W., Boonsri, S. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 809-813.]) 487 K]; [α]D25 −52.4 (c 0.2, CH2Cl2); ECD (3.4 × 10−4) λmax (Δɛ) 298 (+4.66), 276 (−4.88), and 228 (+3.82); 1H NMR (CDCl3, 500 MHz) δH 12.85 (1H, s, OH-5), 13.00 (1H, s, OH-7), 10.11 (1H, s, CHO), 7.45 (5H, m, H-2′–H-6′), 5.57 (1H, dd, J = 13.0, 3.2 Hz, H-2), 3.16 (1H, dd, J = 17.3, 13.0 Hz, Hα-3), 2.93 (1H, dd, J = 17.3, 3.2 Hz, Hβ-3), 2.02 (3H, s, CH3); 13C NMR (CDCl3, 125 MHz) δC 6.0 (CH3), 42.8 (C-3), 80.3 (C2), 101.3 (C4a), 104.1 (C8), 105.7 (C6), 126.1 (C2′, C6′), 129.1 (C3′, C4′, C5′), 137.6 (C1′), 164.7 (C8a), 166.6 (C5), 168.8 (C7), 191.3 (CHO), 195.3 (C4).

5. Refinement

The data were collected using Mo Kα radiation, therefore anomalous dispersion effects are small. The crystal structure itself is pseudo-centrosymmetric. Indeed, a structural solution can be successfully obtained in a centrosymmetric space group, although this results in an unsatisfactory refinement, with apparent disorder about the stereogenic center, as expected. The actual inversion symmetry is, of course, incompatible with the natural origin and optical activity of the compound. Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Tertiary C(H), secondary C(H,H), primary C(H,H,H) and aromatic H atoms were placed in geometrically idealized positions (C—H = 1.00, 0.99, 0.98, and 0.95 Å, respectively) and refined in riding models with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The methyl group attached to C-6 was refined as a rotating body. The hy­droxy­lic H atoms were refined unconstrained in isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula C17H14O5
Mr 298.28
Crystal system, space group Monoclinic, I2
Temperature (K) 150
a, b, c (Å) 18.9581 (14), 6.6461 (4), 22.4043 (16)
β (°) 94.163 (7)
V3) 2815.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.42 × 0.19 × 0.16
 
Data collection
Diffractometer Rigaku XtaLAB Mini II
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.728, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33601, 7914, 6451
Rint 0.072
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 1.02
No. of reflections 7914
No. of parameters 415
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.32
Absolute structure Flack x determined using 2350 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(2S)-5,7-Dihydroxy-6-methyl-4-oxo-2-phenylchromane-8-carbaldehyde top
Crystal data top
C17H14O5F(000) = 1248
Mr = 298.28Dx = 1.407 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 18.9581 (14) ÅCell parameters from 12756 reflections
b = 6.6461 (4) Åθ = 2.1–30.6°
c = 22.4043 (16) ŵ = 0.10 mm1
β = 94.163 (7)°T = 150 K
V = 2815.4 (3) Å3Block, clear colourless
Z = 80.42 × 0.19 × 0.16 mm
Data collection top
Rigaku XtaLAB Mini II
diffractometer
7914 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source6451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 2626
Tmin = 0.728, Tmax = 1.000k = 99
33601 measured reflectionsl = 3232
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0925P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.39 e Å3
7914 reflectionsΔρmin = 0.32 e Å3
415 parametersAbsolute structure: Flack x determined using 2350 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.1 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57571 (8)0.2436 (3)0.16037 (6)0.0205 (4)
O40.73983 (8)0.1600 (3)0.28806 (7)0.0284 (4)
O50.64990 (9)0.1903 (3)0.36865 (6)0.0248 (4)
O70.40722 (8)0.2205 (3)0.30729 (7)0.0220 (4)
O90.37112 (8)0.2498 (3)0.19412 (7)0.0262 (4)
C20.64822 (11)0.3054 (4)0.14926 (8)0.0204 (4)
H20.6558150.4454140.1647270.024*
C30.70093 (11)0.1669 (4)0.18367 (9)0.0225 (5)
H3A0.6937280.0264810.1698390.027*
H3B0.7498310.2073690.1763890.027*
C40.69015 (11)0.1811 (4)0.24939 (9)0.0205 (4)
C50.59854 (11)0.2066 (3)0.32465 (9)0.0184 (4)
C60.52807 (11)0.2131 (4)0.34014 (9)0.0193 (5)
C70.47547 (11)0.2219 (3)0.29309 (9)0.0173 (4)
C80.49093 (11)0.2327 (3)0.23198 (9)0.0163 (4)
C90.43514 (11)0.2491 (4)0.18501 (9)0.0203 (5)
H90.4478930.2599410.1449080.024*
C100.50961 (12)0.2053 (5)0.40436 (9)0.0280 (6)
H10A0.4886940.3338960.4152200.042*
H10B0.5525300.1803890.4303740.042*
H10C0.4755810.0966400.4092850.042*
C4B0.61711 (12)0.2130 (4)0.26415 (9)0.0177 (4)
C8B0.56271 (11)0.2306 (3)0.21864 (9)0.0165 (4)
C1P0.65328 (11)0.3085 (4)0.08262 (9)0.0243 (5)
C2P0.64364 (13)0.1363 (5)0.04797 (11)0.0366 (6)
H2P0.6331950.0114070.0659710.044*
C3P0.64952 (15)0.1489 (6)0.01417 (12)0.0462 (8)
H3P0.6427580.0321150.0383660.055*
C4P0.66512 (13)0.3311 (7)0.04014 (10)0.0448 (8)
H4P0.6691250.3386600.0821030.054*
C5P0.67485 (13)0.5008 (6)0.00559 (10)0.0430 (7)
H5P0.6856720.6251040.0237600.052*
C6P0.66898 (12)0.4918 (5)0.05540 (10)0.0324 (6)
H6P0.6755790.6099400.0790170.039*
O1A0.42391 (8)0.7039 (3)0.34098 (6)0.0201 (3)
O4A0.26002 (9)0.6903 (3)0.21057 (7)0.0290 (4)
O5A0.35043 (9)0.7514 (3)0.13220 (7)0.0280 (4)
O7A0.59290 (8)0.7443 (3)0.19545 (7)0.0233 (4)
O9A0.62819 (8)0.7220 (3)0.30829 (7)0.0267 (4)
C2A0.35218 (11)0.7575 (4)0.35631 (9)0.0206 (5)
H2A0.3459490.9064040.3523710.025*
C3A0.29726 (11)0.6534 (4)0.31422 (9)0.0243 (5)
H3AA0.2994030.5064400.3212650.029*
H3AB0.2494800.7005650.3227370.029*
C4A0.30940 (12)0.6959 (4)0.25019 (9)0.0211 (4)
C5A0.40185 (12)0.7439 (3)0.17646 (9)0.0202 (5)
C6A0.47233 (12)0.7487 (4)0.16168 (9)0.0212 (5)
C7A0.52461 (11)0.7395 (3)0.20899 (9)0.0188 (4)
C8A0.50869 (11)0.7268 (3)0.26992 (9)0.0173 (4)
C9A0.56451 (11)0.7198 (4)0.31718 (9)0.0204 (5)
H9A0.5516980.7131080.3573500.024*
C10A0.49126 (13)0.7599 (5)0.09739 (9)0.0307 (6)
H10D0.4512100.7128620.0709360.046*
H10E0.5325530.6747760.0921140.046*
H10F0.5023070.8994680.0874290.046*
C4AA0.38250 (12)0.7287 (4)0.23673 (9)0.0187 (4)
C8AA0.43682 (11)0.7208 (3)0.28291 (9)0.0167 (4)
C1PA0.34755 (12)0.6990 (4)0.42113 (9)0.0223 (5)
C2PA0.33826 (12)0.5001 (4)0.43833 (9)0.0278 (5)
H2PA0.3354660.3968200.4089580.033*
C3PA0.33302 (13)0.4515 (4)0.49835 (10)0.0316 (6)
H3PA0.3264620.3156560.5099010.038*
C4PA0.33746 (12)0.6031 (5)0.54122 (10)0.0302 (6)
H4PA0.3333880.5703780.5821030.036*
C5PA0.34774 (13)0.8014 (5)0.52490 (10)0.0317 (6)
H5PA0.3514390.9040730.5544610.038*
C6PA0.35263 (12)0.8490 (4)0.46478 (9)0.0281 (5)
H6PA0.3594850.9848720.4534030.034*
H7A0.616 (2)0.742 (6)0.2338 (15)0.060 (11)*
H50.6917 (17)0.176 (6)0.3492 (13)0.049 (9)*
H70.3847 (18)0.226 (6)0.2681 (13)0.042 (9)*
H5A0.3078 (17)0.733 (5)0.1507 (13)0.041 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0133 (7)0.0324 (10)0.0158 (6)0.0003 (6)0.0016 (5)0.0005 (6)
O40.0144 (7)0.0437 (11)0.0265 (8)0.0028 (7)0.0028 (6)0.0037 (7)
O50.0194 (8)0.0352 (10)0.0193 (7)0.0010 (7)0.0026 (6)0.0004 (7)
O70.0152 (8)0.0282 (10)0.0233 (7)0.0001 (6)0.0062 (6)0.0003 (6)
O90.0131 (8)0.0363 (11)0.0295 (8)0.0006 (7)0.0032 (6)0.0018 (7)
C20.0136 (9)0.0281 (12)0.0198 (9)0.0000 (8)0.0031 (7)0.0003 (8)
C30.0126 (9)0.0326 (13)0.0225 (9)0.0021 (9)0.0028 (7)0.0008 (9)
C40.0167 (10)0.0247 (11)0.0200 (9)0.0009 (8)0.0011 (7)0.0024 (8)
C50.0182 (11)0.0191 (11)0.0178 (9)0.0010 (8)0.0002 (8)0.0002 (8)
C60.0183 (11)0.0224 (12)0.0176 (9)0.0003 (8)0.0030 (8)0.0001 (8)
C70.0158 (11)0.0167 (11)0.0199 (9)0.0000 (8)0.0041 (8)0.0001 (8)
C80.0139 (10)0.0177 (11)0.0172 (8)0.0003 (8)0.0017 (7)0.0006 (7)
C90.0165 (11)0.0222 (11)0.0221 (10)0.0001 (8)0.0013 (8)0.0009 (8)
C100.0227 (12)0.0425 (16)0.0194 (10)0.0009 (10)0.0045 (9)0.0010 (10)
C4B0.0157 (10)0.0203 (11)0.0168 (9)0.0003 (8)0.0005 (7)0.0004 (8)
C8B0.0142 (10)0.0170 (11)0.0184 (9)0.0003 (8)0.0014 (8)0.0008 (8)
C1P0.0128 (10)0.0411 (15)0.0195 (9)0.0030 (9)0.0044 (7)0.0003 (9)
C2P0.0278 (13)0.0468 (17)0.0355 (12)0.0015 (12)0.0054 (10)0.0102 (12)
C3P0.0294 (14)0.075 (2)0.0339 (13)0.0016 (15)0.0012 (10)0.0245 (15)
C4P0.0223 (13)0.090 (3)0.0218 (10)0.0010 (15)0.0026 (9)0.0013 (15)
C5P0.0309 (14)0.069 (2)0.0297 (12)0.0013 (14)0.0033 (10)0.0158 (14)
C6P0.0259 (13)0.0431 (16)0.0286 (11)0.0053 (11)0.0042 (9)0.0083 (11)
O1A0.0137 (7)0.0304 (9)0.0165 (6)0.0004 (6)0.0017 (5)0.0003 (6)
O4A0.0154 (8)0.0450 (12)0.0261 (8)0.0013 (7)0.0028 (6)0.0000 (8)
O5A0.0226 (9)0.0426 (11)0.0183 (7)0.0018 (8)0.0019 (6)0.0020 (7)
O7A0.0159 (8)0.0285 (10)0.0264 (8)0.0009 (6)0.0071 (6)0.0023 (7)
O9A0.0136 (8)0.0353 (11)0.0310 (8)0.0012 (7)0.0015 (6)0.0002 (7)
C2A0.0155 (10)0.0272 (12)0.0195 (9)0.0034 (8)0.0035 (8)0.0009 (8)
C3A0.0136 (9)0.0376 (14)0.0218 (9)0.0006 (9)0.0022 (7)0.0000 (9)
C4A0.0156 (10)0.0258 (12)0.0215 (9)0.0022 (9)0.0014 (7)0.0023 (8)
C5A0.0208 (11)0.0220 (12)0.0174 (9)0.0010 (8)0.0008 (8)0.0022 (8)
C6A0.0231 (12)0.0217 (12)0.0192 (9)0.0004 (9)0.0045 (8)0.0015 (8)
C7A0.0150 (11)0.0179 (11)0.0240 (10)0.0005 (8)0.0050 (8)0.0022 (9)
C8A0.0153 (11)0.0174 (11)0.0193 (9)0.0002 (8)0.0015 (8)0.0009 (7)
C9A0.0141 (10)0.0230 (12)0.0238 (10)0.0005 (8)0.0003 (8)0.0011 (8)
C10A0.0266 (13)0.0455 (16)0.0207 (10)0.0016 (11)0.0069 (9)0.0020 (10)
C4AA0.0154 (10)0.0230 (11)0.0177 (9)0.0015 (8)0.0001 (8)0.0026 (8)
C8AA0.0151 (10)0.0183 (11)0.0168 (9)0.0001 (8)0.0015 (7)0.0018 (8)
C1PA0.0156 (10)0.0330 (13)0.0185 (9)0.0028 (9)0.0030 (8)0.0028 (9)
C2PA0.0306 (13)0.0321 (13)0.0210 (10)0.0037 (10)0.0030 (9)0.0037 (9)
C3PA0.0332 (14)0.0327 (14)0.0290 (11)0.0004 (11)0.0030 (10)0.0029 (10)
C4PA0.0230 (12)0.0446 (16)0.0233 (10)0.0030 (11)0.0045 (9)0.0020 (10)
C5PA0.0284 (13)0.0407 (16)0.0259 (11)0.0015 (11)0.0018 (9)0.0113 (11)
C6PA0.0262 (12)0.0306 (13)0.0278 (10)0.0031 (10)0.0044 (9)0.0041 (10)
Geometric parameters (Å, º) top
O1—C21.473 (2)O1A—C2A1.470 (2)
O1—C8B1.349 (2)O1A—C8AA1.346 (2)
O4—C41.241 (3)O4A—C4A1.243 (3)
O5—C51.339 (3)O5A—C5A1.340 (3)
O5—H50.94 (3)O5A—H5A0.94 (3)
O7—C71.355 (2)O7A—C7A1.351 (2)
O7—H70.95 (3)O7A—H7A0.94 (3)
O9—C91.245 (3)O9A—C9A1.238 (2)
C2—H21.0000C2A—H2A1.0000
C2—C31.526 (3)C2A—C3A1.520 (3)
C2—C1P1.503 (3)C2A—C1PA1.512 (3)
C3—H3A0.9900C3A—H3AA0.9900
C3—H3B0.9900C3A—H3AB0.9900
C3—C41.504 (3)C3A—C4A1.496 (3)
C4—C4B1.462 (3)C4A—C4AA1.456 (3)
C5—C61.405 (3)C5A—C6A1.400 (3)
C5—C4B1.426 (3)C5A—C4AA1.428 (3)
C6—C71.399 (3)C6A—C7A1.399 (3)
C6—C101.506 (2)C6A—C10A1.511 (2)
C7—C81.423 (2)C7A—C8A1.422 (3)
C8—C91.441 (3)C8A—C9A1.442 (3)
C8—C8B1.414 (3)C8A—C8AA1.414 (3)
C9—H90.9500C9A—H9A0.9500
C10—H10A0.9800C10A—H10D0.9800
C10—H10B0.9800C10A—H10E0.9800
C10—H10C0.9800C10A—H10F0.9800
C4B—C8B1.401 (3)C4AA—C8AA1.407 (3)
C1P—C2P1.387 (4)C1PA—C2PA1.392 (4)
C1P—C6P1.404 (4)C1PA—C6PA1.394 (3)
C2P—H2P0.9500C2PA—H2PA0.9500
C2P—C3P1.407 (3)C2PA—C3PA1.393 (3)
C3P—H3P0.9500C3PA—H3PA0.9500
C3P—C4P1.384 (5)C3PA—C4PA1.390 (4)
C4P—H4P0.9500C4PA—H4PA0.9500
C4P—C5P1.373 (5)C4PA—C5PA1.385 (4)
C5P—H5P0.9500C5PA—H5PA0.9500
C5P—C6P1.380 (3)C5PA—C6PA1.393 (3)
C6P—H6P0.9500C6PA—H6PA0.9500
C8B—O1—C2114.82 (16)C8AA—O1A—C2A116.23 (16)
C5—O5—H5105.1 (18)C5A—O5A—H5A105.8 (18)
C7—O7—H799 (2)C7A—O7A—H7A101 (2)
O1—C2—H2108.3O1A—C2A—H2A108.9
O1—C2—C3109.37 (18)O1A—C2A—C3A110.40 (17)
O1—C2—C1P107.42 (17)O1A—C2A—C1PA106.34 (17)
C3—C2—H2108.3C3A—C2A—H2A108.9
C1P—C2—H2108.3C1PA—C2A—H2A108.9
C1P—C2—C3115.06 (18)C1PA—C2A—C3A113.22 (18)
C2—C3—H3A109.9C2A—C3A—H3AA109.4
C2—C3—H3B109.9C2A—C3A—H3AB109.4
H3A—C3—H3B108.3H3AA—C3A—H3AB108.0
C4—C3—C2109.05 (17)C4A—C3A—C2A111.28 (19)
C4—C3—H3A109.9C4A—C3A—H3AA109.4
C4—C3—H3B109.9C4A—C3A—H3AB109.4
O4—C4—C3121.76 (19)O4A—C4A—C3A121.2 (2)
O4—C4—C4B122.81 (18)O4A—C4A—C4AA122.38 (19)
C4B—C4—C3115.38 (19)C4AA—C4A—C3A116.23 (19)
O5—C5—C6118.33 (17)O5A—C5A—C6A118.67 (18)
O5—C5—C4B119.06 (18)O5A—C5A—C4AA118.64 (19)
C6—C5—C4B122.6 (2)C6A—C5A—C4AA122.7 (2)
C5—C6—C10121.7 (2)C5A—C6A—C10A121.5 (2)
C7—C6—C5116.99 (17)C7A—C6A—C5A117.11 (18)
C7—C6—C10121.26 (19)C7A—C6A—C10A121.33 (19)
O7—C7—C6117.62 (17)O7A—C7A—C6A117.80 (18)
O7—C7—C8119.6 (2)O7A—C7A—C8A119.4 (2)
C6—C7—C8122.82 (18)C6A—C7A—C8A122.82 (18)
C7—C8—C9121.00 (18)C7A—C8A—C9A120.75 (18)
C8B—C8—C7118.1 (2)C8AA—C8A—C7A118.3 (2)
C8B—C8—C9120.86 (17)C8AA—C8A—C9A120.95 (18)
O9—C9—C8123.58 (18)O9A—C9A—C8A123.61 (19)
O9—C9—H9118.2O9A—C9A—H9A118.2
C8—C9—H9118.2C8A—C9A—H9A118.2
C6—C10—H10A109.5C6A—C10A—H10D109.5
C6—C10—H10B109.5C6A—C10A—H10E109.5
C6—C10—H10C109.5C6A—C10A—H10F109.5
H10A—C10—H10B109.5H10D—C10A—H10E109.5
H10A—C10—H10C109.5H10D—C10A—H10F109.5
H10B—C10—H10C109.5H10E—C10A—H10F109.5
C5—C4B—C4120.9 (2)C5A—C4AA—C4A121.3 (2)
C8B—C4B—C4120.43 (17)C8AA—C4AA—C4A119.93 (18)
C8B—C4B—C5118.34 (19)C8AA—C4AA—C5A118.26 (19)
O1—C8B—C8116.75 (19)O1A—C8AA—C8A116.55 (19)
O1—C8B—C4B122.21 (18)O1A—C8AA—C4AA122.63 (18)
C4B—C8B—C8121.03 (18)C4AA—C8AA—C8A120.81 (18)
C2P—C1P—C2122.0 (2)C2PA—C1PA—C2A121.8 (2)
C2P—C1P—C6P119.7 (2)C2PA—C1PA—C6PA119.2 (2)
C6P—C1P—C2118.3 (2)C6PA—C1PA—C2A119.0 (2)
C1P—C2P—H2P120.4C1PA—C2PA—H2PA119.8
C1P—C2P—C3P119.2 (3)C1PA—C2PA—C3PA120.5 (2)
C3P—C2P—H2P120.4C3PA—C2PA—H2PA119.8
C2P—C3P—H3P119.9C2PA—C3PA—H3PA120.2
C4P—C3P—C2P120.2 (3)C4PA—C3PA—C2PA119.6 (3)
C4P—C3P—H3P119.9C4PA—C3PA—H3PA120.2
C3P—C4P—H4P119.8C3PA—C4PA—H4PA119.7
C5P—C4P—C3P120.4 (2)C5PA—C4PA—C3PA120.6 (2)
C5P—C4P—H4P119.8C5PA—C4PA—H4PA119.7
C4P—C5P—H5P119.8C4PA—C5PA—H5PA120.3
C4P—C5P—C6P120.4 (3)C4PA—C5PA—C6PA119.4 (2)
C6P—C5P—H5P119.8C6PA—C5PA—H5PA120.3
C1P—C6P—H6P119.9C1PA—C6PA—H6PA119.7
C5P—C6P—C1P120.2 (3)C5PA—C6PA—C1PA120.6 (2)
C5P—C6P—H6P119.9C5PA—C6PA—H6PA119.7
O1—C2—C3—C459.6 (2)O1A—C2A—C3A—C4A53.9 (3)
O1—C2—C1P—C2P62.0 (3)O1A—C2A—C1PA—C2PA77.6 (3)
O1—C2—C1P—C6P118.7 (2)O1A—C2A—C1PA—C6PA102.6 (2)
O4—C4—C4B—C54.7 (4)O4A—C4A—C4AA—C5A3.9 (4)
O4—C4—C4B—C8B178.3 (2)O4A—C4A—C4AA—C8AA175.9 (2)
O5—C5—C6—C7177.4 (2)O5A—C5A—C6A—C7A179.7 (2)
O5—C5—C6—C100.9 (4)O5A—C5A—C6A—C10A0.6 (4)
O5—C5—C4B—C46.4 (3)O5A—C5A—C4AA—C4A7.9 (3)
O5—C5—C4B—C8B179.9 (2)O5A—C5A—C4AA—C8AA180.0 (2)
O7—C7—C8—C92.1 (3)O7A—C7A—C8A—C9A0.2 (3)
O7—C7—C8—C8B179.0 (2)O7A—C7A—C8A—C8AA179.6 (2)
C2—O1—C8B—C8161.36 (19)C2A—O1A—C8AA—C8A162.39 (19)
C2—O1—C8B—C4B19.5 (3)C2A—O1A—C8AA—C4AA18.7 (3)
C2—C3—C4—O4148.6 (2)C2A—C3A—C4A—O4A153.9 (2)
C2—C3—C4—C4B33.8 (3)C2A—C3A—C4A—C4AA30.6 (3)
C2—C1P—C2P—C3P179.6 (2)C2A—C1PA—C2PA—C3PA178.9 (2)
C2—C1P—C6P—C5P179.3 (2)C2A—C1PA—C6PA—C5PA179.2 (2)
C3—C2—C1P—C2P60.1 (3)C3A—C2A—C1PA—C2PA43.9 (3)
C3—C2—C1P—C6P119.3 (2)C3A—C2A—C1PA—C6PA136.0 (2)
C3—C4—C4B—C5172.9 (2)C3A—C4A—C4AA—C5A171.6 (2)
C3—C4—C4B—C8B0.7 (3)C3A—C4A—C4AA—C8AA0.4 (3)
C4—C4B—C8B—O18.2 (3)C4A—C4AA—C8AA—O1A6.9 (3)
C4—C4B—C8B—C8170.9 (2)C4A—C4AA—C8AA—C8A172.0 (2)
C5—C6—C7—O7177.5 (2)C5A—C6A—C7A—O7A179.9 (2)
C5—C6—C7—C82.6 (3)C5A—C6A—C7A—C8A0.3 (3)
C5—C4B—C8B—O1178.0 (2)C5A—C4AA—C8AA—O1A179.1 (2)
C5—C4B—C8B—C82.9 (3)C5A—C4AA—C8AA—C8A0.3 (3)
C6—C5—C4B—C4172.4 (2)C6A—C5A—C4AA—C4A171.3 (2)
C6—C5—C4B—C8B1.3 (4)C6A—C5A—C4AA—C8AA0.8 (4)
C6—C7—C8—C9177.7 (2)C6A—C7A—C8A—C9A179.3 (2)
C6—C7—C8—C8B1.2 (3)C6A—C7A—C8A—C8AA0.8 (3)
C7—C8—C9—O91.9 (4)C7A—C8A—C9A—O9A0.8 (4)
C7—C8—C8B—O1179.16 (19)C7A—C8A—C8AA—O1A178.5 (2)
C7—C8—C8B—C4B1.7 (3)C7A—C8A—C8AA—C4AA0.5 (3)
C9—C8—C8B—O10.3 (3)C9A—C8A—C8AA—O1A1.4 (3)
C9—C8—C8B—C4B179.5 (2)C9A—C8A—C8AA—C4AA179.7 (2)
C10—C6—C7—O70.8 (3)C10A—C6A—C7A—O7A1.1 (3)
C10—C6—C7—C8179.0 (2)C10A—C6A—C7A—C8A179.4 (2)
C4B—C5—C6—C71.3 (3)C4AA—C5A—C6A—C7A0.5 (4)
C4B—C5—C6—C10179.7 (2)C4AA—C5A—C6A—C10A178.6 (2)
C8B—O1—C2—C353.6 (2)C8AA—O1A—C2A—C3A49.0 (3)
C8B—O1—C2—C1P179.10 (19)C8AA—O1A—C2A—C1PA172.20 (19)
C8B—C8—C9—O9179.3 (2)C8AA—C8A—C9A—O9A179.0 (2)
C1P—C2—C3—C4179.4 (2)C1PA—C2A—C3A—C4A173.03 (19)
C1P—C2P—C3P—C4P0.3 (4)C1PA—C2PA—C3PA—C4PA0.3 (4)
C2P—C1P—C6P—C5P0.0 (4)C2PA—C1PA—C6PA—C5PA0.7 (4)
C2P—C3P—C4P—C5P0.1 (4)C2PA—C3PA—C4PA—C5PA0.7 (4)
C3P—C4P—C5P—C6P0.2 (4)C3PA—C4PA—C5PA—C6PA0.9 (4)
C4P—C5P—C6P—C1P0.3 (4)C4PA—C5PA—C6PA—C1PA0.3 (4)
C6P—C1P—C2P—C3P0.3 (4)C6PA—C1PA—C2PA—C3PA0.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O9Ai0.992.323.252 (3)158
C3A—H3AB···O9ii0.992.313.248 (3)157
O7A—H7A···O9A0.94 (3)1.67 (3)2.572 (2)159 (4)
O5—H5···O40.94 (3)1.70 (3)2.579 (2)154 (3)
O7—H7···O90.95 (3)1.67 (3)2.585 (2)162 (3)
O5A—H5A···O4A0.94 (3)1.70 (3)2.574 (2)153 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The University of Wollongong is acknowledged for providing laboratory facilities.

Funding information

Funding for this research was provided by: Thailand Science Research and Innovation (grant No. DBG6280007; studentship No. PHD/0133/2559 to V. Suthiphasilp); Mae Fah Luang University.

References

First citationBajgai, S. P., Prachyawarakorn, V., Mahidol, C., Ruchirawat, S. & Kittakoop, P. (2011). Phytochemistry, 72, 2062–2067.  CrossRef CAS PubMed Google Scholar
First citationBrophy, J. J., Goldsack, R. J. & Forster, P. I. (2002). J. Essent. Oil Res. 14, 298–301.  CrossRef CAS Google Scholar
First citationBunyapraphatsara, N., Dechsree, S., Yoosook, C., Herunsalee, A. & Panpisutchai, Y. (2000). Phytomedicine, 6, 421–424.  CrossRef PubMed CAS Google Scholar
First citationClement, J. A., Ondeyka, J. G. & Goetz, M. A. (2017). Phytochemistry Lett. 22, 117–121.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKummee, S. & Intaraksa, N. (2008). Songklanakarin J. Sci. Technol. 30, 635–639.  Google Scholar
First citationKuo, P. C., Thang, T. D., Huang, G. J., Huang, B. S., Hoa, L. T. M., Yang, M. & Wu, T. (2015). Chem. Nat. Compd. 51, 152–155.  CrossRef CAS Google Scholar
First citationLiao, S. X., Han, G. Y., Zhang, Y. R., Zheng, Q. T. & He, C. H. (1989). Yao xue xue bao. 24, 110–113.  CAS PubMed Google Scholar
First citationMeesakul, P., Richardson, C., Pyne, S. G. & Laphookhieo, S. (2019). J. Nat. Prod. 82, 741–747.  CrossRef CAS PubMed Google Scholar
First citationMiller, A. L. (1996). Alt. Med. Rev. 1, 103–111.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrawat, U., Phupornprasert, D., Butsuri, A., Salae, A.-W., Boonsri, S. & Tuntiwachwuttikul, P. (2012). Phytochemistry Lett. 5, 809–813.  CrossRef CAS Google Scholar
First citationRahman, M. M., Qais, N. & Rashid, M. A. (2003). Fitoterapia, 74, 511–514.  PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, J. H., Shi, N., Pan, M. X., Wang, X. H. & Yi, Y. H. (2005). Chin. Pharm. J. 40, 495–497.  CAS Google Scholar
First citationWu, J. H., Wang, X. H., Yi, Y. H. & Lee, K. H. (2003). Bioorg. Med. Chem. Lett. 13, 1813–1815.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds