research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three copper(II)–2,2′-bi­pyridine (bpy) compounds, [Cu(bpy)2(H2O)][SiF6]·4H2O, [Cu(bpy)2(TaF6)2] and [Cu(bpy)3][TaF6]2 and a related coordination polymer, [Cu(bpy)(H2O)2SnF6]n

CROSSMARK_Color_square_no_text.svg

a2145 Sheridan Road, Evanston, IL 60208, USA
*Correspondence e-mail: krp@northwestern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 December 2020; accepted 19 January 2021; online 26 January 2021)

We report the hydro­thermal syntheses and crystal structures of aqua­bis­(2,2′-bi­pyridine-κ2N,N′)copper(II) hexa­fluorido­silicate tetra­hydrate, [Cu(bpy)2(H2O)][SiF6]·4H2O (bpy is 2,2′-bi­pyridine, C10H8N2), (I), bis­(2,2′-bi­pyridine-3κ2N,N′)-di-μ-fluorido-1:3κ2F:F;2:3κ2F:F-deca­fluorido-1κ5F,2κ5F-ditantalum(V)copper(II), [Cu(bpy)2(TaF6)2], (II), tris­(2,2′-bi­pyridine-κ2N,N′)copper(II) bis[hexa­fluorido­tantalate(V)], [Cu(bpy)3][TaF6]2, (III), and catena-poly[[di­aqua­(2,2′-bi­pyridine-κ2N,N′)copper(II)]-μ-fluorido-tetra­fluorido­tin-μ-fluorido], [Cu(bpy)(H2O)2SnF6]n, (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C2, D2, and D3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H⋯F and O—H⋯O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin.

1. Chemical context

Copper(II) complexes of 2,2′-bi­pyridine (bpy) adopt a wide range of coordination geometries, including square pyramidal, trigonal bipyramidal and octa­hedral, depending on experimental conditions such as the ligand-to-metal ratio and pH (Garribba et al., 2000[Garribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. (2000). Inorg. Chim. Acta, 299, 253-261.]). Previous studies have shown that racemic combinations of chiral [Cu(bpy)2(H2O)]2+ can crystallize in polar structures in the presence of early transition metal fluorides MF62–, (M = Ti, Zr, Hf) (Gautier et al., 2012[Gautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267-6271.]; Nisbet et al., 2020[Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555-7566.]).

Here, we investigate the influence of the anion on the speciation of the copper(II) complex and the arrangement of the ions in the crystal structure in a series of compounds based on copper(II)–2,2′-bi­pyridine cations and SiF62–, SnF62– and TaF6 anions. Among these hydro­thermally prepared structures we observe three distinct locally chiral copper-bi­pyridine complexes: C2-symmetric cations in [Cu(bpy)2(H2O)][SiF6]·4H2O, (I)[link], D2-symmetric Cu(bpy)2(TaF6)2 mol­ecules, (II)[link] and D3-symmetric cations in [Cu(bpy)3][TaF6]2, (III)[link]. We also report the structure of a coordination polymer based on Cu(bpy)(H2O)22+ cations and SnF62– anions, (IV)[link], that forms under similar conditions.

2. Structural commentary

Compound (I)[link] has the formula [Cu(bpy)2(H2O)][SiF6]·4H2O and crystallizes in space group C2/c. The structure features isolated C2-symmetric Δ- and Λ-[Cu(bpy)2(H2O)]2+ cations and octa­hedral SiF62– anions (Fig. 1[link]). The five-coordinate Cu2+ ion has a slightly distorted trigonal–bipyramidal coordination environment (τ = 0.77), as described by the parameter τ = (β − α)/60, where β and α are the two largest angles of the complex (τ = 1 corresponds to an ideal trigonal bipyramid and τ = 0 corresponds to an ideal square pyramid) (Melnic et al., 2014[Melnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087-30100.]). The average Cu—N bond length and the Cu—OH2 bond distance in (I)[link] are in agreement with the reported distances in other known [Cu(bpy)2(H2O)]2+ complexes (Gautier et al., 2012[Gautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267-6271.]; Nisbet et al., 2020[Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555-7566.]; Shi et al., 2010[Shi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). Chem. Res. Toxicol. 23, 1417-1426.]; Yu et al., 2007[Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2007). Acta Cryst. E63, m2380.]).

[Scheme 1]
[Scheme 2]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å. [Symmetry code: (i) [1\over2] + x, [1\over2] − y, [1\over2] + z.]

Compound (II)[link] has the formula Cu(bpy)2(TaF6)2 and crystallizes in space group P[\overline{1}]. The structure is comprised of mol­ecular Δ- and Λ- Cu(bpy)2(TaF6)2 complexes with local D2 symmetry. Each CuII center is equatorially coordinated by two bpy ligands and axially coordinated by two TaF6 groups. Two independent Cu(bpy)2(TaF6)2 units with the same handedness are present within the arbitrarily chosen asymmetric unit (Fig. 2[link]). These complexes differ in their Cu—F bond lengths and F—Cu—F angles: Cu1—F1 = 2.537 (3), Cu1—F7 = 2.987 (3) Å, F1—Cu1—F7 = 161.46 (9)°; Cu2—F13 = 2.706 (3), Cu2—F19 = 2.775 (3) Å, F13—Cu2—F19 = 168.21 (10)°. The observed Cu—F distances fall above the upper quartile of the distribution of known Cu—F bond distances among structures in the Cambridge Structural Database (mean = 2.240 Å, standard deviation = 0.270 Å). The Cu—N and Cu—F distances in (II)[link] are in reasonable agreement with the bond distances reported in the complex (6,6′′′-dimethyl-2,2′:6′,2′′:6′′,2′′′-quaterpyridine)bis­(tetra­fluo­r­o­borate)copper(II) (CSD refcode: UZELOC; Adamski et al., 2017[Adamski, A., Osińska, M., Kubicki, M., Hnatejko, Z., Consiglio, G. & Patroniak, V. (2017). Eur. J. Inorg. Chem. pp. 859-872.]).

[Figure 2]
Figure 2
The mol­ecular structure of one of the two independent molecules in (II)[link]. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.

Compound (III)[link] has the formula [Cu(bpy)3][TaF6]2 and crystallizes in the enanti­omorphous space group P32. The structure of (III)[link] contains D3-symmetric Λ-Cu(bpy)32+ cations with CuII in an octa­hedral CuN6 coordination environment. The Cu—N distances are in agreement with those of the Cu(bpy)32+ cations in [Cu(bpy)3][PF6]2 (CSD refcode: REZJAI; Wang et al., 2007[Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835-m836.]) and [Cu(bpy)3][BF4]2 (CSD refcode: RIGTEH; Chamayou et al., 2007[Chamayou, A.-C., Biswas, C., Janiak, C. & Ghosh, A. (2007). Acta Cryst. E63, m1936-m1937.]). Two distinct octa­hedral TaF6 anions are present in the asymmetric unit (Fig. 3[link]).

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link]. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.

Compound (IV)[link] has the formula Cu(bpy)(H2O)2SnF6 and crystallizes in space group P2/n. The structure is composed of one-dimensional coordination chains propagating in the [101] direction that can be described as alternating Cu(bpy)(H2O)22+ cations (Cu site symmetry 2) and SnF62− anions catenated through bridging Cu—F—Sn linkages. The Sn4+ ion occupies a crystallographic inversion center. Intra­molecular hydrogen bonding is present along the chains via O1—H1A⋯F2 and O1—H1B⋯F3 contacts (Fig. 4[link]; Table 2[link]). The Cu—F bond distance of 2.3830 (10) Å is in agreement with those found in the reported compound Cu(4,4′-bi­pyridine)2SiF6 (CSD refcode: PETWES; Nugent et al., 2013[Nugent, P., Rhodus, V., Pham, T., Tudor, B., Forrest, K., Wojtas, L., Space, B. & Zaworotko, M. (2013). Chem. Commun. 49, 1606-1608.]).

Table 2
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F2i 0.88 (3) 1.79 (3) 2.6444 (17) 165 (3)
O1—H1B⋯F3ii 0.81 (3) 1.84 (4) 2.6293 (17) 164 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [-x+1, -y+2, -z+1].
[Figure 4]
Figure 4
The mol­ecular structure of (IV)[link]. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å. [Symmetry code: (i) [1\over2] − x, y, [3\over2] − z.]

3. Supra­molecular features

In the extended structure of (I)[link], the Cu(bpy)2(H2O)2+ and SiF62− groups are linked via O—H⋯F hydrogen bonding between the apical water mol­ecule and two SiF62− ions (Table 1[link]). The Δ/Λ-Cu(bpy)2(H2O)2+ units participate in displaced heterochiral ππ stacking inter­actions between the N1/C1–C5 and N2/C6–C10 rings with an inter­planar angle of 1.11 (11)°, centroid–centroid distance of 3.8774 (12) Å, and a slippage distance of 1.490 Å to form Δup–Λdown–Δup–Λdown and Δdown–Λup–Δdown–Λup chains (up/down refers to the orientation of the Cu—O bond vector in the +a or –a direction). The water mol­ecules of hydration are involved in O—H⋯F hydrogen bonding inter­actions with the SiF62− anion as well as O—H⋯O bonds with other water mol­ecules (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F3 0.76 (3) 1.91 (3) 2.6616 (14) 177 (3)
O1—H1B⋯F6i 0.78 (2) 1.93 (2) 2.7053 (14) 170 (2)
O2—H2A⋯F1 0.75 (2) 1.94 (2) 2.6677 (17) 164 (2)
O2—H2B⋯F4i 0.79 (3) 2.00 (3) 2.7807 (17) 167 (2)
O3—H3A⋯F5ii 0.77 (3) 1.99 (3) 2.7607 (18) 177 (3)
O3—H3B⋯O5iii 0.73 (3) 2.06 (3) 2.779 (2) 171 (3)
O4—H4A⋯O3 0.72 (2) 2.05 (2) 2.749 (2) 162 (2)
O4—H4B⋯F4 0.77 (3) 1.98 (3) 2.7462 (16) 170 (2)
O5—H5A⋯O4 0.69 (2) 2.13 (2) 2.779 (2) 158 (2)
O5—H5B⋯O2iv 0.81 (3) 1.99 (3) 2.786 (2) 169 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y, -z+{\script{3\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Packing diagram for (I)[link]: yellow polyhedra represent Cu(bpy)2(H2O)2+ cations and pink polyhedra represent SiF62− anions.

The neutral Cu(bpy)2(TaF6)2 complexes in (II)[link] form homochiral chains in which the F—Cu—F bond axes of adjacent complexes are aligned along the a + b or b – a directions, as shown in Fig. 6[link]. Along the c-axis direction, each chain is neighbored by a chain with the opposite chirality and same orientation on one side and a chain with the same chirality and opposite orientation on the other.

[Figure 6]
Figure 6
Packing diagram for (II)[link]: yellow polyhedra represent Cu(bpy)22+ cations and green polyhedra represent TaF6 anions.

In (III)[link], the Λ-Cu(bpy)32+ complexes participate in displaced ππ stacking inter­actions propagating along the 32 screw axes with an inter­planar angle of 13.9 (2)°, centroid–centroid distance of 3.933 (2) Å between adjacent N1/C1–C5 and N5/C21–C25 pyridine rings, and a horizontal shift distance of 1.970 Å. Each Λ-Cu(bpy)32+ cation is surrounded by six TaF6 anions (Fig. 7[link]).

[Figure 7]
Figure 7
Packing diagram for (III)[link]: yellow polyhedra represent Cu(bpy)32+ cations and green polyhedra represent TaF6 anions.

The one-dimensional coordination chains in (IV)[link] pack in a brickwork arrangement via parallel displaced ππ stacking inter­actions (Fig. 8[link]). One of the stacking inter­actions involves parallel N1/C1–C5 pyridine rings at a centroid–centroid distance of 3.8133 (12) Å and a shift distance 1.676 Å, while the other stacking inter­action involves nonparallel N1/C1–C5 pyridine rings with an inter­planar angle of 3.54 (11)°, centroid–centroid distance of 3.5830 (14) Å and a shift distance of 1.072 Å.

[Figure 8]
Figure 8
Packing diagram for (IV)[link]: Yellow polyhedra represent Cu(bpy)(H2O)22+ cations and magenta polyhedra represent SnF62− anions.

4. Database survey

A survey of structures related to (I)[link] reported in the Cambridge Structural Database (CSD, version 2020.2.0 from September 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) produced five other compounds based on [Cu(bpy)2(H2O)]2+ complexes and fluorinated inorganic anions: [Cu(bpy)2(H2O)][BF4]2 (CSD refcode: VIKDOJ; Yu et al., 2007[Yu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2007). Acta Cryst. E63, m2380.]), [Cu(bpy)2(H2O)][PF6]2 (CSD refcode: EQIQOL; Shi et al., 2010[Shi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). Chem. Res. Toxicol. 23, 1417-1426.]), and [Cu(bpy)2(H2O)][MF6] (M = Ti, Zr, Hf; CSD refcodes: GESHOD, YUGYEH, YUGYIL, YUGYOR; Gautier et al., 2012[Gautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267-6271.]; Nisbet et al., 2020[Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555-7566.]). These compounds display a variety of packing architectures, with compounds based on singly charged PF6 and BF4 anions displaying hydrogen-bonded clusters composed of two anions and one cation while compounds based on doubly charged MF62− anions form extended hydrogen-bonded networks. The hydrogen-bonding inter­actions in (I)[link] differ from the analogous compounds based on early transition-metal fluorides in that the MF62− anions hydrogen bonded to the [Cu(bpy)2(H2O)]2+ complex are both hydrogen bonded to the same pair of [Cu(bpy)2)(H2O)]2+ complexes in the ETM case, whereas they are bound to two different complexes in the SiF62− case. Further, while the [Cu(bpy)2(H2O)][MF6] (M = Ti, Zr, Hf) compounds display both face-to-face and displaced ππ stacking inter­actions, (I)[link] has only displaced stacking inter­actions.

A search of the CSD for structures related to (II)[link] revealed no other known octa­hedral bis­(2,2′-bi­pyridine)­copper(II) complexes with two fluorinated anions coordinated in the apical positions. The most similar example known to the authors is (6,6′′′-dimethyl-2,2′:6′,2′′:6′′,2′′′-quaterpyridine)­bis­(tetra­fluoro­borate)copper(II) (CSD refcode: UZELOC; Adamski et al., 2017[Adamski, A., Osińska, M., Kubicki, M., Hnatejko, Z., Consiglio, G. & Patroniak, V. (2017). Eur. J. Inorg. Chem. pp. 859-872.]). This structure features copper(II) complexes arranged such that the F—Cu—F axis of each complex is oriented along the a-axis direction. Additionally, these complexes participate in heterochiral ππ stacking inter­actions.

Compound (III)[link] is a new member of the family of compounds that includes [A(bpy)3][PF6] (A = Mn, Co, Ni, Cu, Zn, Ru, and Cd; CSD refcodes: YEGLUR, VUMTEE, WOTSAZ01, REZJAI, WOTSON, BPYRUG, XEFNOM, respectively; (Deisenroth et al., 2001[Deisenroth, S., Guetlich, P. & Schollmeyer, D. (2001). Thesis.]); Breu et al., 2000[Breu, J., Domel, H. & Stoll, A. (2000). Eur. J. Inorg. Chem. pp. 2401-2408.]; Björemark et al., 2015[Björemark, P. M., Jönsson, J. & Håkansson, M. (2015). Chem. Eur. J. 21, 10630-10633.]; Wang et al., 2007[Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835-m836.]; Kundu et al., 2005[Kundu, N., Mandal, D., Chaudhury, M. & Tiekink, E. R. T. (2005). Appl. Organomet. Chem. 19, 1268-1270.]), Zn(bpy)3][TaF6]2 (CSD refcode: HAHFII; Gautier & Poeppelmeier, 2016[Gautier, R. & Poeppelmeier, K. R. (2016). Crystals, 6, 106.]), and [Zn(bpy)3][NbF6]2 (CSD refcode: HAHFUU; Gautier & Poeppelmeier, 2016[Gautier, R. & Poeppelmeier, K. R. (2016). Crystals, 6, 106.]). These compounds include either Δ- or Λ-Cu(bpy)32+ cations arranged along 31 or 32 screw axes depending on the handedness of the Cu(bpy)32+ complexes.

Compound (IV)[link] is isostructural to the coordination polymer Cu(bpy)(H2O)HfF6 (CSD refcode: YUGXOQ; Nisbet et al., 2020[Nisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555-7566.]). These compounds share identical connectivity with a series of coordination polymers with the formula M′(bpy)(H2O)2MOxF6–x compounds (M′/M = Cu/Ti, Cu/V, Cu/Nb, Cu/Mo, Zn/Mo, and Zn/W), which display polar zigzag chains (Gautier & Poeppelmeier, 2013[Gautier, R. & Poeppelmeier, K. R. (2013). Cryst. Growth Des. 13, 4084-4091.]).

5. Synthesis and crystallization

The compounds reported here were synthesized by the hydro­thermal pouch method (Harrison et al., 1993[Harrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437-2441.]). In each reaction, reagents were heat sealed in Teflon pouches. Groups of six pouches were then placed into a 125 ml Parr autoclave with 40 ml distilled water as backfill. The autoclave was heated at a rate of 5°C min−1 to 150°C and held at 150°C for 24 h. The autoclaves were allowed to cool to room temperature at a rate of 6°C h−1 and the solid products were recovered by vacuum filtration. Compound (I)[link] was synthesized in a pouch containing 1.9 mmol of Cu(NO3)2·H2O, 5 mmol of 2,2′-bi­pyridine, 1.5 mmol of (NH4)2SiF6 and 1ml of deionized H2O. Compound (II)[link] was synthesized in a pouch containing 1.7 mmol of CuO, 2.5 mmol of 2,2′-bi­pyridine, 0.85 mmol of Ta2O5, 0.8 ml HF(aq), and 0.3 ml of deionized H2O. Compound (III)[link] was synthesized in a pouch containing 1.7 mmol of CuO, 5.1 mmol of 2,2′-bi­pyridine, 0.85 mmol Ta2O5, 1 ml of HF(aq) and 0.1 ml of deionized H2O. Compound (IV)[link] was synthesized in a pouch containing 1.9 mmol of Cu(NO3)2·H2O, 1.3 mmol of 2,2′-bi­pyridine, 1.7 mmol of (NH4)2SnF6 and 1 ml of deionized H2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atom positions were assigned from difference map peaks and their positions freely refined with the exception of C—H hydrogen atoms of 2,2′-bi­pyridine, which were constrained to ride at distances of 0.95 Å from the associated C atoms with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula [Cu(C10H8N2)2(H2O)][SiF6]·4H2O [CuTa2F12(C10H8N2)2] [Cu(C10H8N2)3][TaF6]2 [CuSnF6(C10H8N2)(H2O)2]
Mr 608.08 965.81 1121.99 488.45
Crystal system, space group Monoclinic, C2/c Triclinic, P[\overline{1}] Trigonal, P32 Monoclinic, P2/n
Temperature (K) 100 100 100 100
a, b, c (Å) 25.4971 (16), 13.3573 (9), 18.944 (2) 9.5465 (1), 10.5102 (1), 25.9853 (4) 10.5172 (10), 10.5172 (10), 26.288 (2) 6.2590 (2), 9.2167 (3), 12.1648 (3)
α, β, γ (°) 90, 131.949 (1), 90 96.723 (1), 100.256 (1), 96.672 (1) 90, 90, 120 90, 90.734 (2), 90
V3) 4798.5 (7) 2522.78 (5) 2518.2 (5) 701.70 (4)
Z 8 4 3 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.05 9.60 7.23 3.37
Crystal size (mm) 0.30 × 0.26 × 0.15 0.52 × 0.32 × 0.22 0.22 × 0.16 × 0.12 0.20 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD Rigaku Oxford Diffraction XtaLAB Synergy, Single source at offset/far, HyPix Bruker Kappa APEX CCD area detector Rigaku Oxford Diffraction XtaLAB Synergy, Single source at offset/far, HyPix
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Gaussian CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Gaussian CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.694, 0.746 0.035, 0.414 0.559, 0.746 0.732, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 57770, 6660, 5863 93570, 18263, 15170 148130, 12260, 12121 22131, 3686, 3251
Rint 0.050 0.060 0.050 0.055
(sin θ/λ)max−1) 0.693 0.785 0.761 0.870
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.04 0.037, 0.088, 1.05 0.016, 0.031, 1.03 0.029, 0.067, 1.07
No. of reflections 6660 18263 12260 3686
No. of parameters 374 704 462 110
No. of restraints 0 0 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.25 1.67, −3.53 0.96, −0.85 2.05, −0.85
Absolute structure Flack x determined using 5861 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.5036 (7)
Computer programs: APEX2 (Bruker, 2017[Bruker (2017). APEX2. Bruker AXS, Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]), CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The measured crystal of (III)[link] is a class II twin by merohedry about a twofold axis along the [110] direction to give apparent Laue symmetry of [\overline{3}]m1. The twinning occurs with a BASF of 0.5, suggesting that both the P31 and P32 configurations are present in equal proportions within the sample.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2017) for (I), (III); CrysAlis PRO (Rigaku OD, 2020) for (II), (IV). Cell refinement: SAINT (Bruker, 2016) for (I), (III); CrysAlis PRO (Rigaku OD, 2020) for (II), (IV). Data reduction: SAINT (Bruker, 2016) for (I), (III); CrysAlis PRO (Rigaku OD, 2020) for (II), (IV). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aquabis(2,2'-bipyridine-κ2N,N')copper(II) hexafluoridosilicate tetrahydrate (I) top
Crystal data top
[Cu(C10H8N2)2(H2O)][SiF6]·4H2OF(000) = 2488
Mr = 608.08Dx = 1.683 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.4971 (16) ÅCell parameters from 9731 reflections
b = 13.3573 (9) Åθ = 2.8–29.4°
c = 18.944 (2) ŵ = 1.05 mm1
β = 131.949 (1)°T = 100 K
V = 4798.5 (7) Å3Block, blue
Z = 80.30 × 0.26 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6660 independent reflections
Radiation source: sealed tube5863 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.050
Detector resolution: 8 pixels mm-1θmax = 29.5°, θmin = 1.9°
φ and ω scansh = 3534
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1818
Tmin = 0.694, Tmax = 0.746l = 2426
57770 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0277P)2 + 6.982P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6660 reflectionsΔρmax = 0.79 e Å3
374 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38373 (2)0.37571 (2)0.22886 (2)0.01115 (5)
O10.30718 (6)0.41614 (9)0.23571 (8)0.0177 (2)
H1A0.3036 (13)0.3839 (18)0.2650 (17)0.035 (6)*
H1B0.3081 (12)0.4726 (19)0.2479 (16)0.033 (6)*
N10.37806 (6)0.26410 (8)0.15033 (8)0.0120 (2)
N30.46003 (6)0.48439 (9)0.31770 (8)0.0122 (2)
N40.44106 (6)0.30358 (8)0.35115 (8)0.0124 (2)
N20.32619 (6)0.44426 (9)0.10503 (8)0.0124 (2)
C60.31103 (7)0.39110 (10)0.03265 (9)0.0117 (2)
C160.49954 (7)0.35110 (10)0.42717 (9)0.0122 (2)
C150.51060 (7)0.45257 (10)0.40829 (9)0.0120 (2)
C170.54345 (8)0.30770 (11)0.51640 (10)0.0164 (3)
H170.5847120.3414500.5691030.020*
C40.33051 (8)0.22242 (11)0.00601 (10)0.0166 (3)
H40.3037440.2414070.0703160.020*
C50.34040 (7)0.28885 (10)0.05837 (9)0.0120 (2)
C110.46479 (8)0.57742 (10)0.29641 (10)0.0156 (3)
H110.4290700.6002450.2330090.019*
C180.52625 (8)0.21425 (11)0.52759 (10)0.0181 (3)
H180.5558590.1830540.5881840.022*
C120.51911 (8)0.64187 (11)0.36212 (11)0.0177 (3)
H120.5204660.7076260.3442710.021*
C200.42436 (8)0.21398 (10)0.36308 (10)0.0149 (3)
H200.3825340.1817300.3098050.018*
C140.56701 (8)0.51293 (11)0.47781 (10)0.0168 (3)
H140.6022230.4887850.5408380.020*
C190.46602 (8)0.16686 (11)0.45043 (10)0.0165 (3)
H190.4533130.1030090.4570520.020*
C100.30008 (8)0.53675 (10)0.08876 (10)0.0151 (3)
H100.3092920.5726630.1393380.018*
C30.36042 (9)0.12784 (11)0.02521 (11)0.0197 (3)
H30.3539340.0807770.0176610.024*
C20.39978 (9)0.10290 (11)0.11951 (11)0.0192 (3)
H20.4211460.0388060.1425680.023*
C90.26007 (8)0.58174 (11)0.00054 (10)0.0165 (3)
H90.2427050.6479220.0091310.020*
C130.57152 (8)0.60901 (11)0.45437 (11)0.0187 (3)
H130.6099140.6514260.5008770.022*
C70.27095 (8)0.43169 (11)0.05742 (10)0.0159 (3)
H70.2608190.3935830.1076430.019*
C10.40748 (8)0.17297 (10)0.17963 (10)0.0158 (3)
H10.4347830.1557610.2444500.019*
C80.24582 (8)0.52859 (11)0.07328 (10)0.0178 (3)
H80.2190830.5582360.1342310.021*
Si10.23943 (2)0.20875 (3)0.28568 (3)0.01040 (8)
F40.30094 (5)0.12511 (7)0.36761 (6)0.02014 (19)
F20.26224 (5)0.18737 (8)0.22236 (6)0.0246 (2)
F60.17998 (5)0.11481 (6)0.22816 (6)0.02098 (19)
F30.30005 (5)0.30181 (7)0.34414 (6)0.01928 (18)
F50.21850 (6)0.23088 (7)0.35102 (8)0.0248 (2)
F10.17872 (5)0.29058 (7)0.20409 (7)0.0281 (2)
O20.14362 (8)0.48395 (10)0.17503 (12)0.0332 (3)
H2A0.1591 (11)0.4330 (17)0.1834 (15)0.023 (5)*
H2B0.1657 (13)0.5213 (19)0.1710 (17)0.036 (6)*
O30.39995 (8)0.19743 (10)0.68756 (10)0.0252 (3)
H3A0.3668 (14)0.2152 (18)0.6774 (17)0.037 (7)*
H3B0.4124 (14)0.156 (2)0.7206 (19)0.046 (8)*
O40.41008 (7)0.12569 (10)0.56108 (9)0.0246 (3)
H4A0.3995 (12)0.1479 (17)0.5847 (16)0.028 (6)*
H4B0.3776 (14)0.1313 (17)0.5077 (19)0.036 (7)*
O50.54187 (8)0.03556 (10)0.68866 (10)0.0267 (3)
H5A0.5100 (11)0.0531 (15)0.6479 (15)0.013 (5)*
H5B0.5669 (13)0.0274 (18)0.6773 (17)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01351 (9)0.00970 (8)0.00754 (8)0.00123 (6)0.00592 (7)0.00124 (5)
O10.0241 (6)0.0120 (5)0.0260 (6)0.0011 (4)0.0205 (5)0.0028 (4)
N10.0122 (6)0.0115 (5)0.0113 (5)0.0010 (4)0.0075 (5)0.0002 (4)
N30.0126 (6)0.0127 (5)0.0104 (5)0.0005 (4)0.0074 (5)0.0006 (4)
N40.0132 (6)0.0124 (5)0.0110 (5)0.0015 (4)0.0078 (5)0.0019 (4)
N20.0138 (6)0.0115 (5)0.0103 (5)0.0019 (4)0.0074 (5)0.0009 (4)
C60.0118 (6)0.0125 (6)0.0107 (6)0.0002 (5)0.0074 (5)0.0001 (5)
C160.0122 (6)0.0132 (6)0.0121 (6)0.0020 (5)0.0085 (5)0.0014 (5)
C150.0117 (6)0.0136 (6)0.0115 (6)0.0010 (5)0.0080 (5)0.0006 (5)
C170.0128 (7)0.0194 (7)0.0114 (6)0.0012 (5)0.0058 (6)0.0015 (5)
C40.0212 (8)0.0165 (6)0.0141 (6)0.0005 (5)0.0126 (6)0.0010 (5)
C50.0116 (6)0.0122 (6)0.0118 (6)0.0000 (5)0.0078 (5)0.0004 (5)
C110.0179 (7)0.0141 (6)0.0144 (6)0.0008 (5)0.0105 (6)0.0016 (5)
C180.0171 (7)0.0211 (7)0.0134 (6)0.0056 (5)0.0090 (6)0.0078 (5)
C120.0206 (7)0.0137 (6)0.0201 (7)0.0039 (5)0.0141 (6)0.0014 (5)
C200.0151 (7)0.0151 (6)0.0142 (6)0.0003 (5)0.0097 (6)0.0015 (5)
C140.0145 (7)0.0189 (7)0.0130 (6)0.0010 (5)0.0075 (6)0.0011 (5)
C190.0193 (7)0.0146 (6)0.0191 (7)0.0033 (5)0.0142 (6)0.0049 (5)
C100.0170 (7)0.0129 (6)0.0138 (6)0.0017 (5)0.0097 (6)0.0004 (5)
C30.0268 (8)0.0155 (6)0.0216 (7)0.0002 (6)0.0181 (7)0.0038 (5)
C20.0240 (8)0.0133 (6)0.0241 (7)0.0044 (5)0.0177 (7)0.0011 (5)
C90.0169 (7)0.0136 (6)0.0144 (6)0.0041 (5)0.0085 (6)0.0037 (5)
C130.0166 (7)0.0188 (7)0.0181 (7)0.0049 (5)0.0105 (6)0.0053 (5)
C70.0167 (7)0.0179 (6)0.0103 (6)0.0007 (5)0.0078 (6)0.0006 (5)
C10.0178 (7)0.0133 (6)0.0159 (6)0.0037 (5)0.0111 (6)0.0029 (5)
C80.0177 (7)0.0183 (7)0.0123 (6)0.0033 (5)0.0080 (6)0.0047 (5)
Si10.01073 (18)0.00884 (15)0.00999 (16)0.00026 (13)0.00624 (15)0.00056 (12)
F40.0190 (5)0.0192 (4)0.0132 (4)0.0048 (3)0.0070 (4)0.0019 (3)
F20.0299 (5)0.0312 (5)0.0166 (4)0.0035 (4)0.0171 (4)0.0048 (4)
F60.0171 (4)0.0126 (4)0.0194 (4)0.0030 (3)0.0065 (4)0.0002 (3)
F30.0205 (5)0.0198 (4)0.0144 (4)0.0078 (3)0.0103 (4)0.0032 (3)
F50.0360 (6)0.0175 (4)0.0397 (6)0.0025 (4)0.0331 (5)0.0043 (4)
F10.0198 (5)0.0147 (4)0.0271 (5)0.0010 (4)0.0063 (4)0.0065 (4)
O20.0311 (7)0.0166 (6)0.0643 (10)0.0028 (5)0.0371 (8)0.0061 (6)
O30.0239 (7)0.0252 (6)0.0312 (7)0.0023 (5)0.0204 (6)0.0025 (5)
O40.0253 (7)0.0281 (6)0.0154 (6)0.0004 (5)0.0116 (6)0.0012 (5)
O50.0242 (7)0.0280 (6)0.0323 (7)0.0018 (5)0.0207 (7)0.0037 (5)
Geometric parameters (Å, º) top
Cu1—O12.1112 (11)C20—C191.3831 (19)
Cu1—N12.0419 (12)C14—H140.9500
Cu1—N32.0849 (12)C14—C131.388 (2)
Cu1—N41.9760 (11)C19—H190.9500
Cu1—N21.9730 (11)C10—H100.9500
O1—H1A0.76 (3)C10—C91.3841 (19)
O1—H1B0.78 (2)C3—H30.9500
N1—C51.3527 (17)C3—C21.383 (2)
N1—C11.3401 (17)C2—H20.9500
N3—C151.3528 (17)C2—C11.383 (2)
N3—C111.3368 (17)C9—H90.9500
N4—C161.3525 (18)C9—C81.383 (2)
N4—C201.3392 (18)C13—H130.9500
N2—C61.3510 (17)C7—H70.9500
N2—C101.3379 (18)C7—C81.385 (2)
C6—C51.4749 (18)C1—H10.9500
C6—C71.3852 (18)C8—H80.9500
C16—C151.4761 (19)Si1—F41.6918 (9)
C16—C171.3845 (19)Si1—F21.6708 (10)
C15—C141.3860 (19)Si1—F61.6886 (9)
C17—H170.9500Si1—F31.6947 (9)
C17—C181.386 (2)Si1—F51.6695 (10)
C4—H40.9500Si1—F11.6677 (10)
C4—C51.3883 (19)O2—H2A0.75 (2)
C4—C31.387 (2)O2—H2B0.79 (3)
C11—H110.9500O3—H3A0.77 (3)
C11—C121.380 (2)O3—H3B0.73 (3)
C18—H180.9500O4—H4A0.72 (2)
C18—C191.376 (2)O4—H4B0.77 (3)
C12—H120.9500O5—H5A0.69 (2)
C12—C131.382 (2)O5—H5B0.81 (3)
C20—H200.9500
N1—Cu1—O1127.84 (5)N4—C20—H20118.9
N1—Cu1—N3132.07 (5)N4—C20—C19122.15 (14)
N3—Cu1—O1100.04 (5)C19—C20—H20118.9
N4—Cu1—O192.43 (5)C15—C14—H14120.4
N4—Cu1—N197.75 (5)C15—C14—C13119.29 (13)
N4—Cu1—N380.40 (5)C13—C14—H14120.4
N2—Cu1—O188.34 (5)C18—C19—C20118.74 (13)
N2—Cu1—N180.70 (5)C18—C19—H19120.6
N2—Cu1—N3100.81 (5)C20—C19—H19120.6
N2—Cu1—N4178.43 (5)N2—C10—H10119.0
Cu1—O1—H1A118.2 (18)N2—C10—C9122.06 (13)
Cu1—O1—H1B114.6 (17)C9—C10—H10119.0
H1A—O1—H1B109 (2)C4—C3—H3120.4
C5—N1—Cu1113.79 (9)C2—C3—C4119.18 (13)
C1—N1—Cu1127.88 (10)C2—C3—H3120.4
C1—N1—C5118.32 (12)C3—C2—H2120.6
C15—N3—Cu1112.90 (9)C1—C2—C3118.80 (14)
C11—N3—Cu1128.87 (10)C1—C2—H2120.6
C11—N3—C15118.23 (12)C10—C9—H9120.6
C16—N4—Cu1116.39 (9)C8—C9—C10118.78 (13)
C20—N4—Cu1124.34 (10)C8—C9—H9120.6
C20—N4—C16119.23 (12)C12—C13—C14118.78 (14)
C6—N2—Cu1116.33 (9)C12—C13—H13120.6
C10—N2—Cu1124.23 (9)C14—C13—H13120.6
C10—N2—C6119.40 (12)C6—C7—H7120.4
N2—C6—C5114.45 (11)C6—C7—C8119.10 (13)
N2—C6—C7121.29 (12)C8—C7—H7120.4
C7—C6—C5124.26 (12)N1—C1—C2122.79 (13)
N4—C16—C15115.22 (12)N1—C1—H1118.6
N4—C16—C17121.31 (13)C2—C1—H1118.6
C17—C16—C15123.42 (13)C9—C8—C7119.32 (13)
N3—C15—C16114.92 (12)C9—C8—H8120.3
N3—C15—C14121.76 (13)C7—C8—H8120.3
C14—C15—C16123.29 (12)F4—Si1—F390.21 (5)
C16—C17—H17120.5F2—Si1—F489.52 (5)
C16—C17—C18118.93 (14)F2—Si1—F690.16 (5)
C18—C17—H17120.5F2—Si1—F389.51 (5)
C5—C4—H4120.6F6—Si1—F489.03 (5)
C3—C4—H4120.6F6—Si1—F3179.18 (5)
C3—C4—C5118.83 (13)F5—Si1—F489.80 (5)
N1—C5—C6114.73 (11)F5—Si1—F2178.71 (6)
N1—C5—C4122.06 (13)F5—Si1—F690.92 (5)
C4—C5—C6123.21 (12)F5—Si1—F389.40 (5)
N3—C11—H11118.4F1—Si1—F4179.43 (6)
N3—C11—C12123.13 (13)F1—Si1—F289.97 (6)
C12—C11—H11118.4F1—Si1—F690.70 (5)
C17—C18—H18120.2F1—Si1—F390.05 (5)
C19—C18—C17119.62 (13)F1—Si1—F590.71 (6)
C19—C18—H18120.2H2A—O2—H2B106 (2)
C11—C12—H12120.6H3A—O3—H3B103 (3)
C11—C12—C13118.79 (13)H4A—O4—H4B105 (2)
C13—C12—H12120.6H5A—O5—H5B107 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F30.76 (3)1.91 (3)2.6616 (14)177 (3)
O1—H1B···F6i0.78 (2)1.93 (2)2.7053 (14)170 (2)
O2—H2A···F10.75 (2)1.94 (2)2.6677 (17)164 (2)
O2—H2B···F4i0.79 (3)2.00 (3)2.7807 (17)167 (2)
O3—H3A···F5ii0.77 (3)1.99 (3)2.7607 (18)177 (3)
O3—H3B···O5iii0.73 (3)2.06 (3)2.779 (2)171 (3)
O4—H4A···O30.72 (2)2.05 (2)2.749 (2)162 (2)
O4—H4B···F40.77 (3)1.98 (3)2.7462 (16)170 (2)
O5—H5A···O40.69 (2)2.13 (2)2.779 (2)158 (2)
O5—H5B···O2iv0.81 (3)1.99 (3)2.786 (2)169 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z+3/2; (iv) x+1/2, y+1/2, z+1/2.
Bis(2,2'-bipyridine-3κ2N,N')-di-µ-fluorido-1:3κ2F:F;2:3κ2F:F-decafluorido-1κ5F,2κ5F-copper(II)ditantalum(V) (II) top
Crystal data top
[CuTa2F12(C10H8N2)2]Z = 4
Mr = 965.81F(000) = 1788
Triclinic, P1Dx = 2.543 Mg m3
a = 9.5465 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5102 (1) ÅCell parameters from 52090 reflections
c = 25.9853 (4) Åθ = 2.1–33.9°
α = 96.723 (1)°µ = 9.60 mm1
β = 100.256 (1)°T = 100 K
γ = 96.672 (1)°Plate, blue
V = 2522.78 (5) Å30.52 × 0.32 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy, Single source at offset/far, HyPix
diffractometer
18263 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source15170 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.060
Detector resolution: 10.0000 pixels mm-1θmax = 33.9°, θmin = 2.0°
ω scansh = 1413
Absorption correction: gaussian
Crysalispro (Rigaku OD, 2020)
k = 1616
Tmin = 0.035, Tmax = 0.414l = 4039
93570 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0409P)2 + 5.1565P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max = 0.002
S = 1.05Δρmax = 1.67 e Å3
18263 reflectionsΔρmin = 3.53 e Å3
704 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00034 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta20.98596 (2)1.10178 (2)0.12906 (2)0.01573 (4)
Ta10.41338 (2)0.45975 (2)0.10819 (2)0.01761 (4)
Cu10.68618 (5)0.78568 (5)0.13192 (2)0.01516 (9)
F90.9510 (3)1.1887 (3)0.19295 (10)0.0252 (5)
F50.2489 (3)0.4552 (3)0.14002 (11)0.0267 (6)
F80.7872 (3)1.0564 (3)0.10038 (11)0.0260 (6)
F121.0286 (3)1.0247 (3)0.06509 (10)0.0239 (5)
F111.1860 (3)1.1389 (3)0.15719 (11)0.0262 (6)
F30.5185 (3)0.4088 (3)0.16953 (11)0.0247 (5)
F70.9770 (3)0.9436 (3)0.15757 (11)0.0294 (6)
F40.3621 (3)0.2852 (3)0.07704 (12)0.0305 (6)
F100.9810 (3)1.2592 (2)0.10011 (11)0.0256 (6)
F20.5792 (3)0.4746 (3)0.07763 (12)0.0331 (6)
F60.3068 (3)0.5133 (3)0.04785 (11)0.0270 (6)
F10.4651 (3)0.6364 (2)0.14024 (11)0.0269 (6)
N30.7804 (4)0.6735 (3)0.17963 (14)0.0160 (6)
N10.5349 (3)0.8408 (3)0.08062 (14)0.0157 (6)
N40.8057 (4)0.7153 (3)0.08444 (14)0.0152 (6)
N20.6440 (4)0.9307 (3)0.17981 (14)0.0157 (6)
C20.3580 (5)0.8158 (4)0.00134 (18)0.0216 (8)
H20.3198470.7721060.0333230.026*
C200.8274 (4)0.7603 (4)0.04025 (17)0.0175 (7)
H200.7670280.8184200.0259280.021*
C170.9999 (5)0.5935 (4)0.08156 (18)0.0215 (8)
H171.0579120.5340300.0961340.026*
C50.4765 (4)0.9423 (4)0.10083 (16)0.0152 (7)
C70.5236 (4)1.1185 (4)0.17918 (17)0.0185 (8)
H70.4554571.1659690.1616480.022*
C60.5475 (4)1.0002 (4)0.15501 (16)0.0162 (7)
C110.7482 (4)0.6497 (4)0.22631 (17)0.0189 (8)
H110.6889360.7026670.2421980.023*
C120.7986 (5)0.5507 (4)0.25202 (17)0.0200 (8)
H120.7774780.5377980.2855590.024*
C150.8624 (4)0.5978 (4)0.15622 (16)0.0157 (7)
C80.6014 (5)1.1659 (4)0.22958 (17)0.0206 (8)
H80.5882451.2474400.2466470.025*
C190.9357 (5)0.7250 (4)0.01437 (17)0.0208 (8)
H190.9488270.7575970.0172950.025*
C90.6985 (5)1.0938 (4)0.25498 (18)0.0211 (8)
H90.7506251.1239620.2898010.025*
C30.2968 (4)0.9182 (4)0.02197 (17)0.0207 (8)
H30.2147650.9445980.0018260.025*
C160.8910 (4)0.6331 (4)0.10567 (16)0.0158 (7)
C10.4762 (4)0.7779 (4)0.03212 (16)0.0182 (7)
H10.5166090.7056460.0185580.022*
C140.9133 (4)0.4946 (4)0.17934 (17)0.0197 (8)
H140.9698570.4409280.1622790.024*
C40.3562 (4)0.9825 (4)0.07255 (17)0.0184 (8)
H40.3150361.0527000.0873890.022*
C181.0233 (5)0.6418 (4)0.03578 (18)0.0230 (8)
H181.0994280.6175040.0193830.028*
C100.7175 (4)0.9771 (4)0.22842 (16)0.0179 (7)
H100.7852320.9282620.2452940.021*
C130.8803 (5)0.4712 (4)0.22762 (18)0.0216 (8)
H130.9136870.4009900.2437990.026*
Ta30.00635 (2)0.33576 (2)0.38898 (2)0.02034 (4)
Ta40.63142 (2)0.13811 (2)0.36861 (2)0.02023 (4)
Cu20.29152 (6)0.10318 (5)0.36059 (2)0.01799 (10)
F210.8047 (3)0.0728 (3)0.34984 (13)0.0329 (7)
F130.0337 (3)0.1905 (3)0.34529 (12)0.0312 (6)
F230.5569 (3)0.2131 (3)0.29738 (11)0.0307 (6)
F160.0387 (3)0.4811 (3)0.43312 (13)0.0359 (7)
F240.4541 (3)0.2063 (4)0.38472 (13)0.0458 (9)
F150.1820 (3)0.3384 (3)0.34261 (12)0.0359 (7)
F190.5514 (3)0.0146 (3)0.35417 (13)0.0383 (7)
F220.7064 (3)0.2934 (3)0.38108 (16)0.0460 (9)
F140.0971 (4)0.2243 (3)0.42789 (14)0.0484 (9)
F200.6966 (4)0.0686 (4)0.44044 (13)0.0504 (9)
N70.1943 (4)0.0253 (3)0.39661 (14)0.0170 (6)
F170.0823 (4)0.4475 (3)0.34739 (15)0.0440 (8)
N50.3281 (4)0.2525 (3)0.32378 (14)0.0182 (7)
N60.4368 (4)0.2126 (3)0.41895 (14)0.0181 (7)
N80.2405 (4)0.0415 (3)0.29996 (15)0.0191 (7)
F180.1739 (4)0.3349 (4)0.43259 (17)0.0627 (12)
C390.2640 (5)0.1563 (4)0.21782 (18)0.0218 (8)
H390.2913500.1544590.1844890.026*
C260.4974 (4)0.3223 (4)0.40414 (17)0.0178 (7)
C230.3995 (5)0.4718 (4)0.2798 (2)0.0259 (9)
H230.4262350.5456950.2640820.031*
C350.1492 (4)0.1430 (4)0.36712 (16)0.0168 (7)
C330.0475 (5)0.2200 (4)0.43722 (18)0.0221 (8)
H330.0027220.2871850.4511810.027*
C370.1677 (4)0.2708 (4)0.28085 (17)0.0199 (8)
H370.1296830.3489650.2914950.024*
C220.2878 (5)0.3774 (4)0.25324 (18)0.0233 (8)
H220.2349030.3870330.2196560.028*
C310.1648 (4)0.0038 (4)0.44524 (17)0.0202 (8)
H310.1926920.0800820.4650360.024*
C340.0740 (5)0.2408 (4)0.38662 (18)0.0212 (8)
H340.0405890.3220790.3652540.025*
C270.6082 (5)0.4046 (5)0.43749 (19)0.0254 (9)
H270.6490780.4809360.4263530.030*
C320.0950 (5)0.1001 (4)0.46741 (18)0.0217 (8)
H320.0799500.0842530.5026250.026*
C360.1841 (4)0.1539 (4)0.31391 (16)0.0166 (7)
C290.5970 (5)0.2631 (5)0.50230 (19)0.0272 (9)
H290.6294060.2414740.5364810.033*
C210.2552 (5)0.2689 (4)0.27675 (17)0.0214 (8)
H210.1785360.2042410.2588640.026*
C250.4332 (4)0.3463 (4)0.35056 (17)0.0180 (7)
C240.4716 (5)0.4571 (4)0.32964 (18)0.0226 (8)
H240.5459320.5221200.3489670.027*
C380.2078 (5)0.2715 (4)0.23199 (19)0.0232 (9)
H380.1968650.3501430.2086120.028*
C300.4876 (5)0.1833 (4)0.46724 (17)0.0215 (8)
H300.4470160.1054920.4774490.026*
C400.2796 (5)0.0435 (4)0.25308 (17)0.0215 (8)
H400.3196310.0352480.2435080.026*
C280.6592 (5)0.3750 (5)0.4873 (2)0.0293 (10)
H280.7355360.4304060.5107930.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta20.01384 (7)0.01637 (7)0.01688 (8)0.00172 (5)0.00301 (6)0.00224 (6)
Ta10.01627 (8)0.01625 (8)0.02005 (8)0.00161 (6)0.00173 (6)0.00487 (6)
Cu10.0163 (2)0.0154 (2)0.0156 (2)0.00803 (17)0.00351 (17)0.00329 (17)
F90.0252 (13)0.0316 (14)0.0196 (13)0.0051 (11)0.0082 (10)0.0003 (10)
F50.0206 (12)0.0359 (15)0.0268 (14)0.0074 (11)0.0059 (10)0.0120 (12)
F80.0158 (11)0.0372 (15)0.0237 (13)0.0007 (10)0.0022 (10)0.0056 (11)
F120.0263 (13)0.0245 (13)0.0211 (13)0.0048 (10)0.0066 (10)0.0008 (10)
F110.0153 (11)0.0350 (15)0.0263 (14)0.0025 (10)0.0027 (10)0.0012 (11)
F30.0234 (12)0.0226 (12)0.0267 (14)0.0041 (10)0.0023 (10)0.0076 (10)
F70.0364 (15)0.0221 (13)0.0290 (15)0.0037 (11)0.0015 (12)0.0091 (11)
F40.0407 (16)0.0173 (12)0.0287 (15)0.0020 (11)0.0023 (12)0.0000 (11)
F100.0352 (15)0.0184 (12)0.0280 (14)0.0070 (10)0.0140 (11)0.0069 (10)
F20.0247 (14)0.0439 (17)0.0319 (16)0.0030 (12)0.0093 (12)0.0062 (13)
F60.0278 (13)0.0303 (14)0.0227 (13)0.0026 (11)0.0000 (11)0.0117 (11)
F10.0296 (14)0.0183 (12)0.0300 (15)0.0009 (10)0.0004 (11)0.0029 (10)
N30.0158 (15)0.0143 (14)0.0187 (16)0.0053 (12)0.0041 (12)0.0016 (12)
N10.0146 (14)0.0137 (14)0.0202 (17)0.0051 (11)0.0038 (12)0.0038 (12)
N40.0160 (15)0.0129 (14)0.0174 (16)0.0022 (11)0.0033 (12)0.0038 (12)
N20.0160 (15)0.0150 (14)0.0175 (16)0.0050 (12)0.0046 (12)0.0029 (12)
C20.0221 (19)0.0216 (19)0.020 (2)0.0054 (15)0.0001 (16)0.0030 (16)
C200.0166 (17)0.0168 (17)0.0206 (19)0.0036 (14)0.0042 (15)0.0069 (14)
C170.0194 (19)0.022 (2)0.024 (2)0.0082 (15)0.0056 (16)0.0004 (16)
C50.0154 (16)0.0151 (16)0.0179 (18)0.0046 (13)0.0060 (14)0.0066 (14)
C70.0164 (17)0.0166 (17)0.024 (2)0.0054 (14)0.0058 (15)0.0023 (15)
C60.0149 (17)0.0159 (17)0.0205 (19)0.0054 (13)0.0062 (14)0.0061 (14)
C110.0187 (18)0.0192 (18)0.0190 (19)0.0046 (14)0.0036 (15)0.0022 (15)
C120.0231 (19)0.0213 (19)0.0171 (19)0.0032 (15)0.0043 (15)0.0082 (15)
C150.0139 (16)0.0158 (17)0.0175 (18)0.0043 (13)0.0022 (14)0.0016 (14)
C80.0221 (19)0.0179 (18)0.022 (2)0.0032 (15)0.0071 (16)0.0005 (15)
C190.0218 (19)0.0219 (19)0.020 (2)0.0021 (15)0.0085 (16)0.0030 (15)
C90.0214 (19)0.0197 (19)0.021 (2)0.0008 (15)0.0043 (16)0.0010 (15)
C30.0170 (18)0.024 (2)0.021 (2)0.0066 (15)0.0005 (15)0.0056 (16)
C160.0163 (17)0.0135 (16)0.0176 (18)0.0029 (13)0.0032 (14)0.0013 (13)
C10.0207 (18)0.0179 (18)0.0177 (19)0.0067 (15)0.0046 (15)0.0032 (14)
C140.0188 (18)0.0176 (18)0.023 (2)0.0048 (14)0.0033 (15)0.0016 (15)
C40.0164 (17)0.0169 (17)0.024 (2)0.0069 (14)0.0039 (15)0.0047 (15)
C180.021 (2)0.025 (2)0.025 (2)0.0069 (16)0.0092 (17)0.0003 (17)
C100.0192 (18)0.0190 (18)0.0163 (18)0.0045 (14)0.0037 (14)0.0033 (14)
C130.023 (2)0.0180 (18)0.023 (2)0.0063 (15)0.0007 (16)0.0056 (15)
Ta30.02110 (8)0.01596 (8)0.02421 (9)0.00380 (6)0.00382 (6)0.00350 (6)
Ta40.01788 (8)0.02380 (9)0.01855 (9)0.00452 (6)0.00136 (6)0.00287 (6)
Cu20.0231 (2)0.0138 (2)0.0162 (2)0.00050 (18)0.00276 (19)0.00333 (17)
F210.0188 (13)0.0342 (15)0.0464 (18)0.0008 (11)0.0027 (12)0.0167 (14)
F130.0352 (15)0.0216 (13)0.0429 (18)0.0083 (11)0.0209 (13)0.0048 (12)
F230.0284 (14)0.0391 (16)0.0215 (14)0.0037 (12)0.0046 (11)0.0073 (12)
F160.0457 (18)0.0243 (14)0.0370 (17)0.0067 (13)0.0116 (14)0.0048 (12)
F240.0234 (14)0.084 (3)0.0337 (18)0.0028 (16)0.0096 (13)0.0226 (17)
F150.0379 (16)0.0344 (16)0.0317 (16)0.0131 (13)0.0044 (13)0.0014 (13)
F190.0375 (16)0.0310 (16)0.0461 (19)0.0211 (13)0.0008 (14)0.0011 (14)
F220.0273 (15)0.0263 (15)0.078 (3)0.0024 (12)0.0137 (16)0.0199 (16)
F140.078 (3)0.0344 (17)0.049 (2)0.0158 (17)0.0395 (19)0.0197 (15)
F200.065 (2)0.057 (2)0.0195 (15)0.0035 (18)0.0066 (15)0.0008 (14)
N70.0184 (15)0.0156 (15)0.0169 (16)0.0031 (12)0.0034 (12)0.0013 (12)
F170.057 (2)0.0232 (14)0.059 (2)0.0018 (14)0.0350 (18)0.0055 (14)
N50.0195 (16)0.0171 (15)0.0180 (16)0.0004 (12)0.0040 (13)0.0043 (12)
N60.0187 (16)0.0181 (16)0.0180 (16)0.0049 (13)0.0036 (13)0.0018 (13)
N80.0195 (16)0.0139 (15)0.0237 (18)0.0016 (12)0.0044 (13)0.0026 (13)
F180.041 (2)0.071 (3)0.064 (3)0.0237 (19)0.0188 (18)0.012 (2)
C390.0202 (19)0.025 (2)0.019 (2)0.0033 (16)0.0034 (15)0.0007 (16)
C260.0147 (17)0.0155 (17)0.023 (2)0.0020 (13)0.0037 (15)0.0021 (14)
C230.030 (2)0.020 (2)0.031 (2)0.0057 (17)0.0095 (19)0.0116 (17)
C350.0135 (16)0.0165 (17)0.0200 (19)0.0014 (13)0.0018 (14)0.0037 (14)
C330.0183 (18)0.022 (2)0.028 (2)0.0023 (15)0.0066 (16)0.0101 (17)
C370.0213 (19)0.0141 (17)0.023 (2)0.0011 (14)0.0027 (16)0.0014 (15)
C220.026 (2)0.024 (2)0.022 (2)0.0052 (17)0.0053 (17)0.0082 (16)
C310.0211 (19)0.0186 (18)0.022 (2)0.0045 (15)0.0045 (16)0.0049 (15)
C340.0204 (19)0.0154 (18)0.028 (2)0.0007 (15)0.0048 (16)0.0053 (16)
C270.020 (2)0.027 (2)0.027 (2)0.0026 (16)0.0034 (17)0.0016 (18)
C320.0207 (19)0.023 (2)0.025 (2)0.0065 (16)0.0071 (16)0.0086 (16)
C360.0125 (16)0.0164 (17)0.0197 (19)0.0006 (13)0.0008 (14)0.0032 (14)
C290.020 (2)0.039 (3)0.022 (2)0.0058 (18)0.0002 (17)0.0043 (19)
C210.0223 (19)0.0221 (19)0.020 (2)0.0009 (16)0.0050 (16)0.0050 (16)
C250.0167 (17)0.0158 (17)0.022 (2)0.0039 (14)0.0047 (15)0.0036 (15)
C240.024 (2)0.0172 (18)0.026 (2)0.0018 (15)0.0049 (17)0.0045 (16)
C380.0195 (19)0.021 (2)0.027 (2)0.0038 (15)0.0021 (16)0.0019 (16)
C300.0205 (19)0.025 (2)0.019 (2)0.0028 (16)0.0031 (15)0.0041 (16)
C400.026 (2)0.0195 (19)0.019 (2)0.0031 (16)0.0027 (16)0.0043 (15)
C280.022 (2)0.036 (3)0.026 (2)0.0040 (18)0.0003 (18)0.0021 (19)
Geometric parameters (Å, º) top
Ta2—F91.902 (3)Ta3—F131.910 (3)
Ta2—F81.893 (2)Ta3—F161.889 (3)
Ta2—F121.894 (3)Ta3—F151.887 (3)
Ta2—F111.896 (2)Ta3—F141.870 (3)
Ta2—F71.897 (3)Ta3—F171.912 (3)
Ta2—F101.898 (3)Ta3—F181.886 (3)
Ta1—F51.899 (3)Ta4—F211.883 (3)
Ta1—F31.894 (3)Ta4—F231.901 (3)
Ta1—F41.888 (3)Ta4—F241.896 (3)
Ta1—F21.892 (3)Ta4—F191.903 (3)
Ta1—F61.893 (3)Ta4—F221.895 (3)
Ta1—F11.913 (3)Ta4—F201.889 (3)
Cu1—F72.987 (3)Cu2—F132.706 (3)
Cu1—F12.537 (3)Cu2—F192.775 (3)
Cu1—N31.982 (3)Cu2—N71.968 (3)
Cu1—N11.972 (3)Cu2—N51.960 (3)
Cu1—N41.964 (3)Cu2—N62.005 (4)
Cu1—N21.977 (3)Cu2—N82.006 (4)
N3—C111.347 (5)N7—C351.356 (5)
N3—C151.348 (5)N7—C311.342 (5)
N1—C51.354 (5)N5—C211.335 (6)
N1—C11.344 (5)N5—C251.351 (5)
N4—C201.332 (5)N6—C261.356 (5)
N4—C161.353 (5)N6—C301.346 (6)
N2—C61.362 (5)N8—C361.356 (5)
N2—C101.337 (5)N8—C401.335 (6)
C2—H20.9500C39—H390.9500
C2—C31.382 (6)C39—C381.383 (6)
C2—C11.390 (6)C39—C401.386 (6)
C20—H200.9500C26—C271.379 (6)
C20—C191.392 (6)C26—C251.481 (6)
C17—H170.9500C23—H230.9500
C17—C161.385 (6)C23—C221.389 (7)
C17—C181.390 (6)C23—C241.388 (7)
C5—C61.475 (6)C35—C341.382 (6)
C5—C41.387 (5)C35—C361.474 (6)
C7—H70.9500C33—H330.9500
C7—C61.388 (5)C33—C341.380 (6)
C7—C81.389 (6)C33—C321.385 (6)
C11—H110.9500C37—H370.9500
C11—C121.388 (6)C37—C361.390 (6)
C12—H120.9500C37—C381.389 (6)
C12—C131.383 (6)C22—H220.9500
C15—C161.468 (6)C22—C211.385 (6)
C15—C141.395 (6)C31—H310.9500
C8—H80.9500C31—C321.385 (6)
C8—C91.390 (6)C34—H340.9500
C19—H190.9500C27—H270.9500
C19—C181.375 (6)C27—C281.384 (7)
C9—H90.9500C32—H320.9500
C9—C101.382 (6)C29—H290.9500
C3—H30.9500C29—C301.380 (6)
C3—C41.394 (6)C29—C281.383 (7)
C1—H10.9500C21—H210.9500
C14—H140.9500C25—C241.381 (6)
C14—C131.389 (6)C24—H240.9500
C4—H40.9500C38—H380.9500
C18—H180.9500C30—H300.9500
C10—H100.9500C40—H400.9500
C13—H130.9500C28—H280.9500
F8—Ta2—F992.66 (12)F13—Ta3—F1789.01 (13)
F8—Ta2—F1289.58 (12)F16—Ta3—F13177.92 (14)
F8—Ta2—F11177.33 (12)F16—Ta3—F1790.17 (14)
F8—Ta2—F787.35 (12)F15—Ta3—F1391.30 (13)
F8—Ta2—F1088.94 (12)F15—Ta3—F1690.58 (14)
F12—Ta2—F9176.38 (11)F15—Ta3—F1787.30 (16)
F12—Ta2—F1188.98 (12)F14—Ta3—F1390.20 (13)
F12—Ta2—F792.89 (12)F14—Ta3—F1690.66 (14)
F12—Ta2—F1088.43 (11)F14—Ta3—F1591.22 (17)
F11—Ta2—F988.88 (11)F14—Ta3—F17178.31 (17)
F11—Ta2—F790.47 (12)F14—Ta3—F1891.3 (2)
F11—Ta2—F1093.28 (12)F18—Ta3—F1387.43 (16)
F7—Ta2—F990.05 (12)F18—Ta3—F1690.66 (16)
F7—Ta2—F10176.05 (12)F18—Ta3—F15177.17 (18)
F10—Ta2—F988.78 (12)F18—Ta3—F1790.2 (2)
F5—Ta1—F187.61 (12)F21—Ta4—F2390.32 (13)
F3—Ta1—F589.44 (12)F21—Ta4—F24177.79 (14)
F3—Ta1—F189.06 (11)F21—Ta4—F1990.96 (14)
F4—Ta1—F592.10 (13)F21—Ta4—F2289.84 (14)
F4—Ta1—F390.64 (12)F21—Ta4—F2092.80 (16)
F4—Ta1—F291.12 (14)F23—Ta4—F1989.22 (14)
F4—Ta1—F690.26 (12)F24—Ta4—F2387.48 (14)
F4—Ta1—F1179.59 (13)F24—Ta4—F1988.86 (16)
F2—Ta1—F5176.73 (13)F22—Ta4—F2389.03 (15)
F2—Ta1—F391.08 (13)F22—Ta4—F2490.27 (16)
F2—Ta1—F689.72 (13)F22—Ta4—F19178.08 (14)
F2—Ta1—F189.17 (13)F20—Ta4—F23176.84 (15)
F6—Ta1—F589.71 (12)F20—Ta4—F2489.40 (16)
F6—Ta1—F3178.79 (12)F20—Ta4—F1991.22 (16)
F6—Ta1—F190.04 (12)F20—Ta4—F2290.48 (17)
F1—Cu1—F7161.46 (9)F13—Cu2—F19168.21 (10)
N3—Cu1—F783.17 (11)N7—Cu2—F1383.91 (12)
N3—Cu1—F181.03 (12)N7—Cu2—F19103.51 (12)
N1—Cu1—F7118.40 (11)N7—Cu2—N6103.87 (14)
N1—Cu1—F178.18 (12)N7—Cu2—N882.29 (14)
N1—Cu1—N3158.21 (14)N5—Cu2—F1377.43 (12)
N1—Cu1—N283.13 (14)N5—Cu2—F1995.18 (13)
N4—Cu1—F770.99 (11)N5—Cu2—N7161.27 (15)
N4—Cu1—F1116.26 (12)N5—Cu2—N682.25 (15)
N4—Cu1—N382.84 (14)N5—Cu2—N8101.20 (15)
N4—Cu1—N1100.59 (14)N6—Cu2—F13113.10 (12)
N4—Cu1—N2150.27 (14)N6—Cu2—F1974.40 (12)
N2—Cu1—F781.24 (11)N6—Cu2—N8150.51 (14)
N2—Cu1—F193.43 (12)N8—Cu2—F1396.12 (12)
N2—Cu1—N3104.65 (14)N8—Cu2—F1976.12 (12)
Ta2—F7—Cu1114.17 (12)Ta3—F13—Cu2122.63 (14)
Ta1—F1—Cu1125.65 (14)Ta4—F19—Cu2135.07 (17)
C11—N3—Cu1126.4 (3)C35—N7—Cu2114.6 (3)
C11—N3—C15119.5 (3)C31—N7—Cu2125.9 (3)
C15—N3—Cu1112.8 (3)C31—N7—C35119.4 (4)
C5—N1—Cu1113.7 (3)C21—N5—Cu2125.5 (3)
C1—N1—Cu1126.0 (3)C21—N5—C25119.5 (4)
C1—N1—C5119.8 (3)C25—N5—Cu2115.0 (3)
C20—N4—Cu1125.2 (3)C26—N6—Cu2113.1 (3)
C20—N4—C16119.9 (3)C30—N6—Cu2127.7 (3)
C16—N4—Cu1113.6 (3)C30—N6—C26118.8 (4)
C6—N2—Cu1112.9 (3)C36—N8—Cu2112.8 (3)
C10—N2—Cu1126.5 (3)C40—N8—Cu2127.0 (3)
C10—N2—C6119.5 (3)C40—N8—C36118.9 (4)
C3—C2—H2120.5C38—C39—H39120.6
C3—C2—C1118.9 (4)C38—C39—C40118.9 (4)
C1—C2—H2120.5C40—C39—H39120.6
N4—C20—H20118.9N6—C26—C27121.6 (4)
N4—C20—C19122.2 (4)N6—C26—C25114.7 (3)
C19—C20—H20118.9C27—C26—C25123.7 (4)
C16—C17—H17120.4C22—C23—H23120.3
C16—C17—C18119.3 (4)C24—C23—H23120.3
C18—C17—H17120.4C24—C23—C22119.4 (4)
N1—C5—C6114.6 (3)N7—C35—C34120.8 (4)
N1—C5—C4121.3 (4)N7—C35—C36114.5 (3)
C4—C5—C6124.1 (4)C34—C35—C36124.7 (4)
C6—C7—H7120.7C34—C33—H33120.4
C6—C7—C8118.5 (4)C34—C33—C32119.2 (4)
C8—C7—H7120.7C32—C33—H33120.4
N2—C6—C5114.9 (3)C36—C37—H37120.5
N2—C6—C7121.4 (4)C38—C37—H37120.5
C7—C6—C5123.7 (4)C38—C37—C36118.9 (4)
N3—C11—H11118.9C23—C22—H22120.7
N3—C11—C12122.3 (4)C21—C22—C23118.6 (4)
C12—C11—H11118.9C21—C22—H22120.7
C11—C12—H12120.8N7—C31—H31119.0
C13—C12—C11118.4 (4)N7—C31—C32121.9 (4)
C13—C12—H12120.8C32—C31—H31119.0
N3—C15—C16114.7 (3)C35—C34—H34120.1
N3—C15—C14121.0 (4)C33—C34—C35119.8 (4)
C14—C15—C16124.3 (4)C33—C34—H34120.1
C7—C8—H8120.1C26—C27—H27120.3
C7—C8—C9119.9 (4)C26—C27—C28119.5 (4)
C9—C8—H8120.1C28—C27—H27120.3
C20—C19—H19120.8C33—C32—H32120.6
C18—C19—C20118.4 (4)C31—C32—C33118.7 (4)
C18—C19—H19120.8C31—C32—H32120.6
C8—C9—H9120.8N8—C36—C35115.0 (3)
C10—C9—C8118.5 (4)N8—C36—C37121.6 (4)
C10—C9—H9120.8C37—C36—C35123.3 (4)
C2—C3—H3120.2C30—C29—H29120.2
C2—C3—C4119.5 (4)C30—C29—C28119.5 (4)
C4—C3—H3120.2C28—C29—H29120.2
N4—C16—C17120.7 (4)N5—C21—C22122.0 (4)
N4—C16—C15114.5 (3)N5—C21—H21119.0
C17—C16—C15124.7 (4)C22—C21—H21119.0
N1—C1—C2121.6 (4)N5—C25—C26114.5 (3)
N1—C1—H1119.2N5—C25—C24121.7 (4)
C2—C1—H1119.2C24—C25—C26123.8 (4)
C15—C14—H14120.4C23—C24—H24120.6
C13—C14—C15119.1 (4)C25—C24—C23118.7 (4)
C13—C14—H14120.4C25—C24—H24120.6
C5—C4—C3118.9 (4)C39—C38—C37119.2 (4)
C5—C4—H4120.6C39—C38—H38120.4
C3—C4—H4120.6C37—C38—H38120.4
C17—C18—H18120.2N6—C30—C29121.8 (4)
C19—C18—C17119.6 (4)N6—C30—H30119.1
C19—C18—H18120.2C29—C30—H30119.1
N2—C10—C9122.3 (4)N8—C40—C39122.5 (4)
N2—C10—H10118.9N8—C40—H40118.8
C9—C10—H10118.9C39—C40—H40118.8
C12—C13—C14119.7 (4)C27—C28—H28120.6
C12—C13—H13120.2C29—C28—C27118.8 (4)
C14—C13—H13120.2C29—C28—H28120.6
Tris(2,2'-bipyridine-κ2N,N')copper(II) bis[hexafluoridotantalate(V)] (III) top
Crystal data top
[Cu(C10H8N2)3][TaF6]2Dx = 2.220 Mg m3
Mr = 1121.99Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 9702 reflections
a = 10.5172 (10) Åθ = 2.2–32.5°
c = 26.288 (2) ŵ = 7.23 mm1
V = 2518.2 (5) Å3T = 100 K
Z = 3Block, blue
F(000) = 15870.22 × 0.16 × 0.12 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
12260 independent reflections
Radiation source: sealed tube12121 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.050
Detector resolution: 8 pixels mm-1θmax = 32.7°, θmin = 1.6°
ω and φ scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1515
Tmin = 0.559, Tmax = 0.746l = 3839
148130 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0106P)2 + 0.1438P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.016(Δ/σ)max = 0.002
wR(F2) = 0.031Δρmax = 0.96 e Å3
S = 1.03Δρmin = 0.85 e Å3
12260 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
462 parametersExtinction coefficient: 0.00031 (3)
1 restraintAbsolute structure: Flack x determined using 5861 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.5036 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta20.00684 (3)0.03219 (2)0.32198 (2)0.01774 (4)
Ta10.70686 (2)1.36139 (2)0.47151 (2)0.01986 (4)
Cu10.32411 (6)0.64362 (5)0.57036 (2)0.01228 (8)
F20.5183 (3)1.2403 (5)0.44310 (13)0.0633 (12)
F40.7724 (4)1.2402 (3)0.44119 (10)0.0408 (7)
C170.0981 (5)0.5633 (6)0.6138 (2)0.0188 (9)
H170.1531520.6111500.6082630.023*
F80.1759 (3)0.0847 (3)0.35333 (9)0.0300 (6)
N40.1166 (4)0.5474 (4)0.59777 (12)0.0126 (6)
F50.9006 (3)1.4788 (3)0.49516 (10)0.0347 (6)
F120.0952 (3)0.0141 (3)0.38681 (9)0.0402 (7)
F60.6515 (4)1.2435 (3)0.53047 (10)0.0494 (9)
C160.0368 (5)0.6141 (5)0.59049 (14)0.0130 (8)
C180.1519 (4)0.4417 (5)0.64542 (14)0.0220 (7)
H180.2435590.4067140.6620850.026*
F90.0912 (3)0.0756 (3)0.25849 (8)0.0268 (5)
N30.2459 (3)0.8080 (3)0.54816 (11)0.0142 (5)
F30.7575 (3)1.4716 (3)0.41088 (10)0.0428 (7)
F100.0341 (3)0.2286 (3)0.32783 (10)0.0295 (6)
F110.1857 (3)0.0098 (3)0.29071 (10)0.0305 (6)
F70.0551 (3)0.1672 (3)0.31516 (9)0.0283 (5)
F10.6482 (4)1.4867 (4)0.50135 (13)0.0455 (8)
C150.1004 (4)0.7442 (4)0.55624 (12)0.0138 (6)
C190.0715 (5)0.3711 (4)0.65269 (15)0.0194 (7)
H190.1072000.2867190.6737730.023*
N20.5147 (4)0.7648 (4)0.53243 (12)0.0135 (7)
N50.4063 (3)0.7268 (3)0.64157 (10)0.0152 (5)
C90.7449 (6)0.9811 (6)0.51576 (17)0.0206 (10)
H90.8238921.0718650.5274350.025*
C60.5147 (4)0.7167 (4)0.48464 (13)0.0138 (6)
C230.5294 (5)0.8446 (5)0.73468 (18)0.0230 (10)
H230.5738160.8856670.7664930.028*
C240.5230 (4)0.7175 (5)0.71745 (14)0.0216 (8)
H240.5624350.6701660.7374660.026*
C100.6291 (5)0.8936 (5)0.54776 (16)0.0171 (9)
H100.6303090.9255310.5816580.021*
C220.4708 (5)0.9115 (4)0.70528 (14)0.0216 (7)
H220.4716890.9975490.7167820.026*
C110.3105 (5)0.9276 (4)0.51831 (14)0.0180 (7)
H110.4135000.9740260.5129700.022*
C210.4108 (4)0.8499 (4)0.65868 (14)0.0191 (8)
H210.3712990.8958650.6379840.023*
C200.0634 (4)0.4284 (4)0.62794 (13)0.0157 (7)
H200.1198610.3816280.6325870.019*
N10.2704 (3)0.5298 (3)0.50323 (10)0.0130 (5)
C50.3856 (4)0.5755 (4)0.47127 (12)0.0135 (6)
C70.6286 (4)0.7992 (4)0.45095 (14)0.0205 (8)
H70.6279570.7638700.4176310.025*
N60.3922 (4)0.4832 (4)0.60312 (12)0.0180 (6)
C260.4437 (4)0.5196 (4)0.65109 (13)0.0164 (6)
C80.7437 (5)0.9345 (5)0.46684 (15)0.0240 (8)
H80.8208540.9940290.4440110.029*
C130.0833 (4)0.9178 (4)0.50245 (13)0.0196 (7)
H130.0274810.9549840.4865040.023*
C250.4586 (4)0.6591 (4)0.67064 (13)0.0150 (6)
C140.0144 (4)0.7946 (4)0.53329 (13)0.0179 (7)
H140.0886680.7458810.5386480.022*
C120.2327 (4)0.9860 (4)0.49499 (14)0.0185 (7)
H120.2814691.0712360.4743050.022*
C270.4749 (5)0.4294 (5)0.68023 (15)0.0241 (9)
H270.5102870.4563470.7140180.029*
C20.1346 (5)0.3167 (4)0.45214 (16)0.0225 (8)
H20.0453090.2280620.4459250.027*
C10.1471 (4)0.4030 (4)0.49352 (14)0.0174 (7)
H10.0656570.3715170.5158130.021*
C300.3758 (4)0.3587 (4)0.58279 (15)0.0201 (7)
H300.3433090.3356320.5485530.024*
C30.2530 (5)0.3601 (4)0.41977 (15)0.0250 (8)
H30.2474270.3007560.3916490.030*
C40.3810 (5)0.4932 (4)0.42942 (14)0.0218 (8)
H40.4636140.5268920.4075910.026*
C280.4537 (5)0.2983 (5)0.65946 (16)0.0272 (9)
H280.4729350.2340610.6791470.033*
C290.4043 (5)0.2626 (5)0.60978 (16)0.0234 (8)
H290.3904100.1745330.5946400.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta20.01698 (8)0.01449 (10)0.01536 (7)0.00308 (8)0.00052 (7)0.00018 (7)
Ta10.01754 (9)0.01929 (10)0.01742 (7)0.00521 (9)0.00037 (7)0.00145 (8)
Cu10.01235 (18)0.0136 (2)0.0094 (2)0.00535 (17)0.00046 (17)0.00043 (14)
F20.0201 (13)0.077 (3)0.0550 (18)0.0039 (17)0.0002 (12)0.019 (2)
F40.056 (2)0.0339 (17)0.0316 (14)0.0220 (16)0.0046 (14)0.0086 (12)
C170.018 (2)0.019 (2)0.0220 (19)0.0108 (17)0.0047 (18)0.0006 (18)
F80.0297 (12)0.0280 (14)0.0236 (11)0.0079 (11)0.0091 (9)0.0002 (10)
N40.0142 (14)0.0117 (15)0.0106 (13)0.0056 (12)0.0025 (10)0.0018 (11)
F50.0275 (12)0.0382 (16)0.0390 (14)0.0169 (13)0.0148 (11)0.0190 (13)
F120.0493 (17)0.0341 (15)0.0229 (12)0.0100 (14)0.0170 (12)0.0010 (11)
F60.074 (3)0.0418 (16)0.0303 (13)0.0279 (18)0.0220 (15)0.0169 (12)
C160.0189 (19)0.0114 (16)0.0080 (16)0.0071 (15)0.0001 (13)0.0001 (13)
C180.0182 (16)0.0188 (18)0.0262 (18)0.0071 (16)0.0076 (14)0.0031 (16)
F90.0312 (12)0.0345 (13)0.0178 (10)0.0188 (11)0.0044 (9)0.0056 (10)
N30.0130 (13)0.0128 (14)0.0144 (13)0.0045 (11)0.0013 (11)0.0010 (11)
F30.0340 (17)0.0616 (19)0.0311 (13)0.0226 (15)0.0034 (13)0.0225 (13)
F100.0232 (13)0.0193 (11)0.0406 (14)0.0065 (10)0.0020 (11)0.0039 (11)
F110.0199 (12)0.0248 (13)0.0441 (15)0.0091 (10)0.0035 (11)0.0046 (12)
F70.0343 (15)0.0190 (11)0.0296 (12)0.0117 (11)0.0006 (11)0.0009 (9)
F10.0452 (19)0.052 (2)0.0562 (18)0.0374 (18)0.0084 (15)0.0021 (16)
C150.0157 (15)0.0154 (15)0.0112 (15)0.0085 (13)0.0001 (12)0.0002 (12)
C190.0216 (18)0.0149 (16)0.0203 (18)0.0081 (15)0.0078 (15)0.0069 (14)
N20.0127 (14)0.0116 (14)0.0140 (14)0.0045 (12)0.0019 (10)0.0008 (12)
N50.0169 (12)0.0146 (13)0.0135 (12)0.0073 (11)0.0019 (10)0.0012 (10)
C90.017 (2)0.018 (2)0.022 (2)0.0049 (17)0.0038 (17)0.0039 (18)
C60.0152 (14)0.0142 (16)0.0128 (14)0.0079 (13)0.0014 (11)0.0009 (13)
C230.026 (2)0.025 (2)0.0129 (19)0.0091 (16)0.0027 (17)0.0043 (18)
C240.0247 (18)0.025 (2)0.0124 (16)0.0105 (16)0.0056 (14)0.0019 (14)
C100.0132 (17)0.020 (2)0.0144 (18)0.0050 (15)0.0033 (14)0.0005 (15)
C220.0217 (19)0.0186 (15)0.0183 (16)0.0054 (16)0.0012 (16)0.0064 (13)
C110.0213 (18)0.0138 (16)0.0163 (18)0.0070 (14)0.0013 (14)0.0006 (13)
C210.025 (2)0.0173 (15)0.0147 (15)0.0105 (15)0.0009 (14)0.0006 (12)
C200.0182 (17)0.0139 (15)0.0159 (16)0.0087 (14)0.0017 (13)0.0016 (13)
N10.0131 (13)0.0134 (12)0.0130 (12)0.0069 (11)0.0012 (11)0.0007 (9)
C50.0149 (16)0.0146 (16)0.0107 (13)0.0071 (12)0.0003 (12)0.0007 (12)
C70.0176 (16)0.0226 (19)0.0143 (16)0.0047 (15)0.0020 (13)0.0016 (14)
N60.0201 (16)0.0217 (15)0.0157 (14)0.0129 (13)0.0011 (12)0.0002 (12)
C260.0128 (16)0.0210 (19)0.0147 (15)0.0078 (14)0.0021 (14)0.0025 (14)
C80.0173 (18)0.023 (2)0.0217 (19)0.0022 (16)0.0042 (14)0.0046 (16)
C130.027 (2)0.0222 (18)0.0170 (15)0.0175 (16)0.0036 (14)0.0070 (14)
C250.0143 (15)0.0166 (16)0.0115 (14)0.0056 (13)0.0006 (12)0.0000 (12)
C140.0193 (17)0.0213 (18)0.0181 (17)0.0137 (15)0.0038 (14)0.0025 (14)
C120.0248 (19)0.0169 (17)0.0134 (17)0.0102 (15)0.0014 (15)0.0042 (14)
C270.032 (2)0.033 (2)0.0150 (17)0.022 (2)0.0067 (16)0.0010 (16)
C20.0179 (18)0.0167 (16)0.0276 (19)0.0048 (16)0.0019 (16)0.0068 (14)
C10.0173 (17)0.0141 (15)0.0170 (16)0.0050 (13)0.0002 (14)0.0006 (13)
C300.0221 (18)0.0204 (18)0.0195 (17)0.0118 (15)0.0023 (15)0.0033 (15)
C30.030 (2)0.0204 (18)0.0198 (18)0.0088 (17)0.0024 (17)0.0088 (15)
C40.0222 (19)0.0203 (18)0.0161 (16)0.0055 (15)0.0037 (15)0.0032 (14)
C280.036 (2)0.033 (2)0.0241 (19)0.025 (2)0.0039 (18)0.0042 (18)
C290.027 (2)0.0218 (19)0.028 (2)0.0166 (17)0.0006 (16)0.0019 (16)
Geometric parameters (Å, º) top
Ta2—F81.901 (2)C23—C241.381 (7)
Ta2—F121.885 (2)C23—C221.381 (6)
Ta2—F91.894 (2)C24—H240.9500
Ta2—F101.893 (3)C24—C251.391 (5)
Ta2—F111.892 (3)C10—H100.9500
Ta2—F71.903 (2)C22—H220.9500
Ta1—F21.894 (3)C22—C211.382 (5)
Ta1—F41.901 (3)C11—H110.9500
Ta1—F51.883 (2)C11—C121.388 (5)
Ta1—F61.886 (3)C21—H210.9500
Ta1—F31.884 (2)C20—H200.9500
Ta1—F11.883 (3)N1—C51.350 (4)
Cu1—N42.024 (3)N1—C11.341 (5)
Cu1—N32.330 (3)C5—C41.385 (5)
Cu1—N22.020 (3)C7—H70.9500
Cu1—N52.064 (3)C7—C81.394 (5)
Cu1—N12.047 (3)N6—C261.350 (5)
Cu1—N62.305 (3)N6—C301.343 (5)
C17—H170.9500C26—C251.487 (5)
C17—C161.384 (6)C26—C271.380 (5)
C17—C181.386 (6)C8—H80.9500
N4—C161.350 (6)C13—H130.9500
N4—C201.344 (5)C13—C141.386 (5)
C16—C151.488 (5)C13—C121.377 (5)
C18—H180.9500C14—H140.9500
C18—C191.389 (6)C12—H120.9500
N3—C151.346 (5)C27—H270.9500
N3—C111.343 (5)C27—C281.393 (6)
C15—C141.393 (5)C2—H20.9500
C19—H190.9500C2—C11.380 (5)
C19—C201.394 (5)C2—C31.384 (6)
N2—C61.354 (5)C1—H10.9500
N2—C101.348 (6)C30—H300.9500
N5—C211.349 (4)C30—C291.385 (5)
N5—C251.336 (4)C3—H30.9500
C9—H90.9500C3—C41.397 (6)
C9—C101.384 (7)C4—H40.9500
C9—C81.374 (6)C28—H280.9500
C6—C51.469 (5)C28—C291.386 (6)
C6—C71.390 (5)C29—H290.9500
C23—H230.9500
F8—Ta2—F792.03 (12)C7—C6—C5123.4 (3)
F12—Ta2—F888.82 (12)C24—C23—H23120.3
F12—Ta2—F9176.22 (13)C22—C23—H23120.3
F12—Ta2—F1091.26 (13)C22—C23—C24119.5 (4)
F12—Ta2—F1191.61 (13)C23—C24—H24120.2
F12—Ta2—F788.58 (12)C23—C24—C25119.7 (4)
F9—Ta2—F887.85 (10)C25—C24—H24120.2
F9—Ta2—F789.75 (11)N2—C10—C9122.2 (4)
F10—Ta2—F890.12 (12)N2—C10—H10118.9
F10—Ta2—F990.53 (11)C9—C10—H10118.9
F10—Ta2—F7177.84 (12)C23—C22—H22120.9
F11—Ta2—F8177.08 (12)C23—C22—C21118.2 (4)
F11—Ta2—F991.81 (11)C21—C22—H22120.9
F11—Ta2—F1086.98 (12)N3—C11—H11118.7
F11—Ta2—F790.87 (12)N3—C11—C12122.6 (4)
F2—Ta1—F489.58 (16)C12—C11—H11118.7
F5—Ta1—F2175.49 (14)N5—C21—C22122.2 (4)
F5—Ta1—F486.68 (13)N5—C21—H21118.9
F5—Ta1—F692.12 (14)C22—C21—H21118.9
F5—Ta1—F389.74 (13)N4—C20—C19122.5 (4)
F6—Ta1—F290.39 (16)N4—C20—H20118.7
F6—Ta1—F490.02 (13)C19—C20—H20118.7
F3—Ta1—F287.64 (16)C5—N1—Cu1113.1 (2)
F3—Ta1—F488.41 (14)C1—N1—Cu1126.3 (2)
F3—Ta1—F6177.48 (15)C1—N1—C5119.0 (3)
F1—Ta1—F292.03 (18)N1—C5—C6115.0 (3)
F1—Ta1—F4178.14 (16)N1—C5—C4121.8 (3)
F1—Ta1—F591.67 (14)C4—C5—C6123.2 (3)
F1—Ta1—F690.91 (14)C6—C7—H7120.5
F1—Ta1—F390.72 (14)C6—C7—C8118.9 (3)
N4—Cu1—N376.58 (13)C8—C7—H7120.5
N4—Cu1—N590.44 (12)C26—N6—Cu1111.6 (2)
N4—Cu1—N195.81 (13)C30—N6—Cu1129.0 (3)
N4—Cu1—N698.80 (14)C30—N6—C26119.1 (3)
N2—Cu1—N4166.58 (14)N6—C26—C25115.6 (3)
N2—Cu1—N390.89 (13)N6—C26—C27121.5 (4)
N2—Cu1—N596.14 (12)C27—C26—C25122.8 (3)
N2—Cu1—N180.79 (13)C9—C8—C7119.5 (4)
N2—Cu1—N694.16 (13)C9—C8—H8120.2
N5—Cu1—N398.11 (11)C7—C8—H8120.2
N5—Cu1—N675.75 (12)C14—C13—H13120.1
N1—Cu1—N396.98 (11)C12—C13—H13120.1
N1—Cu1—N5164.65 (12)C12—C13—C14119.8 (3)
N1—Cu1—N689.41 (11)N5—C25—C24120.7 (4)
N6—Cu1—N3172.42 (10)N5—C25—C26117.4 (3)
C16—C17—H17120.4C24—C25—C26121.9 (3)
C16—C17—C18119.3 (5)C15—C14—H14120.9
C18—C17—H17120.4C13—C14—C15118.3 (4)
C16—N4—Cu1119.0 (3)C13—C14—H14120.9
C20—N4—Cu1121.2 (3)C11—C12—H12120.7
C20—N4—C16119.3 (3)C13—C12—C11118.6 (3)
C17—C16—C15121.7 (4)C13—C12—H12120.7
N4—C16—C17121.3 (4)C26—C27—H27120.4
N4—C16—C15117.0 (4)C26—C27—C28119.1 (4)
C17—C18—H18120.0C28—C27—H27120.4
C17—C18—C19119.9 (4)C1—C2—H2120.2
C19—C18—H18120.0C1—C2—C3119.6 (4)
C15—N3—Cu1109.0 (2)C3—C2—H2120.2
C11—N3—Cu1129.8 (3)N1—C1—C2122.0 (4)
C11—N3—C15118.4 (3)N1—C1—H1119.0
N3—C15—C16115.5 (3)C2—C1—H1119.0
N3—C15—C14122.3 (3)N6—C30—H30118.7
C14—C15—C16122.2 (4)N6—C30—C29122.6 (4)
C18—C19—H19121.2C29—C30—H30118.7
C18—C19—C20117.7 (3)C2—C3—H3120.8
C20—C19—H19121.2C2—C3—C4118.4 (4)
C6—N2—Cu1114.0 (3)C4—C3—H3120.8
C10—N2—Cu1126.3 (3)C5—C4—C3119.1 (4)
C10—N2—C6119.1 (3)C5—C4—H4120.5
C21—N5—Cu1121.0 (2)C3—C4—H4120.5
C25—N5—Cu1119.3 (2)C27—C28—H28120.3
C25—N5—C21119.7 (3)C29—C28—C27119.4 (4)
C10—C9—H9120.5C29—C28—H28120.3
C8—C9—H9120.5C30—C29—C28118.3 (4)
C8—C9—C10118.9 (5)C30—C29—H29120.9
N2—C6—C5115.3 (3)C28—C29—H29120.9
N2—C6—C7121.3 (3)
catena-Poly[[diaqua(2,2'-bipyridine-κ2N,N')copper(II)]-µ-fluorido-tetrafluoridotin-µ-fluorido] (IV) top
Crystal data top
[CuSnF6(C10H8N2)(H2O)2]F(000) = 470
Mr = 488.45Dx = 2.312 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 6.2590 (2) ÅCell parameters from 9773 reflections
b = 9.2167 (3) Åθ = 2.2–37.7°
c = 12.1648 (3) ŵ = 3.37 mm1
β = 90.734 (2)°T = 100 K
V = 701.70 (4) Å3Block, blue
Z = 20.20 × 0.13 × 0.12 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy, Single source at offset/far, HyPix
diffractometer
3686 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source3251 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.0000 pixels mm-1θmax = 38.2°, θmin = 2.2°
ω scansh = 1010
Absorption correction: gaussian
CrysalisPro (Rigaku OD, 2020)
k = 1515
Tmin = 0.732, Tmax = 1.000l = 2021
22131 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.1262P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3686 reflectionsΔρmax = 2.05 e Å3
110 parametersΔρmin = 0.85 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.5000001.0000000.5000000.00931 (4)
Cu10.2500000.78803 (3)0.7500000.00868 (5)
F10.42425 (17)0.82052 (11)0.57872 (8)0.01353 (18)
F20.78470 (17)0.92222 (12)0.46961 (9)0.0184 (2)
F30.39654 (19)0.91649 (12)0.36083 (8)0.0183 (2)
O10.4565 (2)0.93265 (14)0.80535 (10)0.0147 (2)
N10.0722 (2)0.62522 (16)0.69309 (12)0.0136 (3)
C50.1508 (4)0.49153 (18)0.71618 (16)0.0184 (3)
C10.1085 (3)0.6393 (3)0.63416 (16)0.0223 (4)
H10.1625520.7334180.6184760.027*
C40.0467 (5)0.3679 (2)0.6778 (2)0.0339 (6)
H40.1037910.2745570.6936890.041*
C20.2186 (4)0.5178 (3)0.5954 (2)0.0357 (6)
H20.3478220.5290580.5544730.043*
C30.1386 (5)0.3807 (3)0.6169 (2)0.0438 (8)
H30.2106070.2969370.5900730.053*
H1A0.424 (6)0.983 (3)0.864 (3)0.037 (9)*
H1B0.518 (6)0.985 (3)0.763 (3)0.040 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01216 (7)0.00790 (7)0.00789 (6)0.00206 (4)0.00114 (5)0.00053 (4)
Cu10.00956 (11)0.00682 (11)0.00964 (11)0.0000.00066 (9)0.000
F10.0188 (5)0.0100 (4)0.0119 (4)0.0018 (3)0.0028 (4)0.0013 (3)
F20.0162 (5)0.0176 (5)0.0215 (5)0.0034 (4)0.0055 (4)0.0071 (4)
F30.0284 (6)0.0160 (5)0.0103 (4)0.0102 (4)0.0013 (4)0.0008 (4)
O10.0188 (6)0.0145 (6)0.0110 (5)0.0075 (4)0.0021 (4)0.0025 (4)
N10.0151 (6)0.0130 (6)0.0128 (6)0.0055 (5)0.0019 (5)0.0024 (5)
C50.0299 (10)0.0091 (7)0.0166 (8)0.0056 (6)0.0097 (7)0.0022 (5)
C10.0154 (8)0.0346 (11)0.0169 (8)0.0093 (7)0.0004 (6)0.0036 (7)
C40.0571 (16)0.0153 (9)0.0297 (11)0.0190 (9)0.0126 (11)0.0078 (8)
C20.0306 (12)0.0541 (16)0.0223 (10)0.0294 (11)0.0024 (9)0.0094 (10)
C30.0595 (18)0.0433 (15)0.0288 (11)0.0414 (14)0.0116 (12)0.0150 (11)
Geometric parameters (Å, º) top
Sn1—F11.9723 (10)O1—H1B0.81 (3)
Sn1—F1i1.9723 (10)N1—C51.355 (2)
Sn1—F21.9603 (11)N1—C11.337 (2)
Sn1—F2i1.9603 (11)C5—C5ii1.481 (5)
Sn1—F3i1.9621 (10)C5—C41.390 (3)
Sn1—F31.9621 (10)C1—H10.9500
Cu1—F12.3830 (10)C1—C21.394 (3)
Cu1—F1ii2.3830 (10)C4—H40.9500
Cu1—O1ii1.9695 (12)C4—C31.374 (4)
Cu1—O11.9695 (12)C2—H20.9500
Cu1—N1ii1.9875 (14)C2—C31.382 (4)
Cu1—N11.9875 (14)C3—H30.9500
O1—H1A0.88 (3)
F1—Sn1—F1i180.0N1ii—Cu1—F197.98 (5)
F2—Sn1—F1i89.45 (4)N1—Cu1—F192.92 (5)
F2i—Sn1—F189.45 (4)N1—Cu1—F1ii97.98 (5)
F2i—Sn1—F1i90.55 (4)N1ii—Cu1—N181.95 (9)
F2—Sn1—F190.55 (4)Sn1—F1—Cu1130.20 (5)
F2i—Sn1—F2180.0Cu1—O1—H1A118 (2)
F2—Sn1—F389.12 (5)Cu1—O1—H1B120 (3)
F2i—Sn1—F390.88 (5)H1A—O1—H1B109 (3)
F2i—Sn1—F3i89.12 (5)C5—N1—Cu1114.47 (13)
F2—Sn1—F3i90.88 (5)C1—N1—Cu1125.42 (14)
F3i—Sn1—F1i90.64 (4)C1—N1—C5120.09 (17)
F3i—Sn1—F189.36 (4)N1—C5—C5ii114.51 (11)
F3—Sn1—F1i89.36 (4)N1—C5—C4120.6 (2)
F3—Sn1—F190.64 (4)C4—C5—C5ii124.91 (16)
F3i—Sn1—F3180.0N1—C1—H1119.5
F1—Cu1—F1ii165.56 (5)N1—C1—C2121.0 (2)
O1ii—Cu1—F1ii84.73 (5)C2—C1—H1119.5
O1—Cu1—F184.73 (5)C5—C4—H4120.0
O1ii—Cu1—F185.51 (5)C3—C4—C5119.9 (2)
O1—Cu1—F1ii85.51 (5)C3—C4—H4120.0
O1—Cu1—O1ii94.81 (8)C1—C2—H2120.2
O1—Cu1—N1172.88 (6)C3—C2—C1119.6 (2)
O1ii—Cu1—N1ii172.88 (6)C3—C2—H2120.2
O1—Cu1—N1ii91.70 (6)C4—C3—C2118.8 (2)
O1ii—Cu1—N191.70 (6)C4—C3—H3120.6
N1ii—Cu1—F1ii92.92 (5)C2—C3—H3120.6
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F2iii0.88 (3)1.79 (3)2.6444 (17)165 (3)
O1—H1B···F3i0.81 (3)1.84 (4)2.6293 (17)164 (4)
Symmetry codes: (i) x+1, y+2, z+1; (iii) x1/2, y+2, z+1/2.
 

Acknowledgements

Single-crystal X-ray diffraction data were acquired at IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the Inter­national Institute for Nanotechnology (IIN).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR-1904701); Office of Undergraduate Research at Northwestern University (Summer Undergraduate Research Grant No. 1041SUMMER1917662).

References

First citationAdamski, A., Osińska, M., Kubicki, M., Hnatejko, Z., Consiglio, G. & Patroniak, V. (2017). Eur. J. Inorg. Chem. pp. 859–872.  CSD CrossRef Google Scholar
First citationBjöremark, P. M., Jönsson, J. & Håkansson, M. (2015). Chem. Eur. J. 21, 10630–10633.  PubMed Google Scholar
First citationBreu, J., Domel, H. & Stoll, A. (2000). Eur. J. Inorg. Chem. pp. 2401–2408.  CrossRef Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX2. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationChamayou, A.-C., Biswas, C., Janiak, C. & Ghosh, A. (2007). Acta Cryst. E63, m1936–m1937.  CSD CrossRef IUCr Journals Google Scholar
First citationDeisenroth, S., Guetlich, P. & Schollmeyer, D. (2001). Thesis.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. (2000). Inorg. Chim. Acta, 299, 253–261.  Web of Science CrossRef CAS Google Scholar
First citationGautier, R., Norquist, A. J. & Poeppelmeier, K. R. (2012). Cryst. Growth Des. 12, 6267–6271.  CSD CrossRef CAS Google Scholar
First citationGautier, R. & Poeppelmeier, K. R. (2013). Cryst. Growth Des. 13, 4084–4091.  Web of Science CSD CrossRef CAS Google Scholar
First citationGautier, R. & Poeppelmeier, K. R. (2016). Crystals, 6, 106.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437–2441.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKundu, N., Mandal, D., Chaudhury, M. & Tiekink, E. R. T. (2005). Appl. Organomet. Chem. 19, 1268–1270.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelnic, E., Coropceanu, E. B., Kulikova, O. V., Siminel, A. V., Anderson, D., Rivera-Jacquez, H. J., Masunov, A. E., Fonari, M. S. & Kravtsov, V. Ch. (2014). J. Phys. Chem. C, 118, 30087–30100.  Web of Science CSD CrossRef CAS Google Scholar
First citationNisbet, M. L., Pendleton, I. M., Nolis, G. M., Griffith, K. J., Schrier, J., Cabana, J., Norquist, A. J. & Poeppelmeier, K. R. (2020). J. Am. Chem. Soc. 142, 7555–7566.  CSD CrossRef CAS PubMed Google Scholar
First citationNugent, P., Rhodus, V., Pham, T., Tudor, B., Forrest, K., Wojtas, L., Space, B. & Zaworotko, M. (2013). Chem. Commun. 49, 1606–1608.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Y., Toms, B. B., Dixit, N., Kumari, N., Mishra, L., Goodisman, J. & Dabrowiak, J. C. (2010). Chem. Res. Toxicol. 23, 1417–1426.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835–m836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, M.-M., Zhang, Y.-N. & Wei, L.-H. (2007). Acta Cryst. E63, m2380.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds