research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 4-{[(E)-(7-meth­­oxy-1,3-benzodioxol-5-yl)methyl­­idene]amino}-1,5-di­methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Sciences, Research Centre for Synthesis and Catalysis, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg, 2028, South Africa
*Correspondence e-mail: carderne@uj.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 December 2020; accepted 22 January 2021; online 29 January 2021)

In the title compound, C20H19N3O4, the dihedral angles between the central pyrazole ring and the pendant phenyl and substituted benzene rings are 50.95 (8) and 3.25 (12)°, respectively, and an intra­molecular C—H⋯O link generates an S(6) ring. The benzodioxolyl ring adopts a shallow envelope conformation with the methyl­ene C atom as the flap. In the crystal, the mol­ecules are linked by non-classical C—H⋯O inter­actions, which generate a three-dimensional network. Solvent-accessible voids run down the c-axis direction and the residual electron density in these voids was modelled during the refinement process using the SQUEEZE algorithm [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] within the structural checking program PLATON.

1. Chemical context

Compounds such as 4-amino­anti­pyrine (4-amino-1,5-dimeth­yl-2-phenyl­pyrazole) and its Schiff base analogues are chemically attractive because of the various biological properties they possess, their synthetic flexibility and their selectivity and sensitivity towards metal ions (Keskioğlu et al., 2008[Keskioğlu, E., Gündüzalp, A. B., Çete, S., Hamurcu, F. & Erk, B. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 70, 634-640.]). Pyrazol-3-one Schiff bases can be obtained from the condensation of 4-amino­phenazone or 4-amino­anti­pyrine (4-AAP) and the corresponding carbonyl compound (Sakthivel et al., 2020[Sakthivel, A., Jeyasubramanian, K., Thangagiri, B. & Raja, J. D. (2020). J. Mol. Struct. 1222, 128885-128900.]). Schiff bases can find applications in analytical chemistry, material sciences and in various biological fields. In analytical chemistry, Schiff bases obtained from 4-AAP and 2-hydroxy-1,2-diphen­ylethenone have been used as a colorimetric sensor for FeIII and as a fluorescent sensor for AlIII (Soufeena & Aravindakshan, 2019[Soufeena, P. P. & Aravindakshan, K. K. (2019). J. Lumin. 205, 400-405.]). Some other 4-amino­phenazone analogues have been applied in the separation and determination of penta­chloro­phenol in treated softwoods and preservative solutions (Williams, 1971[Williams, A. I. (1971). Analyst, 96, 296-305.]). In material sciences, the corrosion inhibition tendency of 4-AAP and its derivatives has also been discussed (Junaedi et al., 2013[Junaedi, S., Al-Amiery, A. A., Kadihum, A., Kadhum, A. A. H. & Mohamad, A. B. (2013). Int. J. Mol. Sci. 14, 11915-11928.]). Other derivatives have also been used to improve solar cell efficiency (Ismail et al., 2020[Ismail, A. H., Al-Zaidi, B. H., Abd, A. N. & Habubi, N. F. (2020). Chem. Pap. 74, 2069-2078.]). Various 4-AAP derivatives have several biological applications and 4-AAP Schiff bases from the condensation with para-meth­oxy­cinnamaldehyde display anti­microbial activity against a large spectrum of microorganisms (Obasi et al., 2016[Obasi, L. N., Kaior, G. U., Rhyman, L., Alswaidan, I. A., Fun, H.-K. & Ramasami, P. (2016). J. Mol. Struct. 1120, 180-186.]). Still more 4-AAP deriv­atives show DNA binding and cleavage activity has also been reported (Rosenberg et al., 1969[Rosenberg, B., Vancamp, L., Trosko, J. E. & Mansour, V. H. (1969). Nature, 222, 385-386.]). Several other biological applications include anti­oxidant, anti-inflammatory (Deng et al., 2019[Deng, J., Yu, P., Zhang, Z., Zhang, J., Zhewen, S., Cai, M., Yuan, H., Liang, H. & Yang, F. (2019). Metallomics, 11, 1847-1863.]), analgesic and anti­pyretic (Murtaza et al., 2017[Murtaza, S., Akhtar, M. S., Kanwal, F., Abbas, A., Ashiq, S. & Shamim, S. (2017). J. Saudi Chem. Soc. 21, S359-S372.]) among others. Platinum(II) complexes of Schiff bases have been reported as potential anti-cancer agents. Some of these complexes have a better toxicity than that of Cisplatin (Li et al., 2013[Li, L., Wang, C., Tian, C., Yang, X., Hua, X. & Du, J. (2013). Res. Chem. Intermed. 39, 733-746.]).

[Scheme 1]

As part of our studies in this area, the title compound, C20H19N3O4, was obtained from 4-AAP and myristicin aldehyde and its crystal structure determined.

2. Structural commentary

The title compound (I) crystallizes in the monoclinic centrosymmetric space group C2/c, and the asymmetric unit consists of one non-planar independent mol­ecule. The phenyl ring (C15–C20) is twisted away from the plane of the pyrazole ring moiety (N2/N3/C10–C12) by 50.95 (8)°, most likely because of steric hindrance of the phenyl ring and the methyl substituents on the pyrazole ring. Puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) carried out in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) showed that the methyl­ene carbon atom (C8) on the benzodioxolyl ring (consisting of atoms O3/C4/C5/O4/C8) can be described as the flap of an envelope with a puckering amplitude Q of 0.162 (2) Å and ψ angle of 323.1 (8)°. A Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) geometry check as performed in Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) did not yield any significant unusual geometrical parameters within the structure. An intra­molecular C9—H9⋯O2 hydrogen bond (Fig. 1[link], Table 1[link]) generates an S(6) ring.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the pyrazole (N2/N3/C10–C12) and phenyl (C15–C20) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2 0.95 2.33 3.031 (2) 131
C13—H13A⋯O2i 0.98 2.62 3.265 (2) 124
C14—H14B⋯O2i 0.98 2.38 3.330 (2) 163
C20—H20⋯O2ii 0.95 2.57 3.488 (3) 162
C14—H14CCg2iii 0.98 2.72 3.584 (3) 147
C19—H19⋯Cg4ii 0.95 2.94 3.816 (3) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed red lines indicate hydrogen-bonding inter­actions.

Inter­estingly, after completing the structural refinement the structural checks suggested that the structure contains two solvent-accessible voids, each of 397 Å3. The PLATON SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) algorithm was applied to the refinement to explain this structural feature and assign the electron density accordingly. Since the material was synthesized in ethanol, it is likely that the voids were created by the solvent and once the crystals were extracted from the reaction mixture and the solvent evaporated, voids were formed in this way. The voids can be seen in the packing arrangement (Fig. 2[link]).

[Figure 2]
Figure 2
Packing diagram of I as viewed down the c-axis direction. Dashed red lines indicate hydrogen-bonding inter­actions.

3. Supra­molecular features

Analysis of the crystal packing of I clearly shows the channels of void space, especially when viewed down the c-axis direction (Fig. 2[link]). The mol­ecules tend to stack on top of one another in an alternate fashion, as is evident when viewed down the b-axis direction (Fig. 3[link]) with the phenyl rings protruding out of the plane every alternate layer. While there are no classical hydrogen bonds, there are hydrogen-bonding inter­actions present (mostly C—H⋯O inter­actions; Table 1[link]), which help to consolidate the packing. This is particularly evident in Fig. 3[link] where the hydrogen bonds can be seen to be connecting layers of mol­ecules together. The hydrogen-bonding network (three-dimensional in nature) showing the four most prominent hydrogen-bonding inter­actions (one being an intra­molecular inter­action) can be seen in Fig. 4[link]. It may be noted that atom O2 accepts all the hydrogen bonds (one intra­molecular and three inter­molecular). The second graph-set that is clearly visible in Fig. 4[link] is a ring motif with graph-set descriptor R21(7). It is these inter­molecular inter­actions that connect the mol­ecules between layers, as shown in Fig. 3[link]. Two weak C—H⋯π inter­actions are also present (Table 1[link]).

[Figure 3]
Figure 3
Packing diagram of I as viewed down the b-axis direction. Dashed red lines indicate hydrogen-bonding inter­actions.
[Figure 4]
Figure 4
Detail of the structure of I showing three of the four hydrogen-bonding inter­actions; one intra­molecular inter­action and two of the three inter­molecular inter­actions are indicated by dashed red lines.

4. Database survey

A search for the exact structure of the title compound in the Cambridge Structural Database (CSD Version 2020.2.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded no hits. In order to determine if the structures of other similar compounds had been published, we expanded the structure search to only include the 2,3-Di­hydro-1H-pyrazole moiety as the backbone for other possible structures. A search was carried out in the CSD with no filters applied and this yielded 322 compounds. Of these, 92 of the compounds were coordinated to metals or were co-crystals and classified as `organometallic? under the CSD search filter. The remaining 230 compounds are then classified as `organic? under the CSD search filter. Thus, the title compound falls into this latter category.

5. Synthesis and crystallization

The title compound was prepared by reflux of a solution containing 4-amino-1,5-dimethyl-2-phenyl-1,2-di­hydro­pyrazol-3-one (0.244 g, 1.20 mmol) in 5 ml of ethanol and a solution of 4-meth­oxy­benzo[1,3]dioxole-5-carbaldehyde (0.179 g, 1.20 mmol) in 5 ml of ethanol. The reaction mixture was stirred for 24 h under reflux. Crystals of the title compound were obtained from ethanol solution by slow evaporation. A suitable crystal was selected from the mother liquor for the single-crystal X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93–0.99 Å, and were constrained to ride on their parent atoms with relative isotropic displacement coefficients, with Uiso(H) = 1.2Ueq(C) for aromatic and methyl­ene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl H atoms were initially located in a different-Fourier map and they were placed in idealized positions as described above and refined as rotating groups. The structure contained two solvent accessible voids of 397 Å3 each, thereby giving a total void volume of 794 Å3. No substantial electron density peaks were found in the solvent-accessible voids and the residual electron density peaks could not arranged in an inter­pretable pattern. The cif and fcf files were thus corrected for using reverse Fourier transform methods using the SQUEEZE routine (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The resultant files were used in the further refinement. The SQUEEZE procedure corrected for 28 electrons within the two solvent-accessible voids.

Table 2
Experimental details

Crystal data
Chemical formula C20H19N3O4
Mr 365.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 33.888 (4), 14.9497 (18), 8.2021 (10)
β (°) 94.447 (4)
V3) 4142.8 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.43 × 0.37 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.961, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 16905, 5003, 2935
Rint 0.068
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.161, 1.05
No. of reflections 5003
No. of parameters 247
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-{[(E)-(7-Methoxy-1,3-benzodioxol-5-yl)methylidene]amino}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C20H19N3O4F(000) = 1536
Mr = 365.38Dx = 1.172 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.888 (4) ÅCell parameters from 4074 reflections
b = 14.9497 (18) Åθ = 2.9–28.0°
c = 8.2021 (10) ŵ = 0.08 mm1
β = 94.447 (4)°T = 173 K
V = 4142.8 (9) Å3Plate, colourless
Z = 80.43 × 0.37 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2935 reflections with I > 2σ(I)
φ and ω scansRint = 0.068
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.0°, θmin = 2.9°
Tmin = 0.961, Tmax = 0.969h = 4444
16905 measured reflectionsk = 1919
5003 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.941P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5003 reflectionsΔρmax = 0.22 e Å3
247 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58334 (5)0.64735 (10)0.2240 (2)0.0456 (4)
O20.75013 (4)0.47729 (8)0.70830 (18)0.0323 (4)
O30.53604 (5)0.49708 (11)0.1150 (2)0.0494 (5)
O40.55059 (4)0.34999 (10)0.1851 (2)0.0503 (5)
N10.68411 (5)0.35046 (10)0.54319 (19)0.0252 (4)
N20.76699 (5)0.25079 (9)0.7655 (2)0.0249 (4)
N30.77585 (5)0.34100 (9)0.7990 (2)0.0255 (4)
C10.63820 (6)0.45058 (13)0.4033 (3)0.0279 (5)
C20.62927 (6)0.53913 (13)0.3626 (3)0.0312 (5)
H20.6468750.5850520.4020840.037*
C30.59537 (7)0.56216 (13)0.2659 (3)0.0340 (5)
C40.57152 (6)0.49285 (15)0.2094 (3)0.0340 (5)
C50.58021 (6)0.40553 (14)0.2506 (3)0.0327 (5)
C60.61272 (6)0.38165 (14)0.3489 (3)0.0312 (5)
H60.6178010.3211200.3788440.037*
C70.60737 (8)0.71811 (15)0.2899 (4)0.0576 (8)
H7A0.5956740.7755020.2543060.086*
H7B0.6339270.7129310.2512850.086*
H7C0.6091290.7148530.4095390.086*
C80.52643 (7)0.40623 (16)0.0732 (3)0.0467 (6)
H8A0.5321700.3937700.0410990.056*
H8B0.4979940.3947560.0843110.056*
C90.67425 (6)0.43094 (12)0.5059 (2)0.0277 (5)
H90.6907250.4788130.5458090.033*
C100.74742 (5)0.39514 (12)0.7154 (2)0.0238 (4)
C110.71847 (6)0.33316 (12)0.6432 (2)0.0237 (4)
C120.73153 (6)0.24798 (12)0.6818 (2)0.0243 (4)
C130.71041 (6)0.16214 (12)0.6430 (3)0.0306 (5)
H13A0.7294410.1169560.6123850.046*
H13B0.6903700.1714450.5518840.046*
H13C0.6975470.1416290.7392280.046*
C140.78468 (6)0.18201 (12)0.8739 (3)0.0299 (5)
H14A0.8119920.1711730.8476140.045*
H14B0.7693730.1265760.8593000.045*
H14C0.7845620.2020300.9876200.045*
C150.81520 (6)0.36838 (12)0.8489 (2)0.0239 (4)
C160.84730 (6)0.32824 (13)0.7854 (3)0.0328 (5)
H160.8433120.2819520.7064440.039*
C170.88527 (7)0.35536 (15)0.8364 (3)0.0430 (6)
H170.9074430.3270950.7943640.052*
C180.89074 (7)0.42389 (15)0.9491 (3)0.0501 (7)
H180.9167680.4427020.9846950.060*
C190.85839 (7)0.46524 (15)1.0102 (3)0.0470 (6)
H190.8622730.5132201.0857330.056*
C200.82043 (7)0.43677 (13)0.9616 (3)0.0328 (5)
H200.7982100.4640091.0051860.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (11)0.0334 (9)0.0463 (10)0.0173 (8)0.0007 (8)0.0064 (7)
O20.0376 (9)0.0122 (7)0.0458 (10)0.0028 (6)0.0055 (7)0.0010 (6)
O30.0397 (10)0.0505 (11)0.0560 (12)0.0124 (8)0.0105 (8)0.0039 (8)
O40.0374 (9)0.0456 (10)0.0646 (12)0.0024 (8)0.0170 (8)0.0046 (8)
N10.0277 (9)0.0207 (8)0.0271 (10)0.0021 (7)0.0011 (7)0.0018 (7)
N20.0330 (10)0.0104 (8)0.0303 (10)0.0012 (7)0.0037 (7)0.0008 (7)
N30.0304 (9)0.0126 (8)0.0327 (10)0.0015 (7)0.0023 (7)0.0003 (7)
C10.0322 (11)0.0269 (11)0.0250 (11)0.0068 (9)0.0044 (9)0.0002 (8)
C20.0389 (12)0.0241 (11)0.0305 (12)0.0062 (9)0.0019 (10)0.0004 (9)
C30.0440 (13)0.0270 (11)0.0316 (13)0.0136 (10)0.0072 (10)0.0051 (9)
C40.0290 (12)0.0429 (13)0.0297 (13)0.0119 (10)0.0009 (10)0.0036 (10)
C50.0275 (11)0.0328 (12)0.0378 (13)0.0024 (9)0.0024 (10)0.0017 (10)
C60.0323 (12)0.0248 (11)0.0361 (13)0.0085 (9)0.0011 (10)0.0012 (9)
C70.0775 (19)0.0230 (12)0.072 (2)0.0129 (13)0.0009 (16)0.0026 (12)
C80.0350 (13)0.0563 (16)0.0472 (16)0.0013 (12)0.0059 (11)0.0091 (12)
C90.0320 (11)0.0213 (10)0.0295 (12)0.0017 (8)0.0000 (9)0.0006 (8)
C100.0273 (11)0.0189 (10)0.0253 (11)0.0041 (8)0.0027 (8)0.0016 (8)
C110.0307 (11)0.0173 (9)0.0228 (11)0.0004 (8)0.0005 (9)0.0004 (8)
C120.0316 (11)0.0177 (9)0.0231 (11)0.0008 (8)0.0002 (9)0.0007 (8)
C130.0417 (12)0.0166 (9)0.0328 (12)0.0037 (9)0.0011 (10)0.0030 (8)
C140.0438 (13)0.0146 (9)0.0306 (12)0.0041 (9)0.0022 (10)0.0051 (8)
C150.0288 (11)0.0153 (9)0.0265 (11)0.0022 (8)0.0044 (9)0.0034 (8)
C160.0379 (13)0.0243 (10)0.0359 (13)0.0049 (9)0.0008 (10)0.0001 (9)
C170.0308 (12)0.0394 (13)0.0582 (17)0.0023 (10)0.0003 (11)0.0085 (12)
C180.0396 (14)0.0363 (13)0.0710 (19)0.0072 (11)0.0175 (13)0.0039 (13)
C190.0533 (16)0.0303 (12)0.0539 (17)0.0060 (11)0.0179 (13)0.0055 (11)
C200.0421 (13)0.0218 (10)0.0332 (13)0.0053 (9)0.0055 (10)0.0020 (9)
Geometric parameters (Å, º) top
O1—C31.373 (2)C7—H7C0.9800
O1—C71.416 (3)C8—H8A0.9900
O2—C101.233 (2)C8—H8B0.9900
O3—C41.380 (3)C9—H90.9500
O3—C81.432 (3)C10—C111.443 (3)
O4—C51.379 (2)C11—C121.377 (2)
O4—C81.450 (3)C12—C131.492 (3)
N1—C91.279 (2)C13—H13A0.9800
N1—C111.396 (2)C13—H13B0.9800
N2—N31.404 (2)C13—H13C0.9800
N2—C121.337 (2)C14—H14A0.9800
N2—C141.458 (2)C14—H14B0.9800
N3—C101.397 (2)C14—H14C0.9800
N3—C151.424 (2)C15—C161.379 (3)
C1—C21.393 (3)C15—C201.380 (3)
C1—C61.395 (3)C16—H160.9500
C1—C91.459 (3)C16—C171.383 (3)
C2—H20.9500C17—H170.9500
C2—C31.388 (3)C17—C181.382 (3)
C3—C41.372 (3)C18—H180.9500
C4—C51.374 (3)C18—C191.386 (3)
C5—C61.361 (3)C19—H190.9500
C6—H60.9500C19—C201.384 (3)
C7—H7A0.9800C20—H200.9500
C7—H7B0.9800
C3—O1—C7116.55 (18)N1—C9—H9119.4
C4—O3—C8105.24 (17)C1—C9—H9119.4
C5—O4—C8104.81 (16)O2—C10—N3123.30 (17)
C9—N1—C11120.35 (17)O2—C10—C11132.15 (17)
N3—N2—C14119.11 (15)N3—C10—C11104.50 (15)
C12—N2—N3107.50 (14)N1—C11—C10129.19 (16)
C12—N2—C14126.98 (16)C12—C11—N1123.04 (17)
N2—N3—C15120.91 (15)C12—C11—C10107.67 (17)
C10—N3—N2109.35 (15)N2—C12—C11110.41 (16)
C10—N3—C15124.72 (15)N2—C12—C13122.25 (17)
C2—C1—C6120.48 (19)C11—C12—C13127.32 (18)
C2—C1—C9119.11 (19)C12—C13—H13A109.5
C6—C1—C9120.40 (18)C12—C13—H13B109.5
C1—C2—H2119.1C12—C13—H13C109.5
C3—C2—C1121.9 (2)H13A—C13—H13B109.5
C3—C2—H2119.1H13A—C13—H13C109.5
O1—C3—C2126.1 (2)H13B—C13—H13C109.5
C4—C3—O1117.4 (2)N2—C14—H14A109.5
C4—C3—C2116.44 (19)N2—C14—H14B109.5
C3—C4—O3128.3 (2)N2—C14—H14C109.5
C3—C4—C5121.7 (2)H14A—C14—H14B109.5
C5—C4—O3110.0 (2)H14A—C14—H14C109.5
C4—C5—O4109.91 (18)H14B—C14—H14C109.5
C6—C5—O4127.15 (19)C16—C15—N3120.95 (17)
C6—C5—C4122.9 (2)C16—C15—C20120.75 (19)
C1—C6—H6121.7C20—C15—N3118.30 (18)
C5—C6—C1116.63 (19)C15—C16—H16120.0
C5—C6—H6121.7C15—C16—C17120.0 (2)
O1—C7—H7A109.5C17—C16—H16120.0
O1—C7—H7B109.5C16—C17—H17120.2
O1—C7—H7C109.5C18—C17—C16119.6 (2)
H7A—C7—H7B109.5C18—C17—H17120.2
H7A—C7—H7C109.5C17—C18—H18119.9
H7B—C7—H7C109.5C17—C18—C19120.2 (2)
O3—C8—O4106.97 (18)C19—C18—H18119.9
O3—C8—H8A110.3C18—C19—H19119.9
O3—C8—H8B110.3C20—C19—C18120.1 (2)
O4—C8—H8A110.3C20—C19—H19119.9
O4—C8—H8B110.3C15—C20—C19119.3 (2)
H8A—C8—H8B108.6C15—C20—H20120.4
N1—C9—C1121.24 (18)C19—C20—H20120.4
O1—C3—C4—O30.6 (3)C6—C1—C9—N12.6 (3)
O1—C3—C4—C5177.19 (19)C7—O1—C3—C21.8 (3)
O2—C10—C11—N10.8 (4)C7—O1—C3—C4177.1 (2)
O2—C10—C11—C12175.6 (2)C8—O3—C4—C3172.5 (2)
O3—C4—C5—O40.3 (2)C8—O3—C4—C510.5 (2)
O3—C4—C5—C6177.30 (19)C8—O4—C5—C410.8 (2)
O4—C5—C6—C1178.5 (2)C8—O4—C5—C6172.3 (2)
N1—C11—C12—N2173.82 (17)C9—N1—C11—C101.2 (3)
N1—C11—C12—C137.4 (3)C9—N1—C11—C12177.11 (18)
N2—N3—C10—O2171.96 (17)C9—C1—C2—C3179.79 (19)
N2—N3—C10—C115.89 (19)C9—C1—C6—C5178.54 (19)
N2—N3—C15—C1636.3 (3)C10—N3—C15—C16115.9 (2)
N2—N3—C15—C20144.29 (18)C10—N3—C15—C2063.5 (3)
N3—N2—C12—C116.5 (2)C10—C11—C12—N22.8 (2)
N3—N2—C12—C13172.36 (16)C10—C11—C12—C13175.95 (18)
N3—C10—C11—N1178.37 (18)C11—N1—C9—C1179.18 (17)
N3—C10—C11—C122.0 (2)C12—N2—N3—C107.8 (2)
N3—C15—C16—C17179.51 (18)C12—N2—N3—C15163.85 (17)
N3—C15—C20—C19179.17 (19)C14—N2—N3—C10161.64 (16)
C1—C2—C3—O1177.54 (19)C14—N2—N3—C1542.3 (2)
C1—C2—C3—C41.4 (3)C14—N2—C12—C11157.66 (18)
C2—C1—C6—C52.4 (3)C14—N2—C12—C1321.2 (3)
C2—C1—C9—N1178.33 (19)C15—N3—C10—O217.0 (3)
C2—C3—C4—O3178.5 (2)C15—N3—C10—C11160.81 (18)
C2—C3—C4—C51.9 (3)C15—C16—C17—C181.2 (3)
C3—C4—C5—O4176.88 (19)C16—C15—C20—C190.2 (3)
C3—C4—C5—C60.1 (3)C16—C17—C18—C190.1 (4)
C4—O3—C8—O416.9 (2)C17—C18—C19—C201.4 (4)
C4—C5—C6—C12.1 (3)C18—C19—C20—C151.5 (3)
C5—O4—C8—O317.1 (2)C20—C15—C16—C171.1 (3)
C6—C1—C2—C30.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the pyrazole (N2/N3/C10–C12) and phenyl (C15–C20) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···O20.952.333.031 (2)131
C13—H13A···O2i0.982.623.265 (2)124
C14—H14B···O2i0.982.383.330 (2)163
C20—H20···O2ii0.952.573.488 (3)162
C14—H14C···Cg2iii0.982.723.584 (3)147
C19—H19···Cg4ii0.952.943.816 (3)154
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y+1/2, z+2.
 

Acknowledgements

The Research Centre for Synthesis and Catalysis is acknowledged for providing funding for the characterization of the compounds discussed in this paper. The University of Johannesburg X-ray Diffraction Unit is acknowledged for infrastructure to collect the data of the title compound.

Funding information

Funding for this research was provided by: NRF Thuthuka Programme grant No. 117946 to C Arderne); NRF Postdoctoral Scarce Skills Fellowship scholarship No. 11670 to M. C. D. Fotsing).

References

First citationBruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDeng, J., Yu, P., Zhang, Z., Zhang, J., Zhewen, S., Cai, M., Yuan, H., Liang, H. & Yang, F. (2019). Metallomics, 11, 1847–1863.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsmail, A. H., Al-Zaidi, B. H., Abd, A. N. & Habubi, N. F. (2020). Chem. Pap. 74, 2069–2078.  CrossRef CAS Google Scholar
First citationJunaedi, S., Al-Amiery, A. A., Kadihum, A., Kadhum, A. A. H. & Mohamad, A. B. (2013). Int. J. Mol. Sci. 14, 11915–11928.  CrossRef PubMed Google Scholar
First citationKeskioğlu, E., Gündüzalp, A. B., Çete, S., Hamurcu, F. & Erk, B. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 70, 634–640.  PubMed Google Scholar
First citationLi, L., Wang, C., Tian, C., Yang, X., Hua, X. & Du, J. (2013). Res. Chem. Intermed. 39, 733–746.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurtaza, S., Akhtar, M. S., Kanwal, F., Abbas, A., Ashiq, S. & Shamim, S. (2017). J. Saudi Chem. Soc. 21, S359–S372.  CrossRef CAS Google Scholar
First citationObasi, L. N., Kaior, G. U., Rhyman, L., Alswaidan, I. A., Fun, H.-K. & Ramasami, P. (2016). J. Mol. Struct. 1120, 180–186.  CSD CrossRef CAS Google Scholar
First citationRosenberg, B., Vancamp, L., Trosko, J. E. & Mansour, V. H. (1969). Nature, 222, 385–386.  CrossRef CAS PubMed Google Scholar
First citationSakthivel, A., Jeyasubramanian, K., Thangagiri, B. & Raja, J. D. (2020). J. Mol. Struct. 1222, 128885–128900.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoufeena, P. P. & Aravindakshan, K. K. (2019). J. Lumin. 205, 400–405.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilliams, A. I. (1971). Analyst, 96, 296–305.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds