research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Psilacetin derivatives: fumarate salts of the meth­yl–ethyl, meth­yl–allyl and di­allyl variants of the psilocin prodrug

CROSSMARK_Color_square_no_text.svg

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 December 2020; accepted 4 January 2021; online 8 January 2021)

The solid-state structures of the salts of three psilacetin derivatives, namely, 4-acet­oxy-N-eth­yl-N-methyl­tryptammonium (4-AcO-MET) hydro­fumarate {sys­tematic name: [2-(4-acet­yloxy-1H-indol-3-yl)eth­yl](meth­yl)ethyl­aza­nium 3-carb­oxy­prop-2-enoate}, C15H21N2O2+·C4H3O4, 4-acet­oxy-N-allyl-N-methyl­tryptammonium (4-AcO-MALT) hydro­fumarate {systematic name: [2-(4-acet­yl­oxy-1H-indol-3-yl)eth­yl](meth­yl)prop-2-enyl­aza­nium 3-carb­oxy­prop-2-eno­ate}, C16H21N2O2+·C4H3O4, and 4-acet­oxy-N,N-di­allyl­tryptammonium (4-AcO-DALT) fumarate–fumaric acid (1/1) (systematic name: bis­{[2-(4-acet­yloxy-1H-indol-3-yl)eth­yl]diprop-2-enyl­aza­nium} but-2-enedioate–(E)-butenedioic acid (1/1)), 2C18H23N2O2+·C4H2O42−·C4H4O4, are reported. All three salts possess a protonated tryptammonium cation. The 4-AcO-MET and 4-AcO-MALT compounds are charge-balanced by 3-carb­oxy­acrylate (hydro­fumarate) anions. The 4-AcO-DALT complex crystallizes as a two-to-one tryptammonium-to-fumarate salt, which co-crystallizes with a fumaric acid mol­ecule. Each structure is consolidated by N—H⋯O and O—H⋯O hydrogen bonds.

1. Chemical context

Psychotropic tryptamines have emerged as leading candidates in the treatment of mood disorders, including anxiety, addiction, depression and post-traumatic stress disorder (Byock, 2018[Byock, I. (2018). J. Palliat. Med. 21, 417-421.]; Daniel & Haberman, 2017[Daniel, J. & Haberman, M. (2017). Mental Health Clinician, 7, 24-28.]). Perhaps the best known of these tryptamines is psilocybin, N,N,N-trimethyl-4-phospho­r­yloxytryptamine (C12H17N2O4P), which has recently been cleared for a number of clinical trials after receiving the `breakthrough therapy' designation from the US Food and Drug Administration (Feltman, 2019[Feltman, R. (2019). Popular Science. https://popsci.com/story/health/psilocybin-magic-mushroom-fda-breakthrough-depression/]). When psilocybin is consumed orally, it is hydrolysed to generate 4-hy­droxy-N,N-di­methyl­tryptamine, C12H16N2O (4-HO-DMT), or psilocin, which is the active metabolite. Psilocin is a potent serotonin 2a agonist, and is the primary origin of its psychoactive properties (Geiger et al., 2018[Geiger, H. A., Wurst, M. G. & Daniels, R. N. (2018). ACS Chem. Neurosci. 9, 2438-2447.]).

Psilacetin, 4-acet­oxy-N,N-di­methyl­tryptamine, C14H18N2O2 (4-AcO-DMT), is a synthetic alternative to psilocybin. It also acts as a prodrug of psilocin, with the acetyl group of psilacetin being hydrolysed as it is metabolized, converting 4-AcO-DMT to 4-HO-DMT. Psilacetin is easier to synthesize than psilocybin, and can also be produced at a lower cost, making it, perhaps, a better candidate for the delivery of psilocin (Nichols & Frescas, 1999[Nichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935-938.]). Presumably, all 4-acet­oxy-substituted tryptamines would similarly function as prodrugs for their active metabolite psilocin analogues. Three such compounds are 4-acet­oxy-N-ethyl-N-methyl­tryptamine, C15H20N2O2 (4-AcO-MET), 4-acet­oxy-N-allyl-N-methyl­tryptamine, C16H20N2O2 (4-AcO-MALT), and 4-acet­oxy-N,N-di­allyl­tryptamine, C18H22N2O2 (4-AcO-DALT). These variations of psilacetin have garnered very little attention in the scientific literature, with only one reference made to 4-AcO-MET in a chromatographic screening article prior to this year (Lehmann et al., 2017[Lehmann, S., Kieliba, T., Beike, J., Thevis, M. & Mercer-Chalmers-Bender, K. (2017). J. Chromatogr. B, 1064, 124-138.]). A recent report on the activity of psilacetin analogues and their metabolites included 4-AcO-MET (Klein et al., 2020[Klein, A. K., Chatha, M., Laskowski, L. J., Anderson, E. I., Brandt, S. D., Chapman, S. J., McCorvy, J. D. & Halberstadt, A. L. (2020). ACS Pharmacol. Transl. Sci. 3. https://dx.doi.org/10/1021/acsptsci.0c00176]). Herein, we report the first solid-state structures of the fumarate salts of 4-AcO-MET, 4-AcO-MALT and 4-AcO-DALT.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 4-AcO-MET hydro­fumarate, (I)[link], is shown in Fig. 1[link]. The asymmetric unit contains one 4-acet­oxy-N-ethyl-N-methyl­tryptammonium (C15H21N2O2+) cation and one hydro­fumarate (C4H3O4) anion. The indole ring system of the cation is near planar with an r.m.s. deviation of 0.015 Å. The hydro­fumarate anion is slightly twisted, demonstrating a deviation from planarity of 0.158 Å, and a C16/O3/O4 carboxyl­ate to C19/O5/O6 carb­oxy­lic acid plane normal angle of 23.0 (3)°. The N-methyl-N-ethyl group of the cation is disordered over two orientations in a 0.76 (1):0.24 (7) ratio. The ethyl­ammonium arm is turned slightly away from the plane of the indole, with C10—C9—C11—C12 and C10—C9—C11—C12A torsion angles of 39.7 (7) and 49.5 (2)°, respectively, for the two orientations.

[Figure 1]
Figure 1
The mol­ecular structure of 4-AcO-MET hydro­fumarate (I)[link], showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate a disordered component in the structures. Hydrogen bonds are shown as dashed lines.

The mol­ecular structure of 4-AcO-MALT hydro­fumarate, (II)[link], is shown in Fig. 2[link]. The asymmetric unit contains one 4-acet­oxy-N-allyl-N-methyl­tryptammonium (C16H21N2O2+) cation and one hydro­fumarate (C4H3O4) anion. The indole ring system of the compound is almost planar with an r.m.s. deviation from planarity of 0.006 Å. The ethyl­ammonium arm is turned slightly away from the plane of the indole ring, with a C10—C9—C11—C12 torsion angle of 39.8 (4)°. The hydro­fumarate anion is slightly twisted, showing a deviation from planarity of 0.128 Å, and a C20/O5/O6 carboxyl­ate to C17/O3/O4 carb­oxy­lic acid twist of 18.6 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of 4-AcO-MALT hydro­fumarate (II)[link], showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

The mol­ecular structure of 4-AcO-DALT fumarate–fumaric acid, (III)[link], is shown in Fig. 3[link]. The asymmetric unit contains one 4-acet­oxy-N,N-di­allyl­tryptammonium (C18H23N2O2+) cation, one half of a fumarate (C2HO2) dianion, and one half of a fumaric acid (C2H4O2) mol­ecule. The indole ring system of the compound is near planar with a r.m.s. deviation from planarity of 0.016 Å. The ethyl­ammonium arm is turned significantly away from the plane of the indole ring, with a C10—C9—C11—C12 torsion angle of 104.3 (2)°. The complete fumarate dianion is generated through crystallographic inversion symmetry, and is also near planar, with an r.m.s. deviation from planarity of 0.004 Å. The full disordered (vide infra) fumaric acid mol­ecule is generated through inversion, and also demonstrates near planarity, with r.m.s. deviations from planarity of 0.082 and 0.083 Å for the two conformations. One of the allyl groups in the cation is disordered over two orientations with a 0.90 (1):0.10 (1) ratio. The fumaric acid mol­ecule is also disordered over two components with a 0.52 (4):0.48 (4) ratio. The 4-acet­oxy group also shows a disorder over two orientations with a 0.62 (4):0.38 (4) ratio. The carboxyl­ate group of the fumarate anion is delocalized, with C—O distances of 1.251 (3) and 1.258 (2) Å.

[Figure 3]
Figure 3
The mol­ecular structure of 4-AcO-DALT fumarate fumaric acid (III)[link], showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate a disordered component in the structures. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) [{3\over 2}] − x, [{3\over 2}] − y, 1 − z.

3. Supra­molecular features

In the extended structure of (I)[link], the N-ethyl-N-methyl­tryptammonium cations and hydro­fumarate anions are linked together in a two-dimensional network lying in the (010) plane through N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]). The O—H group of the hydro­fumarate hydrogen bonds with the carbonyl oxygen atom of the carboxyl­ate unit of another hydro­fumarate ion, the ammonium N—H hydrogen bonds to the negatively charged oxygen atom of the carboxyl­ate group of a hydro­fumarate ion, and the indole N—H hydrogen bonds to the carbonyl oxygen atom of the carb­oxy­lic acid unit of a hydro­fumarate ion (Fig. 4[link], top). The packing of 4-AcO-MET hydro­fumarate is shown at the top left of Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 (1) 2.02 (2) 2.858 (4) 165 (5)
N2—H2⋯O4 0.88 (2) 1.85 (4) 2.644 (6) 150 (7)
N2A—H2A⋯O4 0.87 (2) 1.94 (6) 2.776 (14) 162 (17)
O5—H5A⋯O3ii 0.89 (2) 1.61 (2) 2.459 (4) 160 (6)
Symmetry codes: (i) [x+1, y, z-1]; (ii) [x-1, y, z].
[Figure 4]
Figure 4
The hydrogen bonding environments of the hydro­fumarate ion in the structure of (I)[link] (top), the hydro­fumarate ion in the structure of (II)[link] (middle), and the fumarate dianion in the structure of (III)[link] (bottom). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of disorders are shown. Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, 1 + z; (iii) −1 + x, y, z; (iv) 2 + x, y, 1 + z; (v) 1 − x, 2 − y, 1 − z; (vi) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (vii) [{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z.
[Figure 5]
Figure 5
The crystal packing of (I)[link] (top left), viewed along the a-axis direction, the crystal packing of (II)[link] (top right), viewed along the a-axis direction and the crystal packing of (III)[link] (bottom), viewed along the b-axis direction. The hydrogen bonds (Tables 1[link]–3[link][link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of disorders are shown.

In the extended structure of (II)[link], the N-allyl-N-methyl­tryptammonium cations and hydro­fumarate anions are linked together in an infinite two-dimensional network parallel to (010) through N—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]). The O—H group of the hydro­fumarate hydrogen bonds with the negatively charged oxygen atom of the carboxyl­ate unit of another hydro­fumarate ion, the indole N—H hydrogen bond to the carbonyl O atom of the carboxyl­ate group of the hydro­fumarate ion, and the ammonium N—H hydrogen bonds to the carbonyl oxygen atom of the carb­oxy­lic acid unit of the hydro­fumarate ion (Fig. 4[link], center). The packing of 4-AcO-MALT hydro­fumarate is shown at the top right of Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.87 (1) 2.00 (2) 2.857 (3) 169 (4)
O4—H4A⋯O6ii 0.89 (1) 1.56 (2) 2.454 (3) 175 (6)
Symmetry codes: (i) [x-2, y, z-1]; (ii) [x-1, y, z].

In the extended structure of (III)[link], the N,N-di­allyl­tryptammonium cations, fumarate dianions and fumaric acid mol­ecules are linked together in a three-dimensional network through N—H⋯O and O—H⋯O hydrogen bonds (Table 3[link]). The O—H group of the fumaric acid, the ammonium N—H, and the indole N—H group all hydrogen bond to oxygen atoms of the fumarate dianion (Fig. 4[link], bottom). The packing of 4-AcO-DALT fumarate–fumaric acid is shown at the bottom of Fig. 5[link].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.87 (1) 2.22 (2) 2.962 (2) 144 (2)
N2—H2⋯O3 0.88 (1) 1.87 (1) 2.7446 (19) 177 (2)
O6—H6A⋯O4 0.82 1.72 2.530 (17) 168
O6A—H6AA⋯O4 0.82 1.81 2.577 (16) 156
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

The three structures reported here are closely related to psilacetin, which has been reported as both the hydro­fumarate (HOCJUH: Chadeayne, Golen & Manke 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review. https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]) and fumarate (XOFDOO: Chadeayne et al., 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.]) salts. 4-AcO-MET and 4-AcO-MALT both form hydro­fumarate salts, though the hydrogen-bonding networks vary from that observed for psilacetin. 4-AcO-DALT crystallizes as the fumarate salt, but also co-crystallizes with a fumaric acid mol­ecule in the structure. The structure of the acet­oxy-protected version of the active metabolite of aeruginascin, 4-acet­oxy-N,N,N-tri­methyl­tryptamine, has been reported (XUXDUS: Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940-16943.]). The other reported structures of tryptammonium hydro­fumarate monoanion salts are for 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine and N-methyl-N-iso­propyl­tryptamine (RONSUL and RONSOF: Chadeayne, Pham et al., 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review. https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.]) and N-ethyl-N-n-propyl­tryptamine and N-allyl-N-methyl­tryptamine (CCDC 2012495 and CCDC 2012494: Chadeayne et al., 2020c[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201-1205.]). The other reported structures of tryptammonium fumarate dianion salts are for 4-hy­droxy-N,N-di­propyl­tryptamine (CCDC 1962339: Chadeayne et al., 2019b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.]), 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (CCDC 1987588: Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]) and 4-hy­droxy-N-methyl­tryptamine (CCDC 1992278: Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]).

5. Synthesis and crystallization

Single crystals of 4-acet­oxy-N-ethyl-N-methyl­tryptammonium hydro­fumarate suitable for X-ray analysis were obtained from the slow evaporation of an ethano­lic solution of a commercial sample (The Indole Shop). A commercial sample of 4-acet­oxy-N-allyl-N-methyl­tryptammonium hydro­fumarate (The Indole Shop) was recrystallized by the slow evaporation of an aqueous solution to yield samples suitable for single crystal X-ray diffraction studies. Single crystals of bis­(4-acet­oxy-N,N-di­allyl­tryptammonium) fumarate fumaric acid suitable for X-ray analysis were obtained from the slow evaporation of an acetone solution of a commercial sample (The Indole Shop).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. O and N-bound H atoms were refined with the restraints O—H = 0.88±1 and N—H = 0.87±1 Å and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C15H21N2O2+·C4H3O4 C16H21N2O2+·C4H3O4 2C18H23N2O2+·C4H2O42−·C4H4O4
Mr 376.40 388.41 828.90
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, C2/c
Temperature (K) 200 297 297
a, b, c (Å) 7.9555 (4), 13.3696 (7), 9.9708 (5) 7.9702 (4), 14.1788 (7), 9.8035 (5) 23.6642 (19), 8.4204 (7), 23.4002 (18)
β (°) 112.874 (2) 113.394 (2) 111.614 (2)
V3) 977.12 (9) 1016.80 (9) 4334.9 (6)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.09 0.09
Crystal size (mm) 0.24 × 0.2 × 0.2 0.34 × 0.24 × 0.2 0.22 × 0.2 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.708, 0.745 0.686, 0.745 0.715, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21973, 3536, 3232 26393, 3797, 3516 99597, 4126, 3441
Rint 0.036 0.039 0.040
(sin θ/λ)max−1) 0.603 0.610 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.04 0.043, 0.113, 1.04 0.051, 0.140, 1.06
No. of reflections 3536 3797 4126
No. of parameters 271 264 354
No. of restraints 15 4 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.55 0.27, −0.16 0.50, −0.30
Absolute structure Flack x determined using 1411 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1577 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.3 (3) 0.4 (3)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[2-(4-Acetyloxy-1H-indol-3-yl)ethyl](methyl)ethylazanium 3-carboxyprop-2-enoate (I) top
Crystal data top
C15H21N2O2+·C4H3O4F(000) = 400
Mr = 376.40Dx = 1.279 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.9555 (4) ÅCell parameters from 9372 reflections
b = 13.3696 (7) Åθ = 2.7–25.4°
c = 9.9708 (5) ŵ = 0.10 mm1
β = 112.874 (2)°T = 200 K
V = 977.12 (9) Å3Block, colorless
Z = 20.24 × 0.2 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3232 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.4°, θmin = 2.8°
Tmin = 0.708, Tmax = 0.745h = 99
21973 measured reflectionsk = 1616
3536 independent reflectionsl = 1112
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.4056P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.39 e Å3
3536 reflectionsΔρmin = 0.55 e Å3
271 parametersAbsolute structure: Flack x determined using 1411 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
15 restraintsAbsolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8969 (4)0.6685 (2)0.3476 (3)0.0419 (7)
O20.6590 (4)0.7649 (2)0.2143 (3)0.0527 (8)
O30.6091 (4)0.4634 (4)0.5977 (3)0.0643 (11)
O40.3948 (4)0.4494 (4)0.3791 (3)0.0726 (12)
O50.1636 (4)0.4458 (3)0.4883 (3)0.0464 (7)
H5A0.228 (7)0.461 (5)0.541 (5)0.070*
O60.0341 (4)0.5232 (3)0.6851 (3)0.0530 (8)
N10.8829 (5)0.5556 (3)0.1012 (4)0.0445 (8)
H10.909 (7)0.546 (4)0.177 (3)0.053*
C10.6770 (8)0.7029 (4)0.4462 (5)0.0609 (13)
H1A0.7712610.7277030.5367800.091*
H1B0.6561630.6316050.4563860.091*
H1C0.5634520.7399690.4259350.091*
C20.7388 (6)0.7176 (3)0.3229 (4)0.0398 (9)
C30.9685 (5)0.6723 (3)0.2378 (4)0.0377 (9)
C41.1178 (6)0.7317 (3)0.2611 (5)0.0505 (11)
H41.1658360.7722220.3458870.061*
C51.1983 (7)0.7322 (4)0.1596 (6)0.0581 (13)
H51.3037180.7721210.1776680.070*
C61.1292 (7)0.6765 (4)0.0340 (6)0.0547 (12)
H61.1830900.6787520.0359200.066*
C70.9784 (6)0.6171 (3)0.0127 (5)0.0399 (9)
C80.8952 (5)0.6117 (3)0.1155 (4)0.0344 (8)
C90.7462 (5)0.5416 (3)0.0580 (4)0.0347 (8)
C100.7465 (6)0.5098 (3)0.0720 (4)0.0413 (9)
H100.6635450.4623690.1338420.050*
C110.6170 (6)0.5075 (3)0.1251 (5)0.0462 (10)
H11A0.5002090.5441760.0807100.055*0.760 (7)
H11B0.6693650.5221790.2307540.055*0.760 (7)
H11C0.4937240.5348440.0695340.055*0.240 (7)
H11D0.6585150.5322110.2264820.055*0.240 (7)
N20.4319 (8)0.3670 (4)0.1512 (6)0.0478 (14)0.760 (7)
H20.460 (10)0.389 (6)0.240 (4)0.057*0.760 (7)
C120.583 (2)0.3971 (6)0.1019 (15)0.0747 (14)0.760 (7)
H12A0.6955650.3596950.1581980.090*0.760 (7)
H12B0.5466260.3808790.0024520.090*0.760 (7)
C130.4415 (12)0.2578 (5)0.1741 (9)0.0747 (14)0.760 (7)
H13A0.4340680.2225140.0846450.090*0.760 (7)
H13B0.3398700.2347390.2002200.090*0.760 (7)
C140.6257 (12)0.2371 (6)0.2991 (9)0.0747 (14)0.760 (7)
H14A0.6097200.1864520.3641710.112*0.760 (7)
H14B0.6719480.2990170.3537000.112*0.760 (7)
H14C0.7129370.2127980.2592330.112*0.760 (7)
C150.2372 (8)0.3878 (5)0.0459 (7)0.0518 (14)0.760 (7)
H15A0.2221360.4595830.0248710.078*0.760 (7)
H15B0.1521610.3664350.0898540.078*0.760 (7)
H15C0.2117100.3507190.0446490.078*0.760 (7)
N2A0.5331 (17)0.3315 (9)0.2166 (13)0.024 (3)0.240 (7)
H2A0.51 (2)0.371 (11)0.278 (13)0.029*0.240 (7)
C12A0.609 (7)0.3915 (11)0.124 (5)0.0747 (14)0.240 (7)
H12C0.5395260.3713830.0217260.090*0.240 (7)
H12D0.7360580.3679240.1492390.090*0.240 (7)
C13A0.555 (4)0.2363 (15)0.305 (2)0.0747 (14)0.240 (7)
H13C0.6406380.1922540.2821520.090*0.240 (7)
H13D0.4357120.2020540.2694810.090*0.240 (7)
C14A0.623 (4)0.242 (2)0.471 (2)0.0747 (14)0.240 (7)
H14D0.7243650.1953940.5154620.112*0.240 (7)
H14E0.5233130.2249460.5015390.112*0.240 (7)
H14F0.6649300.3104750.5033910.112*0.240 (7)
C15A0.335 (2)0.3065 (18)0.116 (2)0.0518 (14)0.240 (7)
H15D0.2774540.2685410.1707130.078*0.240 (7)
H15E0.3349190.2664910.0337170.078*0.240 (7)
H15F0.2674000.3686890.0799970.078*0.240 (7)
C160.4441 (5)0.4620 (3)0.5089 (4)0.0363 (8)
C170.3065 (5)0.4772 (3)0.5751 (4)0.0384 (9)
H170.3483890.4911980.6762670.046*
C180.1302 (5)0.4720 (3)0.4987 (4)0.0375 (8)
H180.0878920.4606530.3968270.045*
C190.0063 (5)0.4833 (3)0.5668 (4)0.0366 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0513 (17)0.0443 (15)0.0315 (13)0.0013 (13)0.0174 (12)0.0005 (12)
O20.0541 (18)0.060 (2)0.0505 (18)0.0116 (16)0.0277 (15)0.0128 (16)
O30.0266 (14)0.130 (3)0.0416 (16)0.0008 (18)0.0187 (12)0.0061 (19)
O40.0403 (16)0.144 (4)0.0440 (18)0.002 (2)0.0277 (14)0.027 (2)
O50.0324 (14)0.069 (2)0.0456 (16)0.0014 (13)0.0234 (12)0.0050 (14)
O60.0393 (15)0.087 (2)0.0433 (16)0.0022 (15)0.0274 (13)0.0111 (16)
N10.057 (2)0.051 (2)0.0400 (18)0.0093 (17)0.0352 (17)0.0022 (15)
C10.089 (4)0.057 (3)0.059 (3)0.012 (3)0.054 (3)0.006 (2)
C20.052 (2)0.036 (2)0.039 (2)0.0023 (17)0.0260 (18)0.0033 (17)
C30.038 (2)0.0386 (19)0.039 (2)0.0028 (16)0.0168 (17)0.0023 (16)
C40.043 (2)0.051 (3)0.051 (2)0.0071 (19)0.0112 (19)0.000 (2)
C50.043 (2)0.063 (3)0.073 (3)0.009 (2)0.028 (2)0.005 (3)
C60.049 (3)0.056 (3)0.077 (3)0.003 (2)0.045 (2)0.012 (2)
C70.040 (2)0.042 (2)0.046 (2)0.0097 (17)0.0263 (18)0.0063 (17)
C80.0338 (19)0.0388 (19)0.0367 (19)0.0029 (15)0.0201 (16)0.0036 (15)
C90.0394 (19)0.0374 (19)0.0324 (18)0.0029 (15)0.0194 (16)0.0015 (15)
C100.045 (2)0.047 (2)0.0367 (19)0.0011 (18)0.0205 (17)0.0045 (17)
C110.052 (2)0.053 (2)0.048 (2)0.0120 (19)0.035 (2)0.0122 (19)
N20.055 (3)0.046 (3)0.054 (3)0.016 (3)0.034 (3)0.018 (3)
C120.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C130.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C140.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C150.043 (3)0.064 (4)0.046 (3)0.000 (3)0.014 (2)0.016 (3)
N2A0.024 (6)0.025 (6)0.021 (6)0.009 (5)0.007 (5)0.004 (5)
C12A0.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C13A0.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C14A0.100 (4)0.061 (2)0.084 (3)0.020 (2)0.060 (3)0.009 (2)
C15A0.043 (3)0.064 (4)0.046 (3)0.000 (3)0.014 (2)0.016 (3)
C160.0355 (18)0.045 (2)0.0360 (19)0.0002 (17)0.0220 (15)0.0020 (16)
C170.0327 (18)0.056 (2)0.0319 (17)0.0024 (17)0.0184 (15)0.0001 (17)
C180.0340 (18)0.051 (2)0.0343 (18)0.0040 (17)0.0209 (15)0.0009 (17)
C190.0316 (18)0.048 (2)0.0373 (19)0.0052 (16)0.0209 (15)0.0039 (17)
Geometric parameters (Å, º) top
O1—C21.354 (5)N2—C121.517 (10)
O1—C31.418 (5)N2—C131.476 (8)
O2—C21.200 (5)N2—C151.521 (8)
O3—C161.267 (5)C12—H12A0.9900
O4—C161.209 (5)C12—H12B0.9900
O5—H5A0.886 (15)C13—H13A0.9900
O5—C191.292 (5)C13—H13B0.9900
O6—C191.218 (5)C13—C141.535 (10)
N1—H10.862 (14)C14—H14A0.9800
N1—C71.368 (6)C14—H14B0.9800
N1—C101.372 (6)C14—H14C0.9800
C1—H1A0.9800C15—H15A0.9800
C1—H1B0.9800C15—H15B0.9800
C1—H1C0.9800C15—H15C0.9800
C1—C21.504 (6)N2A—H2A0.870 (15)
C3—C41.371 (6)N2A—C12A1.518 (14)
C3—C81.390 (6)N2A—C13A1.521 (13)
C4—H40.9500N2A—C15A1.538 (12)
C4—C51.392 (7)C12A—H12C0.9900
C5—H50.9500C12A—H12D0.9900
C5—C61.376 (8)C13A—H13C0.9900
C6—H60.9500C13A—H13D0.9900
C6—C71.385 (7)C13A—C14A1.532 (14)
C7—C81.422 (5)C14A—H14D0.9800
C8—C91.443 (6)C14A—H14E0.9800
C9—C101.365 (5)C14A—H14F0.9800
C9—C111.500 (5)C15A—H15D0.9800
C10—H100.9500C15A—H15E0.9800
C11—H11A0.9900C15A—H15F0.9800
C11—H11B0.9900C16—C171.495 (5)
C11—H11C0.9900C17—H170.9500
C11—H11D0.9900C17—C181.312 (5)
C11—C121.501 (9)C18—H180.9500
C11—C12A1.551 (14)C18—C191.496 (5)
N2—H20.875 (15)
C2—O1—C3117.8 (3)H12A—C12—H12B108.3
C19—O5—H5A101 (4)N2—C13—H13A110.5
C7—N1—H1125 (3)N2—C13—H13B110.5
C7—N1—C10108.7 (3)N2—C13—C14106.2 (6)
C10—N1—H1126 (3)H13A—C13—H13B108.7
H1A—C1—H1B109.5C14—C13—H13A110.5
H1A—C1—H1C109.5C14—C13—H13B110.5
H1B—C1—H1C109.5C13—C14—H14A109.5
C2—C1—H1A109.5C13—C14—H14B109.5
C2—C1—H1B109.5C13—C14—H14C109.5
C2—C1—H1C109.5H14A—C14—H14B109.5
O1—C2—C1111.3 (4)H14A—C14—H14C109.5
O2—C2—O1123.2 (4)H14B—C14—H14C109.5
O2—C2—C1125.4 (4)N2—C15—H15A109.5
C4—C3—O1118.1 (4)N2—C15—H15B109.5
C4—C3—C8121.8 (4)N2—C15—H15C109.5
C8—C3—O1119.9 (3)H15A—C15—H15B109.5
C3—C4—H4120.2H15A—C15—H15C109.5
C3—C4—C5119.5 (4)H15B—C15—H15C109.5
C5—C4—H4120.2C12A—N2A—H2A109 (10)
C4—C5—H5119.2C12A—N2A—C13A144 (2)
C6—C5—C4121.7 (4)C12A—N2A—C15A106 (2)
C6—C5—H5119.2C13A—N2A—H2A97 (10)
C5—C6—H6121.1C13A—N2A—C15A93.2 (16)
C5—C6—C7117.8 (4)C15A—N2A—H2A101 (10)
C7—C6—H6121.1C11—C12A—H12C106.5
N1—C7—C6129.8 (4)C11—C12A—H12D106.5
N1—C7—C8107.7 (3)N2A—C12A—C11123.2 (16)
C6—C7—C8122.5 (4)N2A—C12A—H12C106.5
C3—C8—C7116.7 (4)N2A—C12A—H12D106.5
C3—C8—C9136.6 (4)H12C—C12A—H12D106.5
C7—C8—C9106.7 (3)N2A—C13A—H13C107.4
C8—C9—C11128.3 (3)N2A—C13A—H13D107.4
C10—C9—C8105.9 (3)N2A—C13A—C14A119.8 (18)
C10—C9—C11125.7 (4)H13C—C13A—H13D106.9
N1—C10—H10124.6C14A—C13A—H13C107.4
C9—C10—N1110.9 (4)C14A—C13A—H13D107.4
C9—C10—H10124.6C13A—C14A—H14D109.5
C9—C11—H11A109.6C13A—C14A—H14E109.5
C9—C11—H11B109.6C13A—C14A—H14F109.5
C9—C11—H11C109.8H14D—C14A—H14E109.5
C9—C11—H11D109.8H14D—C14A—H14F109.5
C9—C11—C12110.2 (5)H14E—C14A—H14F109.5
C9—C11—C12A109.4 (10)N2A—C15A—H15D109.5
H11A—C11—H11B108.1N2A—C15A—H15E109.5
H11C—C11—H11D108.2N2A—C15A—H15F109.5
C12—C11—H11A109.6H15D—C15A—H15E109.5
C12—C11—H11B109.6H15D—C15A—H15F109.5
C12A—C11—H11C109.8H15E—C15A—H15F109.5
C12A—C11—H11D109.8O3—C16—C17115.3 (3)
C12—N2—H2108 (6)O4—C16—O3124.5 (3)
C12—N2—C15116.7 (8)O4—C16—C17120.2 (3)
C13—N2—H2101 (6)C16—C17—H17118.7
C13—N2—C12108.3 (6)C18—C17—C16122.5 (3)
C13—N2—C15105.4 (5)C18—C17—H17118.7
C15—N2—H2115 (5)C17—C18—H18118.9
C11—C12—N2109.3 (6)C17—C18—C19122.2 (3)
C11—C12—H12A109.8C19—C18—H18118.9
C11—C12—H12B109.8O5—C19—C18112.9 (3)
N2—C12—H12A109.8O6—C19—O5125.9 (3)
N2—C12—H12B109.8O6—C19—C18121.2 (3)
O1—C3—C4—C5176.0 (4)C7—C8—C9—C11178.7 (4)
O1—C3—C8—C7177.9 (3)C8—C3—C4—C50.4 (6)
O1—C3—C8—C93.9 (7)C8—C9—C10—N10.8 (5)
O3—C16—C17—C18175.9 (4)C8—C9—C11—C12139.1 (7)
O4—C16—C17—C183.9 (7)C8—C9—C11—C12A129 (2)
N1—C7—C8—C3177.6 (3)C9—C11—C12—N2172.0 (7)
N1—C7—C8—C91.1 (4)C9—C11—C12A—N2A164 (3)
C2—O1—C3—C4105.8 (4)C10—N1—C7—C6178.4 (4)
C2—O1—C3—C878.5 (5)C10—N1—C7—C81.6 (5)
C3—O1—C2—O21.2 (6)C10—C9—C11—C1239.6 (9)
C3—O1—C2—C1177.7 (4)C10—C9—C11—C12A49 (2)
C3—C4—C5—C61.8 (7)C11—C9—C10—N1179.8 (4)
C3—C8—C9—C10178.2 (5)C12—N2—C13—C1463.8 (9)
C3—C8—C9—C112.9 (7)C13—N2—C12—C11161.4 (8)
C4—C3—C8—C72.3 (6)C15—N2—C12—C1180.0 (10)
C4—C3—C8—C9179.4 (4)C15—N2—C13—C14170.6 (5)
C4—C5—C6—C71.7 (8)C12A—N2A—C13A—C14A110 (4)
C5—C6—C7—N1179.6 (4)C13A—N2A—C12A—C11144 (3)
C5—C6—C7—C80.4 (7)C15A—N2A—C12A—C1197 (4)
C6—C7—C8—C32.4 (6)C15A—N2A—C13A—C14A128 (2)
C6—C7—C8—C9178.9 (4)C16—C17—C18—C19177.5 (4)
C7—N1—C10—C91.6 (5)C17—C18—C19—O5159.5 (4)
C7—C8—C9—C100.2 (4)C17—C18—C19—O619.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.86 (1)2.02 (2)2.858 (4)165 (5)
N2—H2···O40.88 (2)1.85 (4)2.644 (6)150 (7)
N2A—H2A···O40.87 (2)1.94 (6)2.776 (14)162 (17)
O5—H5A···O3ii0.89 (2)1.61 (2)2.459 (4)160 (6)
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z.
[2-(4-Acetyloxy-1H-indol-3-yl)ethyl](methyl)prop-2-enylazanium 3-carboxyprop-2-enoate (II) top
Crystal data top
C16H21N2O2+·C4H3O4F(000) = 412
Mr = 388.41Dx = 1.269 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.9702 (4) ÅCell parameters from 9882 reflections
b = 14.1788 (7) Åθ = 2.7–25.6°
c = 9.8035 (5) ŵ = 0.09 mm1
β = 113.394 (2)°T = 297 K
V = 1016.80 (9) Å3BLOCK, colourless
Z = 20.34 × 0.24 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3516 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.8°
Tmin = 0.686, Tmax = 0.745h = 99
26393 measured reflectionsk = 1717
3797 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2448P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.27 e Å3
3797 reflectionsΔρmin = 0.16 e Å3
264 parametersAbsolute structure: Flack x determined using 1577 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
4 restraintsAbsolute structure parameter: 0.4 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0798 (3)0.7896 (2)0.2116 (3)0.0688 (8)
O20.0241 (3)0.69624 (16)0.3445 (2)0.0496 (5)
O30.5149 (3)0.4747 (3)0.3619 (3)0.0834 (11)
O40.5188 (3)0.4841 (3)0.5856 (3)0.0701 (8)
H4A0.397 (2)0.484 (4)0.543 (5)0.105*
O51.1781 (3)0.53485 (19)0.6822 (2)0.0559 (6)
O61.1837 (2)0.47635 (18)0.4735 (2)0.0493 (5)
N10.4734 (4)0.5921 (2)0.1031 (3)0.0585 (8)
H10.577 (3)0.580 (3)0.176 (3)0.070*
N20.2259 (4)0.4086 (2)0.1361 (3)0.0499 (6)
H20.297 (4)0.436 (3)0.221 (3)0.060*
C10.2902 (5)0.7280 (3)0.4444 (5)0.0754 (12)
H1A0.3772230.7719900.4361580.113*
H1B0.3307260.6648220.4396780.113*
H1C0.2792170.7372710.5375700.113*
C20.1079 (5)0.7436 (2)0.3193 (4)0.0506 (8)
C30.2038 (4)0.7039 (2)0.2363 (3)0.0464 (7)
C40.3218 (6)0.7650 (3)0.2617 (5)0.0642 (9)
H40.2810870.8030900.3458110.077*
C50.5046 (6)0.7694 (3)0.1595 (6)0.0776 (12)
H50.5840900.8108420.1772930.093*
C60.5689 (5)0.7147 (3)0.0352 (5)0.0685 (11)
H60.6903940.7183370.0314970.082*
C70.4473 (4)0.6531 (2)0.0109 (4)0.0494 (8)
C80.2618 (4)0.6455 (2)0.1114 (3)0.0401 (6)
C90.1793 (4)0.5762 (2)0.0515 (3)0.0418 (6)
C100.3140 (5)0.5459 (3)0.0778 (3)0.0531 (8)
H100.2990370.5001500.1399820.064*
C110.0171 (4)0.5439 (2)0.1121 (4)0.0491 (7)
H11A0.0824000.5781460.0627690.059*
H11B0.0741420.5581380.2173890.059*
C120.0315 (4)0.4409 (2)0.0897 (4)0.0554 (8)
H12A0.0360850.4258810.0144030.066*
H12B0.0242640.4066300.1466350.066*
C130.2451 (6)0.3047 (3)0.1669 (5)0.0656 (10)
H13A0.1657280.2710140.0788050.079*
H13B0.3699740.2859780.1880000.079*
C140.1994 (6)0.2777 (3)0.2918 (5)0.0745 (11)
H140.2607470.3089760.3813120.089*
C150.0818 (9)0.2144 (4)0.2897 (8)0.1105 (19)
H15A0.0171040.1813080.2026240.133*
H15B0.0617570.2019830.3751310.133*
C160.3019 (6)0.4354 (4)0.0257 (4)0.0741 (12)
H16A0.4257260.4135180.0587810.111*
H16B0.2992410.5027550.0153870.111*
H16C0.2297520.4071990.0685480.111*
C170.5946 (3)0.4843 (2)0.4951 (3)0.0412 (6)
C180.7971 (3)0.4950 (2)0.5624 (3)0.0418 (6)
H180.8537540.5044500.6644540.050*
C190.8996 (3)0.4919 (2)0.4870 (3)0.0406 (6)
H190.8441500.4823800.3848400.049*
C201.1021 (3)0.5030 (2)0.5574 (3)0.0372 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0517 (14)0.0828 (19)0.0643 (16)0.0064 (13)0.0149 (12)0.0250 (14)
O20.0521 (12)0.0543 (12)0.0358 (10)0.0098 (10)0.0102 (9)0.0002 (9)
O30.0276 (10)0.176 (3)0.0441 (13)0.0232 (16)0.0119 (9)0.0257 (17)
O40.0255 (10)0.142 (3)0.0462 (12)0.0035 (14)0.0177 (9)0.0141 (15)
O50.0243 (9)0.0955 (18)0.0443 (12)0.0058 (10)0.0098 (9)0.0179 (11)
O60.0274 (9)0.0772 (15)0.0464 (11)0.0007 (10)0.0177 (8)0.0114 (10)
N10.0341 (14)0.076 (2)0.0502 (15)0.0136 (13)0.0009 (12)0.0058 (14)
N20.0438 (14)0.0591 (16)0.0439 (14)0.0010 (12)0.0144 (11)0.0097 (12)
C10.053 (2)0.077 (3)0.071 (2)0.0121 (19)0.0019 (18)0.006 (2)
C20.0490 (17)0.0470 (17)0.0483 (18)0.0062 (14)0.0113 (14)0.0035 (14)
C30.0439 (16)0.0499 (17)0.0452 (16)0.0041 (13)0.0176 (13)0.0034 (14)
C40.071 (2)0.063 (2)0.069 (2)0.0029 (18)0.039 (2)0.0023 (18)
C50.064 (2)0.076 (3)0.110 (4)0.019 (2)0.052 (3)0.016 (3)
C60.0366 (17)0.080 (3)0.089 (3)0.0054 (17)0.0247 (18)0.019 (2)
C70.0334 (14)0.0576 (18)0.0536 (18)0.0082 (13)0.0134 (13)0.0112 (15)
C80.0327 (13)0.0462 (15)0.0385 (14)0.0042 (11)0.0110 (11)0.0070 (12)
C90.0397 (14)0.0479 (15)0.0325 (13)0.0044 (12)0.0087 (11)0.0030 (12)
C100.0490 (17)0.064 (2)0.0374 (15)0.0099 (16)0.0078 (13)0.0025 (14)
C110.0408 (15)0.0561 (18)0.0430 (15)0.0002 (14)0.0087 (13)0.0020 (14)
C120.0429 (17)0.0551 (19)0.063 (2)0.0037 (14)0.0151 (16)0.0039 (15)
C130.062 (2)0.062 (2)0.065 (2)0.0093 (17)0.0170 (18)0.0060 (17)
C140.089 (3)0.056 (2)0.078 (3)0.006 (2)0.033 (2)0.003 (2)
C150.117 (5)0.094 (4)0.118 (4)0.012 (3)0.044 (4)0.018 (4)
C160.071 (2)0.105 (3)0.058 (2)0.005 (2)0.039 (2)0.006 (2)
C170.0252 (12)0.0562 (17)0.0398 (15)0.0030 (13)0.0104 (11)0.0064 (13)
C180.0264 (12)0.0607 (18)0.0370 (14)0.0035 (12)0.0113 (11)0.0052 (13)
C190.0233 (12)0.0588 (17)0.0370 (13)0.0041 (12)0.0091 (10)0.0037 (12)
C200.0232 (11)0.0485 (15)0.0384 (14)0.0016 (11)0.0107 (10)0.0002 (12)
Geometric parameters (Å, º) top
O1—C21.185 (4)C6—C71.394 (6)
O2—C21.351 (4)C7—C81.419 (4)
O2—C31.408 (4)C8—C91.431 (5)
O3—C171.212 (3)C9—C101.365 (4)
O4—H4A0.894 (14)C9—C111.508 (4)
O4—C171.256 (3)C10—H100.9300
O5—C201.216 (3)C11—H11A0.9700
O6—C201.290 (3)C11—H11B0.9700
N1—H10.867 (14)C11—C121.488 (5)
N1—C71.362 (5)C12—H12A0.9700
N1—C101.362 (5)C12—H12B0.9700
N2—H20.890 (14)C13—H13A0.9700
N2—C121.502 (4)C13—H13B0.9700
N2—C131.499 (5)C13—C141.460 (6)
N2—C161.484 (4)C14—H140.9300
C1—H1A0.9600C14—C151.292 (7)
C1—H1B0.9600C15—H15A0.9300
C1—H1C0.9600C15—H15B0.9300
C1—C21.499 (5)C16—H16A0.9600
C3—C41.372 (5)C16—H16B0.9600
C3—C81.396 (4)C16—H16C0.9600
C4—H40.9300C17—C181.489 (3)
C4—C51.404 (6)C18—H180.9300
C5—H50.9300C18—C191.302 (4)
C5—C61.361 (7)C19—H190.9300
C6—H60.9300C19—C201.491 (3)
C2—O2—C3117.2 (2)C9—C10—H10124.7
C17—O4—H4A114 (3)C9—C11—H11A109.3
C7—N1—H1126 (3)C9—C11—H11B109.3
C7—N1—C10109.2 (3)H11A—C11—H11B107.9
C10—N1—H1124 (3)C12—C11—C9111.7 (3)
C12—N2—H2110 (3)C12—C11—H11A109.3
C13—N2—H2105 (3)C12—C11—H11B109.3
C13—N2—C12111.8 (3)N2—C12—H12A109.1
C16—N2—H2106 (3)N2—C12—H12B109.1
C16—N2—C12111.8 (3)C11—C12—N2112.7 (3)
C16—N2—C13111.1 (3)C11—C12—H12A109.1
H1A—C1—H1B109.5C11—C12—H12B109.1
H1A—C1—H1C109.5H12A—C12—H12B107.8
H1B—C1—H1C109.5N2—C13—H13A109.0
C2—C1—H1A109.5N2—C13—H13B109.0
C2—C1—H1B109.5H13A—C13—H13B107.8
C2—C1—H1C109.5C14—C13—N2112.8 (3)
O1—C2—O2123.5 (3)C14—C13—H13A109.0
O1—C2—C1126.1 (3)C14—C13—H13B109.0
O2—C2—C1110.4 (3)C13—C14—H14116.9
C4—C3—O2118.5 (3)C15—C14—C13126.1 (5)
C4—C3—C8121.4 (3)C15—C14—H14116.9
C8—C3—O2119.9 (3)C14—C15—H15A120.0
C3—C4—H4120.3C14—C15—H15B120.0
C3—C4—C5119.4 (4)H15A—C15—H15B120.0
C5—C4—H4120.3N2—C16—H16A109.5
C4—C5—H5119.0N2—C16—H16B109.5
C6—C5—C4121.9 (4)N2—C16—H16C109.5
C6—C5—H5119.0H16A—C16—H16B109.5
C5—C6—H6121.0H16A—C16—H16C109.5
C5—C6—C7118.0 (3)H16B—C16—H16C109.5
C7—C6—H6121.0O3—C17—O4124.6 (2)
N1—C7—C6130.4 (3)O3—C17—C18120.1 (2)
N1—C7—C8107.4 (3)O4—C17—C18115.3 (2)
C6—C7—C8122.2 (3)C17—C18—H18118.0
C3—C8—C7117.0 (3)C19—C18—C17124.0 (2)
C3—C8—C9136.1 (3)C19—C18—H18118.0
C7—C8—C9106.8 (3)C18—C19—H19118.6
C8—C9—C11128.4 (3)C18—C19—C20122.8 (2)
C10—C9—C8106.1 (3)C20—C19—H19118.6
C10—C9—C11125.5 (3)O5—C20—O6125.1 (2)
N1—C10—C9110.5 (3)O5—C20—C19121.3 (2)
N1—C10—H10124.7O6—C20—C19113.6 (2)
O2—C3—C4—C5176.1 (3)C6—C7—C8—C31.0 (4)
O2—C3—C8—C7176.5 (2)C6—C7—C8—C9179.9 (3)
O2—C3—C8—C94.7 (5)C7—N1—C10—C90.9 (4)
O3—C17—C18—C192.3 (6)C7—C8—C9—C100.1 (3)
O4—C17—C18—C19176.4 (4)C7—C8—C9—C11177.7 (3)
N1—C7—C8—C3178.7 (3)C8—C3—C4—C50.4 (5)
N1—C7—C8—C90.4 (3)C8—C9—C10—N10.6 (4)
N2—C13—C14—C15125.8 (5)C8—C9—C11—C12142.7 (3)
C2—O2—C3—C4100.4 (3)C9—C11—C12—N2174.6 (3)
C2—O2—C3—C883.9 (4)C10—N1—C7—C6179.6 (4)
C3—O2—C2—O10.7 (5)C10—N1—C7—C80.8 (4)
C3—O2—C2—C1180.0 (3)C10—C9—C11—C1239.8 (4)
C3—C4—C5—C60.1 (6)C11—C9—C10—N1177.3 (3)
C3—C8—C9—C10179.0 (3)C12—N2—C13—C1463.6 (4)
C3—C8—C9—C111.1 (6)C13—N2—C12—C11158.9 (3)
C4—C3—C8—C70.9 (5)C16—N2—C12—C1175.8 (4)
C4—C3—C8—C9179.7 (3)C16—N2—C13—C14170.7 (3)
C4—C5—C6—C70.0 (6)C17—C18—C19—C20179.9 (3)
C5—C6—C7—N1179.0 (4)C18—C19—C20—O515.6 (5)
C5—C6—C7—C80.5 (5)C18—C19—C20—O6164.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.87 (1)2.00 (2)2.857 (3)169 (4)
O4—H4A···O6ii0.89 (1)1.56 (2)2.454 (3)175 (6)
Symmetry codes: (i) x2, y, z1; (ii) x1, y, z.
Bis{[2-(4-acetyloxy-1H-indol-3-yl)ethyl]diprop-2-enylazanium} but-2-enedioate–(E)-butenedioic acid (1/1) (III) top
Crystal data top
2C18H23N2O2+·C4H2O42·C4H4O4F(000) = 1760
Mr = 828.90Dx = 1.270 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.6642 (19) ÅCell parameters from 9906 reflections
b = 8.4204 (7) Åθ = 2.6–24.9°
c = 23.4002 (18) ŵ = 0.09 mm1
β = 111.614 (2)°T = 297 K
V = 4334.9 (6) Å3Block, colorless
Z = 40.22 × 0.2 × 0.12 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3441 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.8°, θmin = 2.6°
Tmin = 0.715, Tmax = 0.745h = 2828
99597 measured reflectionsk = 1010
4126 independent reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0623P)2 + 3.3312P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.50 e Å3
4126 reflectionsΔρmin = 0.29 e Å3
354 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
114 restraintsExtinction coefficient: 0.0057 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.43377 (5)0.84230 (16)0.40787 (6)0.0547 (4)
O40.52519 (5)0.82545 (19)0.40300 (6)0.0650 (4)
N10.15205 (7)0.5819 (2)0.16972 (7)0.0540 (4)
H10.1284 (8)0.542 (2)0.1349 (6)0.065*
N20.40861 (6)0.56750 (17)0.34003 (6)0.0444 (4)
H20.4151 (9)0.6559 (16)0.3614 (8)0.053*
C30.19478 (8)0.6147 (2)0.33073 (8)0.0533 (5)
C40.14362 (9)0.5733 (3)0.34114 (10)0.0683 (6)
H40.1440720.5712510.3810420.082*
C50.09055 (9)0.5341 (3)0.29169 (12)0.0705 (6)
H50.0559010.5068000.2993180.085*
C60.08822 (8)0.5348 (2)0.23271 (10)0.0590 (5)
H60.0526010.5094560.2000800.071*
C70.14110 (7)0.5749 (2)0.22293 (8)0.0467 (4)
C80.19553 (7)0.61618 (19)0.27159 (8)0.0432 (4)
C90.24029 (7)0.6461 (2)0.24481 (8)0.0450 (4)
C100.21169 (8)0.6216 (2)0.18357 (9)0.0537 (5)
H100.2301510.6304850.1548370.064*
C110.30631 (7)0.6867 (2)0.27697 (9)0.0496 (4)
H11A0.3103830.7719980.3060920.060*
H11B0.3230610.7228950.2471500.060*
C120.34109 (7)0.5424 (2)0.31047 (9)0.0480 (4)
H12A0.3256700.5118230.3419690.058*
H12B0.3334430.4550470.2815620.058*
C160.43581 (9)0.4308 (3)0.38317 (11)0.0664 (6)
H16A0.4173350.4274990.4139090.080*
H16B0.4256040.3324820.3600120.080*
C170.50234 (11)0.4390 (3)0.41471 (13)0.0871 (8)
H170.5191230.5274550.4388030.105*
C180.53850 (14)0.3276 (5)0.41018 (19)0.1316 (14)
H18A0.5226000.2382600.3863110.158*
H18B0.5802610.3372740.4308180.158*
C190.48981 (7)0.8722 (2)0.42812 (8)0.0467 (4)
C200.51576 (7)0.9709 (2)0.48471 (8)0.0479 (4)
H200.5572050.9924720.4991790.057*
O50.6457 (5)0.730 (3)0.5379 (4)0.097 (5)0.48 (4)
O60.6402 (8)0.822 (2)0.4447 (8)0.062 (2)0.48 (4)
H6A0.6033900.8284420.4361780.094*0.48 (4)
C210.6647 (8)0.748 (3)0.4963 (7)0.060 (3)0.48 (4)
O5A0.6392 (3)0.645 (2)0.5186 (10)0.103 (4)0.52 (4)
O6A0.6418 (7)0.800 (3)0.4512 (8)0.084 (4)0.52 (4)
H6AA0.6054620.7939440.4448630.126*0.52 (4)
C21A0.6724 (9)0.727 (3)0.5011 (8)0.070 (4)0.52 (4)
C220.73480 (9)0.7230 (3)0.51577 (9)0.0637 (6)
H220.7553980.6666810.5516260.076*0.48 (4)
H22A0.7575540.6755870.5530770.076*0.52 (4)
C130.43825 (8)0.5987 (3)0.29456 (9)0.0579 (5)
H13A0.4703970.6728370.3161820.069*0.099 (4)
H13B0.4588370.4993360.2941170.069*0.099 (4)
H13C0.4278090.7053540.2784870.069*0.901 (4)
H13D0.4819920.5948390.3158990.069*0.901 (4)
C140.4188 (10)0.652 (3)0.2307 (5)0.0769 (8)0.099 (4)
H140.4234050.7616710.2288390.092*0.099 (4)
C150.397 (3)0.592 (7)0.1760 (14)0.1028 (15)0.099 (4)
H15A0.3902530.4832220.1709240.123*0.099 (4)
H15B0.3885120.6573110.1417890.123*0.099 (4)
C14A0.42144 (12)0.4880 (3)0.24310 (12)0.0769 (8)0.901 (4)
H14A0.4287670.3802330.2511800.092*0.901 (4)
C15A0.3967 (3)0.5342 (6)0.18674 (15)0.1028 (15)0.901 (4)
H15C0.3890880.6414560.1778080.123*0.901 (4)
H15D0.3866090.4601560.1550460.123*0.901 (4)
O10.2254 (8)0.8833 (10)0.3924 (13)0.099 (6)0.38 (4)
O20.2527 (6)0.645 (2)0.3753 (9)0.071 (5)0.38 (4)
C10.3155 (7)0.789 (2)0.4602 (7)0.066 (4)0.38 (4)
H1A0.3335360.6892570.4770370.098*0.38 (4)
H1B0.3137660.8563110.4926750.098*0.38 (4)
H1C0.3395980.8395190.4401530.098*0.38 (4)
C20.2529 (8)0.7621 (19)0.4148 (8)0.064 (6)0.38 (4)
O1A0.2133 (4)0.848 (2)0.4172 (7)0.102 (4)0.62 (4)
O2A0.2484 (4)0.6422 (12)0.3825 (6)0.063 (2)0.62 (4)
C1A0.3206 (6)0.772 (2)0.4660 (6)0.113 (5)0.62 (4)
H1AA0.3508110.7538640.4483710.170*0.62 (4)
H1AB0.3217550.6877200.4938980.170*0.62 (4)
H1AC0.3287720.8714040.4878050.170*0.62 (4)
C2A0.2590 (5)0.7784 (14)0.4159 (6)0.071 (4)0.62 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0303 (6)0.0649 (8)0.0582 (7)0.0035 (5)0.0039 (5)0.0155 (6)
O40.0370 (7)0.0920 (11)0.0605 (8)0.0001 (6)0.0115 (6)0.0220 (7)
N10.0411 (8)0.0576 (9)0.0510 (9)0.0042 (7)0.0024 (6)0.0055 (7)
N20.0326 (7)0.0479 (8)0.0502 (8)0.0044 (6)0.0122 (6)0.0050 (6)
C30.0375 (9)0.0627 (11)0.0553 (10)0.0019 (8)0.0119 (8)0.0016 (9)
C40.0538 (11)0.0892 (16)0.0675 (13)0.0008 (11)0.0288 (10)0.0034 (11)
C50.0405 (10)0.0807 (15)0.0945 (16)0.0076 (10)0.0299 (11)0.0024 (12)
C60.0314 (8)0.0566 (11)0.0806 (14)0.0009 (8)0.0108 (8)0.0072 (10)
C70.0343 (8)0.0396 (9)0.0584 (10)0.0039 (6)0.0079 (7)0.0025 (7)
C80.0313 (8)0.0403 (8)0.0528 (9)0.0026 (6)0.0095 (7)0.0019 (7)
C90.0348 (8)0.0417 (9)0.0553 (10)0.0021 (7)0.0128 (7)0.0009 (7)
C100.0468 (10)0.0573 (11)0.0553 (10)0.0048 (8)0.0170 (8)0.0018 (8)
C110.0353 (8)0.0457 (9)0.0664 (11)0.0047 (7)0.0170 (8)0.0052 (8)
C120.0307 (8)0.0488 (9)0.0624 (10)0.0065 (7)0.0147 (7)0.0048 (8)
C160.0520 (11)0.0612 (12)0.0793 (14)0.0024 (9)0.0163 (10)0.0168 (10)
C170.0572 (13)0.0821 (16)0.0994 (18)0.0041 (12)0.0022 (12)0.0325 (14)
C180.0713 (18)0.136 (3)0.169 (4)0.0369 (19)0.021 (2)0.068 (3)
C190.0323 (8)0.0518 (10)0.0467 (9)0.0012 (7)0.0035 (7)0.0023 (7)
C200.0288 (7)0.0548 (10)0.0505 (9)0.0047 (7)0.0033 (6)0.0049 (8)
O50.053 (3)0.178 (11)0.073 (3)0.018 (5)0.037 (2)0.035 (4)
O60.039 (4)0.086 (4)0.055 (4)0.004 (3)0.009 (3)0.024 (3)
C210.021 (3)0.104 (9)0.054 (4)0.014 (4)0.014 (3)0.030 (5)
O5A0.055 (2)0.139 (8)0.120 (7)0.005 (3)0.039 (3)0.053 (6)
O6A0.033 (4)0.140 (11)0.079 (6)0.007 (4)0.021 (4)0.032 (5)
C21A0.051 (8)0.085 (5)0.073 (6)0.012 (5)0.021 (5)0.019 (5)
C220.0401 (10)0.0906 (15)0.0582 (11)0.0058 (10)0.0156 (8)0.0138 (11)
C130.0387 (9)0.0753 (13)0.0602 (11)0.0093 (9)0.0190 (8)0.0079 (10)
C140.0792 (17)0.0819 (17)0.0850 (19)0.0242 (14)0.0481 (15)0.0265 (14)
C150.0831 (18)0.165 (4)0.0664 (19)0.026 (3)0.0341 (17)0.027 (2)
C14A0.0792 (17)0.0819 (17)0.0850 (19)0.0242 (14)0.0481 (15)0.0265 (14)
C15A0.0831 (18)0.165 (4)0.0664 (19)0.026 (3)0.0341 (17)0.027 (2)
O10.087 (5)0.069 (4)0.116 (10)0.002 (3)0.006 (6)0.008 (4)
O20.043 (4)0.126 (10)0.045 (4)0.007 (5)0.015 (3)0.025 (5)
C10.052 (7)0.099 (8)0.046 (5)0.009 (6)0.018 (6)0.016 (5)
C20.040 (6)0.086 (11)0.048 (7)0.005 (6)0.005 (5)0.004 (6)
O1A0.076 (3)0.111 (6)0.101 (5)0.016 (3)0.013 (3)0.032 (4)
O2A0.040 (2)0.090 (4)0.052 (4)0.012 (3)0.009 (2)0.005 (3)
C1A0.067 (5)0.168 (12)0.075 (5)0.018 (6)0.009 (4)0.013 (6)
C2A0.066 (6)0.079 (6)0.070 (6)0.022 (4)0.027 (5)0.014 (4)
Geometric parameters (Å, º) top
O3—C191.2583 (19)C20—H200.9300
O4—C191.251 (2)O5—C211.223 (9)
N1—H10.868 (10)O6—H6A0.8200
N1—C71.363 (2)O6—C211.289 (8)
N1—C101.368 (2)C21—C221.564 (18)
N2—H20.878 (9)O5A—C21A1.221 (10)
N2—C121.5038 (19)O6A—H6AA0.8200
N2—C161.510 (2)O6A—C21A1.285 (8)
N2—C131.498 (2)C21A—C221.388 (19)
C3—C41.365 (3)C22—C22ii1.288 (4)
C3—C81.391 (3)C22—H220.9300
C3—O21.407 (9)C22—H22A0.9300
C3—O2A1.413 (6)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C4—C51.398 (3)C13—H13C0.9700
C5—H50.9300C13—H13D0.9700
C5—C61.361 (3)C13—C141.465 (10)
C6—H60.9300C13—C14A1.458 (3)
C6—C71.394 (3)C14—H140.9300
C7—C81.413 (2)C14—C151.294 (10)
C8—C91.438 (2)C15—H15A0.9300
C9—C101.357 (3)C15—H15B0.9300
C9—C111.503 (2)C14A—H14A0.9300
C10—H100.9300C14A—C15A1.290 (4)
C11—H11A0.9700C15A—H15C0.9300
C11—H11B0.9700C15A—H15D0.9300
C11—C121.514 (2)O1—C21.220 (10)
C12—H12A0.9700O2—C21.348 (9)
C12—H12B0.9700C1—H1A0.9600
C16—H16A0.9700C1—H1B0.9600
C16—H16B0.9700C1—H1C0.9600
C16—C171.474 (3)C1—C21.489 (9)
C17—H170.9300O1A—C2A1.239 (9)
C17—C181.300 (4)O2A—C2A1.359 (7)
C18—H18A0.9300C1A—H1AA0.9600
C18—H18B0.9300C1A—H1AB0.9600
C19—C201.491 (2)C1A—H1AC0.9600
C20—C20i1.304 (3)C1A—C2A1.498 (8)
C7—N1—H1124.6 (14)C19—C20—H20117.8
C7—N1—C10108.71 (15)C20i—C20—C19124.40 (19)
C10—N1—H1124.6 (14)C20i—C20—H20117.8
C12—N2—H2108.3 (13)C21—O6—H6A109.5
C12—N2—C16108.62 (13)O5—C21—O6129.4 (19)
C16—N2—H2108.9 (13)O5—C21—C22114.3 (14)
C13—N2—H2103.1 (13)O6—C21—C22113.7 (10)
C13—N2—C12113.22 (14)C21A—O6A—H6AA109.5
C13—N2—C16114.38 (15)O5A—C21A—O6A111 (2)
C4—C3—C8121.14 (17)O5A—C21A—C22131.5 (18)
C4—C3—O2126.9 (12)O6A—C21A—C22115.3 (11)
C4—C3—O2A117.6 (8)C21—C22—H22118.6
C8—C3—O2111.7 (12)C21A—C22—H22A115.9
C8—C3—O2A121.0 (8)C22ii—C22—C21122.7 (5)
C3—C4—H4120.1C22ii—C22—C21A128.2 (7)
C3—C4—C5119.9 (2)C22ii—C22—H22118.6
C5—C4—H4120.1C22ii—C22—H22A115.9
C4—C5—H5119.1N2—C13—H13A103.0
C6—C5—C4121.79 (18)N2—C13—H13B103.0
C6—C5—H5119.1N2—C13—H13C108.6
C5—C6—H6121.2N2—C13—H13D108.6
C5—C6—C7117.65 (18)H13A—C13—H13B105.1
C7—C6—H6121.2H13C—C13—H13D107.6
N1—C7—C6130.13 (17)C14—C13—N2136.6 (9)
N1—C7—C8107.57 (15)C14—C13—H13A103.0
C6—C7—C8122.29 (18)C14—C13—H13B103.0
C3—C8—C7117.24 (15)C14A—C13—N2114.71 (17)
C3—C8—C9135.79 (15)C14A—C13—H13C108.6
C7—C8—C9106.93 (15)C14A—C13—H13D108.6
C8—C9—C11128.22 (16)C13—C14—H14110.7
C10—C9—C8105.82 (15)C15—C14—C13139 (3)
C10—C9—C11125.87 (16)C15—C14—H14110.7
N1—C10—H10124.5C14—C15—H15A120.0
C9—C10—N1110.92 (16)C14—C15—H15B120.0
C9—C10—H10124.5H15A—C15—H15B120.0
C9—C11—H11A109.6C13—C14A—H14A118.8
C9—C11—H11B109.6C15A—C14A—C13122.3 (3)
C9—C11—C12110.08 (14)C15A—C14A—H14A118.8
H11A—C11—H11B108.2C14A—C15A—H15C120.0
C12—C11—H11A109.6C14A—C15A—H15D120.0
C12—C11—H11B109.6H15C—C15A—H15D120.0
N2—C12—C11114.08 (14)C2—O2—C3113.5 (14)
N2—C12—H12A108.7H1A—C1—H1B109.5
N2—C12—H12B108.7H1A—C1—H1C109.5
C11—C12—H12A108.7H1B—C1—H1C109.5
C11—C12—H12B108.7C2—C1—H1A109.5
H12A—C12—H12B107.6C2—C1—H1B109.5
N2—C16—H16A108.7C2—C1—H1C109.5
N2—C16—H16B108.7O1—C2—O2117 (2)
H16A—C16—H16B107.6O1—C2—C1114.3 (18)
C17—C16—N2114.37 (17)O2—C2—C1110.6 (12)
C17—C16—H16A108.7C2A—O2A—C3123.3 (8)
C17—C16—H16B108.7H1AA—C1A—H1AB109.5
C16—C17—H17118.7H1AA—C1A—H1AC109.5
C18—C17—C16122.6 (3)H1AB—C1A—H1AC109.5
C18—C17—H17118.7C2A—C1A—H1AA109.5
C17—C18—H18A120.0C2A—C1A—H1AB109.5
C17—C18—H18B120.0C2A—C1A—H1AC109.5
H18A—C18—H18B120.0O1A—C2A—O2A115.7 (14)
O3—C19—C20118.57 (15)O1A—C2A—C1A127.1 (11)
O4—C19—O3123.72 (16)O2A—C2A—C1A110.0 (9)
O4—C19—C20117.70 (14)
O3—C19—C20—C20i0.2 (3)C8—C3—O2—C2128.5 (19)
O4—C19—C20—C20i179.3 (2)C8—C3—O2A—C2A107.5 (16)
N1—C7—C8—C3179.21 (16)C8—C9—C10—N11.3 (2)
N1—C7—C8—C90.90 (18)C8—C9—C11—C1271.7 (2)
N2—C16—C17—C18121.8 (3)C9—C11—C12—N2175.40 (14)
N2—C13—C14—C1586 (5)C10—N1—C7—C6177.82 (19)
N2—C13—C14A—C15A121.5 (3)C10—N1—C7—C81.7 (2)
C3—C4—C5—C60.4 (4)C10—C9—C11—C12104.3 (2)
C3—C8—C9—C10177.6 (2)C11—C9—C10—N1178.07 (16)
C3—C8—C9—C111.0 (3)C12—N2—C16—C17179.1 (2)
C3—O2—C2—O147 (4)C12—N2—C13—C1420.0 (14)
C3—O2—C2—C1179.5 (18)C12—N2—C13—C14A48.3 (2)
C3—O2A—C2A—O1A29 (3)C16—N2—C12—C11167.33 (16)
C3—O2A—C2A—C1A177.9 (14)C16—N2—C13—C14145.2 (14)
C4—C3—C8—C70.7 (3)C16—N2—C13—C14A76.8 (2)
C4—C3—C8—C9177.0 (2)O5—C21—C22—C22ii160.9 (18)
C4—C3—O2—C257 (3)O6—C21—C22—C22ii3 (2)
C4—C3—O2A—C2A78.0 (17)O5A—C21A—C22—C22ii158 (2)
C4—C5—C6—C70.6 (3)O6A—C21A—C22—C22ii4 (3)
C5—C6—C7—N1178.49 (19)C13—N2—C12—C1164.5 (2)
C5—C6—C7—C81.0 (3)C13—N2—C16—C1751.5 (3)
C6—C7—C8—C30.4 (3)O2—C3—C4—C5174.8 (10)
C6—C7—C8—C9178.68 (16)O2—C3—C8—C7175.3 (9)
C7—N1—C10—C92.0 (2)O2—C3—C8—C92.4 (9)
C7—C8—C9—C100.25 (19)O2A—C3—C4—C5175.5 (5)
C7—C8—C9—C11176.89 (16)O2A—C3—C8—C7175.0 (5)
C8—C3—C4—C51.1 (3)O2A—C3—C8—C92.7 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3iii0.87 (1)2.22 (2)2.962 (2)144 (2)
N2—H2···O30.88 (1)1.87 (1)2.7446 (19)177 (2)
O6—H6A···O40.821.722.530 (17)168
O6A—H6AA···O40.821.812.577 (16)156
Symmetry code: (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

References

First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByock, I. (2018). J. Palliat. Med. 21, 417–421.  Web of Science CrossRef PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review. https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201–1205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940–16943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDaniel, J. & Haberman, M. (2017). Mental Health Clinician, 7, 24–28.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeltman, R. (2019). Popular Science. https://popsci.com/story/health/psilocybin-magic-mushroom-fda-breakthrough-depression/  Google Scholar
First citationGeiger, H. A., Wurst, M. G. & Daniels, R. N. (2018). ACS Chem. Neurosci. 9, 2438–2447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKlein, A. K., Chatha, M., Laskowski, L. J., Anderson, E. I., Brandt, S. D., Chapman, S. J., McCorvy, J. D. & Halberstadt, A. L. (2020). ACS Pharmacol. Transl. Sci. 3. https://dx.doi.org/10/1021/acsptsci.0c00176  Google Scholar
First citationLehmann, S., Kieliba, T., Beike, J., Thevis, M. & Mercer-Chalmers-Bender, K. (2017). J. Chromatogr. B, 1064, 124–138.  CrossRef CAS Google Scholar
First citationNichols, D. E. & Frescas, S. (1999). Synthesis, pp. 935–938.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds